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Abstract Given a planar graph family F , let exP(n,F ) and spexP(n,F ) be the maximum
size and maximum spectral radius over all n-vertex F -free planar graphs, respectively. Let tCk

be the disjoint union of t copies of k-cycles, and tC be the family of t vertex-disjoint cycles
without length restriction. Tait and Tobin [Three conjectures in extremal spectral graph theory, J.
Combin. Theory Ser. B 126 (2017) 137–161] determined that K2 +Pn−2 is the extremal graph
among all planar graphs with sufficiently large order n, which give answers to spexP(n, tCℓ) and
spexP(n, tC ) for t ≥ 3. In this paper, we first determine spexP(n, tCℓ) and spexP(n, tC ) and
characterize the unique extremal graph for 1 ≤ t ≤ 2, ℓ≥ 3 and sufficiently large n. Secondly, we
obtain the exact values of exP(n,2C4) and exP(n,2C ), which answers a conjecture of Li [Planar
Turán number of disjoint union of C3 and C4, arxiv:2212.12751v1 (2022)]. These present a new
exploration of approaches and tools to investigate extremal problems of planar graphs.
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1 Introduction

Given a graph family F , a graph is said to be F -free if it does not contain any F ∈ F as
a subgraph. When F = {F}, we write F-free instead of F -free. One of the earliest results in
extremal graph theory is the Turán’s theorem, which gives the maximum number of edges in an n-
vertex Kk-free graph. The Turán number ex(n,F ) is the maximum number of edges in an F -free
graph on n vertices. Füredi and Gunderson [10] determined ex(n,C2k+1) for all n and k. However,
the exact value of ex(n,C2k) is still open. Erdős [6] determined ex(n, tC3) for n ≥ 400(t −1)2, and
the unique extremal graph is characterized. Subsequently, Moon [18] showed that Erdős’s result
is still valid whenever n > 9

2 t − 12. Erdős and Pósa [7] showed that ex(n, tC ) = (2t − 1)(n− t)
for t ≥ 2 and n ≥ 24t. For more results on Turán-type problem, we refer the readers to the survey
paper [11].

*Lin was supported by NSFC grant 11771141 and 12011530064. Shi was supported by NSFC grant 12161141006.
†Corresponding author: huiqiulin@126.com (H. Lin).
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One extension of the classical Turán number is to study extremal spectral radius in a planar
graph with a forbidden structure. The planar spectral extremal value of a given graph family
F , denoted by spexP(n,F ), is the maximum spectral radius over all n-vertex F -free planar
graphs. An F -free planar graph on n vertices with maximum spectral radius is called an extremal
graph to spexP(n,F ). Boots and Royle [2] and independently Cao and Vince [3] conjectured
that K2 +Pn−2 is the unique planar graph with the maximum spectral radius. The conjecture was
finally proved by Tait and Tobin [22] for sufficiently large n.

In order to study the spectral extremal problems on planar graphs, we first give the following
useful theorem.

Theorem 1.1. Let n ≥ 2.16×1017 and F be a graph family such that |V (F)| ≤ n
2 for any graph

F ∈ F . If K2,n−2 is F -free, then the extremal graph to spexP(n,F ) contains a copy of K2,n−2.

Let tCk be the disjoint union of t copies of k-cycles, and tC be the family of t vertex-disjoint
cycles without length restriction. We use Jn to denote the graph obtained from K1 +(n−1)K1 by
embedding a maximum matching within its maximum independent set. For t ≥ 3, it is easy to
check that K2 +Pn−2 is tCℓ-free and tC -free. Theorem 1.1 implies that K2 +Pn−2 is the extremal
graph to spexP(n, tCℓ) and spexP(n, tC ) for t ≥ 3 and sufficiently large n. For three positive
integers n, ℓ1, ℓ2 with n ≥ ℓ1, let

H(ℓ1, ℓ2) :=

{
Pℓ1 ∪

n−2−ℓ1
ℓ2

Pℓ2 if ℓ2 | (n−2− ℓ1),
Pℓ1 ∪⌊n−2−ℓ1

ℓ2
⌋Pℓ2 ∪P

n−2−ℓ1−⌊ n−2−ℓ1
ℓ2

⌋ℓ2
otherwise.

In the paper, we give answers to spexP(n, tCℓ) for t ∈ {1,2} and spexP(n,2C )?? as follows.

Theorem 1.2. For integers ℓ≥ 3 and n ≥ max{2.16×1017,9×2ℓ−1+3}, the graph K2+H(2ℓ−
3, ℓ−2) is the extremal graph to spexP(n,2Cℓ).

Theorem 1.3. For n ≥ 2.16×1017, K2 +H(3,1) is the extremal graph to spexP(n,2C ).

Theorem 1.4. For integers ℓ≥ 3 and n ≥ max{2.16×1017,9×2⌊
ℓ−1

2 ⌋+3, 625
32 ⌊

ℓ−3
2 ⌋2 +2},

(i) K2,n−2 is the unique extremal graph to spexP(n,C3);
(ii) Jn is the unique extremal graph to spexP(n,C4);
(iii) K2 +H(⌈ ℓ−3

2 ⌉,⌊ ℓ−3
2 ⌋) is the unique extremal graph to spexP(n,Cℓ) for ℓ≥ 5.

To prove our main results, we need to study another extension of the classical Turán number,
i.e., the planar Turán number. Dowden [5] initiated the following problem: what is the maximum
number of edges in an n-vertex F -free planar graph? This extremal number is called planar
Turán number of F and denoted by exP(n,F ). The planar Turán number for short cycles are
studied in [5, 12, 13], but exP(n,Ck) is still open for general k. For more results on planar Turán-
type problem, we refer the readers to a survey of Lan, Shi and Song [15]. It is easy to see that
exP(n, tC ) = n−1 for t = 1. Lan, Shi and Song [14] showed that exP(n, tC ) = 3n−6 for t ≥ 3,
and the double wheel 2K1 +Cn−2 is the unique extremal graph.We prove the case of t = 2, which
will be used to prove our main theorems.

Theorem 1.5. exP(n,2C ) = 2n−1 for n ≥ 5. The extremal graphs are obtained from 2K1 +C3

and an independent set of size n− 5 by joining each vertex of the independent set to any two
vertices of the triangle.
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Moreover, Lan, Shi and Song [14] also proved that exP(n, tCk) = 3n−6 for all k, t ≥ 3. They
[16] further showed that exP(n,2C3) = ⌈5n

2 ⌉− 5 and obtained lower bounds of exP(n,2Ck) for
k ≥ 4, which was improved by Li [17] for sufficient large n recently. Li [17] also conjectured that
exP(n,2C4) ≤ 19

7 (n− 2) for n ≥ 23, and the bound is sharp for 14 | (n− 2). In this paper, we
determine the exact value of exP(n,2C4) for large n.

Theorem 1.6. For n ≥ 2661,

exP(n,2C4) =

{
19n
7 −6 if 7 | n,⌊19n−34

7

⌋
otherwise.

2 Proof of Theorem 1.5

Above all, we shall introduce the Jordan Curve Theorem: any simple closed curve C in the
plane partitions the rest of the plane into two disjoint arcwise-connected open sets (see [1], P. 244).
The corresponding two open sets are called the interior and the exterior of C. We denote them by
int(C) and ext(C), and their closures by Int(C) and Ext(C), respectively. A plane graph is a planar
embedding of a planar graph. The Jordan Curve Theorem gives the following lemma.

Lemma 2.1. Let C be a cycle of a plane graph G, and let x,y be two vertices of G with x ∈ int(C)

and y ∈ ext(C), then xy /∈ E(G).

Let G be a plane graph. A face in G of size i is called an i-face. Let fi(G) denote the number
of i-faces in G, and let f (G) denote ∑i fi(G).

Lemma 2.2. (Proposition 2.5 of [1], P. 250) Let G be a planar graph, and let f be an arbitrary
face in some planar embedding of G. Then G admits a planar embedding whose outer face has
the same boundary as f .

Let δ (G) be the minimum degree of a graph G. It is well known that every graph G with
δ (G) ≥ 2 contains a cycle. In the following, we give a more delicate characterization on planar
graphs, which contains an important structural information of the extremal graphs in Theorem 1.5.

Lemma 2.3. Let G be a plane graph on n vertices with δ (G) ≥ 3. Then G contains two vertex-
disjoint cycles unless G ∈ {2K1 +C3,K1 +Cn−1}.

Proof. We first deal with some trivial cases. Since δ (G)≥ 3, we have n ≥ 1+δ (G)≥ 4. If n = 4,
then G ∼= K1 +C3. If n = 5, then 2e(G) = ∑v∈V (G) dG(v) ≥ 3× 5 = 15, and so e(G) ≥ 8. On the
other hand, e(G)≤ 3n−6 = 9, since G is planar. Thus, e(G) ∈ {8,9}. It is not hard to verify that
G ∼= 2K1 +C3 when e(G) = 9 and G ∼= K1 +C4 when e(G)=8, as desired. If G is not connected,
then G contains at least two components G1 and G2 with δ (Gi) ≥ 3 for i ∈ {1,2}, which implies
that each Gi contains a cycle. Thus, G contains two vertex-disjoint cycles, as desired. If G has
a cut vertex v, then G−{v} has at least two components G3 and G4. Since δ (G) ≥ 3, we have
δ (Gi)≥ 2 for i ∈ {3,4}, which implies that both G3 and G4 contain a cycle. Thus, G also contains
two vertex-disjoint cycles.

Next, we only need to consider the case that G is a 2-connected graph of order n ≥ 6. Since G
is 2-connected, each face of G is a cycle. Let C be a face of G with minimum size g. By Lemma
2.2, we may assume without loss of generality that C is the outer face of G. Let G1 = G−V (C).
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If G1 contains a cycle, then G contains two vertex-disjoint cycles, as desired. Now assume that
G1 is acyclic. Since δ (G)≥ 3, we have 2e(G) = ∑v∈V (G) dG(v)≥ 3n. This, together with Euler’s
formula n−2 = e(G)− f (G), gives e(G)≤ 3 f (G)−6. On the other hand,

2e(G) = ∑
i≥g

i fi(G)≥ g ∑
i≥g

fi(G) = g f (G).

Hence, g f (G) ≤ 2e(G) ≤ 6 f (G)− 12, yielding g ≤ 6 f (G)−12
f (G) < 6. Subsequently, we shall give

several claims.

