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Abstract

A strengthening of Jaeger’s circular flow conjecture, restricted to planar graphs,

asserts that every planar graph of odd girth at least 4k+1 admits a homomorphism

to the odd cycle C2k+1, and the first case is verified and known as the famous

Grötzsch theorem. In this paper, we prove analogous results for signed planar

graphs: For k ∈ {2, 3, 4} every signed bipartite planar graph of negative girth at

least 6k− 4 admits a homomorphism to C−2k. Here the negative girth is the length

of a shortest cycle with an odd number of negative edges. Note that the k = 2 case

was previously obtained in [J. Combin. Theory Ser. B, 153 (2022) 81–104] through

a coloring method.

Considering the duality between circular colorings and circular flows of planar

graphs, our approach is based on the tools developed in the study of flows and group

connectivity, and a potential method is applied in handling orientations with special

boundaries for planar graphs. Furthermore, our results have several implications for

the circular chromatic numbers of signed planar graphs with given girth conditions.

Keywords: Orientation, strong Z2k-connectivity, circular flow, circular coloring, signed
planar graphs.

1 Introduction

1.1 Homomorphism to cycles

The odd girth of a graph G is the length of a shortest odd cycle of G. The dual version
of Zhang’s strengthening [34] of the well-known Jaeger’s circular flow conjecture [7], when
restricted to planar graphs, is as follows:

Conjecture 1.1. [Jaeger-Zhang conjecture] Every planar graph of odd girth at least 4k+1

admits a homomorphism to C2k+1.
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A considerable amount of work has been done related to Jaeger’s circular flow con-
jecture and Conjecture 1.1, see [1, 6, 9, 16, 27, 35] and references therein. In particular, a
result of Lovász, Thomassen, Wu, and Zhang [16] in 2013 implies the following theorem,
which is currently the best general result towards Conjecture 1.1.

Theorem 1.2. [16] Every planar graph of odd girth at least 6k+1 admits a homomorphism

to C2k+1.

Even though Jaeger’s circular flow conjecture (for k > 3) was disproved in [6], all
those counterexamples found so far are non-planar graphs, and thus Conjecture 1.1 still
remains open. For small k, compared with the odd-girth condition of 6k + 1 shown in
Theorem 1.2, there are some improvements towards Conjecture 1.1: For k = 1, it is the
famous Grötzsch theorem; for k = 2, it follows from the results of [4] and [3] independently
that every planar graph of odd girth at least 11 admits a homomorphism to C5; similarly,
for k = 3, the odd-girth condition 17 is sufficient, implied from the results of [3, 24]
independently.

It is well-known that a graph admits a homomorphism to C2k+1 if and only if it has
a circular 2k+1

k
-coloring1. A natural circular coloring conjecture asserts that every planar

graph of odd girth at least 2t + 1 admits a circular 2t+2
t

-coloring and Conjecture 1.1 is
a part of this conjecture when t = 2k. For an odd value t, when t = 1 it is the 4-color
theorem, and more generally when t = 2k−1 it has been proved in [15] that the odd-girth
condition of 6k − 1 is sufficient for a planar graph to admit a circular 4k

2k−1 -coloring.

In this paper, we consider analogs of Conjecture 1.1 and the general circular coloring
problems for signed planar graphs. A signed graph (G, σ) is a graph G together with a

signature σ : E(G)→ {+,−}. We simply write Ĝ if the signature is clear from the context.
We call an edge with + (−, respectively) a positive edge (a negative edge, respectively). A
cycle of length ` with an odd number of negative edges is called a negative cycle, denoted
by C−`, while a cycle of length ` with an even number of negative edges is called a positive
cycle, denoted by C`. The negative girth of a signed graph is the length of a shortest
negative cycle in it. A homomorphism of a signed graph (G, σ) to another signed graph
(H, π) is a mapping ϕ : V (G) → V (H) that preserves the adjacencies and the signs of
all the closed walks. Naturally, considering signed planar graphs, there is an analogous
question of Conjecture 1.1:

Question 1.3. For a positive integer k, what is the smallest integer gk such that all signed

bipartite planar graphs of negative girth at least gk admit homomorphisms to C−2k?

This question has been proposed and investigated in [2, 19]. Note that the k = 1 case
is trivial (with negative girth at least 2) and the k = 2 case was shown in [18] as follows.

Theorem 1.4. [18] Every signed bipartite planar graph of negative girth at least 8 admits

a homomorphism to C−4. Moreover, this negative-girth condition is best possible.

1The notion of circular colorings was first introduced by Vince [32]: Given positive integers p and q, a

circular p
q -coloring of a graph G is a mapping f : V (G)→ {1, 2, . . . , p} such that for each edge uv ∈ E(G),

q 6 |f(u)− f(v)| 6 p− q.
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In this work, we make some progress on the next two cases (k = 3, 4) of Question 1.3
and prove the following results.

Theorem 1.5. (1) Every signed bipartite planar graph of negative girth at least 14 ad-

mits a homomorphism to C−6.

(2) Every signed bipartite planar graph of negative girth at least 20 admits a homomor-

phism to C−8.

Although the above results may suggest that the negative girth increases 6 each time
as k increases, we have no evidence to show whether each of the negative-girth conditions
for Theorem 1.5 is tight.

Similar to the equivalence between homomorphisms of graphs to C2k+1 and circular
2k+1
k

-colorings of graphs, a homomorphism of a signed bipartite graph to C−2k is proved
[21] to be equivalent to a circular 4k

2k−1 -coloring of the signed graph. The notion of the
circular coloring of signed graphs was introduced in [22]: Given positive integers p and q
where p is even and p > 2q, a circular p

q
-coloring of a signed graph (G, σ) is a mapping

f : V (G) → {1, 2, . . . , p} such that for each positive edge uv, q 6 |f(u) − f(v)| 6 p − q
and for each negative edge uv, either |f(u)− f(v)| 6 p

2
− q or |f(u)− f(v)| > p

2
+ q.2 The

circular chromatic number of a signed graph (G, σ) is defined to be χc(G, σ) = min{p
q
|

(G, σ) admits a circular p
q
-coloring}.

A natural signed graph analog of the circular coloring conjecture has been studied.
Kardoš and Narboni recently showed [8] that there is a signed planar graph that is not
circular 4-colorable, disproving a conjecture of [17]. Generalizing this example, Naserasr,
Wang, and Zhu [22] gave lower and upper bounds on the supremum of the circular chro-
matic numbers of signed planar graphs, which are 4 + 2

3
and 6, respectively. In this

direction, we provide some upper bounds on the circular chromatic numbers of signed
planar graphs with given girth conditions.

Theorem 1.6. Let G be a planar graph of girth g and let σ be a signature on G.

(1) If g > 4, then χc(G, σ) 6 4.

(2) If g > 7, then χc(G, σ) 6 3.

(3) If g > 10, then χc(G, σ) 6 8
3
.

Note that (1) and (2) of Theorem 1.6 are already known in [17, 20, 22], and our
methods provide alternative (and unified) proofs of those two results. In particular, the
proof of Theorem 1.6 (2) is shorter than that of [20] using the notion of homomorphisms of
signed graphs. Moreover, the result in (3) provides a better upper bound on the circular
chromatic number of signed planar graphs of girth at least 10.

2Intuitively, we may view p points placed on a circle with equal distance, the images of two vertices

joined with a positive edge are at circular distance at least q while the images of two vertices joined with

a negative edge are at circular distance at most p
2 − q.
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1.2 Strongly Z`-connected graphs

Our approach to Theorems 1.5 and 1.6 relies on some stronger orientation results,
which are motivated from a newly-developed duality theorem from [14]: A signed bipartite
plane graph admits a homomorphism to C−2k if and only if its dual signed Eulerian plane
graph admits a mod 2k-orientation. Given a signed plane graph (G, σ), its dual signed
plane graph, denoted by (G∗, σ∗), is defined as follows: G∗ is the dual of the underlying
graph G and σ∗(e∗) = σ(e) for each edge e∗ ∈ E(G∗) which is the dual edge of e ∈ E(G).
To prove our main results, we study the related notions of orientations and flows with
boundaries and develop some tools in this direction. In this paper, Z`, for a positive
integer `, denotes the group that consists of the elements {0, 1, 2, . . . , `−1} with addition
modulo ` as the operation. Sometimes, we may view the elements in Z` as integers for
convenience.

Definition 1.7. Given an integer ` > 2, a graph G is called strongly Z`-connected if

for any mapping θ : V (G) → Z` with
∑

v∈V (G) θ(v) ≡ |E(G)| (mod `), there exists an

orientation D on G such that for each v ∈ V (G), d+D(v) ≡ θ(v) (mod `) where d+D(v) is

the out-degree of v under D.

It was observed in [27] that a graph G is strongly Z2-connected if and only if it is
connected. For general `, it has been shown that every (3`− 3)-edge-connected graph is
strongly Z`-connected in [16, 33]. Those results are also related to the tree decomposition
and factorization of graphs as studied in [11, 28, 29]. For planar graphs, it is proved
in [12, 25] that every 5-edge-connected planar graph is strongly Z3-connected and it is
shown in [3] that every 11-edge-connected (or 17-edge-connected) planar graph is strongly
Z5-connected (respectively, strongly Z7-connected).

Motivated by these known results, we prove the following main result in this paper,
which improves the general result of [16] for the cases when ` = 4, 6, 8.

Theorem 1.8. (1) Every 8-edge-connected planar graph is strongly Z4-connected.

(2) Every 14-edge-connected planar graph is strongly Z6-connected.

(3) Every 20-edge-connected planar graph is strongly Z8-connected.

Using Theorem 1.8, we provide an alternative proof of Theorem 1.4 and, furthermore,
prove Theorems 1.5 and 1.6.

The proof of Theorem 1.8 is based on a modified potential method, which can be
traced back to [3, 10]. In fact, a stronger technical result (Theorem 4.6) is established
on the strong Z2k-connectivity which implies Theorem 1.8. The main idea in the proof
of Theorem 4.6 is as follows: We introduce a weight function in Formula (5) so that
the studied graph class is closed under contraction and each element inside has enough
density. With the setting of orientation with boundaries, a potential method is applied,
which allows the usage of lifting and contraction operations frequently to find sufficiently
many reducible configurations.

The rest of the paper is organized as follows. In the next section, we give basic
preliminaries. In Section 3, serving for induction bases of Theorem 4.6, we provide some
sufficient conditions for small graphs (on at most four vertices) to be strongly Z`-connected
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for ` > 2. In Section 4, we study the properties of the minimum counterexample to The-
orem 4.6. Based on the weight function that we introduce there (applied in the potential
method), using lifting and contraction operations, we first provide some forbidden con-
figurations for every even value ` in Subsection 4.1. Then we discuss each of the cases
` ∈ {4, 6, 8} and conclude with separate discharging phases in Subsections 4.2, 4.3, and
4.4, finishing the proof Theorem 4.6 and thus Theorem 1.8. In Section 5, as applications
of our group connectivity results, we provide the proofs of Theorems 1.4, 1.5 and 1.6. In
Section 6, we conclude by constructing a signed bipartite planar graph whose dual does
not admit a homomorphism to C−2k.

2 Preliminaries

All graphs considered in this work are allowed to have parallel edges but no loops.
Let G = (V,E) be a graph. For a connected pair uv of G, we denote by µG(uv) the
number of parallel edges joining u and v. The multiplicity of G, denoted by µ(G), is the
maximum value of µG(uv), taken over all connected pairs uv of G. The number of vertices
of G is denoted by v(G) and the number of edges of G is denoted by e(G). Moreover,
dG(v) denotes the degree of a vertex v in G, δ(G) denotes the minimum degree of G, and
∆(G) denotes the maximum degree of G. A vertex of odd (or even) degree is called an
odd vertex (respectively, even vertex ). Given a subset X of V (G), we denote by G[X] the
subgraph induced by X, denote by [X,Xc] the edge-cut between X and Xc := V (G) \X,
and let dG(X) = |[X,Xc]| (or d(X) instead if the graph G is clear from the context).

We use the following notations to denote three types of graphs on at most 4 vertices:
(1) αK2 is the graph on two vertices with α parallel edges in between;
(2) Ta,b,c is the multi-triangle on the vertex set {x, y, z} with µ(xy) = a, µ(yz) = b

and µ(zx) = c;
(3) Qa,b,c,d is the multi-cycle on 4 vertices x, y, z, w such that µ(xy) = a, µ(yz) =

b, µ(zw) = c and µ(wx) = d.
See Figure 1 for an illustration.

x yα

(a) αK2

y

x z

a b

c

(b) Ta,b,c

x w

y z

a

b

c

d

(c) Qa,b,c,d

Figure 1: The graphs αK2, Ta,b,c, and Qa,b,c,d.

