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Abstract Given a planar graph family .Z, let ex»(n,.#) and spex 5 (n,.% ) be the maximum
size and maximum spectral radius over all n-vertex .% -free planar graphs, respectively. Let C;
be the disjoint union of ¢ copies of k-cycles, and 1% be the family of ¢ vertex-disjoint cycles
without length restriction. Tait and Tobin [Three conjectures in extremal spectral graph theory, J.
Combin. Theory Ser. B 126 (2017) 137-161] determined that K> + P,_» is the extremal graph
among all planar graphs with sufficiently large order n, which give answers to spex s (n,tCy) and
spex»(n,t€) for t > 3. In this paper, we first determine spex 4 (n,tCy) and spexz»(n,t€¢’) and
characterize the unique extremal graph for 1 <7 <2, £ > 3 and sufficiently large n. Secondly, we
obtain the exact values of ex »(n,2Cs4) and ex »(n,2%’), which answers a conjecture of Li [Planar
Turdn number of disjoint union of C3 and Cy, arxiv:2212.12751v1 (2022)]. These present a new
exploration of approaches and tools to investigate extremal problems of planar graphs.
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1 Introduction

Given a graph family .#, a graph is said to be .7 -free if it does not contain any F € .# as
a subgraph. When .# = {F}, we write F-free instead of .%-free. One of the earliest results in
extremal graph theory is the Turdn’s theorem, which gives the maximum number of edges in an n-
vertex Ki-free graph. The Turdn number ex(n,.7 ) is the maximum number of edges in an .% -free
graph on n vertices. Fiiredi and Gunderson [10] determined ex(n,Cyiy1) for all n and k. However,
the exact value of ex(n,Cy;) is still open. Erdés [6] determined ex(n,tC3) for n > 400(¢ — 1)?, and
the unique extremal graph is characterized. Subsequently, Moon [18] showed that Erdds’s result
is still valid whenever n > 3t — 12. ErdSs and Pésa [7] showed that ex(n,1%) = (2t — 1)(n —1)
for t > 2 and n > 24¢. For more results on Turdn-type problem, we refer the readers to the survey

paper [11].
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One extension of the classical Turdn number is to study extremal spectral radius in a planar
graph with a forbidden structure. The planar spectral extremal value of a given graph family
F, denoted by spexs(n,.%), is the maximum spectral radius over all n-vertex .#-free planar
graphs. An % -free planar graph on n vertices with maximum spectral radius is called an extremal
graph to spex»(n,.#). Boots and Royle [2] and independently Cao and Vince [3] conjectured
that K + P,_» is the unique planar graph with the maximum spectral radius. The conjecture was
finally proved by Tait and Tobin [22] for sufficiently large n.

In order to study the spectral extremal problems on planar graphs, we first give the following
useful theorem.

Theorem 1.1. Let n > 2.16 x 10'7 and .F be a graph family such that |V (F)| < % for any graph
F e F.If Ky, is F -free, then the extremal graph to spex »(n, ) contains a copy of Ka 2.

Let #C, be the disjoint union of ¢ copies of k-cycles, and % be the family of ¢ vertex-disjoint
cycles without length restriction. We use J,, to denote the graph obtained from K; + (n — 1)K, by
embedding a maximum matching within its maximum independent set. For ¢ > 3, it is easy to
check that K, 4+ P,_; is tCy-free and t%-free. Theorem 1.1 implies that K, + P,_; is the extremal
graph to spex»(n,tCy) and spex»(n,t%¢’) for t > 3 and sufficiently large n. For three positive
integers n, /|, (, with n > £, let

P, U4, if 0| (n—2—0),

H(ly,0p) = { P, U= P, UP

w2t - |y, otherwise.

In the paper, we give answers to spex 5 (n,tCy) for t € {1,2} and spex ,(n,2%)?? as follows.

Theorem 1.2. For integers { > 3 and n > max{2.16 x 10'7,9 x 2= -3}, the graph K, + H(2( —
3,0 —2) is the extremal graph to spex s (n,2Cy).

Theorem 1.3. Forn>2.16 x 10'7, K> + H(3,1) is the extremal graph to spex(n,2%).

Theorem 1.4. For integers { >3 and n > max{2.16 x 10179 x 217" 1 3, 821531242,
(i) K2 > is the unique extremal graph to spex »(n,C3);
(ii) Jy, is the unique extremal graph to spexz(n,Cy);

(iii) K>+ H([52], | 52]) is the unique extremal graph to spex »(n,Cy) for £ > 5.

