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Abstract

A rainbow-free coloring of a k-uniform hypergraph H is a vertex-coloring

which uses k colors but with the property that no edge of H attains all col-

ors. Koerkamp and Z̆ivný showed that p = (k − 1)(log n)/n is the threshold

function for the existence of a rainbow-free coloring of the random k-uniform

hypergraph Gk(n, p), and presented that the case when p is close to the thresh-

old is open. In this paper, we give an answer to the question.
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1 Introduction

For a hypergraph H, a map c : V (H)→ [k] is called a k-coloring of H, where [k] :=

{1, . . . , k}. For a k-coloring c of a hypergraph H, we denote the color classes of c by

Ci := c−1(i), i ∈ [k]. Given a k-uniform hypergraph H, a coloring c is called rainbow-

free if for every edge e = {v1, . . . , vk} ∈ E(H) we have c(e) = {c(v1), . . . , c(vk)} 6= [k]

and for every i ∈ [k] there is a vertex v ∈ V (H) with c(v) = i.

We say a k-uniform hypergraph H is rainbow-free colorable if there is a rainbow-

free k-coloring of H. The k-rainbow-free problem is to determine whether a given

k-uniform hypergraph is rainbow-free colorable. Particularly, for k = 2, a graph is

rainbow-free colorable if and only if it is disconnected (cf. Remark 4 in [4]).

The k-rainbow-free problem is a special case of coloring mixed hypergraphs, which

is introduced by Voloshin [6] and further extended by Král’, Kratochv́ıl, Proskurowski

and Voss [5]. A mixed hypergraph is a triple (V,C,D), where V is the vertex set and C

and D are collections of subsets of V . A coloring of the vertices of a mixed hypergraph

(V,C,D) is called proper if every edge in C contains two vertices of the same color and

each edge in D contains two vertices of different colors. The strict k-coloring problem

is to determine whether there is a proper k-coloring of a given mixed hypergraph. A

mixed hypergraph (V,C,D) with D = ∅ is called co-hypergraph. Therefore, the strict

k-coloring problem restricted to k-uniform co-hypergraphs is just the k-rainbow-free

problem. Bodirsky, Kára and Martin [2] called the strict k-coloring problem of co-

hypergraphs as k-no-rainbow-coloring problem, and stated it as an interesting case of

surjective constraint satisfaction problems on a three-element domain.

In this paper, we focus on k-rainbow-free colorings of random hypergraphs. All

logarithms whose base is omitted are natural. If k is clear from the context, we

will call a k-coloring simply a coloring. For n ∈ Z and p ∈ (0, 1), let Gk(n, p) be a

probability space consisting of k-uniform hypergraphs with n vertices, in which each

element of
(

[n]
k

)
occurs independently as an edge with probability p. An event occurs

with high probability (w.h.p.) if the probability of that event approaches 1 as n tends

to infinity.

Koerkamp and Z̆ivný [4] initiated the study of k-rainbow-free colorings of random

hypergraphs. They showed that the function p∗ = (k − 1)(log n)/n is a threshold

function for the property of being rainbow-free colorable [4]. More precisely, they

proved the following result.

Theorem 1.1 ([4]) For integer k ≥ 3, w.h.p. Gk(n, p) is rainbow-free colorable if

p ≤ D logn
n

for D < k − 1. And w.h.p. Gk(n, p) is not rainbow-free colorable if
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p ≥ D logn
n

with D > k − 1.

Koerkamp and Z̆ivný [4] pointed out that in the case that p is close to (k −
1)(log n)/n, the behavior of the rainbow-free colorings of Gk(n, p) is open.

In this paper, we completely determine the behavior of the rainbow-free colorings

of Gk(n, p) for p not covered by Theorem 1.1. LetR be the property of being rainbow-

free colorable. We obtain the following theorem on the property R.

Theorem 1.2 Let k ≥ 3 be an integer.