Given a planar graph G with a planar embedding, let F (G) denote the set of faces
and let `(f) denote the length of the boundary cycle of face f ∈ F (G). A face f with
`(f) = k (or `(f) > k) is called a k-face (respectively, k+-face). Two faces are adjacent
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if their boundaries share a common edge. Let f1f2 · · · fs be a face chain of length s− 1 if
fi and fi+1 are adjacent for i ∈ [s − 1]. Moreover, we say two faces f and f ′ are weakly
adjacent if there is a face chain ff1 · · · ftf ′, where fi is a 2-face for each i ∈ [t]. Here the
length of ff1 · · · ftf ′ can be 1, in which case f and f ′ are adjacent.

Given an orientation on G, we use (u, v) to denote a directed edge oriented from
u to v. Given an orientation D and a vertex v ∈ V (G), we denote the set of edges
oriented from v (i.e., out-edges) by E+

D(v) and the set of edges oriented towards v (i.e., in-
edges) by E−D(v), and denote the out-degree and in-degree of v on G by d+D(v) and d−D(v),
respectively. Given a graph G, an orientation D on G and a mapping f : E(G)→ Z, let

∂Df(v) :=
∑

e∈E+
D(v)

f(e)−
∑

e∈E−D(v)

f(e)

for each vertex v ∈ V (G).
Rather than using out-degrees, it is much more convenient to use the differences be-

tween in-degree and out-degree in certain orientations. With this notation, an equivalent
definition of strongly Z`-connected graphs (Definition 1.7), stated below, will be used
frequently in our proofs.

Definition 2.1. [15] (1) Given a graph G, a (2`, β)-boundary of G is a mapping β :

V (G) → {0,±1, . . . ,±`} such that for each vertex v ∈ V (G), β(v) ≡ d(v) (mod 2) and∑
v∈V (G) β(v) ≡ 0 (mod 2`).

(2) Given a (2`, β)-boundary of G, an orientation D on G is a (2`, β)-orientation if

it satisfies that d+D(v)− d−D(v) ≡ β(v) (mod 2`) for each vertex v ∈ V (G).

Proposition 2.2. [13] A graph G is strongly Z`-connected if and only if for any (2`, β)-

boundary of G, it admits a (2`, β)-orientation.

Observation 2.3. Let G = (V,E) be a graph and let E ′ be a subset of E. Let G′ be

a graph obtained from G by deleting E ′. If G′ is strongly Z`-connected, then G is also

strongly Z`-connected.

Proof. Let θ : V (G) → Z` with
∑

v∈V (G) θ(v) ≡ |E(G)| (mod `) and let D′ be an ori-

entation on the edges in E ′. We define a new mapping θ′ : V (G) → Z` as follows:

θ′(v) := θ(v) − d+D′(v). Clearly, the mapping θ′ satisfies that
∑

v∈V (G′) θ
′(v) ≡ |E(G′)|

(mod `). Since G′ is strongly Z`-connected, by Definition 1.7 there is an orientation D′′

on G′ such that d+D′′(v) ≡ θ′(v) (mod `). Note that the orientation D = D′ ∪ D′′ is an

orientation on G such that d+D(v) ≡ θ(v) (mod `) and thus G is strongly Z`-connected.

The following result provides us a necessary density condition for graphs to be
strongly Z`-connected.

Proposition 2.4. [13] If a graph G is strongly Z`-connected, then it contains `− 1 edge-

disjoint spanning trees, and particularly, |E(G)| > (`− 1)(|V (G)| − 1).
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Thus the minimum degree of a strongly Z`-connected graph is at least ` − 1. The
next lemma shows that for αK2 this necessary condition is also sufficient.

Lemma 2.5. The graph αK2 is strongly Z`-connected if and only if α > `− 1.

Proof. Let αK2 be a graph on two vertices v1 and v2 with α parallel edges. In one

direction, assuming that αK2 is strongly Z`-connected, it follows from Proposition 2.4

that α > `− 1. In the other direction, assuming α > `− 1, by Observation 2.3 it suffices

to show that (` − 1)K2 is strongly Z`-connected. For any mapping θ : {v1, v2} → Z`
satisfying that θ(v1) + θ(v2) ≡ `− 1 (mod `), let k be an integer with 0 6 k 6 `− 1 and

k ≡ θ(v1) (mod `). We can orient k edges from v1 to v2 and ` − 1 − k edges from v2 to

v1, and such an orientation is called D. Note that d+D(v1) + d+D(v2) = ` − 1 and for each

i ∈ {1, 2}, d+D(vi) ≡ θ(vi) (mod `). Therefore, (`− 1)K2 is strongly Z`-connected.

2.1 Contraction and lifting

To contract an edge uv of a graph is an operation to identify the endpoints u and v,
and then delete the resulting loop. Moreover, to contract a connected subgraph H of G
is an operation to contract all the edges of H, and we denote the new graph by G/H.

Observation 2.6. Given a graph G and its connected subgraph H, let G′ = G/H and

let w denote the new vertex obtained from contracting H. For any (2`, β)-boundary of

G, a mapping β′ : V (G′) → {0,±1, . . . ,±`} is defined as follows: β′(w) ≡
∑

v∈V (H) β(v)

(mod 2`) and for any vertex v ∈ V (G′)\{w}, β′(v) = β(v). Then it is a (2`, β′)-boundary

of G′.

Proof. Since
∑

v∈V (G′) β
′(v) ≡

∑
v∈V (G) β(v) ≡ 0 (mod 2`),

β′(w) ≡
∑

v∈V (H)

β(v) ≡
∑

v∈V (H)

dG(v) = dG′(w) +
∑

v∈V (H)

dH(v) ≡ dG′(w) (mod 2),

and β′(v) ≡ dG(v) = dG′(v) (mod 2) for v ∈ V (G′) \ {w}, the mapping β′ is a (2`, β′)-

boundary of G′.

When it is clear from the context, we say that it is a corresponding (2`, β′)-boundary
of G/H with respect to the (2`, β)-boundary of G.

As contraction is a useful operation in the study of flows and orientations, we gener-
alize Lemma 1.6 of [3] and obtain the next lemma which is a key fact in our later proofs.
Note that the proof of the following lemma is an analog of the proof of Lemma 1.6 of [3]
and thus we leave the details to the reader.

Lemma 2.7. Given a graph G with a (2`, β)-boundary and its connected subgraph H, let

G′ = G/H. For any given (2`, β)-boundary of G, assume that G′ has a corresponding

(2`, β′)-boundary as defined above. If H is strongly Z`-connected, then every (2`, β′)-

orientation on G′ can be extended to a (2`, β)-orientation on G. In particular, if H and

G′ are both strongly Z`-connected, then G is also strongly Z`-connected.
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Given a vertex v of G, we call two adjacent edges uv, vw an edge pair at v. To lift
at v is an operation to delete some edge pairs at v and for each edge pair uv, vw (being
deleted), add one edge connecting u and w (allowing parallel edges) to the graph G.
Sometimes, we say to lift an edge triple wx, xy, yz if we recursively lift edge pairs wx, xy
and then wy, yz, noting that wy is created by first lifting the edge pair wx, xy, and this
operation creates an edge wz in the end. Here we slightly abuse the notion of “edge”
when there is no confusion about which edge we are referring to.

The lifting operation also plays an important role in the study of strongly Z`-
connected graphs. Let G′ be a graph obtained from G by lifting some edge pairs at
a vertex v. Observe that for any (2`, β)-boundary of G, any (2`, β)-orientation on G′ can
be extended naturally to a (2`, β)-orientation on G by orienting those lifted edge pairs.
We generalize a result of [3] as follows.

Proposition 2.8. [3] Given a graph G and a vertex v of G, let G′ be a graph obtained

from G by lifting some edge pairs at v and let G′′ be a graph obtained from G′ by deleting

the vertex v. Then the following statements hold.

(1) Given a connected subgraph H of G′, if H and G′/H are both strongly Z`-connected,

then G is also strongly Z`-connected.

(2) If dG′(v) > ` − 1 and G′′ is strongly Z`-connected, then G′ and G are also strongly

Z`-connected.

Proof. (1). By Lemma 2.7, G′ is strongly Z`-connected. By the above observation, G is

also strongly Z`-connected.

(2). Let G0 = G′/G′′. Note that G0 is αK2 with α > `−1. It follows from Lemma 2.5

that G0 is strongly Z`-connected. Thus, by Lemma 2.7, G′ is also strongly Z`-connected,

so is G.

2.2 Vertex partition

Given a graph G, a collection of subsets of V (G), denoted by P = {P1, . . . , Pt},
is called a partition of V (G) if it satisfies that for any distinct i, j ∈ [t], Pi ∩ Pj = ∅
and

⋃
i∈[t] Pi = V (G). Each Pi is called a part of P . Given a graph G and a partition

P = {P1, . . . , Pt} of V (G), let G/P denote the graph obtained from G by identifying all
the vertices of Pi for i ∈ [t] and deleting the resulting loops.

Definition 2.9. Let P = {P1, . . . , Pt} be a partition of V (G).

• A partition P is said to be trivial if each part Pi consists of only one single vertex.

• A partition P is said to be almost trivial if there is one part Pj satisfying that

|Pj| = 2 and all the other parts have exactly one vertex in each of them.

• If a partition is neither trivial nor almost trivial, then we call it normal.
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Both almost trivial partitions and normal partitions are called nontrivial partitions.
In this paper, we exclude the partition with a single part {V (G)}.

Definition 2.10. Let P = {P1, P2, . . . , Pt} and P ′ = {P ′1, P ′2, . . . , P ′s} be two partitions of

V (G), we say P ′ is a refinement of P, if P ′ is obtained by partitioning some Pi of P into

smaller sets. More precisely, we have s > t, and for every P ′i ∈ P ′ there exists Pj ∈ P
such that P ′i ⊆ Pj.

Given a graph G and a connected subgraph H of G, let G′ = G/H and let x denote
the vertex of G′ obtained by contraction. For any partition P ′ = {P1, P2, . . . , Pt} of V (G′),
assuming that x ∈ P1, we define P to be the partition of V (G) corresponding to P ′ of
V (G/H) as follows:

P = {P1 ∪ V (H) \ {x}, P2, . . . , Pt}.

Observation 2.11. Given a graph G and its connected subgraph H, let G′ = G/H. For

any partition P ′ of V (G′) and the partition P of V (G) corresponding to P ′ of V (G′), we

know G/P = G′/P ′.

In Section 3, we aim to find some necessary conditions for small graphs to be strongly
Z`-connected. Our method somehow relies on the existence of sufficiently many edge-
disjoint spanning trees on the given graph. In this direction, we need the well-known
Nash-Williams–Tutte Theorem.

Theorem 2.12. [Nash-Williams–Tutte Theorem] [23, 31] A graph G contains t edge-

disjoint spanning trees if and only if for any partition P = {P1, P2, . . . , Ps} of V (G),

there are at least t(s− 1) edges connecting the parts of P.

2.3 The γ-function and Hakimi’s orientation theorem

To study the (Z`, β)-orientation of a graph, in [16], a tool called τ -function has been
introduced. Similarly, in the study of (2`, β)-boundary and (2`, β)-orientation of a graph,
we find a corresponding “γ-function” with some properties.

Lemma 2.13. For any (2`, β)-boundary of G, there exists an integer-valued function

γ : V (G)→ {0,±1, . . . ,±(2`− 1)} such that

(1) for each vertex v ∈ V (G), γ(v) ≡ β(v) (mod 2`) and γ(v) ≡ d(v) (mod 2).

(2)
∑

v∈V (G)

γ(v) = 0.

(3) max
v∈V (G)

{γ(v)} − min
v∈V (G)

{γ(v)} 6 2`.

Proof. First of all, given a (2`, β)-boundary of G, we can easily find a mapping γ : V (G)→
{0,±1, . . . ,±(2`− 1)} satisfying that γ(v) ≡ β(v) (mod 2`) and γ(v) ≡ d(v) (mod 2) for

each vertex v ∈ V (G).

9



For the second condition, we assume to the contrary that
∑

v∈V (G) γ(v) 6= 0 and

choose |
∑

v∈V (G) γ(v)| to be minimized. By symmetry, suppose that
∑

v∈V (G) γ(v) >

0, and thus there exists at least one vertex, which is called v∗, such that γ(v∗) > 0.

Furthermore, as γ(v) ≡ β(v) (mod 2`),
∑

v∈V (G) γ(v) must be a multiple of 2` and so∑
v∈V (G) γ(v) > 2`. We define a new mapping γ′ : V (G) → {0,±1, . . . ,±(2` − 1)} such

that γ′(v∗) = γ(v∗) − 2` and γ′(v) = γ(v) for every v 6= v∗. Note that such γ′ satisfies

Condition (1). However,

|
∑

v∈V (G)

γ′(v)| = |
∑
v 6=v∗

γ(v) + (γ(v∗)− 2`)| = |
∑

v∈V (G)

γ(v)− 2`| < |
∑

v∈V (G)

γ(v)|,

a contradiction.