To prove our main results, we need to study another extension of the classical Turdn number,
i.e., the planar Turdn number. Dowden [5] initiated the following problem: what is the maximum
number of edges in an n-vertex .#-free planar graph? This extremal number is called planar
Turéan number of .% and denoted by ex »(n,.%#). The planar Turdn number for short cycles are
studied in [5, 12, 13], but ex 4 (n,Cy) is still open for general k. For more results on planar Turdn-
type problem, we refer the readers to a survey of Lan, Shi and Song [15]. It is easy to see that
exp(n,t¢) =n—1fort = 1. Lan, Shi and Song [14] showed that ex »(n,t%") = 3n—6 fort > 3,

We prove the case of t = 2, which
will be used to prove our main theorems.

Theorem 1.5. ex »(n,2%) = 2n— 1 for n > 5. The extremal graphs are obtained from 2K + Cs
and an independent set of size n — 5 by joining each vertex of the independent set to any two
vertices of the triangle.



Moreover, Lan, Shi and Song [14] also proved that ex 4 (n,tCy) = 3n— 6 for all k,¢ > 3. They
[16] further showed that ex 5 (n,2C3) = (57”} — 5 and obtained lower bounds of ex 4 (n,2Cy) for
k > 4, which was improved by Li [17] for sufficient large n recently. Li [17] also conjectured that
ex»(n,2C4) < 2(n—2) for n > 23, and the bound is sharp for 14 | (n —2). In this paper, we

determine the exact value of ex »(n,2Cy4) for large n.

Theorem 1.6. For n > 2661,

19n .
I _g if7
ex(n,2Cy) = { L719n—34J

nJ
otherwise.

2 Proof of Theorem 1.5

Above all, we shall introduce the Jordan Curve Theorem: any simple closed curve C in the
plane partitions the rest of the plane into two disjoint arcwise-connected open sets (see [1], P. 244).
The corresponding two open sets are called the interior and the exterior of C. We denote them by
int(C) and ext(C), and their closures by Int(C) and Ext(C), respectively. A plane graph is a planar
embedding of a planar graph. The Jordan Curve Theorem gives the following lemma.

Lemma 2.1. Let C be a cycle of a plane graph G, and let x,y be two vertices of G with x € int(C)
andy € ext(C), then xy ¢ E(G).

Let G be a plane graph. A face in G of size i is called an i-face. Let f;(G) denote the number
of i-faces in G, and let f(G) denote Y, f;(G).

Lemma 2.2. (Proposition 2.5 of [1], P. 250) Let G be a planar graph, and let f be an arbitrary
face in some planar embedding of G. Then G admits a planar embedding whose outer face has
the same boundary as f.

Let 6(G) be the minimum degree of a graph G. It is well known that every graph G with
0(G) > 2 contains a cycle. In the following, we give a more delicate characterization on planar
graphs, which contains an important structural information of the extremal graphs in Theorem 1.5.

Lemma 2.3. Let G be a plane graph on n vertices with 8(G) > 3. Then G contains two vertex-
disjoint cycles unless G € {2K; +C3,K; +Cy—1 }.

Proof. We first deal with some trivial cases. Since §(G) > 3, we haven > 14 3(G) > 4. If n =4,
then G = K| +C;. If n =5, then 2¢(G) = ¥,ey(g)dc(v) > 3 x5 =15, and so ¢(G) > 8. On the
other hand, e¢(G) < 3n— 6 =9, since G is planar. Thus, ¢(G) € {8,9}. It is not hard to verify that
G = 2K, + C;5 when ¢(G) =9 and G = K| + C4 when ¢(G)=38, as desired. If G is not connected,
then G contains at least two components G| and G, with §(G;) > 3 for i € {1,2}, which implies
that each G; contains a cycle. Thus, G contains two vertex-disjoint cycles, as desired. If G has
a cut vertex v, then G — {v} has at least two components G3 and G4. Since 6(G) > 3, we have
0(G;) > 2 fori € {3,4}, which implies that both G3 and G4 contain a cycle. Thus, G also contains
two vertex-disjoint cycles.

Next, we only need to consider the case that G is a 2-connected graph of order n > 6. Since G
is 2-connected, each face of G is a cycle. Let C be a face of G with minimum size g. By Lemma
2.2, we may assume without loss of generality that C is the outer face of G. Let Gy = G—V(C).



If G| contains a cycle, then G contains two vertex-disjoint cycles, as desired. Now assume that
G, is acyclic. Since 6(G) > 3, we have 2¢(G) = ¥,y () dG(v) > 3n. This, together with Euler’s
formula n—2 = e(G) — f(G), gives ¢(G) < 3f(G) — 6. On the other hand,

2¢(G) = ) ifi(G) > g Y. fi(G) = ¢f(G).

i>g i>g

Hence, gf(G) < 2¢(G) < 6f(G) — 12, yielding g < % < 6. Subsequently, we shall give

several claims.

Claim 2.1. We have g =3.

Vi

Figure 1: Two possible local structures of G.