(i) If p = (k−1) logn−w(n)
n

, where w(n) = o(log n) and w(n)→∞, then

Pr[Gk(n, p) ∈ R]→ 1.

(ii) If p = (k−1) logn+w(n)
n

, where w(n) = o(log n) and w(n)→∞, then

Pr[Gk(n, p) /∈ R]→ 1.

(iii) If p = (k−1) logn+y+o(1)
n

, where y is fixed and y ∈ R, then

Pr[Gk(n, p) ∈ R] ∼ 1− e−e−y/(k−1)!.

Moreover, the number of rainbow-free colorings has asymptotically Poisson distribu-

tion with mean e−y

(k−1)!
.

Remark. Our proof of Theorem 1.2 (Lemmas 2.1 and 2.2) indicates the structure of

“possible” rainbow-free colorings. We obtain that only the coloring, which has only

one color class of size greater than 1, could be rainbow-free with positive probability

as n→∞. Indeed, for a coloring c, if there exist two color classes Ci and Cj (i 6= j),

such that both Ci and Cj contain at least two vertices, then Lemma 2.2 implies that

the probability of c being rainbow-free tends to zero when n→∞. Combining with

Lemma 2.1, we have that only if c has exactly one color class containing at least two

vertices, the probability of c being rainbow-free could be positive.

The rest of the paper is organized as follows. In Section 2, we introduce some

more notation and preliminaries in order to present the crux – Lemmas 2.1 and 2.2,

which lead to Theorem 1.2 directly. We give the proofs of Lemmas 2.1 and 2.2 in

Section 3 and Section 4, respectively. In this paper, we will always assume that n is

the variable that tends to infinity.

2 Preliminaries

We use the standard notation Xn
d−→ X to denote that the sequence of variables

(Xn) tends to the variable X in distribution. And denote by Pλ the Poisson distribu-

tion with mean λ. Given an integer-valued random variable X, let Er[X] denote the
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r-th factorial moment of X, i.e., Er[X] = E[X(X − 1) . . . (X − r+ 1)]. The following

result on convergence in distribution will be used in our proofs.

Theorem 2.1 ([3]) Let λ = λ(n) be a non-negative bounded function on N. Suppose

that the non-negative integer-valued random variables X1, X2, . . . are such that

lim
n→∞

Er[Xn]− λr = 0, r = 1, 2, . . .

Then

Xn
d−→ Pλ.

Recall that for a coloring c of a k-uniform hypergraph H, we denote the color

classes of c by Ci := c−1(i), i ∈ [k]. We say a k-set e ⊆ V (H) is a crossing edge of c,

if e meets all of the k classes of c.

Similar to the technique used by Koerkamp and Z̆ivný [4], we identify a coloring

by the sequence (s1, . . . , sk) where si = |Ci| and s1 ≤ · · · ≤ sk. We divide the set of

all possible sequences into four types1:

Type I. (si)k = (1, . . . , 1, n− k + 1). There is one such sequence.

Type II. (si)k = (1, . . . , 1, x, n − k + 2 − x) with x ≥ 2. This case contains O(n)

sequences.

Type III. 2 ≤ sk−2 ≤ sk−1 and s1 + · · · + sk−1 ≤ 6k. This case contains O(1)

sequences, since k is a constant.

Type IV. 2 ≤ sk−2 ≤ sk−1 and s1 + · · · + sk−1 > 6k. Note that for every i with

1 ≤ i ≤ k − 1, there are less than n choices of the value of si. Moreover, since

sk = n−
∑k−1

i=1 si, we have only one choice of the value of sk when s1, . . . , sk−1

are fixed. Therefore this case contains O(nk−1) sequences.

We investigate the existence of each type of colorings of Gk(n, p) for p belonging to

different ranges. The following two lemmas are our main results, which summarize

the behavior of rainbow-free colorings of Gk(n, p) when p is near (k − 1) log n/n.