For the last one, assume that there exists a function γ satisfying Conditions (1) and

(2) but not (3), which means maxv∈V (G){γ(v)} −minv∈V (G){γ(v)} > 2`. We choose such

a counterexample to satisfy the following conditions in this order of priority:

(i) | max
v∈V (G)

{γ(v)} − min
v∈V (G)

{γ(v)}| is minimized;

(ii) |{x : γ(x) = max
v∈V (G)

{γ(v)}}|+ |{y : γ(y) = min
v∈V (G)

{γ(v)}}| is as small as possible.

Let x1 and x2 be two vertices satisfying that γ(x1) = maxv∈V (G){γ(v)} and γ(x2) =

minv∈V (G){γ(v)}. So we have that γ(x1) − γ(x2) > 2`. We define a new mapping γ′ :

V (G)→ {0,±1, . . . ,±(2`− 1)} such that

γ′(x1) = γ(x1)− 2`, γ′(x2) = γ(x2) + 2`, and γ′(v) = γ(v) for all the other v ∈ V (G).

Clearly, γ′ also satisfies Conditions (1) and (2). Moreover, since

γ(x1) = max
v∈V (G)

{γ(v)} > γ(x2)+2` = γ′(x2) and γ(x2) = min
v∈V (G)

{γ(v)} < γ(x1)−2` = γ′(x1),

we have x1 /∈ {u : γ′(u) = min
v∈V (G)

{γ′(v)}} and x2 /∈ {u : γ′(u) = max
v∈V (G)

{γ′(v)}}, otherwise

we obtain a contradiction to Condition (i). In this case, |{x : γ′(x) = maxv∈V (G){γ′(v)}}|+
|{y : γ′(y) = minv∈V (G){γ′(v)}}| is smaller, contradicting Condition (ii).

It is easy to see that any γ-orientation with a function γ defined in Lemma 2.13 is
indeed a (2`, β)-orientation on G. To determine the existence of the “γ-orientation” and
thus (2`, β)-orientation of G, we also need the following Hakimi’s orientation theorem.

Theorem 2.14. [Hakimi’s orientation theorem][5] Let G be a graph and γ be a map-

ping γ : V (G) → Z satisfying that γ(v) ≡ d(v) (mod 2) for each vertex v ∈ V (G) and∑
v∈V (G) γ(v) = 0. The following statements are equivalent.

(i) There exists an orientation D on G such that d+(v)− d−(v) = γ(v) for v ∈ V (G).
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(ii) Every subset S of V (G) satisfies |
∑
v∈S

γ(v)| 6 d(S).

We may define those vertex subsets not satisfying the second statement of Theo-
rem 2.14 to be “bad”, which is formally stated as follows.

Definition 2.15. Given a graph G and a mapping γ : V (G) → {0,±1, . . . ,±(2` − 1)}
with γ(v) ≡ d(v) (mod 2) for each v ∈ V (G) and

∑
v∈V (G) γ(v) = 0, a vertex subset

S ⊂ V (G) is called bad with respect to γ if |
∑

v∈S γ(v)| > d(S).

Note that for any subset S ⊂ V (G), |
∑

v∈Sc γ(v)| = | −
∑

v∈S γ(v)|. Since d(S) =
d(Sc), if S is a bad set, then its complement Sc is also a bad set. For example, for graphs
on three vertices Ta,b,c, we may only consider one type of bad sets (i.e., singleton vertex
sets).

3 Small strongly Z`-connected graphs

In this section, for mathematical induction bases, we shall provide some sufficient
conditions, for example, high edge-connectivity and minimum degree, under which some
small graphs (on at most 4 vertices) are proved to be strongly Z`-connected for ` > 3.
We have seen in Lemma 2.5 that αK2 is strongly Z`-connected if and only if α > ` − 1.
Now we consider the graphs on three vertices.

Lemma 3.1. Let Ta,b,c be a multi-triangle on the vertex set {v1, v2, v3} with µ(v1v2) = a,

µ(v2v3) = b, and µ(v3v1) = c. If a + b + c > 2` − 2 and δ(Ta,b,c) > ` − 1, then Ta,b,c is

strongly Z`-connected.

Proof. By Observation 2.3, it is enough to prove the claim with the assumption a+b+c =

2`−2 and δ(G) > `−1. Suppose to the contrary that G is a Ta,b,c with a+ b+ c = 2`−2,

δ(G) > ` − 1 but not strongly Z`-connected. To obtain a contradiction, by Hakimi’s

orientation theorem (Theorem 2.14), it suffices to prove the next claim.

Claim. Given a (2`, β)-boundary of G, assume that G has no (2`, β)-orientation. Then

for any function γ : V (G)→ {0,±1, . . . ,±(2`− 1)} with γ(vi) ≡ β(vi) (mod 2`), γ(vi) ≡
d(vi) (mod 2) for every i ∈ {1, 2, 3}, we have

|γ(vi)| 6 d(vi), ∀i ∈ {1, 2, 3}.

Suppose to the contrary, without loss of generality, G has a bad set S = {v1} with

|γ(v1)| > d(v1). There are two possibilities that either γ(v1) > d(v1) or −γ(v1) > d(v1).

We first assume that γ(v1) > d(v1). Then we have

2`− 1 > γ(v1) > d(v1) + 2 > `+ 1, (1)
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and

−d(v1) 6 −`+ 1 6 γ(v1)− 2` 6 0. (2)

Since a+b+c = 2`−2 and δ(G) > `−1, by Nash-Williams–Tutte Theorem (Theorem 2.12)

it is easy to verify that G contains ` − 1 edge-disjoint spanning trees. Let T be the set

of those `− 1 edge-disjoint spanning trees. Note that
⋃
T∈T E(T ) = E(G). At the vertex

v1, assume that there are s edge-disjoint spanning trees T of T such that dT (v1) = 2

(denoted by T 2) and t edge-disjoint spanning trees T such that dT (v1) = 1 (denoted by T 1).

Considering the relation 2s+t = d(v1) and s+t = `−1, we have that s = d(v1)−`+1 and

t = 2`− d(v1)− 2. Those two values are both non-negative following from Condition (1).

Now we lift d(v1) − ` + 1 pairs of edges from all those T 2’s at the vertex v1. Note that

there are 2`− d(v1)− 2 edges left at vertex v1. By Conditions (1) and (2), we can orient

2` − γ(v1) > 0 edges into v1 and the rest γ(v1) − d(v1) − 2 > 0 edges one-in-one-out in

pairs. Therefore, d+(v1)− d−(v1) = γ(v1)− 2` ≡ β(v1) (mod 2`).

We now assume that −γ(v1) > d(v1) and in this case we have

2`− 1 > −γ(v1) > d(v1) + 2 > `+ 1, (3)

and

−d(v1) 6 −`+ 1 6 −γ(v1)− 2` 6 0. (4)

Similarly, let T be the set of `− 1 edge-disjoint spanning trees. we can also compute the

number of edge-disjoint spanning trees T 2 of T such that dT 2(v1) = 2 is d(v1)− `+ 1 and

the number of edge-disjoint spanning trees T 1 such that dT 1(v1) = 1 is 2`− d(v1)− 2 as

in the previous case. Both of these two values are non-negative by Condition (3). Thus

we can lift d(v1)− `+ 1 pairs of edges from all those T 2’s at the vertex v1 and there are

2` − d(v1) − 2 edges left at vertex v1. By Conditions (3) and (4), we are able to orient

2` + γ(v1) edges out from v1 and the left −(γ(v1) + d(v1)) − 2 edges one-in-one-out in

pairs. Therefore, we have d+(v1)− d−(v1) ≡ β(v1) (mod 2`).

In both cases, we have achieved the boundary at v1. We denote by G′ the resulting

graph obtained from G by lifting those edge pairs (of T 2’s) and deleting v1. Note that

G′ has two vertices and 2` − 2 − d(v1) + (d(v1) − ` + 1) = ` − 1 edges. By Lemma 2.5,

G′ is strongly Z`-connected. Thus, by Proposition 2.8, for any (2`, β)-boundary, G has a

(2`, β)-orientation, a contradiction.

By Nash-Williams–Tutte Theorem, a multi-triangle Ta,b,c contains `− 1 edge-disjoint
spanning trees if and only if a + b + c > 2` − 2 and δ(G) > ` − 1. Thus following from
Proposition 2.4 and Lemma 3.1, we have the next corollary.

Corollary 3.2. A multi-triangle Ta,b,c contains ` − 1 edge-disjoint spanning trees if and

only if Ta,b,c is strongly Z`-connected.

Note that there is an alternate proof of Lemma 3.1 and here we give this relatively
complex proof for expressing the proof ideas of the following lemma on four vertices.
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Lemma 3.3. Let G be a graph on four vertices. If G contains `−1 edge-disjoint spanning

trees and e(G) > 3`− 2, then G is strongly Z`-connected.

Proof. By Observation 2.3, it suffices to prove the claim assuming that G contains `− 1

edge-disjoint spanning trees and e(G) = 3` − 2. Assume to the contrary that G is not

strongly Z`-connected. Let V (G) = {v1, v2, v3, v4}. As G contains ` − 1 edge-disjoint

spanning trees, for any proper subset S ⊂ V (G), d(S) > `− 1.

Claim 3.3.1. G is (`+ 1)-edge-connected. In particular, δ(G) > `+ 1.

Proof. Assume to the contrary that G is not (` + 1)-edge-connected and we discuss two

cases: (1). There is a vertex v such that d(v) = δ(G) 6 `; (2). There is a subset S of

size 2 such that d(S) 6 `. In the first case, noting that e(G) = 3` − 2, G − v has at

least 2` − 2 edges and contains ` − 1 edge-disjoint spanning trees. By Corollary 3.2,

G − v is strongly Z`-connected. It follows from Proposition 2.8 (2) that G is strongly

Z`-connected, a contradiction. In the second case, without loss of generality, we assume

that S = {v1, v2}. As there are at least 2`−2 edges in E(G)\[S, Sc], there are at least `−1

edges in either G[S] or G[Sc], without loss of generality, say G[S]. It implies that G[S]

is strongly Z`-connected. Let H = G/G[S]. Noting that H contains ` − 1 edge-disjoint

spanning trees, by Corollary 3.2 H is strongly Z`-connected. Therefore, by Lemma 2.7,

G is strongly Z`-connected, a contradiction. ♦

Claim 3.3.2. The maximum degree ∆(G) is at most 3`− 7.

Proof. Suppose to the contrary that ∆(G) > 3` − 6. Let v1 be the vertex of degree

∆(G). Since e(G) = 3`−2, there are at most 4 edges among the remaining three vertices.

Thus the average degree among vertices v2, v3 and v4 is 3`−6+4×2
3

= ` + 2
3
< ` + 1, which

contradicts the fact that δ(G) > `+ 1. ♦

We next prove a similar claim as in Lemma 3.1.

Claim 3.3.3. Given a (2`, β)-boundary of G, if G has no (2`, β)-orientation, then for any

function γ : V (G) → {0,±1, . . . ,±(2` − 1)} with γ(vi) ≡ β(vi) (mod 2`), γ(vi) ≡ d(vi)

(mod 2) for any i ∈ [4], we have

|γ(vi)| 6 d(vi), ∀i ∈ [4].

Proof. Without loss of generality, suppose that G has a bad set S = {v1} and thus

|γ(v1)| > d(v1). Here, we only consider the case γ(v1) > d(v1). The other case −γ(v1) >

d(v1) can be discussed similarly, so we omit the details. Note that in this case,

2`− 1 > γ(v1) > d(v1) > `+ 1 and − d(v1) 6 −(`+ 1) < γ(v1)− (2`− 1) 6 0.

In particular, d(v1) 6 2`− 2.
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Let T be a set of the ` − 1 edge-disjoint spanning trees of G. Since e(G) = 3` − 2

and every spanning tree has exactly three edges, we have 3` − 2 − 3(` − 1) = 1 edge

not contained in any spanning tree of T . We assume that at the vertex v1, there are a

spanning trees having degree one, b spanning trees having degree two, and c spanning

trees having degree three. We have a+ b+ c = `− 1 and a+ 2b+ 3c ∈ {d(v1), d(v1)− 1},
solving which we know a > c.