Proof. Suppose to the contrary that g € {4,5}, and let C = viv,...vgv;. We first consider the
case that there exists a vertex of G; adjacent to two consecutive vertices of C. Without loss
of generality, let w; € V(G) and {wy,v1,v,} induces a triangle C'. More generally, we define
A={weV(Gy)|vi,v2 € Nc(w)}. Clearly, w; € A. We can select a vertex, say wi, in A such that
A C Ext(C’) (see Fig. 1). Notice that C' is not a face of G, as g € {4,5}. Then, int(C') # &. By
Lemma 2.1, every vertex in inf(C’) has no neighbors in ext(C’). Moreover, by the definitions of A
and wy, every vertex in int(C’) has at most one neighbor in {v;,v,}. It follows that every vertex
in int(C’) has at least one neighbor in int(C’), as 6(G) > 3. Thus, G[int(C')] is nonempty, that is,
G [int(C")] is nonempty. Recall that G| is acyclic. Then G [int(C’)] contains at least two pendant
vertices, one of which (say w,) is not adjacent to w;. Hence, w is also a pendant vertex of Gy, as
wy has no neighbors in exz(C’). On the other hand, wy has at most one neighbor in {v;,v,}, and so
dc(wy) < 1. Therefore, dg(w2) = dg, (w2) +dc(w2) < 2, contradicting 6(G) > 3.

Now it remains the case that each vertex of G is not adjacent to two consecutive vertices of
C. Note that §(G) > 3 and G is acyclic. Then G, contains a vertex wy with dg, (wo) < 1, and
thus dc(wo) = dg(wo) — dg, (wo) > 2. Now, since g € {4,5}, we may assume without loss of
generality that vi,v3 € Nc(wp). Let A" = {w € V(G}) | vi,v3 € Nc(w)}. Clearly, wy € A’ and v, ¢
Nc(w) for each w € A’. Now, we can select a vertex, say wy, in A" such that A’ C Ext(C"), where
C" = wvivav3wy (see Figure 1). We can see that int (C") # & (otherwise, dg(v2) = [{vi,v3}| =2,
a contradiction). By the definition of w;, we have int(C") A’ = @. Furthermore, every vertex
in int(C”) has no neighbors in ext(C") and has at most one neighbor in {v;,v2,v3}. Thus, every
vertex in int(C”) has at least one neighbor in int(C"). By a similar argument as above, we can find
a vertex wy € int(C") with dg(wa) = dg, (w2) + dc(w2) < 2, which contradicts 8§(G) > 3. O



By Claim 2.1, the outer face of G is a triangle C = v{v,v3v;. In the following, we denote
B ={w e V(G)) | dc(w) =i} fori <3. Since §(G) > 3, we have w € B3 for each isolated vertex
w of Gy, and w € B, U B3 for each pendant vertex w of Gj.

Claim 2.2. |B3| <1 and |By|+|B3| > 2.

Proof. Since C is the outer face of G, every vertex of Gy lies in int(C). Furthermore, since G is
planar, it is easy to see that |[B3| < 1. This implies that G| contains at most one isolated vertex.
Recall that |G| =n—3 > 3 and G is acyclic. Then G; contains at least two pendant vertices w;
and wy. Therefore, |By|+ |B3| > [{w1,w2}| = 2. O

Claim 2.3. Let wo,w) be two vertices in V(Gy) such that Nc(wo) 2 {v3} and Nc(wy) 2 {vi,va}
(see Fig. 2). Then

(i) v3,wo € ext(C"), where C""" = wivivowy;

(ii) if wo ¢ B3, then Gy contains a pendant vertex in ext(C").

V3

Figure 2: A local structure in Claim 2.3.

Proof. (i) Since C is the outer face and v3 € V(C) \ V(C"), we have v3 € ext(C"). Furthermore,
using wovs € E(G) and Lemma 2.1 gives wy € ext(C").

(ii) Since wo ¢ B3, we have dc(wp) < 2, and so dg, (wo) = dg(wo) —dc(wo) > 1. By (i), we
know that wy € ext(C"). If dg, (wo) = 1, then wy is a desired pendant vertex. It remains the case
that dg, (wo) > 2. Now, whether w; is a neighbor of wy or not, wy has at least one neighbor in
V(Gy)Next(C"). Thus, Gy[ext(C")] is nonempty. Recall that G; is acyclic. Then G [ext(C")]
contains at least two pendant vertices, one of which (say w») is not adjacent to w;. Hence, wy is
also a pendant vertex of Gy, as wy has no neighbors in int(C"). O

Figure 3: Two possible local structures in Claim 2.4.