Lemma 2.1 focuses on colorings of Type I.

Lemma 2.1 Let k ≥ 3 be an integer, and XI be the number of rainbow-free colorings

of Type I of Gk(n, p).

(i) If p = (k−1) logn−w(n)
n

, where w(n) = o(log n) and w(n)→∞, then

Pr[XI > 0]→ 1.

1There are some differences with the five types of sequences defined in [4].
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(ii) If p = (k−1) logn+w(n)
n

, where w(n) = o(log n) and w(n)→∞, then

Pr[XI = 0]→ 1.

(iii) If p = (k−1) logn+y+o(1)
n

, where y is fixed and y ∈ R, then XI has asymptotically

Poisson distribution with mean e−y

(k−1)!
:

Pr[XI = r] ∼ e−e
−y/(k−1)! e−ry

((k − 1)!)r r!
.

Unlike Type I coloring, the following result tells us that rainbow-free colorings are

not likely to occur as one of Types II, III, or IV.

Lemma 2.2 Let Xi be the number of rainbow-free colorings of Type i of Gk(n, p) for

i = II, III, IV . If p = (k−1) logn+w∗(n)
n

, where w∗(n) = o(log n), then Pr[Xi = 0]→ 1

for i = II, III, IV .

It is easy to see that Theorem 1.2 follows immediately from Lemmas 2.1 and 2.2.

We present the proof of Lemma 2.1 in Section 3, and prove Lemma 2.2 in Section 4.

3 Coloring of Type I

The standard second moment method will be used to prove Lemma 2.1. Let X

be a nonnegative integer-valued random variable such that X =
∑m

i=1Xi , where Xi

is the indicator variable for event Ei. For indices i, j, write i ∼ j if i 6= j and the

events Ei and Ej are not independent. Let (the sum is over all ordered pairs)

∆ =
∑
i∼j

Pr[Ei ∧ Ej].

Theorem 3.1 (Corollary 4.3.4 in [1]) If E[X]→∞ and ∆ = o((E[X])2), then

Pr[X > 0]→ 1.

Let c be a coloring of Type I of Gk(n, p). It follows that |Ci| = 1 for 1 ≤ i ≤ k−1

and |Ck| = n− k + 1. Thus, coloring c is rainbow-free if and only if there is no edge

of Gk(n, p) meeting all k color classes, i.e., any crossing edge of c should not appear

in Gk(n, p). There are n− k + 1 such crossing edges, and hence

Pr[c is a rainbow-free coloring] = (1− p)n−k+1. (3.1)
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Enumerate all possible colorings of Type I (up to permutations of colors) by c1 up

to c`. To every coloring ci we associate the event Ei that ci is rainbow-free. Therefore

(3.1) implies that

Pr[Ei] = (1− p)n−k+1

for every i.

For colorings ci and cj with i 6= j, if the number of common crossing edges of ci

and cj is x, then

Pr[Ei ∧ Ej] = (1− p)2(n−k+1)−x,

since the total number of crossing edges we need to forbid is 2(n − k + 1) − x.

Consequently, Pr[Ei ∧ Ej] = Pr[Ei] · Pr[Ej] if and only if x = 0, i.e., Ei and Ej

are independent if and only if ci and cj have no common crossing edges. Recall that

we write i ∼ j if and only if Ei and Ej are dependent, and therefore i ∼ j if and

only if ci and cj have common crossing edges. For a coloring ci, let CiF =
⋃
r∈[k−1]C

i
r,

where Ci
r is the r-th color class of ci. The following result tells us more about the

independence of two colorings of Type I.

Proposition 3.1 For colorings ci and cj of Type I with i 6= j, we have

(i) i ∼ j if and only if |Ci
k ∩ C

j
k| = n− k.

(ii) If i ∼ j, then the only common crossing edge of ci and cj is CiF ∪ C
j
F .

Proposition 3.1 (i) was observed by Koerkamp and Z̆ivný in [4], we rewrite the

proof for completeness.