When some spanning tree Ti has degree two at vertex v1, we can directly lift this

pair of edges and obtain a spanning tree T ′i of G − v1; for any Ti having degree three at

vertex v1, as a > c, we can always find another spanning tree Tj with degree one at vertex

v1. Applying some proper switching edges of Ti and Tj, we can obtain two new spanning

trees T ′i and T ′j both of which have degree two at v1. Then we lift these two pairs of edges

of T ′i and T ′j .

So we can lift 2b + 4c ∈ {2d(v1) − (2` − 2), 2d(v1) − 2`} edges of G and orient

the remaining either (2` − 2) − d(v1) or 2` − d(v1) edges. More precisely, we orient

2` − γ(v1) edges into v1 and the left edges choose one-in-one-out in pairs, and thus we

achieve the (2`, β)-boundary β(v1). Deleting v1 from G, the resulting graph G′ (on three

vertices) has either 2`− 1 or 2`− 2 many edges (followed from 3`− 2− d(v1) + k, where

k ∈ {d(v1) − (` − 1), d(v1) − `}, and thus by Lemma 3.1 it is strongly Z`-connected. By

Proposition 2.8, G has a (2`, β)-orientation, a contradiction. ♦

By Claim 3.3.3, we know the set containing only one vertex cannot be a bad set

corresponding to a given γ-function and thus a given (2`, β)-boundary. So the bad set

must be in the form of {vi, vj} for i 6= j. Given a (2`, β)-boundary, assume that there is

a function γ satisfying the conditions in Lemma 2.13. Without loss of generality, we may

also assume that

max
v∈V (G)

{γ(v)} = γ(v1) > γ(v2) > γ(v3) > γ(v4) = min
v∈V (G)

{γ(v)}.

So γ(v1)−γ(v4) 6 2`. By symmetry, suppose that maxv∈V (G){γ(v)} > −minv∈V (G){γ(v)}.
In this case, we claim that −` 6 γ(v4) 6 γ(v3) < 0. Otherwise, if γ(v3) > 0, then

γ(v1) 6 `. As G is (` + 1)-edge-connected, any two-vertex set {vi, vj} satisfies that

|γ(vi) + γ(vj)| 6 ` < `+ 1 6 d({vi, vj}) and thus it is not a bad set, a contradiction.

Claim 3.3.4. For {vi, vj} ⊆ V (G) with γ(vi) + γ(vj) > 0, we have

either γ(vi) + γ(vj) 6 d({vi, vj}) or |γ(vi) + γ(vj)− 2`| 6 d({vi, vj}).

Proof. We prove this claim by contradiction, that is to say, there exists a bad set S =

{vi, vj} such that γ(vi) + γ(vj) > d({vi, vj}) and |γ(vi) + γ(vj) − 2`| > d({vi, vj}). We

claim that γ(vi) + γ(vj) − 2` < 0, as if not, γ(vi) + γ(vj) − 2` > d({vi, vj}) and thus

2 minv∈V (G){γ(v)} 6
∑

v∈Sc γ(v) = −(γ(vi) + γ(vj)) < −d({vi, vj}) − 2` < −2`, and it

14



implies that γ(v4) = minv∈V (G){γ(v)} < −`, a contradiction. Thus

γ(vi) + γ(vj) > d({vi, vj}) and − (γ(vi) + γ(vj)− 2`) > d({vi, vj}),

solving which we obtain that d({vi, vj}) < `, contradicting the fact that G is (`+ 1)-edge-

connected. ♦

Claim 3.3.5. For {vi, vj} ⊆ V (G) with γ(vi) + γ(vj) > 0, we have γ(vi) + γ(vj) 6 2`.

Moreover, if d({vi, vj}) > 2`− 1, then

γ(vi) + γ(vj) 6 d({vi, vj}) and |γ(vi) + γ(vj)− 2`| 6 d({vi, vj}).

Proof. Let S = {vi, vj}. For minv∈V (G){γ(v)} > −`, we have

γ(vi) + γ(vj) = −
∑
v∈Sc

γ(v) 6 −2 min
v∈V (G)

{γ(v)} 6 2`.

Moreover, if d({vi, vj}) > 2` − 1, by the fact that the two values γ(vi) + γ(vj) and

d({vi, vj}) have the same parity, then γ(vi) + γ(vj) 6 d({vi, vj}). Since γ(vi) + γ(vj) > 0

and γ(vi) + γ(vj) 6 2`, we have |γ(vi) + γ(vj)− 2`| 6 2`. As d({vi, vj}) > 2`− 1, by the

parity |γ(vi) + γ(vj)− 2`| 6 d({vi, vj}). ♦

Claim 3.3.6. With respect to γ, the only bad set is {v1, v2} (equivalently, {v3, v4}).

Proof. We discuss two cases based on the value of γ(v2).

Case 1: If γ(v2) 6 0, then γ(v1) > 0 > γ(v2) > γ(v3) > γ(v4). Since
∑4

i=1 γ(vi) = 0 and

γ(v1)− γ(v4) 6 2`, we have

0 6 γ(v1)+γ(v4) 6 γ(v1)+γ(v3) 6
1

2
(γ(v1)+γ(v3))+

1

2
(γ(v1)+γ(v2)) =

1

2
(γ(v1)−γ(v4)) 6 `.

Thus {v1, v3} and {v1, v4} are not bad sets and the only possible bad set is {v1, v2}.

Case 2: If γ(v2) > 0, then γ(v1) > γ(v2) > 0 > γ(v3) > γ(v4). We first assume that

S = {vi, vj} satisfies that γ(vi) > 0 and γ(vj) 6 0, i.e., i ∈ {1, 2} and j ∈ {3, 4}. Then

−` 6 min
v∈V (G)

{γ(v)} 6 γ(vi) + γ(vj) = −
∑
v∈Sc

γ(v) 6 − min
v∈V (G)

{γ(v)} 6 `.

As G is (`+ 1)-edge-connected, such S = {vi, vj} is not a bad set. The only possible bad

set is {v1, v2}. ♦

It follows from Claim 3.3.6 that γ(v1)+γ(v2) > d({v1, v2}). Moreover, by Claim 3.3.5,

d({v1, v2}) < 2`−1 (i.e., d({v1, v2}) 6 2`−2). Since d({v1, v2})+d({v1, v3})+d({v1, v4}) =

2e(G) = 6`− 4 > 3(2`− 2), we have either d({v1, v3}) > 2`− 1 or d({v1, v4}) > 2`− 1.
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• If d({v1, v3}) > 2`− 1, we define a new γ′-function as follows:

γ′(v1) = γ(v1)− 2`, γ′(v4) = γ(v4) + 2`, and γ′(vi) = γ(vi) for i ∈ {2, 3}.

Now we know that, with respect to γ′, {v1, v2} is not a bad set by Claim 3.3.4 and

{v1, v3} is not a bad set by Claim 3.3.5. Meanwhile, as |γ′(v1) + γ′(v4)| = |γ(v1)−
2`+ γ(v4) + 2`| 6 d({v1, v4}), {v1, v4} is not a bad set. By Theorem 2.14 (Hakimi’s

orientation theorem), G admits a γ′-orientation and thus a (2`, β)-orientation, a

contradiction.

• If d({v1, v4}) > 2`− 1, similarly we define

γ′(v1) = γ(v1)− 2`, γ′(v3) = γ(v3) + 2`, and γ′(vi) = γ(vi) for {2, 4}.

Thus, with respect to γ′, {v1, v2} is not a bad set by Claim 3.3.4 and {v1, v4} is not

a bad set by Claim 3.3.5. Meanwhile, |γ′(v1) + γ′(v3)| = |γ(v1)− 2`+ γ(v3) + 2`| 6
d({v1, v3}), thus {v1, v3} is not a bad set. It leads to a contradiction by Theorem 2.14.

In conclusion, G has no bad set with respect to γ′, thus by Hakimi’s orientation

theorem, G is strongly Z`-connected, a contradiction. It completes the proof of the

lemma.

We remark that the condition e(G) > 3` − 2 in Lemma 3.3 is somehow necessary
as (2t − 1)K4 (a multi-K4 with µ(uv) = 2t − 1 for each pair uv) is not strongly Z4t−1-
connected. Applying Nash-Williams–Tutte Theorem (Theorem 2.12) and Lemma 3.3, we
have the next result.

Lemma 3.4. If G is a graph with v(G) = 4, e(G) > 3`−2, µ(G) 6 `−2, and δ(G) > `−1,

then G is strongly Z`-connected.

Proof. For any graph G on four vertices satisfying µ(G) 6 `− 2 and δ(G) > `− 1, it can

be readily verified that G satisfies the conditions in the Nash-Williams–Tutte Theorem

and thus G has `−1 edge-disjoint spanning trees. Since e(G) > 3`−2, Lemma 3.3 implies

that G is strongly Z`-connected.

4 Strongly Z2k-connected graphs

In this section, we will prove a stronger result (Theorem 4.6 below), which implies
Theorem 1.8, using the notion of weight functions introduced in [3].

Given a partition P = {P1, P2, . . . , Pt} of V (G) and a positive integer k, we define
the k-weight function of P as follows:

ωkG(P) =
t∑
i=1

d(Pi)− (6k − 4)t+ (12k − 12) (5)

and ωk(G) = min
P
{ωkG(P)}.
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Lemma 4.1. Let k be a positive integer. Given a graph G and a connected subgraph H

of G, ωk(G/H) > ωk(G).

Proof. Let G′ = G/H. Assume that P ′0 is a partition of V (G′) satisfying that ωk(G′) =

ωkG′(P ′0) and let P0 be the partition of V (G) corresponding to the partition P ′0 of V (G′).

We have that ωk(G′) = ωkG′(P ′0) = ωkG(P0) > min
P
{ωkG(P)} = ωk(G).

Proposition 4.2. Let P = {P1, P2, . . . , Pt} be a partition of V (G) with |P1| > 2, let

H = G[P1] and let Q = {Q1, Q2, . . . , Qs} be a partition of V (H). Then the partition

Q∪ (P \ {P1}) of V (G) satisfies that

ωkG(Q∪ (P \ {P1})) = ωkG(P) + ωkH(Q)− (6k − 8).

Proof. By the definition, Q∪ (P \ {P1}) is a refinement of P , thus

ωkG(Q∪ (P \ {P1})) =
s∑
i=1

dG(Qi) +
t∑
i=2

dG(Pi)− (6k − 4)(t− 1 + s) + (12k − 12)

=
s∑
i=1

dH(Qi) + dG(P1) +
t∑
i=2

dG(Pi)− (6k − 4)(t− 1 + s) + (12k − 12)

= [
s∑
i=1

dH(Qi)− (6k − 4)s+ (12k − 12)]

+ [
t∑
i=1

dG(Pi)− (6k − 4)t+ (12k − 12)] + (6k − 4)− (12k − 12)

= ωkH(Q) + ωkG(P)− (6k − 8).

Definition 4.3. Let k be an integer with k > 2. Let

Nk := {αK2 : 2 6 α 6 2k − 2} ∪ {Ta,b,c : 3k − 1 6 a+ b+ c 6 4k − 3, δ(Ta,b,c) > 2k − 1}.

A graph G has a troublesome partition with respect to strong Z2k-connectivity if there is

a partition P of V (G) such that G/P ∈ Nk.

Note that each graph in Nk is not strongly Z2k-connected.

Observation 4.4. For αK2, Ta,b,c ∈ Nk, ωk(αK2) 6 4k − 8 and ωk(Ta,b,c) 6 2k − 6.

Let Sk := {(2k − 1)K2} ∪ {Ta,b,c : a + b + c = 4k − 2, δ(Ta,b,c) > 2k − 1}. The next
result follows from Lemma 2.5 and Lemma 3.1 when ` = 2k.

Proposition 4.5. Each graph in Sk is strongly Z2k-connected.

Based on the notions of weight functions and troublesome partitions, we state the
main theorem as follows.
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Theorem 4.6. Given a planar graph G and an integer k with 2 6 k 6 4, if ωk(G) > 0,

then either G is strongly Z2k-connected or G has a troublesome partition.

Next we use Theorem 4.6 to prove the following result (Theorem 4.7), which im-
plies the main theorem (Theorem 1.8). The detailed proof of Theorem 4.6 is organized
as follows: in Subsection 4.1, we provide some forbidden configurations in a minimum
counterexample to the theorem for general k, and in Subsections 4.2, 4.3, and 4.4, we
prove that for k = 2, 3, 4 the minimum counterexample must contain one element from
the forbidden configuration set and obtain a contradiction.

Theorem 4.7. Given an integer k with 2 6 k 6 4, let G be a planar graph and x be a

vertex of G. Assume that 2k − 1 6 dG(x) 6 8k − 5 and except [{x}, V (G) \ {x}] every

other cut [X,Xc] for X ⊆ V (G) has size at least 6k − 4. Then both G − x and G are

strongly Z2k-connected.