Claim 2.1. We have g = 3.

Figure 1: Two possible local structures of G.

Proof. Suppose to the contrary that g ∈ {4,5}, and let C = v1v2 . . .vgv1. We first consider the
case that there exists a vertex of G1 adjacent to two consecutive vertices of C. Without loss
of generality, let w1 ∈ V (G1) and {w1,v1,v2} induces a triangle C′. More generally, we define
A = {w ∈V (G1) | v1,v2 ∈ NC(w)}. Clearly, w1 ∈ A. We can select a vertex, say w1, in A such that
A ⊆ Ext(C′) (see Fig. 1). Notice that C′ is not a face of G, as g ∈ {4,5}. Then, int(C′) ̸= ∅. By
Lemma 2.1, every vertex in int(C′) has no neighbors in ext(C′). Moreover, by the definitions of A
and w1, every vertex in int(C′) has at most one neighbor in {v1,v2}. It follows that every vertex
in int(C′) has at least one neighbor in int(C′), as δ (G)≥ 3. Thus, G[int(C′)] is nonempty, that is,
G1[int(C′)] is nonempty. Recall that G1 is acyclic. Then G1[int(C′)] contains at least two pendant
vertices, one of which (say w2) is not adjacent to w1. Hence, w2 is also a pendant vertex of G1, as
w2 has no neighbors in ext(C′). On the other hand, w2 has at most one neighbor in {v1,v2}, and so
dC(w2)≤ 1. Therefore, dG(w2) = dG1(w2)+dC(w2)≤ 2, contradicting δ (G)≥ 3.

Now it remains the case that each vertex of G1 is not adjacent to two consecutive vertices of
C. Note that δ (G) ≥ 3 and G1 is acyclic. Then G1 contains a vertex w0 with dG1(w0) ≤ 1, and
thus dC(w0) = dG(w0)− dG1(w0) ≥ 2. Now, since g ∈ {4,5}, we may assume without loss of
generality that v1,v3 ∈ NC(w0). Let A′ = {w ∈V (G1) | v1,v3 ∈ NC(w)}. Clearly, w0 ∈ A′ and v2 /∈
NC(w) for each w ∈ A′. Now, we can select a vertex, say w1, in A′ such that A′ ⊆ Ext(C′′), where
C′′ = w1v1v2v3w1 (see Figure 1). We can see that int(C′′) ̸=∅ (otherwise, dG(v2) = |{v1,v3}|= 2,
a contradiction). By the definition of w1, we have int(C′′)∩A′ = ∅. Furthermore, every vertex
in int(C′′) has no neighbors in ext(C′′) and has at most one neighbor in {v1,v2,v3}. Thus, every
vertex in int(C′′) has at least one neighbor in int(C′′). By a similar argument as above, we can find
a vertex w2 ∈ int(C′′) with dG(w2) = dG1(w2)+dC(w2)≤ 2, which contradicts δ (G)≥ 3.
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By Claim 2.1, the outer face of G is a triangle C = v1v2v3v1. In the following, we denote
Bi = {w ∈V (G1) | dC(w) = i} for i ≤ 3. Since δ (G)≥ 3, we have w ∈ B3 for each isolated vertex
w of G1, and w ∈ B2 ∪B3 for each pendant vertex w of G1.

Claim 2.2. |B3| ≤ 1 and |B2|+ |B3| ≥ 2.

Proof. Since C is the outer face of G, every vertex of G1 lies in int(C). Furthermore, since G is
planar, it is easy to see that |B3| ≤ 1. This implies that G1 contains at most one isolated vertex.
Recall that |G1|= n−3 ≥ 3 and G1 is acyclic. Then G1 contains at least two pendant vertices w1

and w2. Therefore, |B2|+ |B3| ≥ |{w1,w2}|= 2.

Claim 2.3. Let w0,w1 be two vertices in V (G1) such that NC(w0) ⊇ {v3} and NC(w1) ⊇ {v1,v2}
(see Fig. 2). Then
(i) v3,w0 ∈ ext(C′′′), where C′′′ = w1v1v2w1;
(ii) if w0 /∈ B3, then G1 contains a pendant vertex in ext(C′′′).

Figure 2: A local structure in Claim 2.3.

Proof. (i) Since C is the outer face and v3 ∈V (C)\V (C′′′), we have v3 ∈ ext(C′′′). Furthermore,
using w0v3 ∈ E(G) and Lemma 2.1 gives w0 ∈ ext(C′′′).

(ii) Since w0 /∈ B3, we have dC(w0) ≤ 2, and so dG1(w0) = dG(w0)− dC(w0) ≥ 1. By (i), we
know that w0 ∈ ext(C′′′). If dG1(w0) = 1, then w0 is a desired pendant vertex. It remains the case
that dG1(w0) ≥ 2. Now, whether w1 is a neighbor of w0 or not, w0 has at least one neighbor in
V (G1)∩ ext(C′′′). Thus, G1[ext(C′′′)] is nonempty. Recall that G1 is acyclic. Then G1[ext(C′′′)]

contains at least two pendant vertices, one of which (say w2) is not adjacent to w1. Hence, w2 is
also a pendant vertex of G1, as w2 has no neighbors in int(C′′′).

Figure 3: Two possible local structures in Claim 2.4.

Claim 2.4. Let w1,w2 ∈ V (G1) with NC(w1)∩NC(w2) ⊇ {v1,v2}. Assume that C′′′ = w1v1v2w1

and w2 ∈ int(C′′′) (see Fig. 3). Then G contains a cycle Cvi such that V (Cvi) ⊆ Int(C′′′) and
V (Cvi)∩V (C) = {vi} for each i ∈ {1,2}.
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Proof. We first claim that NC(w2) = {v1,v2}. By Claim 2.3, we know that v3 ∈ ext(C′′′). Now,
since w2 ∈ int(C′′′), we have w2v3 /∈ E(G) by Lemma 2.1, and so NC(w2) = {v1,v2}. Furthermore,
we have dG1(w2)≥ 1. Then G1 contains a path P with endpoints w2 and w3, where w3 is a pendant
vertex of G1. If V (P) ̸⊆ int(C′′′), then by w2 ∈ int(C′′′) and Lemma 2.1, we have V (P)∩V (C′′′) =

{w1} as v1,v2 /∈ V (G1). Now let P′ be the subpath of P with endpoints w2 and w1. Then V (P′)\
{w1} ⊆ int(C′′′), and G contains a cycle C(vi) = viw1P′w2vi for each i ∈ {1,2}, as desired. Next,
assume that V (P) ⊆ int(C′′′). Then, w3 ∈ int(C′′′). By v3 ∈ ext(C′′′) and Lemma 2.1, we get that
w3v3 /∈E(G), and so w3 /∈B3. Moreover, dG1(w3) = 1 and δ (G)≥ 3 give w3 ∈B2. Thus, NC(w3) =

{v1,v2}. Therefore, G contains a cycle Cvi = viw2Pw3vi for each i ∈ {1,2}, as desired.

Having above four claims, we are ready to give the final proof of Lemma 2.3. By Claim 2.2, we
have |B3| ≤ 1 and |B2| ≥ 1. We may without loss of generality that w1 ∈ B2 and NC(w1) = {v1,v2}.
For each i ∈ {1,2}, let i ∈ {1,2} \ {i}. Since dC(w1) = 2, we have dG1(w1) ≥ 1. Hence, G1 is
nonempty, and so G1 contains at least two pendant vertices. According to the size of B3, we now
distinguish two cases to complete the proof.

Case 1. |B3|= 1.
Assume that B3 = {w0}. Then NC(w0) = {v1,v2,v3} (see Fig. 4). We then consider two

subcases according to the size of B2.

Figure 4: Three possible structures in Case 1.

Subcase 1.1. |B2|= 1, that is, B2 = {w1}.
For each pendant vertex w of G1, we have dC(w) = dG(w)− dG1(w) ≥ 2, consequently, w ∈

B2 ∪ B3 = {w1,w0}. This indicates that G1 contains exactly two pendant vertices w1 and w0.
Furthermore, we can see that G1 contains no isolated vertices (otherwise, every isolated vertex of
G1 has at least three neighbors in V (C) and so belongs to B3, while the unique vertex w0 ∈ B3 is a
pendant vertex of G1). Therefore, G1 is a path of order n−|C| with endpoints w1 and w0.

Now we know that G1 is a path with |G1| = n− 3 ≥ 3. Let NG1(w0) = {w2} and P′′ = G1 −
{w0}. Then P′′ is a path with endpoints w1 and w2. Since dG1(w2) = 2, we have dC(w2) ≥ 1.
If w2v3 ∈ E(G), then G contains two vertex-disjoint cycles v3w0w2v3 and w1v1v2w1, as desired.
If w2vi ∈ E(G) for some i ∈ {1,2}, then G contains two vertex-disjoint cycles viw1P′′w2vi and
w0viv3w0, as desired.
Subcase 1.2. |B2| ≥ 2.

Let w2 ∈ B2 \ {w1}. If NC(w1) = NC(w2), then we may assume that w2 ∈ int(C′′′) by the
symmetry of w1 and w2, where C′′′ = w1v1v2w1. By Claim 2.4, G contains a cycle Cv1 such
that V (Cv1) ⊆ Int(C′′′) and V (Cv1)∩V (C) = {v1}. On the other hand, Claim 2.3 implies that
w0 ∈ ext(C′′′). Hence, w0 /∈ V (Cv1). Therefore, G contains two vertex-disjoint cycles Cv1 and
w0v2v3w0, as desired.
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It remains the case that NC(w1) ̸= NC(w2). Now NC(w2) = {vi,v3} for some i ∈ {1,2}. We
define C′′′ = w0v1v2w0 instead of the original one in Claim 2.4. Then w1 ∈ int(C′′′). Moreover,
w2 ∈ ext(C′′′) as w2v3 ∈ E(G). By Claim 2.4, there exists a cycle Cvi

such that V (Cvi
)⊆ Int(C′′′)

and V (Cvi
)∩V (C) = {vi}. Therefore, G contains two vertex-disjoint cycles Cvi

and w2viv3w2, as
desired.