Proof. We will show that (1) if |Ci
k∩C

j
k| ≤ n−k−1, then there is no common crossing

edge of ci and cj, and (2) if |Ci
k ∩ C

j
k| = n− k, then the only common crossing edge

of ci and cj is CiF ∪ C
j
F . It is not difficult to obtain Proposition 3.1 from (1) and (2).

Let T = Ci
k ∩ C

j
k, A

i = Ci
k \ T and Aj = Cj

k \ T . Set R = V (Gk(n, p)) \ (Ci
k ∪ C

j
k).

Therefore Ai, Aj and R are pairwise disjoint.

(1) Assume that |T | ≤ n − k − 1. Thus, |Ai| ≥ 2 and |Aj| ≥ 2. Note that any

crossing edge e1 of ci is of the form Aj ∪ R ∪ {u}, where u ∈ Ci
k, and any crossing

edge e2 of cj is of the form Ai ∪R ∪ {v}, where v ∈ Cj
k. Therefore, if e is a common

crossing edge of both ci and cj, then there exist vertices u ∈ Ci
k and v ∈ Cj

k such that

e = (Aj ∪R ∪ {u}) = (Ai ∪R ∪ {v}). (3.2)

Since |Ai| ≥ 2, there is a vertex x ∈ Ai \ {u}. Note that Ai and Aj are disjoint,

we have x /∈ Aj, therefore, x ∈ (Ai ∪ R ∪ {v}) but x /∈ (Aj ∪ R ∪ {u}). Hence,

(Aj ∪R ∪ {u}) 6= (Ai ∪R ∪ {v}), which contradicts (3.2).
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(2) From (1), if i ∼ j, then |T | = n − k. It follows that R ⊆ (CiF ∪ C
j
F ) with

|R| = k− 2, and |Ai| = |Aj| = 1. Moreover, (CiF ∪C
j
F ) = (R∪Ai ∪Aj). Let Ai = {z}

and Aj = {w}. Then w ∈ CiF and z ∈ CjF . Assume that e is a common crossing edge

of ci and cj. Thus, there exist vertices u ∈ Ci
k and v ∈ Cj

k such that

e = (Aj ∪R ∪ {u}) = (Ai ∪R ∪ {v}).

By our assumption that Ai = {z} and Aj = {w}, we have

z = u, and w = v.

Hence, ci and cj have only one common crossing edge e, and e = (CiF ∪ C
j
F ). �

Proof of Lemma 2.1.

Let c be a coloring of Type I of Gk(n, p). The number of colorings of Type I is(
n

n−k+1

)
= Θ

(
nk−1

)
. By (3.1), the expected number of rainbow-free colorings of Type

I is

E[XI ] =

(
n

n− k + 1

)
(1− p)n−k+1. (3.3)

(i) Since log(1 + x) = x+O(x2) for small x, we have

1− p = e−p+O(p2). (3.4)

Substituting p = (k−1) logn−w(n)
n

into (3.4), and combining with (3.3), we get

E[XI ] =Θ
(
nk−1

)
e−(n−k+1)p+O(np2)

=Θ
(
e(k−1) logn−(k−1) logn+w(n)+O(((k−1) logn−w(n))2/n)

)
=Θ

(
ew(n)

)
.

Hence, E[XI ]→∞ as n→∞.

Given a Type I coloring ci, by Proposition 3.1 (i), the number of colorings cj

such that i ∼ j, is equal to the number of colorings cj satisfying that the largest color

classes of ci and cj overlap in n−k positions, which is
(
n−k+1
n−k

)
(k−1) = (n−k+1)(k−1).