Proof. By Lemma 2.5, this theorem trivially holds when |V (G)| = 2, and so assume

|V (G)| ≥ 3. Let H = G− x. Note that |V (H)| > 2. Moreover, H is connected. Assume

not and let H1 and H2 denote two components of H. Since |[V (H1), V (H1)
c]| > 6k − 4

and |[V (H2), V (H2)
c]| > 6k − 4, we have dG(x) > 12k − 8, contradicting the assumption

that dG(x) 6 8k − 5.

Let P = {P1, . . . , Pt} be an arbitrary partition of V (H). Note that dG(Pi) > 6k − 4

for each i ∈ {1, . . . , t} and dG(x) 6 8k − 5. We have that

ωkH(P) =
t∑
i=1

dH(Pi)−(6k−4)t+(12k−12) =
t∑
i=1

dG(Pi)−dG(x)−(6k−4)t+(12k−12) > 4k−7.

It implies that ωk(H) > 4k − 7 > 0. Since by Observation 4.4 each graph of Nk has its

weight value at most 4k− 8, H cannot have a troublesome partition. By Theorem 4.6, H

is strongly Z2k-connected.

Moreover, note that G/H is αK2 where α > 2k− 1, which is strongly Z2k-connected.

By Lemma 2.7, G is also strongly Z2k-connected.

Let G be a (6k − 4)-edge-connected planar graph. If G contains a vertex of degree
at most 8k − 5, then we can directly apply Theorem 4.7 to conclude that G is strongly
Z2k-connected. Otherwise, we may add one vertex x and add 2k−1 edges connecting it to
the vertices of V (G) (preserving the planarity). Note that now the resulting graph G+ x
satisfies the conditions in Theorem 4.7, and thus G is strongly Z2k-connected. Hence,
Theorem 1.8 (restated below) is a particular case of Theorem 4.7.

Theorem 1.8. Given an integer k with 2 6 k 6 4, every (6k − 4)-edge-connected planar
graph is strongly Z2k-connected.

4.1 Properties of the minimum counterexample to Theorem 4.6

In the sequel, let G be a minimum counterexample to Theorem 4.6 with respect to
v(G) + e(G). That is to say, ωk(G) > 0, G is not strongly Z2k-connected and for any
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partition P of V (G), G/P 6∈ Nk. Moreover, by the minimality of G, for any planar
graph H such that v(H) + e(H) < v(G) + e(G) and ωk(H) > 0, either H is strongly
Z2k-connected or there exists a partition P of V (H) such that H/P ∈ Nk.

Lemma 4.8. Let k be an integer with k > 2. Let H be a planar graph such that v(H) +

e(H) < v(G) + e(G) and ωk(H) > 0. The following statements hold.

(1) If ωkH(P) > 4k−7 for any nontrivial partition P of V (H), then either H is strongly

Z2k-connected or H ∈ Nk.

(2) If ωk(H) > 4k − 7, then H is strongly Z2k-connected.

(3) Assume that H is (2k − 1)-edge-connected and let k > 3. If ωkH(P) > 2k − 5

for any nontrivial partition P of V (H), then either H is strongly Z2k-connected or

H ∈ Nk \ {αK2 : 2 6 α 6 2k − 2}.

Proof. (1). Since H satisfies that e(H) + v(H) < e(G) + v(G) and ωk(H) > 0, either

H is strongly Z2k-connected or H has a troublesome partition. Assuming that H has a

partition P0 such that H/P0 ∈ Nk, as ωkH(P) > 4k− 7 for any nontrivial partition P , we

obtain that P0 is a trivial partition and H ∈ Nk.
(2). In this case, for any partition P of V (H) (including the trivial partition),

ωkH(P) > 4k − 7. Thus H /∈ Nk and it follows from Case (1) that H is strongly Z2k-

connected.

(3). Since H is (2k−1)-edge-connected, we have H /∈ {αK2 : 2 6 α 6 2k−2}. Since

each value of the weight function of graphs in Nk \ {αK2 : 2 6 α 6 2k − 2} is less than

2k− 6, and ωkH(P) > 2k− 5 for any nontrivial partition P of V (H), we know that either

H is strongly Z2k-connected or H ∈ Nk \ {αK2 : 2 6 α 6 2k − 2}.

We provide some structural properties of G in the following.

Lemma 4.9. The graph G contains no strongly Z2k-connected subgraph H with v(H) > 2.

Proof. Assume that there is a strongly Z2k-connected subgraphH ofG with v(H) > 2. Let

G′ = G/H. By Lemma 4.1, ωk(G′) > ωk(G) > 0. Noting that v(G′)+e(G′) < v(G)+e(G),

by the minimality ofG, we know eitherG′ is strongly Z2k-connected or it has a troublesome

partition. Noting that G has no troublesome partition, by Observation 2.11 we have

G′/P ′ /∈ Nk for any partition P ′ of V (G′). Therefore, G′ is strongly Z2k-connected. By

Lemma 2.7 G is strongly Z2k-connected, a contradiction.

Lemma 4.10. Let P = {P1, P2, . . . , Pt} be a partition of V (G) and k be an integer with

k > 2.

(1) If P is nontrivial, then ωkG(P) > 2k.

(2) If P is normal, then ωkG(P) > 4k − 3.
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(3) If |P1| > 2 and |P2| > 3, then ωkG(P) > 6k − 3.

Proof. Recall that for a subgraph H of G and a partition Q of V (H), by Proposition 4.2,

we have that

ωkH(Q) = ωkG(Q∪ (P \ {P1}))− ωkG(P) + (6k − 8). (6)

For (1), assume to the contrary that ωkG(P) 6 2k− 1 for a nontrivial partition P . As

P is nontrivial, without loss of generality, we may assume that |P1| > 2. Let H = G[P1].

For any partition Q of V (H), since ωk(G) > 0 and thus ωkG(Q ∪ (P \ {P1})) > 0, by

Formula (6) ωkH(Q) > 0− (2k − 1) + (6k − 8) > 4k − 7. Therefore, ωk(H) > 4k − 7 and

H is strongly Z2k-connected by Lemma 4.8 (2), which is a contradiction.

For (2), let P be a normal partition of V (G) and assume to the contrary that ωkG(P) 6

4k − 4. We consider the following two possibilities.

Case (a): Assume that P has two nontrivial parts {P1, P2} with |P1| > 2 and |P2| > 2.

Let H = G[P1]. For any partitionQ of V (H), Q∪P\{P1} is a nontrivial partition of V (G),

thus ωkG(Q∪P\{P1}) > 2k by Case (1). By Formula (6), ωkH(Q) > 2k−(4k−4)+(6k−8) =

4k− 4. Therefore, ωk(H) > 4k− 4 and H is strongly Z2k-connected by Lemma 4.8 (2), a

contradiction.

Case (b): Without loss of generality, assume that P contains a unique nontrivial part P1

with |P1| > 3. Let H = G[P1] and Q be a partition of P1. If Q is a trivial partition, noting

that ωkG(Q∪(P\{P1})) > 0, then by Formula (6) ωkH(Q) > 0−(4k−4)+(6k−8) = 2k−4; If

Q is a nontrivial partition, then ωkG(Q∪(P\{P1})) > 2k by Case (1), thus by Formula (6)

ωkH(Q) > 2k− (4k− 4) + (6k− 8) = 4k− 4. We conclude that for any nontrivial partition

Q of H, ωkH(Q) > 4k − 4 and ωk(H) > 2k − 4 > 0. Since |H| = |P1| > 3 and by

Observation 4.4, H 6∈ Nk. Thus, H is strongly Z2k-connected by Lemma 4.8 (1), a

contradiction.

For (3), assume to the contrary that ωkG(P) 6 6k − 4. Let H = G[P1]. Note that for

any partition Q of V (H), Q∪ (P \ {P1}) is a normal partition of V (G). By Case (2) and

Formula (6), ωkH(Q) > (4k− 3)− (6k− 4) + (6k− 8) = 4k− 7 and thus ωk(H) > 4k− 7.

By Lemma 4.8 (2), H is strongly Z2k-connected, a contradiction.

Next, we show that the minimum counterexample G must have at least five vertices.

Lemma 4.11. We have v(G) > 5.

Proof. Assume to the contrary that v(G) 6 4. It is trivial that v(G) 6= 1. That v(G) 6= 2

follows from the fact that a graph on two vertices is either inNk or strongly Z2k-connected.

Assume that v(G) = 3 and V (G) = {x, y, z}. As ωk(G) > 0, based on the trivial

partition of V (G), we have that 2e(G)− (6k−4)×3+(12k−12) > 0 and thus e(G) > 3k.

We first claim that G = Ta,b,c. If not, without loss of generality, we may assume that

G is a path xyz. Since G/P 6∈ {αK2 : 2 6 α 6 2k − 2} for any partition P of V (G),

min{µ(xy), µ(yz)} > 2k − 1. Thus G contains (2k − 1)K2 as a subgraph, contradicting
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Lemma 4.9. Since G = Ta,b,c has no troublesome partition (in particular, for the trivial

partition P0 of V (G), G/P0 6∈ Ta,b,c : 3k − 1 6 a + b + c 6 4k − 3}), a + b + c > 4k − 2.

Moreover, as for any subset X ⊂ V (G) with |X| = 2, G/X 6∈ {αK2 : 2 6 α 6 2k − 2},
δ(G) > 2k − 1. Such Ta,b,c is in Sk, a contradiction.

Now we assume that v(G) = 4. Since ωk(G) > 0, we have e(G) > 6k − 2. Moreover,

by Lemma 2.5 and Lemma 4.9, G has no copy of (2k− 1)K2 and thus µ(G) 6 2k− 2. We

claim that δ(G) > 2k−1. Assume not, and let v be the vertex with d(v) = δ(G) 6 2k−2

and H be the graph obtained from G by deleting v. Since H is a subgraph of G, µ(H) 6

µ(G) 6 2k−2. As H has three vertices and at least (6k−2)− (2k−2) = 4k edges, H is a

multi-triangle. Moreover, δ(H) +µ(H) > e(H) > 4k, i.e., δ(H) > 2k+ 2. By Lemma 3.1,

H is a strongly Z2k-connected graph, contradicting Lemma 4.9. This completes the proof

of the claim. Since δ(G) > 2k − 1, G satisfies all the conditions in Lemma 3.4 and thus

it is strongly Z2k-connected, a contradiction.

Lemma 4.12. G contains no T1,1,2k−2 as a subgraph.

Proof. Let T1,1,2k−2 be a multi-triangle with the vertex set {x, y, z} satisfying that d(x) = 2

and d(y) = d(z) = 2k−1. Assume to the contrary that G contains T1,1,2k−2 as a subgraph.

We lift the edge pair yx, xz to obtain a new edge yz, then contract the subgraph (2k−1)K2

between y and z, and denote the resulting graph by G′.

For the trivial partition P ′ of V (G′), we have ωkG′(P ′) > ωk(G) − 2 × 2k + (6k −
4) > 0 − 4k + (6k − 4) = 2k − 4. For any nontrivial partition P ′ of V (G′), there

is a normal partition P of V (G) corresponding to P ′ of V (G′). By Lemma 4.10 (2),

ωkG(P) > 4k − 3. Recall that the vertices y and z are in the same part of P . Observe

that xy and xz are the edges which may be counted in ωkG(P) but not in ωkG′(P ′). Hence,

ωkG′(P ′) > ωkG(P) − 2 × 2 = 4k − 7. Altogether, ωk(G′) > min{2k − 4, 4k − 7} > 0. By

Lemma 4.8 (1), G′ is either strongly Z2k-connected or in Nk. The latter case is impossible

since v(G′) = v(G)− 1 > 4 by Lemma 4.11. It then follows from Proposition 2.8 (1) that

G is also strongly Z2k-connected, a contradiction.

Using Lemmas 4.10 and 4.11, we give a lower bound on the edge-connectivity of the
minimum counterexample G in the next lemma.

Lemma 4.13. The graph G is (2k+1)-edge-connected. Moreover, if [X,Xc] is an edge-cut

of G with |X| > 2 and |Xc| > 3, then d(X) > 3k + 1.

Proof. For any X ⊂ V (G), let P = {X,Xc} be a partition of V (G). Note that [X,Xc]

is an edge-cut of G. Since v(G) > 5 by Lemma 4.11, such a partition P is always a

normal partition. By Lemma 4.10 (2), ωkG(P) > 4k − 3. It follows from the definition

that ωkG(P) = 2d(X) − (6k − 4) × 2 + (12k − 12) > 4k − 3, solving which we have that

d(X) > 2k + 1
2

and thus d(X) > 2k + 1. Hence, G is (2k + 1)-edge-connected.
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For the moreover part, let P = {X,Xc} with |X| > 2 and |Xc| > 3. By Lemma 4.10 (3),

ωkG(P) > 6k − 3. Again by solving ωkG(P) = 2d(X) − (6k − 4) × 2 + 12k − 12 > 6k − 3,

we have that d(X) > 3k + 1
2

and thus d(X) > 3k + 1.