Case 2. |B3|= 0.
Recall that A = {w ∈ V (G1) | v1,v2 ∈ NC(w)}. Since |B3| = 0, we can see that NC(w) =

NC(w1) = {v1,v2} for each w ∈ A. We may assume without loss of generality that A ⊆ Int(C′′′) by
the symmetry of vertices in A. By Claim 2.3, there exists a pendant vertex w3 of G1 in ext(C′′′),
which implies that dC(w3)≥ 2. Since |B3|= 0, we have w3 ∈ B2, and thus B2 ⊇ {w1,w3}. More-
over, w3 /∈ A as A ⊆ Int(C′′′). Assume without loss of generality that NC(w3) = {v1,v3} (see Fig.
5). We also consider two subcases according to |B2|.

Figure 5: Three possible structures in Case 2.

Subcase 2.1. |B2|= 2, that is, B2 = {w1,w3}.
Since w3 is a pendant vertex of G1, which implies that G1 is non-empty and has at least two

pendant vertices. On the other hand, since δ (G)≥ 3 while B3 =∅, we can see that G1 contains no
isolated vertices, and w ∈ B2 = {w1,w3} for each pendant vertex w of G1. Therefore, G1 contains
exactly two pendant vertices w1 and w3, more precisely, G1 is a path with endpoints w1 and w3.
Let w be an arbitrary vertex in V (G1)\{w1,w3}. Then, dC(w) = dG(w)−dG1(w) = dG(w)−2≥ 1.

If wv2 ∈ E(G), then G contains two vertex-disjoint cycles v2w1P′′′wv2 and v1w3v3v1, where
P′′′ is the subpath of G1 from w1 to w (see Fig. 5(a)). If wv3 ∈ E(G), then G contains two vertex-
disjoint cycles v3w3P′′′wv3 and v1w1v2v1, where P′′′ is the subpath of G1 from w3 to w (see Fig.
5(a)). If NC(w) = {v1} for each w ∈V (G1)\{w1,w3}, then G ∼= K1 +Cn−1, as desired.

Subcase 2.2. |B2| ≥ 3.
For each vertex w ∈ B2, it is clear that NC(w) is one of {v1,v2}, {v1,v3} and {v2,v3}. We first

consider the case that there exist two vertices in B2 which have the same neighbors in C. Without
loss of generality, assume that we can find a vertex w2 ∈ B2 with NC(w2) = NC(w1) = {v1,v2}.
Then w2 ∈ A. Recall that A ⊆ Int(C′′′) and C′′′ = w1v1v2w1 (see Fig. 5(b)). Then, we can further
get that w2 ∈ int(C′′′). By Claim 2.4, there exists a cycle Cv2 such that V (Cv2) ⊂ Int(C′′′) and
V (Cv2)∩V (C) = {v2}. On the other hand, Claim 2.3 implies that w3 ∈ ext(C′′′). Hence, w3 /∈
V (Cv2). Therefore, G contains two vertex-disjoint cycles Cv2 and w3v1v3w3, as desired.

Now it remains the case that any two vertices in B2 have different neighborhoods in C. This
implies that |B2| = 3 and we can find a vertex w2 ∈ B2 with NC(w2) = {v2,v3}. Now we have
B2 = {w1,w2,w3}. Furthermore, since δ (G) ≥ 3 and B3 = ∅, we have dG1(w) ≥ 1 for each
w ∈ V (G1), and if dG1(w) = 1, then w ∈ B2. Since |B2| = 3, we can see that G1 has only one
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connected component, that is, G1 is a tree and some wi, say w2, is a pendant vertex of G1. Now,
G1 −{w2} contains a subpath P′′′′ with endpoints w1 and w3 (see Fig. 5(c)). Then G contains two
vertex-disjoint cycles v1w1P′′′′w3v1 and w2v2v3w2, as desired.

This completes the proof of Lemma 2.3.

Let G ∗
n be the family of graphs obtained from 2K1 +C3 and an independent set of size n− 5

by joining each vertex of the independent set to arbitrary two vertices of the triangle (see Fig. 6).
Clearly, every graph in G ∗

n is planar. Now, let Gn be the family of planar graphs obtained from
2K1 +C3 by iteratively adding vertices of degree 2 until the resulting graph has n vertices. Then
G ∗

n ⊆ Gn.

Figure 6: An extremal graph in G ∗
n .

Lemma 2.4. For any graph G ∈ Gn, G is 2C -free if and only if G ∈ G ∗
n .

Proof. Let V1 := {v1,v2,v3} be the set of vertices of degree 4 and V2 := {w1,w2} be the set of
vertices of degree 3 in 2K1 +C3, respectively. Then V1 induces a triangle. We first show that
every graph G in G ∗

n is 2C -free. It suffices to prove that every cycle of G contains at least two
vertices in V1. Let C be an arbitrary cycle of G. If V (C) ⊆ V1, then there is nothing to prove. It
remains the case that there exists a vertex w ∈V (C)\V1. By the definition of G ∗

n , we can see that
NC(w)⊆ NG(w)⊆V1. Note that |NC(w)| ≥ 2. Hence, C contains at least two vertices in V1.

In the following, we will show that every graph G ∈ Gn \ G ∗
n contains two vertex-disjoint

cycles. By the definition of Gn, G is obtained from 2K1 +C3 by iteratively adding n− 5 vertices
u1,u2, . . . ,un−5 of degree 2. Now, let Gn−5 = G, and Gi−1 = Gi −{ui} for i ∈ {1,2, . . . ,n− 5}.
Then G0 ∼= 2K1 +C3. Moreover, |Gi| = i+ 5 and dGi(ui) = 2 for each i ∈ {1,2, . . . ,n− 5}. Now
let

i∗ = max{i | 0 ≤ i ≤ n−5, Gi ∈ G ∗
i+5}.

Since G0 = 2K1 +C3 ∈ G ∗
5 and Gn−5 /∈ G ∗

n , we have 0 ≤ i∗ ≤ n−6. By the choice of i∗, we know
that Gi∗ ∈ G ∗

i∗+5 and Gi∗+1 /∈ G ∗
i∗+6, which implies that NGi∗ (u

∗
i )⊆V1 and NGi∗+1(ui∗+1) ̸⊆V1.

Figure 7: An extremal graph in G ∗
n .
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Now we may assume that Gn−5 is a planar embedding of G, and G0 is a plane subgraph of
Gn−5. Observe that 2K1 +C3 has six planar embeddings (see Fig. 7). Without loss of generality,
assume that G0 is the leftmost graph in Fig. 7. Then, ui∗+1 lies in one of the following regions (see
Fig. 7):

ext(w2v1v2w2), int(w2v1v3w2), int(w2v2v3w2),

int(w1v1v2w1), int(w1v1v3w1), int(w1v2v3w1).

By Lemma 2.2, we can assume that ui∗+1 lies in the outer face, that is, ui∗+1 ∈ ext(w2v1v2w2). For
simplify, we denote C′ = w2v1v2w2. Let u be an arbitrary vertex with uv3 ∈ E(Gi∗+1). Then by
Lemma 2.1 and v3 ∈ int(C′), we have u ∈ int(C′), and thus uui∗+1 /∈ E(Gi∗+1). This implies that
NGi∗+1(ui∗+1) ⊆ V (C′)∪W12, where W12 = {u | u ∈ V (Gi∗+1), NGi∗+1(u) = {v1,v2}}. Recall that
dGi∗+1(ui∗+1) = 2 and NGi∗+1(ui∗+1) ̸⊆ V1. Then, |NGi∗+1(ui∗+1)∩{v1,v2}| ≤ 1. If |NGi∗+1(ui∗+1)∩
{v1,v2}| = 1, then we may assume without loss of generality that v1 ∈ NGi∗+1(ui∗+1), and u′ ∈
NGi∗+1(ui∗+1) \ {v1}. Since NGi∗+1(ui∗+1) ⊆ V (C′)∪W12, we have u′ ∈ {w2}∪W12, and so u′v1 ∈
E(Gi∗+1). Thus, Gn−5 contains two vertex-disjoint cycles ui∗+1v1u′ui∗+1 and w1v2v3w1, as desired.
Now consider the case that |NGi∗+1(ui∗+1)∩{v1,v2}|= 0. This implies that NGi∗+1(ui∗+1)⊆ {w2}∪
W12. Let NGi∗+1(ui∗+1) = {u′,u′′}. Then u′v1,u′′v1 ∈ E(Gi∗+1). Therefore, Gn−5 contains two
vertex-disjoint cycles ui∗+1u′v1u′′ui∗+1 and w1v2v3w1.

Given a graph G, let G̃ be the largest induced subgraph of G with minimal degree at least 3. It
is easy to see that G̃ can be obtained from G by iteratively removing the vertices of degree at most
2 until the resulting graph has minimum degree at least 3 or is empty. It is well known that G̃ is
unique and does not depend on the order of vertex deletion (see [21]).

In the following, we give the proof of Theorem 1.5.

Proof. Let n ≥ 5 and G be an extremal graph corresponding to exP(n,2C ). Observe that K2 +

(P3 ∪ (n−5)K1) is a planar graph which contains no two vertex-disjoint cycles (see Fig. 6). Thus,
e(G)≥ e(K2 +(P3 ∪ (n−5)K1)) = 2n−1.

If G̃ is empty, then e(G)≤ 2(n−1) because G is simple, a contradiction.
Now we know that G̃ is nonempty. Then, G̃ contains no two vertex-disjoint cycles as G̃ ⊆ G.

By the definition of G̃, we have δ (G̃)≥ 3. By Lemma 2.3, we get that G̃∈{2K1+C3,K1+C|G̃|−1}.

If G̃ ∼= K1 +C|G̃|−1, then

e(G)≤ e(G̃)+2(n−|G̃|) = 2(|G̃|−1)+2(n−|G̃|) = 2n−2,

a contradiction. Thus, G̃ ∼= 2K1 +C3. Now, e(G)≤ e(G̃)+2(n−5) = 2n−1. Therefore, e(G) =

2n− 1, which implies that exP(n,2C ) = 2n− 1 and G ∈ Gn. By Lemma 2.4, we have G ∈ G ∗
n .

This completes the proof of Theorem 1.5.

3 Proof of Theorem 1.6

We shall further introduce some notations on a plane graph G. A vertex or an edge of G is said
to be incident with a face F , if it lies on the boundary of F . Clearly, every edge of G is incident
with at most two faces. A face of size i is called an i-face. The numbers of i-faces and total faces
are denoted by fi(G) and f (G), respectively. Let E3(G) be the set of edges incident with at least
one 3-face, and particularly, let E3,3(G) be the set of edges incident with two 3-faces. Moreover,
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let e3(G) and e3,3(G) denote the cardinalities of E3(G) and E3,3(G), respectively. We can easily
see that 3 f3(G) = e3(G)+ e3,3(G).