Realize that the total number of crossing edges of ci and cj is 2(n − k + 1) − 1 =
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2n− 2k + 1. Therefore,

∆ =
∑
i

(n− k + 1)(k − 1)(1− p)2n−2k+1

≤
(

n

n− k + 1

)
(n− k + 1)(k − 1)e−p(2n−2k+1)

≤ nk−1n(k − 1)e−p(2n−2k+1)

= (k − 1)ek logne−p(2n−2k+1)

= (k − 1)ek logn−2(k−1) logn+2w(n)+(2k−1)(k−1) logn/n−(2k−1)w(n)/n

= Θ
(
e(−k+2) logn

)
,

where the first inequality holds since the number of colorings of Type I is
(

n
n−k+1

)
, and

the second inequality follows by
(

n
n−k+1

)
≤ nk−1. Since k ≥ 3, and w(n) = o(log n),

we have ∆ = o((E[XI ])
2). By Theorem 3.1, we have Pr[XI > 0]→ 1.

(ii) From (3.3) and (3.4) we have

E[XI ] ≤nk−1e−(n−k+1)p+O(np2) ≤ e−w(n)+o(1) = o(1),

where the last equality follows by the assumption that w(n) → ∞. Since Pr[XI >

0] ≤ E[XI ], we obtain that Pr[XI > 0] = o(1).

(iii) In this case, we will show that for every fixed integer r ≥ 1, the r-th factorial

moment Er[XI ] of XI is asymptotic to (e−y/(k − 1)!)
r
. Recall that Er[XI ] is the

expected number of ordered r-tuples of colorings (ci1 , . . . , cir) of Type I, such that

each coloring is rainbow-free. Given an r-tuple of colorings C = (ci1 , . . . , cir), where

every cij is of Type I, let Xj be the indicator variable for the event that cj is rainbow-

free.

Let SC be the set consisting of the crossing edges of any of ci1 , . . . , cir . By Propo-

sition 3.1 (ii), we obtain that

r(n− k + 1)−
(
r

2

)
≤ |SC| ≤ r(n− k + 1). (3.5)

In addition, we have

Pr[Xi1 = 1, . . . , Xir = 1] = (1− p)|SC |. (3.6)

Therefore, the expected number Er[XI ] of ordered r-tuples of rainbow-free colorings

of Type I is

Er[XI ] =
∑
C

(1− p)|SC |. (3.7)
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Let N denote the number of ordered r-tuples of colorings of Type I. Since the

number of colorings of Type I is
(

n
n−k+1

)
=
(
n
k−1

)
, we have

N =

(
n

k − 1

)((
n

k − 1

)
− 1

)
· · ·
((

n

k − 1

)
− (r − 1)

)
∼
(

n

k − 1

)r
. (3.8)

By (3.5), (3.6) and (3.7), we have

N(1− p)r(n−k+1) ≤ Er[XI ] ≤ N(1− p)r(n−k+1)−(r
2). (3.9)

For any fixed t > 0, we claim that (1 − p)r(n−k+1) ∼ (1 − p)r(n−k+1)−t. Indeed,
(1−p)r(n−k+1)

(1−p)r(n−k+1)−t = (1− p)t → 1 for every fixed t. Therefore, (3.9) implies that

Er[XI ] ∼ N(1− p)r(n−k+1).

Then, by (3.8) and (3.3), we have that

Er[XI ] ∼ (E[XI ])
r.

Moreover, by (3.3), we have

E[XI ] ∼
nk−1

(k − 1)!
e−(n−k+1)p+O(np2)

=
1

(k − 1)!
e(k−1) logn−(k−1) logn−y+O(((k−1) logn+y)2/n)

∼ e−y

(k − 1)!
. (3.10)

Applying Theorem 2.1, we obtain that XI has asymptotically Poisson distribution

with mean e−y

(k−1)!
.

4 Colorings of Types II, III and IV

For a sequence (si)k = (s1, . . . , sk) of a coloring c, let Π = s1s2 · · · sk−1 and

Σ = s1 + s2 + · · ·+ sk−1. Then sk = n− Σ ≥ n/k.