To obtain more reducible configurations, from now on we assume that k > 3.

Lemma 4.14. G contains no Q1,1,1,2k−2 as a subgraph.

Proof. Let Q1,1,1,2k−2 be a multi-cycle with vertices x, y, z, and w satisfying that d(y) =

d(z) = 2 and d(x) = d(w) = 2k − 1. Suppose to the contrary that G contains Q1,1,1,2k−2.

We lift an edge triple xy, yz, zw to obtain a new (parallel) edge xw, and then contract the

resulting subgraph (2k − 1)K2. The resulting graph is denoted by G′. By Lemma 4.13,

dG′(y) > 2k− 1 and dG′(z) > 2k− 1, and by the moreover part of Lemma 4.13, dG′(u
∗) >

(3k + 1) − 2 > 3k − 1 > 2k − 1 where u∗ is the new vertex of V (G′) obtained by the

contraction. Hence, G′ is (2k − 1)-edge-connected.

For the trivial partition P ′0 of V (G′), we have that ωkG′(P ′0) > ωk(G)− 2× (2k+ 1) +

6k − 4 > 2k − 6 > 0. Similar to the proof of Lemma 4.12, for any nontrivial partition P ′

of V (G′), ωkG′(P ′) > ωkG(P)− 2× 3 > 4k − 3− 6 = 4k − 9 > 2k − 5. Since v(G′) > 4 by

Lemma 4.11, G′ /∈ Nk. So G′ is strongly Z2k-connected by Lemma 4.8 (3). Hence, G is

strongly Z2k-connected by Proposition 2.8 (1), which is a contradiction.

We now improve the edge-connectivity of G and then obtain another reducible con-
figuration.

Lemma 4.15. The minimum degree of G is at least 2k + 3. Moreover, G is (2k + 3)-

edge-connected.

Proof. Assume to the contrary that δ(G) 6 2k + 2. As G is (2k + 1)-edge-connected by

Lemma 4.13, δ(G) ∈ {2k + 1, 2k + 2}. Thus there is a vertex, say z, whose degree is

either 2k + 1 or 2k + 2, and assume that there are two edges xz and zy incident with z.

We lift the edge pair xz, zy and then delete the vertex z. The resulting graph is denoted

by G′. Since G has no copy of T1,1,2k−2 by Lemma 4.12, µG′(xy) 6 2k − 2. Towards a

contradiction, by Proposition 2.8 (2), it suffices to show that G′ is strongly Z2k-connected.

For the trivial partition P ′0 of V (G′), we know that ωkG′(P ′0) > ωk(G) − 2 × (2k +

2 − 1) + (6k − 4) > 2k − 6 > 0. For the almost trivial partition P ′1 = {P ′1, P ′2, . . . , P ′t}
of V (G′) with P ′1 = {x, y} (noting that t = v(G′) − 1), as µG′(xy) 6 2k − 2, ωkG′(P ′1) >
ωkG′(P ′0) − 2 × (2k − 2) + 6k − 4 > 4k − 6. For any normal partition P ′ of V (G′),

noting that P ′ ∪ {z} is a normal partition of V (G), by Lemma 4.10 (2), ωkG′(P ′) >
ωkG(P ′ ∪ {z})− 2× (2k + 2) + 6k − 4 > 6k − 11. Hence, for any nontrivial partition P of

V (G′), ωkG′(P) > 4k − 6. By Lemma 4.11, v(G′) = v(G) − 1 > 4, so G′ /∈ Nk. Applying

Lemma 4.8 (1), we conclude that G′ is strongly Z2k-connected. We complete the proof of

the first part.
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Moreover, since v(G) > 5, for any edge-cut [X,Xc] of G with |X| > 2, by the

moreover part of Lemma 4.13, d(X) > 3k+ 1 > 2k+ 3 (as k > 3). Together with the fact

that δ(G) > 2k + 3, G is (2k + 3)-edge-connected.

Lemma 4.16. G contains no T2,2,2k−3 as a subgraph.

Proof. Let T2,2,2k−3 be a multi-triangle with vertices x, y, and z satisfying that d(x) = 4

and d(y) = d(z) = 2k−1. Assume thatG contains T2,2,2k−3 as a subgraph. We lift two edge

pairs at x to obtain two new parallel edges connecting y and z, and contract the resulting

(2k− 1)K2. The resulting graph is denoted by G′. By Lemma 4.15, dG′(x) > 2k− 1, and

by the moreover part of Lemma 4.13, dG′(u
∗) > (3k + 1)− 4 > 3k − 3 > 2k − 1 where u∗

is the new vertex obtained by the contraction. Hence, G′ is (2k − 1)-edge-connected.

The trivial partition P ′0 of V (G′) satisfies ωkG′(P ′0) > ωk(G)−2×(2k+1)+6k−4 > 2k−
6 > 0. Since for any normal partition P of V (G), ωkG(P) > 4k−3 by Lemma 4.10 (2), any

nontrivial partition P ′ of V (G′) satisfies that ωkG′(P ′) > ωkG(P)−2×4 > 4k−11 > 2k−5

as k > 3. By Lemma 4.11, v(G′) > 4, thus G′ /∈ Nk. It follows from Lemma 4.8 (3) that

G′ is strongly Z2k-connected, so G is by Proposition 2.8 (1), a contradiction.

4.2 Strongly Z4-connected graphs

In this subsection, for k = 2, we consider the weight function ω2
G(P) =

t∑
i=1

d(Pi) −

8t+ 12 and ω2(G) = min
P
{ω2

G(P)}.We shall prove the following claim:

A planar graph G with ω2(G) > 0 either is strongly Z4-connected or has a troublesome
partition.

By Proposition 4.5 together with Lemma 4.9, and Lemma 4.12, we know that a
minimum counterexample to this claim contains no configuration from F2 = {3K2, T1,1,2}.
Since a graph G with ω2(G) > 0 satisfies e(G) > 4v(G) − 6, to this end, it suffices to
prove the following lemma.

Lemma 4.17. Given a planar graph G with e(G) > 4v(G)− 6, if G has no troublesome

partition, then G contains at least one configuration of F2 = {3K2, T1,1,2}.

Proof. Assume that G contains no configurations of F2. As e(G) > 4v(G) − 6 (i.e.,

2e(G)− 8v(G) + 12 > 0), by Euler’s formula that v(G) + f(G)− e(G) = 2, we have that

2e(G)− 8×
(
2− f(G) + e(G)

)
+ 12 > 0, thus∑

f∈F (G)

`(f) = 2e(G) 6
8

3
f(G)− 4

3
.

We assign to each face f an initial charge c(f) = `(f), and thus the total charge is strictly

smaller than 8
3
f(G). We then apply the following discharging rule.
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Rule. Each 2-face receives 1
3

from each of its weakly adjacent 3+-faces.

We shall prove that each face ends with a charge at least 8
3

after discharging, which

is a contradiction. Every 2-face receives 1
3

from each of its two weakly adjacent 3+-faces,

thus it has charge at least 2 + 2
3
> 8

3
. For a 3-face f (viewed as the inner face of Ta,b,c),

since G does not contain T1,1,2, we have a + b + c 6 3 and hence, f always ends with a

charge of at least 3. Since G contains no 3K2, after the discharging, each 4+-face f has

charge c′(f) > `(f) − 1
3
`(f) = 2

3
`(f) > 8

3
. Therefore, every face ends with a charge at

least 8
3

and this completes the proof.

4.3 Strongly Z6-connected graphs

In this subsection, for k = 3, we consider the weight function ω3
G(P) =

t∑
i=1

d(Pi) −

14t + 24 and ω3(G) = min
P
{ω3

G(P)}. Recall that N3 = {αK2 : 2 6 α 6 4} ∪ {Ta,b,c :

a+ b+ c ∈ {8, 9}} and S3 = {5K2, T2,4,4, T3,3,4}. We shall prove the following claim:

Given a planar graph G, if ω3(G) > 0, then either G is strongly Z6-connected or G
has a troublesome partition.

By Proposition 4.5 together with Lemma 4.9, and Lemmas 4.12, 4.14, and 4.16, we
obtain the forbidden configurations set F3 = {5K2, T1,1,4, T2,2,3, Q1,1,1,4} of the minimum
counterexample G to the above claim. Since a graph G with ω3(G) > 0 has e(G) >
7v(G)− 12, similarly, we shall prove Lemma 4.18 to finish the proof of the above claim.

Lemma 4.18. Given a planar graph G with e(G) > 7v(G)− 12, if G has no troublesome

partition, then G contains at least one configuration of F3 = {5K2, T1,1,4, T2,2,3, Q1,1,1,4}.

Proof. Assume that G is a counterexample of this lemma. As e(G) > 7v(G) − 12 (i.e.,

2e(G)−14v(G)+24 > 0), by Euler’s formula, we have 2e(G)−14×
(
2−f(G)+e(G)

)
+24 >

0, thus ∑
f∈F (G)

`(f) = 2e(G) 6
7

3
f(G)− 2

3
.

We assign to each face f the initial charge `(f). The total charge is strictly smaller

than 7
3
f(G). We then apply the following discharging rule.

Rule. Each 2-face receives 1
6

from each of its weakly adjacent 3+-faces.

As every 2-face has exactly two weakly adjacent 3+-faces, its charge is increased to 7
3
.

Since G has no 5K2, each face f has at most 3`(f) weakly adjacent 2-faces, and moreover,

when `(f) > 5, we have that c′(f) > `(f) − 3`(f) × 1
6
> 5

2
> 7

3
. The remaining cases

are 3-faces and 4-faces. Since G contains no T1,1,4 and T2,2,3, every 3-face f has at most

4 weakly adjacent 2-faces. Hence, f ends with a charge c′(f) > 3 − 4 × 1
6

= 7
3
. Since

G contains no Q1,1,1,4, every 4-face f (viewed as the inner face of Qa,b,c,d) has at most 8

weakly adjacent 2-faces and thus c′(f) > 4− 8× 1
6

= 8
3
. Every face ends with a charge at

least 7
3
, a contradiction.
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4.4 Strongly Z8-connected graphs

For k = 4, we consider the weight function ω4
G(P) =

∑t
i=1 d(Pi)−20t+36 and ω4(G) =

min
P
{ω4

G(P)}. Recall that N4 = {αK2 : 2 6 α 6 6} ∪ {Ta,b,c : a+ b+ c ∈ {11, 12, 13}} and

a graph G has a troublesome partition with respect to strong Z8-connectivity if it has a
partition P such that G/P ∈ N4. Each graph of S4 = {7K2, T2,6,6, T3,5,6, T4,4,6, T4,5,5} is
strongly Z8-connected. We shall conclude the following claim:

Given a planar graph G, if ω4(G) > 0, then either G is strongly Z8-connected or G
has a troublesome partition.

To this end, we need first to show that graphs T o1,1,6, T
o
2,2,5 and Qo

1,1,1,6, depicted in
Figure 2, are forbidden configurations in the minimum counterexample G of the above
claim.

z

x y

w

(a) T o1,1,6

x y

w z

u

(b) Qo1,1,1,6

z

x y

w

(c) T o2,2,5

Figure 2: The graphs T o1,1,6, Q
o
1,1,1,6, and T o2,2,5

Lemma 4.19. G contains no T o1,1,6 as a subgraph.

Proof. Let T o1,1,6 be a multi-graph with the vertex set {x, y, w, z} satisfying that d(x) =

d(y) = 7 and d(w) = d(z) = 2, and see Figure 2(a). Suppose that G contains T o1,1,6 as a

subgraph. We lift two edge pairs xw,wy and xz, zy to obtain two new edges connecting x

and y, contract the resulting 7K2, and denote the final graph by G′. Clearly, G′ is 9-edge-

connected by Lemma 4.15 and the moreover part of Lemma 4.13. Observe that G′ /∈ N4 as

v(G′) > 4. For the trivial partition P ′0 of V (G′), we have ω4
G′(P ′0) > ω4(G)−2×9+20 > 2.

For any nontrivial partition P ′ of V (G′), ω4
G′(P ′) > ω4

G(P) − 2 × 4 > 13 − 8 = 5, where

ω4
G(P) > 13 follows from Lemma 4.10 (2). Thus by Lemma 4.8 (3), G′ is strongly Z8-

connected, so G is by Proposition 2.8 (1), a contradiction.

Lemma 4.20. G contains no Qo
1,1,1,6 as a subgraph.