Lan, Shi and Song proved that exP(n,K1+P3)≤ 12(n−2)
5 , with equality when n≡ 12 (mod 20)

(see [13]), and exP(n,K1 +Pk+1) ≤ 13kn
4k+2 −

12k
2k+1 for k ∈ {3,4,5} (see [14]). For k ≥ 6, one can

easily see that exP(n,K1 +Pk+1) = 3n−6. In [8], the authors obtained the following sharp result.

Lemma 3.1. ([8]) Let n,k be two integers with k ∈ {2,3,4,5} and n ≥ 12
6−k +1. Then exP(n,K1 +

Pk+1)≤ 24k
7k+6(n−2), with equality if n ≡ 12(k+2)

6−k (mod 28k+24
6−k ).

To prove Theorem 1.6, we also need an edge-extremal result on outerplanar graphs. Let
exOP(n,Ck) denote the maximum number of edges in an n-vertex Ck-free outerplanar graph.

Lemma 3.2. ([9]) Let n,k,λ be three integers with n ≥ k ≥ 3 and λ = ⌊ kn−2k−1
k2−2k−1⌋+1. Then

exOP(n,Ck) =

{
2n−λ +2

⌊
λ

k

⌋
−3 if k | λ ,

2n−λ +2
⌊

λ

k

⌋
−2 otherwise.

In particular, we can obtain the following corollary.

Corollary 3.1.

exOP(n−1,C4) =

{
12
7 n−5 if 7 | n,⌊12n−27

7

⌋
otherwise.

Figure 8: The constructions of G,G1,G2, . . . ,Ga.

For arbitrary integer n ≥ 4, we can find a unique (a,b) such that a ≥ 0, 1 ≤ b ≤ 7 and n−1 =

7a+ b+ 2. Let G be a 9-vertex outerplanar graph and G1, . . . ,Ga be a copies of G (see Fig. 8).
Then, we define G0 as the subgraph of G induced by {u1,u2}∪ {v1,v2, . . . ,vb}. One can check
that |G0|= b+2 and

e(G0) =

{
12(b+2)−23

7 if 7 | (b+2−6),⌊12(b+2)−15
7

⌋
otherwise.

We now construct a new graph G∗ from G0,G1, . . . ,Ga by identifying the edges e2i and e2i+1 for
each i ∈ {0, . . . ,a−1}. Clearly, G∗ is a connected C4-free outerplanar graph with

|G∗|=
a

∑
i=0

|Gi|−2a = (2+b)+9a−2a = n−1.
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Moreover, since n ≡ b+2−6( mod 7), we have

e(G∗) =
a

∑
i=0

e(Gi)−a = e(G0)+12a =

{
12
7 n−5 if 7 | n,⌊12n−27

7

⌋
otherwise.

Combining Corollary 3.1, G∗ is an extremal graph corresponding to exOP(n−1,C4).

Lemma 3.3. Let n ≥ 2661 and G∗∗ be an extremal plane graph corresponding to exP(n,2C4).
Then G∗∗ contains at least fourteen quadrilaterals and all of them share exactly one vertex.

Proof. Note that e(G∗) = exOP(n− 1,C4) ≥ 12
7 n− 5 and G∗ is a C4-free outerplanar graph of

order n−1. Then K1 +G∗ is an n-vertex 2C4-free planar graph, and thus

e(G∗∗)≥ e(K1 +G∗) = e(G∗)+n−1 ≥ 19
7

n−6.

On the other hand, by Lemma 3.1, we have

exP(n,K1 +P4)≤
8
3
(n−2).

Note that 19
7 n−6> 8

3(n−2) for n≥ 2661. Then G∗∗ contains a copy, say H1, of K1+P4. Let G1 be
the graph obtained from G∗∗ by deleting all edges within V (H1). Since |H1|= 5, we have e(G1)≥
e(G∗∗)− (3|H1|−6) = e(G∗∗)−9 > 8

3(n−2). Thus, G1 contains a copy, say H2, of K1 +P4. Now
we can obtain a new graph G2 from G1 by deleting all edges within V (H2). Note that e(G∗∗)−
14× 9 > 8

3(n− 2). Repeating above steps, we can obtain a graph sequence G1,G2, . . . ,G14 and
fourteen copies H1,H2, · · · ,H14 of K1 +P4 such that Hi ⊆ Gi−1 and Gi is obtained from Gi−1 by
deleting all edges within V (Hi). This also implies that G∗∗ contains at least fourteen quadrilaterals.
We next give four claims on those copies of K1 +P4.

Claim 3.1. Let i, j be two integers with 1 ≤ i < j ≤ 14 and v ∈ V (Hi)∩V (H j). Then, V (Hi)∩
NH j(v) =∅.

Proof. Suppose to the contrary that there exists a vertex w ∈ V (Hi)∩NH j(v). Note that v,w ∈
V (Hi). By the definition of Gi, whether vw ∈ E(Hi) or not, we can see that vw /∈ E(Gi). On
the other hand, note that H j ⊆ G j−1 ⊆ Gi, then vw ∈ E(H j) ⊆ E(Gi), contradicting vw /∈ E(Gi).

Hence, the claim holds.

Claim 3.2. |V (Hi)∩V (H j)| ∈ {1,2} for any two integers i, j with 1 ≤ i < j ≤ 14.

Proof. If Hi and H j are vertex-disjoint, then G∗∗ contains 2C4, a contradiction. Now suppose
that there exist three vertices v1,v2,v3 ∈ V (Hi)∩V (H j). Observe that K1 + P4 contains no an
independent set of size 3. Then H j[{v1,v2,v3}] is nonempty. Assume without loss of generality
that v1v2 ∈ E(H j). Then v2 ∈ V (Hi)∩ NH j(v1), which contradicts Claim 3.1. Therefore, 1 ≤
|V (Hi)∩V (H j)| ≤ 2.

Now for convenience, a vertex v in a graph G is called a 2-vertex if dG(v) = 2, and a 2+-vertex
if dG(v)> 2. Clearly, every copy of K1 +P4 contains two 2-vertices and three 2+-vertices.

Claim 3.3. Let H be the family of graphs Hi (1 ≤ i ≤ 14) such that every 2-vertex in Hi is a
2+-vertex in H1. Then |H | ≤ 3.
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Proof. Note that H1 contains only three 2+-vertices, say v1,v2 and v3. Then every graph Hi ∈
H must contain two of v1,v2 and v3 as 2-vertices. Suppose to the contrary that |H | ≥ 4. By
pigeonhole principle, there exist two graphs Hi1 ,Hi2 ∈ H such that they contain the same two
2-vertices, say v1,v2. It follows that Hi j −{v j} contains a 4-cycle for j ∈ {1,2}. By Claim 3.2, we
have V (Hi1)∩V (Hi2) = {v1,v2}, which implies that Hi1 −{v1} and Hi2 −{v2} are vertex-disjoint.
Hence, G∗∗ contains two vertex-disjoint 4-cycles, a contradiction.

Claim 3.4. Let j be an integer with 2 ≤ j ≤ 14 and H j /∈ H . Then, there exists a vertex v ∈
V (H1)∩V (H j) such that dH1(v)≥ 3 and dH j(v)≥ 3.

Proof. By Claim 3.2, we have 1 ≤ |V (H1)∩V (H j)| ≤ 2. We first assume that V (H1)∩V (H j) =

{u}. If dH1(u)≥ 3 and dH j(u)≥ 3, then there is nothing to prove. If dH1(u) = 2, then G∗∗ contains
two vertex-disjoint subgraphs H1 −{u} and H j, and thus 2C4, a contradiction. If dH j(u) = 2, then
we can similarly get a contradiction. Therefore, |V (H1)∩V (H j)|= 2.

Now, assume that V (H1)∩V (H j)= {u1,u2}. We first deal with the case dH j(u1) = dH j(u2)= 2.
Since H j /∈ H , one of {u1,u2}, say u1, is a 2-vertex in H1. Hence, G∗∗ contains two vertex-
disjoint subgraphs H1 −{u1} and H j −{u2}, and so 2C4, a contradiction. Thus, there exists some
i ∈ {1,2} with dH j(ui) ≥ 3. If dH1(ui) ≥ 3, then we are done. If dH1(ui) = 2, then we define H ′

j

as the subgraph of H j induced by NH j(ui)∪{ui}. Since dH j(ui)≥ 3, we can check that H ′
j always

contains a C4. Moreover, since dH1(ui) = 2, we can see that H1 −{ui} also contains a C4. On the
other hand, by Claim 3.1, we have NH j(ui)∩V (H1) =∅, which implies that H ′

j and H1 −{ui} are
vertex-disjoint. Therefore, G∗∗ contains 2C4, a contradiction.

By Claim 3.3, |H | ≤ 3, thus there are at least ten graphs in {H j | 2 ≤ j ≤ 14}\H . However,
H1 has only three 2+-vertices. By Claim 3.4 and pigeonhole principle, there exists a 2+-vertex w
in H1 and four graphs, say H2,H3,H4,H5, of {H j | 2 ≤ j ≤ 14} \H . By Claim 3.1, we get that
NH j(w)∩V (Hi) = ∅, and so NH j(w)∩NHi(w) = ∅, for any i, j with 1 ≤ i < j ≤ 5. If G∗∗−{w}
contains a quadrilateral C′, then there exists some j′ ≤ 5 such that NH j′ (w)∩V (C′) =∅ as |C′|= 4.
Since w is a 2+-vertex in H j′ , we can observe that the subgraph of H j′ induced by NH j′ (w)∪{w}
must contain a C4. Consequently, G∗∗ is not 2C4-free, a contradiction. Thus, G∗∗−{w} is C4-free,
which implies that all quadrilaterals of G∗∗ share exactly one vertex. This completes the proof of
Lemma 3.3.

Now we are ready to give the proof of Theorem 1.6.

Proof. Recall that G∗ is an extremal graph corresponding to exOP(n− 1,C4). Then K1 +G∗ is
planar and 2C4-free. By Corollary 3.1, we have

e(K1 +G∗) = exOP(n−1,C4)+n−1 =

{
19
7 n−6 if 7 | n,⌊19n−34

7

⌋
otherwise.