Note that c is rainbow-free if none of the s1 · · · sk crossing edges is present. This

happens with probability

Pr[c is rainbow-free |(si)k] = (1− p)s1···sk ≤ e−ps1···sk = e−pΠ(n−Σ). (4.1)
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Since the number of colorings with a given sequence (si)i is upper-bounded by(
n
s1

)
· · ·
(

n
sk−1

)
, the expected number of rainbow-free colorings with a given sequence

(si)i is bounded by

E[the number of rainbow-free colorings|(si)i] ≤
(
n

s1

)
· · ·
(

n

sk−1

)
e−pΠ(n−Σ). (4.2)

In this section, we prove that if p is “close” to (k−1) logn
n

, then w.h.p. there is no

rainbow-free coloring of any of Types II, III or IV of Gk(n, p).

Proof of Lemma 2.2. Denote by Xi the number of rainbow-free colorings of Type i

for i = II, III, IV . We will prove that E[Xi] = o(1) for every i = II, III, IV . Since

Pr[Xi > 0] ≤ E[Xi], Lemma 2.2 follows.

(1) Type II.

For a coloring c of Type II, recall that the sequence (si)k = (1, . . . , 1, x, n−k+2−x)

satisfies that 2 ≤ x < n/2. In this case, Σ = x + k − 2 and Π = x. Let Z(x) be the

number of rainbow-free colorings with sequence s(x) := (1, . . . , 1, x, n − k + 2 − x).

Since 2 ≤ x < n/2, the number of such sequences s(x) is less than n. By (4.2), we

have

E[Z(x)] ≤ nΣe−px(n−(x+k−2)).

Thus, we obtain that

n · E[Z(x)] ≤e((x+k−1)−(k−1)x) logn−w∗(n)x+((k−1) logn+w∗(n))(x+k−2)x/n

=e((k−1)+(2−k)x) logn−w∗(n)x+((k−1) logn+w∗(n))(x+k−2)x/n. (4.3)

Clearly, if we show that the exponent of e in (4.3) tends to −∞, then we have

E[XII ] ≤ n · E[Z(x)] = o(1). Let fk(x) = ((k − 1) + (2 − k)x) log n − w∗(n)x +

((k − 1) log n + w∗(n))(x + k − 2)x/n, the exponent of e in (4.3). Then f ′k(x) =

(2 − k) log n − w∗(n) + ((k − 1) log n + w∗(n))(2x + k − 2)/n. It is easy to get that

f ′k(x) ∼ (2− k) log n→ −∞ when x = o(n). If x = δn for some positive constant δ,

then f ′k(x) ∼ ((2− k) + 2δ(k − 1)) log n. Thus, we have f ′k(x) ≥ 0 for δ ≥ 1
2
− 1

2(k−1)
,

and f ′k(x) < 0 for 0 < δ < 1
2
− 1

2(k−1)
. We distinguish two cases based on k.

Case 1. k ≥ 4.

Since we want an upper bound for fk(x), it suffices to check the boundaries x = 2

and x = n/2. For x = 2, we get that fk(2) ∼ (−k + 3) log n. Since k ≥ 4, we have

fk(2)→ −∞. For x = n/2, note that fk(n/2) equals

−k + 3

4
n log n− 1

4
nw∗(n) +

(
(k − 2)(k − 1)

2
+ k − 1

)
log n+

k − 2

2
w∗(n).
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We have fk(n/2) ∼ −k+3
4
n log n→ −∞ for k ≥ 4. Hence, fk(x)→ −∞ for k ≥ 4. In

conclusion, we have E[XII ] = o(1) for k ≥ 4.

Case 2. k = 3.