Proof. Let Qo
1,1,1,6 be a multi-graph with vertices x, y, w, z, u satisfying d(x) = d(y) = 7

and d(u) = d(w) = d(z) = 2, and see Figure 2(b). Assume that G contains Qo
1,1,1,6.

Similarly, we first lift an edge pair xu, yu and also lift a 2-path xw,wz, zy to become

two new parallel edges connecting x and y. We then contract the newly obtained 7K2
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and denote the resulting graph by G′. Note that G′ is 9-edge-connected and G′ /∈ N4.

For the trivial partition P ′0 of V (G′), ω4
G′(P ′0) > ω4(G) − 2 × 10 + 20 > 0, and for any

nontrivial partition P ′ of V (G′), ω4
G′(P ′) > ω4

G(P) − 2 × 5 > 13 − 10 = 3. Therefore,

G′ is strongly Z8-connected by Lemma 4.8 (3) and G is also strongly Z8-connected by

Proposition 2.8 (1), a contradiction.

Next, to obtain the last forbidden configuration depicted in Figure 2(c), we need to
improve the bound of the weight function of normal partitions of V (G).

Lemma 4.21. If P is a normal partition of V (G), then ω4
G(P) > 15.

Proof. Let P = {P1, P2, . . . , Ps} be a normal partition of V (G) with |P1| > 2 and assume

to the contrary that ω4
G(P) 6 14. Let H = G[P1] and let Q be a partition of V (H). By

Proposition 4.2, ω4
H(Q) = ω4

G(Q∪P \{P1})−ω4
G(P)+16 > ω4

G(Q∪P \{P1})−14+16 >

ω4
G(Q ∪ P \ {P1}) + 2. If for any partition Q of V (H), Q ∪ P \ {P1} is a nontrivial

partition of V (G), then by Lemma 4.10 (1), ω4(H) > 8 + 2 = 10. By Lemma 4.8 (2),

H is strongly Z8-connected, a contradiction to Lemma 4.9. Thus we assume that there

is a partition Q of V (H) such that Q ∪ P \ {P1} is the trivial partition of V (G) and

thus ω4(H) > 2. In this case, since P is a normal partition, we have |P1| > 3, so

H /∈ {αK2 : 2 6 α 6 6}. Moreover, since ω4(Ta,b,c) < 2 when a + b + c ∈ {11, 12},
H /∈ {Ta,b,c : 11 6 a + b + c 6 12}. By Lemmas 4.12 and 4.16, G has no copy of T1,1,6

and T2,2,5, so H /∈ {Ta,b,c : a + b + c = 13}. Thus, we conclude that H /∈ N4. Note that

ω4
H(Q′) > 10 > 9 for any nontrivial partition Q′ of V (H), so H is strongly Z8-connected

by Lemma 4.8 (1), again contradicting Lemma 4.9.

Lemma 4.22. G contains no T o2,2,5 as a subgraph.

Proof. Let T o2,2,5 be a multi-graph with vertices x, y, w, z satisfying that d(x) = d(y) =

7, d(w) = 2 and d(z) = 4, and see Figure 2(c). Assume G contains T o2,2,5. We lift two

edge pairs at z and an edge pair xw,wy to obtain three new parallel edges connecting

x and y, then contract the resulting subgraph 7K2 and denote the final graph by G′.

Since G is 11-edge-connected by Lemma 4.15, by the moreover part of Lemma 4.13, G′ is

7-edge-connected.

For the trivial partition P ′0 of V (G′), ω4
G′(P ′0) > ω4(G) − 2 × 10 + 20 > 0. For

any nontrivial partition P ′, there is a partition P of V (G) corresponding to P ′ of V (G′).

Note that P is a normal partition and thus ω4
G(P) > 15 by Lemma 4.21. We have that

ω4
G′(P ′) > ω4

G(P)−2×6 > 15−12 = 3. Again since v(G′) > 4, G′ /∈ N4. By Lemma 4.8 (3),

G′ is strongly Z8-connected, so G is by Proposition 2.8 (1), a contradiction.

By Proposition 4.5 together with Lemma 4.9, and Lemmas 4.12, 4.14, 4.16, 4.19,
4.20, and 4.22, we have the forbidden configurations set

F4 = {7K2, T1,1,6, T2,2,5, Q1,1,1,6, T
o
1,1,6, T

o
2,2,5, Q

o
1,1,1,6}.
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Similarly, since a graph G with ω4(G) > 0 satisfies e(G) > 10v(G)− 18, we only need to
prove the following lemma to end the proof.

Lemma 4.23. Given a planar graph G with e(G) > 10v(G)−18, if G has no troublesome

partition, then G contains one configuration of F4.

Proof. We assume that G is a counterexample. As e(G) > 10v(G)−18, 2e(G)−20v(G)+

36 > 0. By Euler’s formula, we have 2e(G)− 20×
(
2− f(G) + e(G)

)
+ 36 > 0, then∑

f∈F (G)

`(f) = 2e(G) 6
20

9
f(G)− 4

9
.

We assign to each face f the initial charge `(f) and the total charge is strictly smaller

than 20
9
f(G). To obtain a contradiction, we redistribute the charge by the following rules:

Rule (i). Each 2-face receives charge 1
9

from each of its weakly adjacent 3+-faces.

Rule (ii). Each 3-face receives charge 1
9

from each of its weakly adjacent 4+-faces.

We shall show each face ends with a charge of at least 20
9

, which is a contradiction.

By Rule (i), every 2-face ends with 2 + 2× 1
9

= 20
9

.

We first consider a 5+-face f . Since G contain no 7K2, f has at most 5`(f) weakly

adjacent 2-faces. Moreover, G contains no copy of T1,1,6. Hence, f sends in total at most
5
9
`(f) to its weakly adjacent 2-faces and 3-faces by Rule (i) and Rule (ii), and thus f

ends with a charge of at least `(f)− 5
9
`(f) = 4

9
`(f) > 20

9
.

We then consider a 4-face f . Since G has no copy of Q1,1,1,6, f has at most 16 weakly

adjacent 2-faces. Moreover, since G contains no Qo
1,1,1,6, f sends charge in total at most

16
9

to its weakly adjacent 2-faces and 3-faces by Rule (i) and Rule (ii). It ends with a

charge of at least 20
9

.

Finally, we consider all the 3-faces. Let f be the inner 3-face of the subgraph Ta,b,c

(of G). When a+ b+ c 6 10, f ends with a charge of at least 3− 7× 1
9

= 20
9

by Rule (i).

When a + b + c > 11, since G has no copy of T1,1,6 and T2,2,5, we only need to consider

the following three possibilities: T1,5,5, T3,4,4, and T4,4,4.

• If f is the inner face of subgraph T1,5,5, then each face weakly adjacent to f through

an edge of multiplicity 5 is neither a 3-face nor a 4-face by Lemmas 4.19 and 4.20.

Thus, f ends with a charge of at least 3 − (11 − 3) × 1
9

+ 2 × 1
9

= 21
9

by Rule (i)

and Rule (ii).

• If f is the inner face of T3,4,4, then each face weakly adjacent to f through an edge

of multiplicity 4 is not a 3-face by Lemma 4.22. So f ends with a charge of at least

3− (11− 3)× 1
9

+ 2× 1
9

= 21
9

by Rule (i) and Rule (ii).
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• The last case is when f is the inner face of T4,4,4. Clearly, each face weakly adjacent

to f is not a 3-face by Lemma 4.22, so f ends with a charge of at least 3 − (12 −
3)× 1

9
+ 3× 1

9
= 21

9
by Rule (i) and Rule (ii).

We are done.

5 Homomorphisms and circular colorings of signed

graphs

In this section, we first give a negative-girth condition for a signed bipartite planar
graph to admit a homomorphism to C−2k. To prove this result, we need the definition
of circular p

q
-flow in signed graphs and the duality theorem between circular flows and

circular colorings.

Definition 5.1. [14] Given positive integers p and q with p even, a circular p
q
-flow in a

signed graph (G, σ) is a pair (D, f) where D is an orientation on G and f : E(G) → Z
satisfies the following conditions.

• For each positive edge e, |f(e)| ∈ {q, . . . , p− q};

• For each negative edge e, |f(e)| ∈ {0, . . . , p
2
− q} ∪ {p

2
+ q, . . . , p− 1};

• For each vertex v, ∂Df(v) :=
∑

(u,v)∈D
f(uv)−

∑
(v,w)∈D

f(vw) = 0.

Note that using Tutte’s theorem3 [30], a signed graph admits a circular p
q
-flow if and

only if it admits a modular p
q
-flow, i.e., a pair (D, f) by replacing the last condition of

Definition 5.1 with ∂Df(v) ≡ 0 (mod p).

Proposition 5.2. [14] For a signed plane graph (G, σ) and its dual signed graph (G∗, σ∗),

(G, σ) admits a circular p
q
-coloring if and only if (G∗, σ∗) admits a circular p

q
-flow.

When restricted to signed Eulerian graphs, the next theorem provides us with a
necessary and sufficient condition to admit a circular 4k

2k−1 -flow. Let pĜ(v) denote the

number of positive edges incident with v in the signed graph Ĝ. It is not difficult to
observe that by adding 2k to the flow value of each positive edge of the signed graph, we
may view the obtained flow with only values {−1,+1} (taken modulo 4k) as a special
orientation achieving certain boundary 2k · pĜ(v) at each vertex. Note that the flow value
0 can be ignored because the graph is Eulerian. For the sake of completeness, we provide
its proof here.

Theorem 5.3. [14] Given a positive integer k, a signed Eulerian graph Ĝ admits a circular
4k

2k−1-flow if and only if Ĝ admits a (4k, β)-orientation with β(v) ≡ 2k · pĜ(v) (mod 4k)

for each vertex v ∈ V (G).
3If a graph admits a modular k-flow (D, f), then it admits an integer k-flow (D, f ′) such that f ′(e) ≡

f(e) (mod k) for every edge e.
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Proof. Since Ĝ is Eulerian, by handshaking lemma β(v) ≡ 2k ·pĜ(v) (mod 4k) is a (4k, β)-

boundary. Assume that there is a (4k, β)-orientation D1 on Ĝ. Let D be an orientation

on G. We first define a mapping f1 : E(G) → {1,−1} such that f1(e) = 1 if e is

oriented in D the same as in D1 and f1(e) = −1 otherwise. Note that ∂Df1(v) = d+D1
(v)−

d−D1
(v) ≡ β(v) (mod 4k). We define another mapping f2 : E(G) → {0, 2k} satisfying

that f2(e) = 2k for each positive edge e and f2(e) = 0 for each negative edge e. We

have that ∂Df2(v) ≡ 2k · pĜ(v) (mod 4k). Let f = f1 + f2. It is easily observed that

f(e) ∈ {2k− 1, 2k+ 1} for each positive edge e and f(e) ∈ {−1, 1} for each negative edge

e. Moreover, ∂Df(v) = ∂Df1(v) + ∂Df2(v) ≡ β(v) + 2k · pĜ(v) ≡ 0 (mod 4k). Therefore,

(D, f) is a circular 4k
2k−1 -flow in Ĝ.

Conversely, assume that (D, f) is a circular 4k
2k−1 -flow in Ĝ. We first define a mapping

f1 : E(G) → Z4k such that f1(e) = 2k for each positive edge e and f1(e) = 0 for

each negative edge e. It follows that ∂Df1(v) ≡ 2k · pĜ(v) (mod 4k). Then, we define

another mapping f2(e) := f1(e) − f(e) for e ∈ E(G) and note that for each edge e,

f2(e) ∈ {−1, 0, 1}. Let X be the subset of edges e such that f2(e) = 0. As G is Eulerian,

it is easy to see that X = {e ∈ E(G) | f(e) = 0 or f(e) = 2k} and thus every vertex

of G[X] is of even-degree. Based on the orientation D and the mapping f2, we define a

new orientation D1 on Ĝ as follows: If f2(e) = 1, then e is oriented in D1 the same as in

D and if f2(e) = −1, then e is oriented oppositely in D1 and D. For edges in G[X], we

orient them at each vertex one-in-one-out. Under D1, for each vertex v ∈ V (G),

d+D1
(v)− d−D1

(v) = ∂Df2(v) = ∂Df1(v)− ∂Df(v) ≡ 2k · pĜ(v) ≡ β(v) (mod 4k).

Therefore, D1 is a (4k, β)-orientation with β(v) ≡ 2k · pĜ(v) (mod 4k) for each vertex

v ∈ V (G).

The next corollary follows directly from Theorem 5.3.

Corollary 5.4. Let G be an Eulerian graph. If G is strongly Z2k-connected, then for any

signature σ on G, (G, σ) admits a circular 4k
2k−1-flow.

Combining Theorems 1.8 and 5.4, we have the following result.