(1)

To prove Theorem 1.6, it suffices to show exP(n,2C4) = e(K1 +G∗). Since G∗∗ is an extremal
plane graph corresponding to exP(n,2C4), we have e(G∗∗) ≥ e(K1 +G∗). In the following, we
show that e(G∗∗)≤ e(K1 +G∗).

By Lemma 3.3, all quadrilaterals of G∗∗ share a vertex w. Thus, G∗∗−{w} is C4-free. As-
sume that dG∗∗(w) = s and w1, . . . ,ws are around w in clockwise order, with subscripts interpreted
modulo s. Let e be an arbitrary edge in E3,3(G∗∗), that is, e is incident with two 3-faces, say F and
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Figure 9: Two possible structures of H(e).

F ′. We define H(e) as the plane subgraph induced by all edges incident with F and F ′. Clearly,
H(e) ∼= K1 +P3 and so it contains a C4. Recall that all quadrilaterals of G∗∗ share exactly one
vertex w. Then, w ∈V (He) and w is incident with at least one face of F and F ′ (see Fig. 9). Note
that e is incident with F . Then, either e = wwi or e = wiwi+1 for some i ∈ {1,2, . . . ,s}. By the
choice of e, we have

E3,3(G∗∗)⊆ {wwi,wiwi+1 | 1 ≤ i ≤ s}. (2)

Assume first that f4(G∗∗) = t ≥ 1 and F1, . . . ,Ft are 4-faces in G∗∗. Since every 4-face is
a quadrilateral, w is incident with each 4-face. Consequently, there exists ji ∈ {1, . . . ,s} such
that ww ji ,ww ji+1 are incident with Fi for each i ∈ {1, . . . , t}. Thus, ww ji /∈ E3,3(G∗∗) for 1 ≤
i ≤ t. On the other hand, if w jiw ji+1 ∈ E3,3(G∗∗), then H(w jiw ji+1) contains a C4, and so w ∈
V (H(w jiw ji+1)). This implies that ww jiw ji+1w is a 3-face in G∗∗, contradicting the fact that
ww ji ,ww ji+1 are incident with the 4-face Fi. Thus, we also have w jiw ji+1 /∈ E3,3(G∗∗) for 1 ≤ i ≤ t.

By the argument above, we can see that

E3,3(G∗∗)∩{ww ji ,w jiw ji+1 | 1 ≤ i ≤ t}=∅. (3)

Using (2) and (3) gives e3,3(G∗∗)≤ 2s−2t = 2s−2 f4(G∗∗). Hence,

3 f3(G∗∗) = e3(G∗∗)+ e3,3(G∗∗)≤ e(G∗∗)+2s−2 f4(G∗∗). (4)

On the other hand,

2e(G∗∗) = ∑
i≥3

i fi(G∗∗)≥ 3 f3(G∗∗)+4 f4(G∗∗)+5( f (G∗∗)− f3(G∗∗)− f4(G∗∗)),

which yields f (G∗∗) ≤ 1
5 (2e(G∗∗)+2 f3(G∗∗)+ f4(G∗∗)) . Combining this with Euler’s formula

f (G∗∗) = e(G∗∗)− (n−2), we obtain

e(G∗∗)≤ 5
3
(n−2)+

2
3

f3(G∗∗)+
1
3

f4(G∗∗). (5)

If f4(G∗∗) = t = 0, then (4) and (5) hold directly. Combining (4) and (5), we have e(G∗∗) ≤
15
7 (n−2)+ 4

7 s− 1
7 f4(G∗∗). Recall that dG∗∗(w) = s ≤ n−1. If s ≤ n−2, then e(G∗∗) ≤ ⌊19

7 (n−
2)⌋ ≤ e(K1 +G∗) by (1), as desired. If s = n− 1, then w is a dominating vertex of the planar
graph G∗∗, which implies that G∗∗−{w} is outerplanar. Recall that G∗∗−{w} is C4-free. Thus,
e(G∗∗−{w}) ≤ exOP(n− 1,C4), and so e(G∗∗) ≤ exOP(n− 1,C4)+ n− 1. Combining (1), we
get e(G∗∗)≤ e(K1 +G∗), as required. This completes the proof of Theorem 1.6.
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4 Proof of Theorem 1.1

Let A(G) be the adjacency matrix of a planar graph G, and ρ(G) be its spectral radius, i.e.,
the maximum modulus of eigenvalues of A(G). Throughout this section, let G be an extremal
graph to spexP(n,F ), and ρ denote this spectral radius. By Perron-Frobenius theorem, there
exists a Perron eigenvector X = (x1, . . . ,xn)

T corresponding to ρ . Choose u′ ∈ V (G) with xu′ =

max{xi | i = 1,2, . . . ,n} = 1. For a vertex u and a positive integer i, let Ni(u) denote the set of
vertices at distance i from u in G. For two disjoint subset S,T ⊂ V (G), denote by G[S,T ] the
bipartite subgraph of G with vertex set S∪T that consist of all edges with one endpoint in S and
the other endpoint in T . Set e(S) = |E(G[S])| and e(S,T ) = |E(G[S,T ])|. Since G is a planar
graph, we have

e(S)≤ 3|S|−6 and e(S,T )≤ 2(|S|+ |T |)−4. (6)

In this section we will often assume that n ≥ 2.16×1017. We first give the lower bound of ρ .

Lemma 4.1. ρ ≥
√

2n−4.

Proof. Note that K2,n−2 is planar and F -free. Then, ρ ≥ ρ(K2,n−2) =
√

2n−4, since G is an
extremal graph to spexP(n,F ).

Set Lλ = {u ∈V (G) | xu ≥ 1
103λ

} for some constant λ ≥ 1
103 . The following lemmas is used to

give an upper bound for |L1| and a lower bound for degrees of vertices in L1.

Lemma 4.2. |Lλ | ≤ λn
105 .

Proof. By Lemma 4.1, ρ ≥
√

2n−4. Hence,
√

2n−4
103λ

≤ ρxu = ∑
v∈NG(u)

xv ≤ dG(u)

for each u ∈ Lλ . Summing this inequality over all vertices u ∈ Lλ , we obtain

|Lλ |
√

2n−4
103λ

≤ ∑
u∈Lλ

dG(u)≤ ∑
u∈V (G)

dG(u)≤ 2(3n−6).

It follows that |Lλ | ≤ 3×103λ
√

2n−4 ≤ λn
105 as n ≥ 2.16×1017.

Lemma 4.3. |L1| ≤ 6×104.

Proof. Let u ∈ V (G) be an arbitrary vertex. For convenience, we use Ni, Lλ
i and Lλ

i instead of
Ni(u), Ni(u)∩Lλ and Ni(u)\Lλ , respectively. By Lemma 4.1, ρ ≥

√
2n−4. Then

(2n−4)xu ≤ ρ
2xu = dG(u)xu + ∑

v∈N1

∑
w∈N1(v)\{u}

xw. (7)

Note that N1(v)\{u} ⊆ N1 ∪N2 = Lλ
1 ∪Lλ

2 ∪Lλ
1 ∪Lλ

2 . We can calculate ∑v∈N1 ∑w∈N1(v)\{u} xw

according to two cases w ∈ Lλ
1 ∪ Lλ

2 or w ∈ Lλ
1 ∪ Lλ

2 . We first consider the case w ∈ Lλ
1 ∪ Lλ

2 .
Clearly, N1 = Lλ

1 ∪Lλ
1 and xw ≤ 1 for w ∈ Lλ

1 ∪Lλ
2 . We can see that

∑
v∈N1

∑
w∈(Lλ

1 ∪Lλ
2 )

xw ≤
(
2e(Lλ

1 )+ e(Lλ
1 ,L

λ
2 )
)
+ ∑

v∈Lλ
1

∑
w∈(Lλ

1 ∪Lλ
2 )

xw. (8)
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By Lemma 4.2, we have |Lλ | ≤ λn
105 . Moreover, Lλ

1 ∪Lλ
2 ⊆ Lλ . Then, by (6), we have

2e(Lλ
1 )+ e(Lλ

1 ,L
λ
2 )≤ 2(3|Lλ

1 |−6)+(2(|Lλ
1 |+ |Lλ

2 |)−4)< 8|Lλ | ≤ 8λn
105 . (9)

Next, we consider the remain case w ∈ Lλ
1 ∪Lλ

2 . Clearly, xw ≤ 1
103λ

for w ∈ Lλ
1 ∪Lλ

2 . Then

∑
v∈N1

∑
w∈Lλ

1 ∪Lλ
2

xw ≤
(

e(Lλ
1 ,L

λ
1 ∪Lλ

2 )+2e(Lλ
1 )+ e(Lλ

1 ,L
λ
2 )
) 1

103λ
<

6n
103λ

, (10)

where e(Lλ
1 ,L

λ
1 ∪Lλ

2 )+2e(Lλ
1 )+ e(Lλ

1 ,L
λ
2 )≤ 2e(G)< 6n.

Combining (7-10), we obtain

(2n−4)xu < dG(u)xu + ∑
v∈Lλ

1

∑
w∈(Lλ

1 ∪Lλ
2 )

xw +
(8λ

10
+

60
λ

) n
104 . (11)

Now we prove that dG(u) ≥ n
104 for each u ∈ L1. Suppose to the contrary that there exists a

vertex ũ ∈ L1 with dG(ũ)< n
104 . Note that xũ ≥ 1

103 as ũ ∈ L1. Setting u = ũ, λ = 10 and combining
(11), we have

2n−4
103 < dG(ũ)xũ + ∑

v∈L10
1

∑
w∈(L10

1 ∪L10
2 )

xw +
14n
104 . (12)

By (6), we have

e
(
L10

1 ,L10
1 ∪L10

2
)
< 2

(
|L10

1 |+ |L10
1 ∪L10

2 |
)
≤ 2

(
|N1(ũ)|+ |L10|

)
≤ 4n

104 ,

where |N1(ũ)| ≤ n
104 and |L10| ≤ n

104 by Lemma 4.2. Combining this with dG(ũ)≤ n
104 gives

dG(ũ)xu + ∑
v∈L10

1

∑
w∈(L10

1 ∪L10
2 )

xw +
14n
104 ≤ dG(ũ)+ e

(
L10

1 ,L10
1 ∪L10

2
)
+

14n
104 ≤ 19n

104 ,

which contradicts (12). Therefore, dG(u)≥ n
104 for each u ∈ L1. Summing this inequality over all

vertices u ∈ L1, we obtain

|L1| n
104 ≤ ∑

u∈L1

dG(u)≤ 2e(G)≤ 6n,

which yields that |L1| ≤ 6×104.