When x = δn, we have f ′k(x) ≥ 0 for δ ≥ 1
4

and f ′k(x) < 0 for 0 < δ < 1
4
. Note

that f3(x) = (2 − x) log n − xw∗(n) + x(x+1)(2 logn+w∗(n))
n

. Thus f3(3) = − log n −
3w∗(n) + 12(2 logn+w∗(n))

n
→ −∞. And it is easy to check that f3(n/4) ∼ −n logn

8
, so

f3(n/4)→ −∞. Combining with (4.3), it follows that

when 3 ≤ x ≤ n/4, we have E[Z(x)] = o(n−1). (4.4)

Therefore, we need to investigate two subcases: n
4
< x < n

2
or x = 2.

Subcase 2.1. n
4
< x < n

2
.

Let x = n
2
− ε. Thus, the sequence of coloring is (1, n

2
− ε, n

2
+ ε−1). Furthermore,

we have ε ≥ 1/2 since n
2
− ε ≤ n

2
+ ε − 1. Combining with our assumption that

n/4 < x < n/2, we have
1

2
≤ ε <

n

4
. (4.5)

Therefore,

E
[
Z
(n

2
− ε
)]

= n

(
n− 1
n
2
− ε

)
(1− p)(

n
2
−ε)(n

2
+ε−1). (4.6)

Since
(
n
s

)
≤
(
ne
s

)s
for 0 ≤ s ≤ n, combining with (4.6), we have

E
[
Z
(n

2
− ε
)]
≤n
(

(n− 1)e
n
2
− ε

)n
2
−ε

e
−p

(
n2

4
−n

2
−ε(ε−1)

)

≤n
(

ne
n
2
− ε

)n
2

e
−p

(
n2

4
−n

2
−ε(ε−1)

)

=e−
n
2

log(n−2ε)−nw∗(n)
4

+n
2

(1+log 2)+2 logn+
w∗(n)

2
+o(1). (4.7)

Since ε < n/4 by (4.5), we have n− 2ε > n/2. Substituting this into (4.7), we obtain

that

E
[
Z
(n

2
− ε
)]

< e−
n
2

logn−nw∗(n)
4

+n
2

(1+2 log 2)+2 logn+
w∗(n)

2
+o(1).

Recall that w∗(n) = o(log n), we have

E
[
Z
(n

2
− ε
)]

= e−
n
2

logn(1+o(1)) = o(n−1).

Namely,

when n/4 < x < n/2, we have E[Z(x)] = o(n−1). (4.8)

Subcase 2.2. x = 2.
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Now the sequence of coloring is (1, 2, n− 3), and the number of such colorings is(
n
1

)(
n−1

2

)
= n

(
n−1

2

)
. Therefore,

E[Z(2)] = n

(
n− 1

2

)
(1− p)2(n−3) ≤ 1

2
n3(1− p)2(n−3)

≤ 1

2
e− logn−2w∗(n)+

12 logn+6w∗(n)
n = Θ(n−1). (4.9)

Let Z(3+) be the number of rainbow-free colorings of types (1, x, n − 1 − x) for

3 ≤ x < n
2
. Then we have that when k = 3,

E[XII ] = E[Z(3+)] + E[Z(2)]. (4.10)

By (4.4) and (4.8), we have

E[Z(3+)] = o(1). (4.11)

Therefore, from (4.9), (4.10) and (4.11), we obtain that E[XII ] = o(1) for k = 3.

(2) Type III.

Given a coloring sequence (si)k, since(
n

s1

)
· · ·
(

n

sk−1

)
≤ nΣ,

by (4.2), we have

E[the number of rainbow-free colorings|(si)k]
≤e(Σ−Π(k−1)) logn−w∗(n)Π+((k−1) logn+w∗(n))ΣΠ/n

= exp

((
Σ− (k − 1)Π

(
1− Σ

n

))
log n− w∗(n)Π

(
1− Σ

n

))
. (4.12)

We need to estimate the terms in the exponent of e in (4.12). We first bound the

term
(
Σ− (k − 1)Π

(
1− Σ

n

))
log n. For any Type III coloring, we have sk−2 ≥ 2.