Corollary 5.5. Given an integer k with 2 6 k 6 4, every (6k− 4)-edge-connected signed

Eulerian planar graph admits a circular 4k
2k−1-flow. Equivalently, every signed bipartite

planar graph of girth at least 6k − 4 is circular 4k
2k−1-colorable.

We furthermore improve this result by replacing the girth condition with the same
negative-girth condition. We first prove Theorem 5.6, similar to a result of [11]: Given
a graph G and its connected subgraph H which is strongly Z2k+1-connected, G admits a
circular 2k+1

k
-flow if and only if G/H does.
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Theorem 5.6. Given an Eulerian graph G and its connected subgraph H, let G′ = G/H.

Assume that H is strongly Z2k-connected. Then for any signature σ on G, (G, σ) admits

a circular 4k
2k−1-flow if and only if (G′, σ|G′) does.

Proof. Let Ĝ := (G, σ) and Ĝ′ := (G′, σ|G′). Clearly, G′ is also Eulerian. Let w denote

the new vertex obtained after the contraction in G′. For any (4k, β)-boundary of G with

β(v) ≡ 2k · pĜ(v) (mod 4k), the corresponding (4k, β′)-boundary of G′ (as defined in

Observation 2.6) satisfies that

β′(w) ≡
∑

v∈V (H)

β(v) ≡
∑

v∈V (H)

2k·pĜ(v) = 2k·(pĜ′(w)+2|E+
σ (H)|) ≡ 2k·pĜ′(w) (mod 4k),

where E+
σ (H) denotes the set of positive edges of the signed subgraph of (G, σ) induced

by V (H), and β′(v) ≡ 2k · pĜ′(v) (mod 4k) for each vertex v ∈ V (G′) \ {w}.
For one direction, by Theorem 5.3, we assume that Ĝ admits a (4k, β)-orientation

D with β(v) ≡ 2k · pĜ(v) (mod 4k). Let D′ be the restriction of D on Ĝ′. Considering

the orientation D′, we have d+D′(w) − d−D′(w) ≡
∑

v∈V (H) β(v) ≡ β′(w) (mod 4k) and

d+D′(v)−d−D′(v) ≡ β(v) = β′(v) (mod 4k) for any other vertex v 6= w. Thus, the orientation

D′ is a (4k, β′)-orientation on Ĝ′ with β′(v) ≡ 2k · pĜ′(v) (mod 4k). Noting that G′ is an

Eulerian graph, by Theorem 5.3 Ĝ′ admits a circular 4k
2k−1 -flow.

For the other direction, since G′ is Eulerian and Ĝ′ admits a circular 4k
2k−1 -flow, by

Theorem 5.3 the signed graph Ĝ′ has a (4k, β′)-orientation on Ĝ with β′(v) ≡ 2k · pĜ′(v)

(mod 4k). As H is strongly Z2k-connected, by Lemma 2.7 we can obtain a (4k, β)-

orientation with β(v) ≡ 2k · pĜ(v) (mod 4k) on G. Therefore, Ĝ admits a circular 4k
2k−1 -

flow by Theorem 5.3. This completes the proof.

Lemma 5.7. [Bipartite folding lemma][26] Let Ĝ be a signed bipartite plane graph of

negative girth 2k and let C = v1v2 · · · vt be a facial cycle (of Ĝ) which is not a negative

2k-cycle. Then there is an integer i ∈ {1, . . . , t} such that the signed graph Ĝ′, obtained

from Ĝ by identifying two vertices vi and vi+2 (index is taken modulo t) after a possible

switching at one of the two vertices, still has negative girth 2k.

By applying this lemma repeatedly, we get a homomorphic image of Ĝ which is also
a signed bipartite plane graph in which every facial cycle is a negative cycle of length
exactly 2k. Now we are ready to prove Theorems 1.4 and 1.5 together, unified in the
following theorem.

Theorem 5.8. Given an integer k with 2 6 k 6 4, every signed bipartite planar graph of

negative girth at least 6k− 4 is circular 4k
2k−1-colorable, i.e., it admits a homomorphism to

C−2k.

Proof. By Lemma 5.7, we may assume that (G, σ) is a minimum counterexample together

with a planar embedding such that each facial cycle of (G, σ) is a negative even cycle of
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length 6k − 4. Then its dual signed graph (G∗, σ∗) is a (6k − 4)-regular signed Eulerian

plane graph. If G∗ is (6k − 4)-edge-connected, then we are done by Corollary 5.5. Since

(G, σ) is bipartite and has negative girth at least 6k − 4, every negative even edge-cut of

(G∗, σ∗) is of size at least 6k− 4. Thus we may assume that (G∗, σ∗) has a small positive

even edge-cut and we choose the edge-cut [X,Xc] with |X| being minimized among all

the possible choices. First observe that |X| ≥ 2 since G∗ is (6k − 4)-regular. Note that

dG∗(X) 6 6k − 6 but for any proper subset Y ( X, dG∗(Y ) > 6k − 4.

Let H1 = G∗[X] and let G∗0 be the graph obtained from G∗ by identifying all the

vertices of Xc into a new vertex x. Note that dG∗0(x) 6 6k−6 and except [{x}, V (G∗0)\{x}]
every other cut of G∗0 has size at least 6k−4. By Theorem 4.7, H1 is strongly Z`-connected.

Moreover, H1 is connected by the minimality of X.

Let H2 = G∗/H1. Clearly, (H2, σ
∗|H2

) is a signed Eulerian planar graph with v(H2) <

v(G∗). Thus (H2, σ
∗|H2

) admits a circular 4k
2k−1 -flow, as its dual graph is a proper subgraph

of the minimum counterexample (G, σ). Since H1 is strongly Z`-connected and G∗/H1

admits a circular 4k
2k−1 -flow, (G∗, σ∗) admits a circular 4k

2k−1 -flow by Theorem 5.6. Hence,

(G, σ) is circular 4k
2k−1 -colorable by duality, a contradiction.

Another natural implication of Theorem 1.8 is Theorem 1.6, to obtain which we need
the next result. We denote by 2G the graph obtained from G by replacing each edge with
2 parallel edges.

Theorem 5.9. Given a graph G and an integer k with k > 2, if 2G is strongly Z2k-

connected, then for any signature σ on G, the signed graph (G, σ) admits a circular 2k
k−1-

flow.

Proof. For each edge e ∈ E(G), we denote the parallel edges in E(2G) corresponding to

e by ei, i ∈ [2]. Let Ĝ := (G, σ). Since 2G is strongly Z2k-connected, for any (4k, β)-

boundary with β(v) ≡ 2k · pĜ(v) (mod 4k) of 2G, there is a (4k, β)-orientation D1 on

2G.

Let D be an orientation on G. Let I be a mapping from E(2G) to {1,−1} satisfying

that I(ei) = 1 if ei in D1 has the same orientation as e in D and I(ei) = −1 otherwise. We

define a mapping f1(e) := I(e1) + I(e2) for each e ∈ E(G). Note that f1(e) ∈ {−2, 0, 2}
for each edge e ∈ E(G) and ∂Df1(v) ≡ β(v) (mod 4k) for each vertex v ∈ V (G).

We then define another mapping f2 : E(G) → {0, 2k} satisfying that f2(e) = 2k for

each positive edge e and f2(e) = 0 for each negative edge e. Thus ∂Df2(v) ≡ 2k · pĜ(v)

(mod 4k) for each vertex v ∈ V (G).

Let f = f1 + f2. Note that f(e) ∈ {2k − 2, 2k, 2k + 2} for each positive edge e,

f(e) ∈ {−2, 0, 2} for each negative edge e and ∂Df(v) = ∂Df1(v) + ∂Df2(v) ≡ 0 (mod 4k)

for each vertex v ∈ V (G). Hence, (D, f) is a circular 4k
2k−2 -flow, which is equivalent to a

circular 2k
k−1 -flow.
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Last, we give the proof of Theorem 1.6 on the chromatic numbers of signed planar
graphs with given girth conditions.

Theorem 1.6. Given an integer k with 2 6 k 6 4, every signed planar graph of girth at
least 3k − 2 is circular 2k

k−1-colorable.

Proof. Given an integer k with 2 6 k 6 4, let (G, σ) be a signed plane graph of girth

at least 3k − 2 and (G∗, σ∗) be its dual signed graph. Thus the underlying graph G∗ is

(3k − 2)-edge-connected. Thus 2G∗ is (6k − 4)-edge-connected, which is strongly Z2k-

connected by Theorem 1.8. By Theorem 5.9, (G∗, σ∗) admits a circular 2k
k−1 -flow and by

duality, (G, σ) is circular 2k
k−1 -colorable.

6 Concluding Remarks

This paper proves that every signed bipartite planar graph of negative girth at least
6k−4 admits a homomorphism to C−2k for k ∈ {2, 3, 4}, noting that the case when k = 1
is trivial. This negative-girth bound is shown to be tight when k = 2 in [18], but we do not
know whether it is tight for k = 3, 4. From the duality, by Corollary 5.4, Theorem 1.4 also
indicates that there exist 6-edge-connected Eulerian planar graphs which are not strongly
Z4-connected. But it is still open whether every (4k − 2)-edge-connected planar graph is
strongly Z2k-connected for k > 3. Note that, by Proposition 2.4, every (4k − 4)-regular
graph G with v(G) > 2k − 1 is not strongly Z2k-connected. With a special signature, we
construct below a (4k − 4)-edge-connected (4k − 4)-regular signed Eulerian planar graph
that does not admit a circular 4k

2k−1 -flow. Thus its dual provides a signed bipartite planar
graph of girth 4k − 4 which does not admit a homomorphism to C−2k.

Given an integer k > 2, let (W̃4k−4, σ) be a signed multi-wheel defined as follows: the
vertex set is {v1, . . . , v4k−4, w}, the edge set is {v1v2, . . . , vivi+1, . . . , v4k−4v1, wv1, . . . , wv4k−4},
and µ(wvi) = 1, µ(vivi+1) = 2k− 3 and µ(vi+1vi+2) = 2k− 2 for i ∈ {1, 3, . . . , 4k− 5}; for
each pair of vertices v2iv2i+1 (indices are taken modulo 4k− 4), we assign a negative sign
to one edge and positive signs to the others, and for the vertex w, assign a negative sign
to wv1 and positive signs to all the other edges incident to w. See Figure 3 for (W̃8, σ) as
an example.

w

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3: The graph (W̃8, σ).

We claim that the signed graph Ŵ4k−4 := (W̃4k−4, σ) admits no circular 4k
2k−1 -flow.

Note that Ŵ4k−4 is (4k − 4)-edge-connected. Given a (4k, β)-boundary of Ŵ4k−4 with

β(v1) = 0 and β(v2) = · · · = β(v4k−4) = β(w) = 2k, let γ : V (Ŵ4k−4) → {0,±2k} be the
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mapping satisfying the conditions (1), (2), (3) of Lemma 2.13 with respect to β. Since∑
v∈V (Ŵ4k−4)

γ(v) = 0, we have |γ−1(2k)| = |γ−1(−2k)| = 2k − 2 and it implies a natural

partition of the vertex set {v2, v3, . . . , v4k−4, w} into V1 and V2 such that γ(v) = 2k for
v ∈ V1 and γ(v) = −2k for v ∈ V2.

Recall that γ(v1) ≡ 0 (mod 4k) and γ(v) ≡ 2k (mod 4k) for v ∈ V1 ∪ V2, and
max{γ(v)} −min{γ(v)} 6 4k. Next, we shall show that there is no γ-orientation for any

possible γ, by Lemma 2.13 which implies that there is no (4k, β)-orientation on Ŵ4k−4.

By Theorem 2.14, it suffices to prove that with respect to γ , there is a bad set in Ŵ4k−4.
We need to consider the following two cases.

• If for some i ∈ {2, . . . , 4k−5}, γ(vi) = γ(vi+1), then |γ(vi)+γ(vi+1)| = 4k. Moreover,
d({vi, vi+1}) 6 2+2×(2k−2) = 4k−2. Noting that |γ(vi)+γ(vi+1)| > d({vi, vi+1}),
{vi, vi+1} is a bad set.

• Assume that for any i ∈ {2, . . . , 4k − 4}, γ(vi) 6= γ(vi+1). By alternating the values
2k and −2k on the vertex of the path v2v3 · · · v4k−4 which is of an even length, we
have γ(v2) = γ(v4k−4). Let S = {v1, v2, v4k−4}. Note that |

∑
v∈S γ(v)| = 4k and

d(S) = 3 + (2k − 2) + (2k − 3) = 4k − 2. Thus, S is a bad set.

Hence, by Theorem 5.3, (W̃4k−4, σ) admits no circular 4k
2k−1 -flow.
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