For convenience, we use L, Li and Li instead of L1, Ni(u)∩L1 and Ni(u)\L1, respectively.

Lemma 4.4. For every u ∈ L, we have dG(u)≥ (xu − 4
1000)n.

Proof. Let L1
′ be the subset of L1 in which each vertex has at least 2 neighbors in L. We first claim

that |L1
′| ≤ |L|2. If |L|= 1, then L1

′ is empty, as desired. It remains the case |L| ≥ 2. Suppose to
the contrary that |L1

′| > |L|2. Since there are only
(|L|

2

)
options for vertices in L1

′ to choose a set

of 2 neighbors from L, we can find a set of 2 vertices in L with at least
⌈
|L1

′|/
(|L|

2

)⌉
≥ 3 common

neighbors in L1
′. Moreover, note that u /∈ L and L1

′ ⊆ L1 ⊆ N1(u). Hence, G contains a copy of
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K3,3, contradicting that G is planar. Therefore, |L1
′| ≤ |L|2. Thus, |L||L1

′| ≤ (6× 104)3 ≤ n
103 as

n ≥ 2.16×1017. Hence

e(L1,L)≤ |L1 \L1
′|+ |L||L1

′| ≤ dG(u)+
n

1000
.

Since L1 ∪L2 ⊆ L, we have

∑
v∈L1

∑
w∈(L1∪L2)

xw ≤ e
(
L1,L1 ∪L2

)
≤ dG(u)+

n
1000

.

Setting λ = 1 and combining the above inequality with (11), we have

(2n−4)xu ≤ dG(u)+
(

dG(u)+
n

103

)
+

61n
104 .

which yields dG(u)≥ (n−2)xu − 71n
2×104 ≥ (xu − 4

1000)n.

Lemma 4.5. There exists a vertex u′′ ∈ L1 ∪L2 such that xu′′ ≥ 988
1000 .

Proof. Setting u = u′, λ = 1 and combining (11), we have

2n−4 < dG(u′)+ ∑
v∈L1

∑
w∈L1∪L2

xw +
60.8n
104 ,

which yields that

∑
v∈L1

∑
w∈L1∪L2

xw ≥ 2n−4− 60.8n
104 −dG(u′)≥

993n
1000

.

From Lemma 4.4 we have dG(u′)≥ 996n
1000 as u′ ∈ L. It infers that

dL1
(u′) = dG(u′)−dL1(u

′)≥ dG(u′)−|L| ≥ 995n
1000

as |L| ≤ 6×104 by Lemma 4.3. By (6), we further get

e(L1,L1 ∪L2)≤ e(L1,L)−dL1
(u′)≤ (2n−4)− 995n

1000
≤ 1005n

1000
.

By averaging, there is a vertex u′′ such that

xu′′ ≥
∑v∈L1 ∑w∈(L1∪L2) xw

e(L1,L1 ∪L2)
≥

993n
1000

1005n
1000

≥ 988
1000

,

as desired.

Notice that xu′ = 1 and xu′′ ≥ 988
1000 . By Lemma 4.4, we have dG(u′)≥ 996

1000 n and dG(u′′)≥ 984
1000 n.

Now, let D= {u′,u′′}, R be the subset of V (G)\{u′,u′′} in which every vertex is a non-neighbor of
some vertex in {u′,u′′} and R′ =V (G)\ ({u′,u′′}∪R). Thus, |R| ≤ (n−dG(u′))+(n−dG(u′′))≤
2n
100 .

Lemma 4.6. Let u ∈V (G)\{u′,u′′}. Then xu ≤ 1
10 .
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Proof. For any vertex u ∈ R, we have dD(u) ≤ 1 by the definition of R. Moreover, dR′(u) ≤ 2
(otherwise G contains a copy of K3,3, contradicting that G is planar). Then, dG(u) = dD(u) +
dR′(u)+dR(u)≤ 3+dR(u). Note that e(R)≤ 3|R| and |R| ≤ 2n

100 . Thus

ρ ∑
u∈R

xu ≤ ∑
u∈R

dG(u)≤ ∑
u∈R

(3+dR(u))≤ 3|R|+2e(R)≤ 9|R| ≤ 18n
100

,

which yields ∑u∈U xu ≤ 18n
100

√
2n−4

as ρ ≥
√

2n−4. Since G is K3,3-free, dD∪R′(u) ≤ 4 for any
vertex u ∈ R∪R′. It follows that

ρxu = ∑
v∈NG(u)

xv ≤ 4+ ∑
v∈R

xv ≤ 4+
18n

100
√

2n−4
.

Dividing both sides by ρ , we get xu ≤ 1
10 .

Now, we are ready to give the proof of Theorem 1.1.

Proof. We first claim that R is empty. Suppose to the contrary that |R| ≥ 1. Then, G[R] is planar,
and so there exists a vertex v ∈ R with dR(v) ≤ 5. Furthermore, v has at most 2 neighbours in R′

and at most one neighbour in {u′,u′′}. Then,

∑
w∈NG(v)

xw ≤ xu′ + ∑
v∈R′

xw + ∑
v∈R

xw ≤ 17
10

, (13)

where the last inequality holds as xw < 1
10 for any w ∈ R∪R′ by Lemma 4.6. We modify the graph

G by deleting all edges incident to v and adding edges vu′ and vu′′, to obtain the graph G′. We first
claim that G′ is F -free. Otherwise, G′ contains a subgraph F ∈ F . From the modification, we
can see that v ∈V (F) and dF(v)⊆ {u′,u′′}. Note that

|R′|= |NG(u′)∩NG(u′′)| ≥ |NG(u′)|+ |NG(u′′)|−n ≥ 980
1000

n > |V (F)|.

Thus, there exists a vertex v′ ∈ R′ \V (F) such that dG(v′) = {u′,u′′}. This indicates that an iso-
morphic copy of F is already present in G, a contradiction. On the other hand, xu′ + xu′′ ≥ 1988

1000 .
Combining this with (13), we have

ρ(G′)−ρ(G)≥ 2xv

XT X

(
(xu′ + xu′′)− ∑

w∈NG(v)
xw

)
> 0.

Thus, ρ(G′) > ρ(G), contradicting that G is extremal to spexP(n,F ). Hence, the claim holds.
So, R′ =V (G)\{u′,u′′}. Therefore, G contains a copy of K2,n−2.

5 Spectral extremal problems on planar graphs

In case F = {C3}, by Theorem 1.1, G contains a copy of K2,n−2. we further obtain that
G ∼= K2,n−2 as G is triangle-free (otherwise, adding any edge increases triangles, a contradic-
tion). In case F = {C4}, clearly, Jn is planar. Nikiforov [20] and Zhai and Wang [23] deter-
mined spex(n,C4) for odd and even n, respectively. This implies that Jn is the extremal graph
to spexP(n,C4). In this section, we always assume that G is an extremal graph to spexP(n,F),
where F ∈ {Cℓ | ℓ≥ 5}∪{2Cℓ | ℓ≥ 3}. Clearly, K2,n−2 is F-free. By Theorem 1.1, G contains a
copy of K2,n−2, where V (K2) = {u′,u′′}. We first prove that u′ is adjacent to u′′ in G.
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Figure 10: A local structure of G∗.

Lemma 5.1. We have u′u′′ ∈ E(G).

Proof. Suppose to the contrary that u′u′′ /∈ E(G). Assume that G∗ is a planar embedding of G,
and u1, . . . ,un−2 are around u′ in clockwise order in G∗, with subscripts interpreted modulo n−2
(see G∗ in Fig. 10). If R′ induces an cycle u1u2 . . .un−2u1, then we can easily check that G contains
a copy of F , a contradiction. Thus, there exists an integer i ≤ n− 2 such that uiui+1 /∈ E(G[R′]).
Then, u′uiu′′ui+1u′ is a 4-face of the plane graph G∗.

We modify the graph G∗ by adding the edge u′u′′ crossing the above 4-face, to obtain the
graph G′. Clearly, G′ is a plane graph. We claim that G′ is F-free. Suppose to the contrary that
G′ contains a copy of F . If F = Cℓ for some ℓ ≥ 5, then G′ contains an ℓ-cycle containing u′u′′,
say u′u′′u′1u′2 . . .u

′
ℓ−2u′. It follows that G already contains a copy of ℓ-cycle u′u′1u′′u′2 . . .u

′
ℓ−2u′, a

contradiction. If F = 2Cℓ for some ℓ≥ 3, then F contains two disjoint ℓ-cycles C1 and C2. From
the modification, we can see that one of C1 and C2, say C1, contains the edge u′u′′. This implies
that C2 is a subgraph of G[R′]. However, G[V (C2)∪{u′,u′′}] contains a K5-minor, contradicting
the fact that G is planar. Hence, the claim holds. However, ρ(G′) > ρ , contradicting that G is
extremal to spexP(n,F). Therefore, u′u′′ ∈ E(G).

Lemma 5.2. G[R′] is a disjoint union of paths.

Proof. Theorem 1.1 and Lemma 5.1 imply that u′ and u′′ are dominating vertices. Furthermore,
since G is K5-minor-free and K3,3-minor-free, we can find that G[R′] is K3-minor-free and K1,3-
minor-free. Furthermore, this implies that G[R′] is an acyclic graph with maximum degree at most
2. Thus, G[R′] is a disjoint union of paths.

We shall give characterizations of eigenvector entries of vertices in R′ in the following lemmas.

Lemma 5.3. For any vertex u ∈ R′, we have xu ∈ [ 2
ρ
, 2

ρ
+ 6

ρ2 ].

Proof. Recall that u′ and u′′ are dominating vertices of G. So, xu′ = xu′′ = 1. Then

ρxu = xu′ + xu′′ + ∑
v∈NG(u)∩R′

xv = 2+ ∑
v∈NG(u)∩R′

xv. (14)

Moreover, dR′(v) ≤ 2 for any vertex v ∈ R′. Combining this with Lemma 4.6 and (14), we have
xu ∈

[ 2
ρ
, 3

ρ

]
. Furthermore, by (14), ρxu ∈

[
2,2+ 6

ρ

]
, which yields that xu ∈

[ 2
ρ
, 2

ρ
+ 6

ρ2

]
.