Observe that the minimal value of Π is reached when s1 = · · · = sk−3 = 1, sk−2 = 2

and sk−1 = Σ− (k − 3)− 2 = Σ− k + 1. It follows that Π ≥ 2(Σ− k + 1). Further

notice that 1− Σ
n
→ 1 since Σ is bounded, we have

Σ− (k − 1)Π

(
1− Σ

n

)
≤Σ− (k − 1)2(Σ− k + 1)

(
1− Σ

n

)
∼Σ− 2(k − 1)(Σ− k + 1) = (−2k + 3)Σ + 2(k − 1)2.

Since k ≥ 3, we have −2k + 3 ≤ −3 < 0. Note that Σ ≥ k + 1 since Σ is a sum of

k − 1 positive terms, of which the last two are at least 2. Hence,

(−2k + 3)Σ + 2(k − 1)2 ≤(−2k + 3)(k + 1) + 2(k − 1)2 = −3k + 5.
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Therefore, we have(
Σ− (k − 1)Π

(
1− Σ

n

))
log n ≤ (−3k + 5) log n. (4.13)

Now we estimate the term −w∗(n)Π
(
1− Σ

n

)
in (4.12). Since Σ ≤ 6k, we have

Π < (6k)k−1. Note that
(
1− Σ

n

)
< 1, we have

−w∗(n)Π

(
1− Σ

n

)
≤ |w∗(n)|(6k)k−1. (4.14)

Substituting (4.13) and (4.14) into (4.12), we obtain that

E[the number of rainbow-free colorings|(si)k]
< exp ((−3k + 5) log n+ o(log n)) = Θ(n−3k+5).

Since the number of sequences (si)k of Type III is bounded by some constant, we

obtain that E[XIII ] = o(1) for k ≥ 3.

(4) Type IV.

In this case, (4.12) still holds. The exponent of e in (4.12) is(
Σ− Π(k − 1)

(
1− Σ

n

))
log n− w∗(n)Π

(
1− Σ

n

)
≤
(

Σ− Π(k − 1)

(
1− Σ

n

))
log n+ |w∗(n)|Π

(
1− Σ

n

)
=

(
Σ− Π

(
1− Σ

n

)(
k − 1 +

|w∗(n)|
log n

))
log n

=

(
Σ− Π

(
1− Σ

n

)
(k − 1 + o(1))

)
log n, (4.15)

where the last equality holds since w∗(n) = o(log n).

We claim that

Σ− Π

(
1− Σ

n

)
(k − 1 + o(1)) < −k + 1.

Note that 1 − Σ
n
≥ 1

k
since sk = n − Σ ≥ n

k
. Considering the difference between the

two sides of the above inequality, we have

Σ− Π

(
1− Σ

n

)
(k − 1 + o(1)) + k − 1

≤Σ− Π

(
k − 1

k
+ o(1)

)
+ k − 1.
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Since Π ≥ 2(Σ− k + 1) holds as before,

Σ− Π

(
k − 1

k
+ o(1)

)
+ k − 1

≤
(
−k + 2

k
+ o(1)

)
Σ +

2(k − 1)2

k
+ k − 1 + o(1).

Realize that −k+2
k

< 0 for k ≥ 3, combining with the assumption that Σ > 6k, we

have (
−k + 2

k
+ o(1)

)
Σ +

2(k − 1)2

k
+ k − 1 + o(1)

<

(
−k + 2

k
+ o(1)

)
6k +

2(k − 1)2

k
+ k − 1 + o(1)

=− 3k + 7 +
2

k
+ o(1),

which is less than 0 for k ≥ 3. Thus, we have proved

Σ− Π

(
1− Σ

n

)
(k − 1 + o(1)) < −k + 1.

Substituting this into (4.15), we have

E[the number of rainbow-free colorings|(si)k] = o(n−k+1).

Since the number of sequences (si)k of Type IV is bounded by nk−1, we obtain that

E[XIV ] = o(1).
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