Now we give a transformation that we will use in subsequent proof.



19

Definition 5.1. Let s1,s2 and s3 be three integers with s1 ≥ s2 ≥ s3+1 ≥ 1, and let H = Ps1 ∪Ps2 ∪
H0, where H0 is a disjoint union of paths. We say that H∗ is a (s1,s2,s3)-transformation of H if

H∗ =

{
Ps3 ∪Ps1+s2−s3 ∪H0 if 1 ≤ s3 ≤ s2 −1,
Ps1+s2 ∪H0 if s3 = 0.

Lemma 5.4. Let H and H∗ be defined as in Definition 5.1. Assume that G[R′]∼= H. Then, ρ(K2 +

H∗)> ρ for n ≥ max{2.16×1017,9×2s3+2 +3}.

Proof. Assume that P1 := v1v2 . . .vs1 and P2 := w1w2 . . .ws2 are two components of H. Clearly,
G∼=K2+H as G[R′]∼=H. If s3 = 0, then H ⊂H∗, and so G⊂K2+H∗. It follows that ρ(P2+H∗)>

ρ(G), the result holds. Next, we deal with the case s3 = 1. If xv1 ≤ xw1 , then let H ′ be obtained
from H by deleting the edge xv1xv2 and adding the edge xv2xw1 . Clearly, H ′ ∼= H∗. Moreover,

ρ(K2 +H∗)−ρ(G)≥
XT

(
A(K2 +H∗)−A(G)

)
X

XT X
≥ 2

XT X
(xw1 − xv1)xv2 ≥ 0.

Since K2 +H∗ ̸∼= G, we have ρ(K2 +H∗) > ρ(G), the result holds. The case xv1 > xw1 is similar
and hence omitted here.

It remains the case s3 ≥ 2. So, s1 ≥ s2 ≥ 3.

Claim 5.1. (i) For any i ∈ {1, . . . ,⌊ s1−1
2 ⌋}, xvi+1 − xvi ∈

[ 2
ρ i+1 − 6×2i

ρ i+2 ,
2

ρ i+1 +
6×2i

ρ i+2

]
.

(ii) For any i ∈ {1, . . . ,⌊ s2−1
2 ⌋}, xwi+1 − xwi ∈

[ 2
ρ i+1 − 6×2i

ρ i+2 ,
2

ρ i+1 +
6×2i

ρ i+2

]
.

(iii) For any i ∈ {1, . . . ,⌊ s2−1
2 ⌋}, xvi − xwi ∈

[
−6×2i

ρ i+2 ,
6×2i

ρ i+2

]
.

Proof. (i) It suffices to prove that for any i ∈ {1, . . . ,⌊ s1−1
2 ⌋},

ρ
i(xv j+1 − xv j) ∈ Ai =

{ [ 2
ρ
− 6×2i

ρ2 , 2
ρ
+ 6×2i

ρ2

]
if j = i,[

− 6×2i

ρ2 , 6×2i

ρ2

]
if i+1 ≤ j ≤ s1 − i−1.

We shall proceed the proof by induction on i. Clearly,

ρxv j = ∑
v∈NG(v j)

xv =

{
2+ xv2 if j = 1,
2+ xv j−1 + xv j+1 if 2 ≤ j ≤ s1 −1.

(15)

Then,

ρ(xv j+1 − xv j) =

{
xv1 + xv3 − xv2 ∈ A1 if j = 1,
(xv j − xv j−1)+(xv j+2 − x j+1) ∈ A1 if 2 ≤ j ≤ s1 −2.

So the result is true when i = 1. Assume then that 2 ≤ i ≤ ⌊ s1−1
2 ⌋, which implies that s1 ≥ 2i+1.

For i ≤ j ≤ s1 − i, ρ(xv j+1 − xv j) = (xv j − xv j−1)+(xv j+2 − xv j+1). By the induction hypothesis,

ρ
i(xv j+1 − xv j) = ρ

i−1(xv j − xv j−1)+ρ
i−1(xv j+2 − xv j+1) ∈ Ai.

So the result holds.
The proof of (ii) is similar to that of (i) and hence omitted here.
(iii) It suffices to prove that for any i ∈ {1, . . . ,⌊ s2−1

2 ⌋} and j ∈ {i, . . . ,s2 − i},

ρ
i(xv j − xw j) ∈ Bi =

[
−6×2i

ρ2 ,
6×2i

ρ2

]
.
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We shall proceed the proof by induction on i. Clearly,

ρxw j = ∑
w∈NG(w j)

xw =

{
2+ xw2 if j = 1,
2+ xw j−1 + xw j+1 if 2 ≤ j ≤ s2 −1.

Combining this with (15) and Lemma 5.3 gives

ρ(xv j − xw j) =

{
xv2 − xw2 ∈

[
− 6

ρ2 ,
6

ρ2

]
⊂ B1 if j = 1,

(xv j+1 − xw j+1)+(xv j−1 − xw j−1)∈ B1 if 2 ≤ j ≤ s2 −1.

So the claim is true when i = 1. Assume then that 2 ≤ i ≤ ⌊ s2−2
2 ⌋, which implies that s2 ≥ 2i+2.

For i ≤ j ≤ s2 − i, ρ(xv j+1 − xv j) = (xv j − xv j−1)+(xv j+2 − xv j+1). By the induction hypothesis, we
have

ρ
i(xv j − xw j) = ρ

i−1(xv j−1 − xw j−1)+ρ
i−1(xv j+1 − xw j+1)∈ Bi

if i ≤ j ≤ s2 − i. The result holds. This completes the proof of Claim 5.1.

Let t1, t2 be integers with 1 ≤ ti ≤ si − 1 for each i ∈ {1,2}, and H ′ be obtained from H by
deleting edges xvt1

xvt1+1 ,xwt2
xwt2+1 and adding edges xvt1

xwt2
,xvt1+1xwt2+1 . Then

ρ(K2 +H∗)−ρ(G)≥
XT

(
A(K2 +H∗)−A(G)

)
X

XT X
≥ 2

XT X
(xvt1+1 − xwt2

)(xwt2+1 − xvt1
). (16)

Since n ≥ 9×2s3+2 +3, we have

ρ ≥
√

2n−4 > 6×2(s3+1)/2. (17)

Now, we consider the following three cases:
Case 1. s3 is even.

Set t1 = s3
2 and t2 = s3

2 . Clearly, t1 + t2 = s3, and so H ′ ∼= H∗. By Claim 5.1 and (17), we have

xvs3/2+1 − xvs3/2 ≥
2

ρs3/2+1 −
6×2s3/2

ρs3/2+2 > 0.

Then, by (16), we have ρ(K2 +H∗)> ρ(G), as desired.
Case 2. s1 = s2 and s3 is odd.

Note that s1 = s2. Then, by symmetry, we have xv(s3+1)/2 = xw(s3+1)/2 . Set t1 = s3+1
2 and t2 = s3−1

2 .
Clearly, t1 + t2 = s3, and so H ′ ∼= H∗. By (16), we have ρ(K2 +H∗) ≥ ρ(G). Furthermore, since
K2 +H∗ ̸∼= G, we have ρ(K2 +H∗)> ρ(G), as desired.
Case 3. s1 ≥ s2 +1 and s3 is odd.

We first consider the subcase xv(s3+1)/2 ≤ xw(s3+1)/2 . Set t1 = s3+1
2 and t2 = s3−1

2 . Then, xwt2+1 ≥

xvt1
. Clearly, t1 + t2 = s3, and so H ′ ∼= H∗. Obviously, s1 ≥ s3 + 2, and so

⌊
s3+1

2

⌋
≤

⌊
s1−1

2

⌋
. By

Claim 5.1 and (17), we have

xvi+1 − xwi = (xvi+1 − xvi)+(xvi − xwi)≥
(

2
ρ i+1 −

6×2i

ρ i+2

)
− 6×2i

ρ i+2 > 0 for i ≤
⌊s3 +1

2

⌋
,
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which implies that xvt1+1 > xwt2+1 ≥ xvt1
> xwt2

. By (16), we have ρ(K2+H∗)≥ ρ(G). Furthermore,
ρ(K2 +H∗)> ρ(G) as K2 +H∗ ̸∼= G, as desired.

We then consider the subcase xv(s3+1)/2 > xw(s3+1)/2 . Let t1 = s3−1
2 and t2 = s3+1

2 . Clearly, t1+t2 =
s3, and so H ′ ∼= H∗. By Claim 5.1 and (17), we have

xwi+1 − xvi = (xwi+1 − xwi)+(xwi − xvi)≥
2

ρ i+1 −
12×2i

ρ i+2 > 0 (18)

for i ≤ min
{⌊

s3+1
2

⌋
,
⌊

s2−1
2

⌋}
. Then, xvt1+1 > xwt2

.

If s2 = s3 +1, then s2 is even. By symmetry, xw(s3+1)/2 = xw(s3+3)/2 , that is, xwt2
= xwt2+1 . More-

over, by (18), xwt2
> xvt1

. So, xvt1+1 > xwt2+1 = xwt2
> xvt1

. By (16), ρ(K2+H∗)≥ ρ(G), as desired.
If s2 ≥ s3 +2, then by (18), xwt2+1 > xvt1+1 > xwt2

> xvt1
. By (16), we have ρ(K2 +H∗)> ρ(G), as

desired.
This completes the proof of Lemma 5.4.

According to Lemma 5.2, assume that G[R′]∼= ∪t
i=1Pni , where n1 ≥ ·· · ≥ nt ≥ 1. Having Lem-

mas 5.3 and 5.4, we are ready to give the proof of Theorems 1.2-1.4.

Proof of Theorem 1.2. We first give the following claim.

Claim 5.2. Assume that H =∪t
i=1Pni(H), where n1(H)≥ ·· · ≥ nt(H)≥ 1. Then, K2+H is 2Cℓ-free

if and only if n1(H)≤ 2ℓ−3 and n2(H)≤ ℓ−2.

Proof. We first claim that K2 +H is 2Cℓ-free if and only if H is 2Pℓ−1-free. Equivalently, K2 +H
contains a copy of 2Cℓ if and only if H contains a copy of 2Pℓ−1. Assume that K2 +H contains
two vertex-disjoint ℓ-cycles C1 and C2, and V (K2) = {u′,u′′}. Since H is acyclic, we can see that
Ci must contain at least one vertex of u′ and u′′ for any i ∈ {1,2}. Without loss of generality,
assume that u′ ∈V (C1) and u′′ ∈V (C2). Then, C1 −{u′} ∼=C2 −{u′′} ∼= Pℓ−1, and so H contains
a copy of 2Pℓ−1. Conversely, assume that H contains two vertex-disjoint paths P1 and P2 such that
P1 ∼= P2 ∼= Pℓ−1. Thus, the subgraph induced by V (P1)∪{u′} contains a copy of Cℓ. Similarly,
the subgraph induced by V (P2)∪{u′′} contains a copy of Cℓ. This implies that K2 +H contains a
copy of 2Cℓ.

We can easily check that H is 2Pℓ−1-free if and only if Pn1(H)∪Pn2(H) is 2Pℓ−1-free. Moreover,
we claim that Pn1(H) ∪Pn2(H) is 2Pℓ−1-free if and only if n1(H) ≤ 2ℓ− 3 and n2(H) ≤ ℓ− 2. If
Pn1(H) ∪Pn2(H) is 2Pℓ−1-free, then n1(H) ≤ 2ℓ− 3 (otherwise, Pn1(H) contains a copy of 2Pℓ−1, a
contradiction); n2(H)≤ ℓ−2 (otherwise, Pn1(H)∪Pn2(H) contains a copy of 2Pℓ−1, a contradiction).
Conversely, if n1(H)≤ 2ℓ−3 and n2(H)≤ ℓ−2, then Pn1(H)∪Pn2(H) is 2Pℓ−1-free.

This completes the proof of Claim 5.2.

By Claim 5.2, n1 ≤ 2ℓ− 3 and n2 ≤ ℓ− 2. We first claim that n1 = 2ℓ− 3. Suppose to
the contrary that n1 ≤ 2ℓ− 4. If n1 + nt > 2ℓ− 3, then let H ′ be a (n1,nt ,n1 + nt − 2ℓ+ 3)-
transformation of G[R′]. Clearly, n1(H ′) = 2ℓ−3 and n2(H ′) = n2. By Claim 5.2, K2 +H ′ is 2Cℓ-
free. Moreover, n1 + nt − 2ℓ+ 3 ≤ nt − 1 ≤ n2 − 1 ≤ ℓ− 3. By Lemma 5.4 and n ≥ max{2.16×
1017,9×2ℓ−1 +3}, we have ρ(K2 +H ′)> ρ , a contradiction. If n1 +nt ≤ 2ℓ−3, then let H ′ be a
(n1,nt ,0)-transformation of G[R′]. Clearly, n1(H ′) = n1 +nt < 2ℓ−3 and n2(H ′) = n2. By Claim
5.2, K2 +H ′ is 2Cℓ-free. Moreover, by Lemma 5.4, we have ρ(K2 +H ′)> ρ , a contradiction.
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In the following, we shall show that ni = ℓ−2 for i ∈ {2, . . . , t −1}. Suppose to the contrary,
then set

i0 = min{i | 2 ≤ i ≤ t −1,ni < ℓ−2}.

If ni0 +nt ≤ ℓ−2, then let H ′ be a (ni0 ,nt ,0)-transformation of G[R′]. Clearly, n1(H ′) = n1 = 2ℓ−3
and n2(H ′) = max{n2,ni0 +nt} ≤ ℓ−2. By Claim 5.2, K2 +H ′ is 2Cℓ-free. Moreover, by Lemma
5.4, we have ρ(K2+H ′)> ρ , a contradiction. If ni0 +nt > ℓ−2, then let H ′ be a (ni0 ,nt ,ni0 +nt −
ℓ+2)-transformation of G[R′]. Clearly, n1(H ′) = n1 = 2ℓ−3 and n2(H ′) = ℓ−2. By Claim 5.2,
K2 +H ′ is 2Cℓ-free. Moreover, by Lemma 5.4, we have ρ(K2 +H ′)> ρ , a contradiction.

Since n1 = 2ℓ−3 and ni = ℓ−2 for i ∈ {2, . . . , t −1}, we have G[R′]∼= H(2ℓ−3, ℓ−2). This
completes the proof of Theorem 1.2. 2

Proof of Theorem 1.3. By Theorem 1.2, K2 +H(3,1) is the extremal graph to spexP(n,2C3) for
n ≥ 2.16× 1017. One can observe that if a planar graph G′ is 2C -free then G′ is also 2C3-free.
Moreover, by Theorem 1.5, K2 +H(3,1) is 2C -free for n ≥ 5. Thus, K2 +H(3,1) is the extremal
graph to spexP(n,2C ) for n ≥ 2.16×1017. 2

Proof of Theorem 1.4. It remains the case ℓ≥ 5. We first give the following claim.

Claim 5.3. Assume that H = ∪t
i=1Pni(H), where n1(H)≥ ·· · ≥ nt(H)≥ 1. Then, P2 +H is Cℓ-free

if and only if n1(H)+n2(H)≤ ℓ−3.

Proof. It is not hard to verify that K2 + (Pn1(H) ∪ Pn2(H)) contains all cycles of order at most
n1(H)+n2(H)+2. Since K2+H is Cℓ-free, n1(H)+n2(H)+2≤ ℓ−1, yielding n1(H)+n2(H)≤
ℓ− 3. Conversely, if n1(H)+ n2(H) ≤ ℓ− 3, then every cycle in K2 +H contains vertices in at
most two paths of H. It implies that the longest cycle in K2 +H is n1(H)+ n2(H)+ 2. Clearly,
n1(H)+n2(H)+2 ≤ ℓ−1. Thus, K2 +H is Cℓ-free.

Since n1 +n2 ≤ ℓ−3 and n1 ≥ n2, we have n2 ≤ ⌊ ℓ−3
2 ⌋. We then prove that ni = ℓ−3−n1 for

each i ∈ {2, . . . , t −1}. Suppose to the contrary, then set

i0 = min{i | 2 ≤ i ≤ t −1,ni < ℓ−3−n1}.

If ni0 + nt ≤ ℓ− 3− n1, then let H ′ be a (ni0 ,nt ,0)-transformation of G[R′]. Clearly, n1(H ′) = n1

and n2(H ′) ≤ max{n2,ni0 + nt} ≤ ℓ− 3− n1, and so n1(H ′) + n2(H ′) ≤ ℓ− 3. By Claim 5.3,
K2 +H ′ is Cℓ-free. Moreover, by Lemma 5.4, we have ρ(K2 +H ′) > ρ , a contradiction. If ni0 +

nt > ℓ− 3− n1, then let H ′ be a (ni0 ,nt ,ni0 + nt − ℓ+ 3+ n1)-transformation of G[R′]. Clearly,
n1(H ′) = n1 and n2(H ′) = ℓ− 3− n1, and so n1(H ′)+ n2(H ′) = ℓ− 3. By Claim 5.3, K2 +H ′

is Cℓ-free. Note that nt ≤ ni0 ≤ ℓ− 4− n1. Then, ni0 + nt − ℓ+ 3+ n1 ≤ ni0 − 1 ≤ ⌊ ℓ−5
2 ⌋. By

Lemma 5.4 and n ≥ 9× 2⌊
ℓ−1

2 ⌋ + 3, we have ρ(K2 +H ′) > ρ , a contradiction. It follows that
G = K2 +(Pn1 ∪ (t −2)Pn2 ∪Pnt ).

By claim 5.3, n1 +n2 ≤ ℓ−3. Moreover, since n1 ≥ n2, we have n2 ≤ ⌊ ℓ−3
2 ⌋. Now we prove

that ni = ⌊ ℓ−3
2 ⌋ for any i ∈ {2, . . . , t −1}. Otherwise, let G′ := K2 +(Pn1−1 ∪ (n2 +1)Pn2+1 ∪ (t −

n2 −4)Pn2 ∪Pnt ). More precisely, we can see that G′ can be obtained from G by
(i) deleting an edge incident to one endpoint u of Pn1 and connecting u to one endpoint of Pn2 ;
(ii) deleting all edges in one path P of order n2 and recursively connecting every vertex in V (P) to
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an endpoint of a new Pn2 .
So, G′ is obtained from G by deleting n2 edges and adding n2 +1 edges. By Lemma 5.3, we have

4
ρ2 < xuixu j <

4
ρ2 +

24
ρ3 +

144
ρ4 <

4
ρ2 +

25
ρ3

for any vertices ui,u j ∈ R′. Then

ρ(G′)−ρ ≥ XT (A(G′)−A(G))X
XT X

=
2

XT X

(
4

ρ2 −
25n2

ρ3

)
> 0,

where n2 < ⌊ ℓ−3
2 ⌋ ≤ 4

25

√
2n−4 for n ≥ 625

32 ⌊
ℓ−3

2 ⌋2 +2. So, ρ(G′)> ρ , a contradiction.
Since n1 +n2 ≤ ℓ−3 and n2 = ⌊ ℓ−3

2 ⌋, we have n1 ≤ ⌈ ℓ−3
2 ⌉. Finally, we prove that n1 = ⌈ ℓ−3

2 ⌉.
Suppose to the contrary, then n1 < ⌈ ℓ−3

2 ⌉. Note that n1 ≥ n2 = ⌊ ℓ−3
2 ⌋. It implies that ℓ is odd and

n1 = ⌊ ℓ−3
2 ⌋. Let H ′ be a (n1,nt ,nt −1)-transformation of G[R′]. Clearly, n1(H ′) = n1 +1 = ⌈ ℓ−3

2 ⌉
and n2(H ′) = n2. By Claim 5.3, K2 + H ′ is Cℓ-free. Moreover, setting s3 = nt − 1, we have
s3 ≤ nt −1 ≤ n2 −1 ≤ ⌊ ℓ−5

2 ⌋. By Lemma 5.4 and n ≥ 9×2⌊
ℓ−1

2 ⌋+3, we have ρ(K2 +H ′)> ρ , a
contradiction. Thus, n1 = ⌈ ℓ−3

2 ⌉.
Since n1 = ⌈ ℓ−3

2 ⌉ and ni = ⌊ ℓ−3
2 ⌋ for i ∈ {2, . . . , t−1}, we have G[R′]∼= H(⌈ ℓ−3

2 ⌉,⌊ ℓ−3
2 ⌋). This

completes the proof of Theorem 1.4. 2
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