Claim 2.4. Let wi,wy € V(Gy) with Nc(w1) NNe(wa) 2 {vy,v2}. Assume that C""" = wivivow,
and wy € int(C") (see Fig. 3). Then G contains a cycle C,, such that V(C,,) C Int(C") and
V(C,,)NV(C) ={v;} for each i € {1,2}.



Proof. We first claim that Nc(w,) = {v1,v2}. By Claim 2.3, we know that v3 € ext(C"). Now,
since wy € int(C""), we have wovs ¢ E(G) by Lemma 2.1, and so N¢(w2) = {v1,v, }. Furthermore,
we have dg, (w2) > 1. Then G| contains a path P with endpoints w, and w3, where wj is a pendant
vertex of Gy. If V(P) € int(C"), then by w; € int(C"') and Lemma 2.1, we have V(P) NV (C") =
{wi} as vi,v2 ¢ V(G;). Now let P’ be the subpath of P with endpoints w, and wy. Then V(P')\
{wi} Cint(C"), and G contains a cycle C(v;) = v;w1 P'wyv; for each i € {1,2}, as desired. Next,
assume that V(P) C int(C"). Then, ws € int(C"). By v3 € ext(C"") and Lemma 2.1, we get that
w3vs ¢ E(G), and so w3 ¢ B3. Moreover, dg, (w3) = 1 and 6(G) > 3 give w3 € B. Thus, Ne(w3) =
{v1,v2}. Therefore, G contains a cycle C,, = viwoPwsv; for each i € {1,2}, as desired. O

Having above four claims, we are ready to give the final proof of Lemma 2.3. By Claim 2.2, we
have |B3| < 1and |By| > 1. We may without loss of generality that w; € B and Ne(wy) = {vi,v2}.
For each i € {1,2}, leti € {1,2}\ {i}. Since dc(w;) = 2, we have dg, (w;) > 1. Hence, G is
nonempty, and so G contains at least two pendant vertices. According to the size of B3, we now
distinguish two cases to complete the proof.

Case 1. |B;| = 1.
Assume that B3 = {wo}. Then N¢(wo) = {vi,v2,v3} (see Fig. 4). We then consider two
subcases according to the size of B;.

Figure 4: Three possible structures in Case 1.

Subcase 1.1. |B;| = 1, that is, By = {w; }.

For each pendant vertex w of Gy, we have dc(w) = dg(w) —dg,(w) > 2, consequently, w €
B, UB3 = {wy,wp}. This indicates that G| contains exactly two pendant vertices w; and wy.
Furthermore, we can see that G| contains no isolated vertices (otherwise, every isolated vertex of
G has at least three neighbors in V(C) and so belongs to Bz, while the unique vertex wy € Bz is a
pendant vertex of G). Therefore, G| is a path of order n — |C| with endpoints w; and wy.

Now we know that Gy is a path with |G| =n—3 > 3. Let Ng, (wg) = {w>} and P" = G| —
{wo}. Then P” is a path with endpoints w; and wy. Since dg, (w2) = 2, we have d¢c(wp) > 1.
If wpvs € E(G), then G contains two vertex-disjoint cycles v3wow,v3 and wivivowy, as desired.
If wov; € E(G) for some i € {1,2}, then G contains two vertex-disjoint cycles v;w;P"w,v; and
wov;V3wp, as desired.

Subcase 1.2. |By| > 2.

Let wy € By \ {w1}. If Nc(w1) = Ne(wa), then we may assume that wy € int(C") by the
symmetry of w; and wy, where C"”" = wjvivow;. By Claim 2.4, G contains a cycle C,, such
that V(C,,) C Int(C") and V(C,,) NV(C) = {vi}. On the other hand, Claim 2.3 implies that
wo € ext(C"). Hence, wy ¢ V(C,,). Therefore, G contains two vertex-disjoint cycles C,, and
WoVvav3wy, as desired.



It remains the case that No(wy) # Ne(wa). Now Ne(wp) = {v;,v3} for some i € {1,2}. We
define C" = wovivawy instead of the original one in Claim 2.4. Then wy € int(C"). Moreover,
wy € ext(C") as wpvz € E(G). By Claim 2.4, there exists a cycle C,. such that V(C,.) C Int(C")
and V(C,.) NV (C) = {v;}. Therefore, G contains two vertex-disjoint cycles C,. and wav;v3wa, as
desired.

Case 2. |B3| =0.

Recall that A = {w € V(Gj) | vi,v2 € Nc(w)}. Since |B3| = 0, we can see that N¢(w) =
Nc(wy) = {v1, v, } for each w € A. We may assume without loss of generality that A C Int(C") by
the symmetry of vertices in A. By Claim 2.3, there exists a pendant vertex w3 of Gy in ext(C"),
which implies that d¢(w3) > 2. Since |Bs| = 0, we have w3 € B, and thus By 2 {w;,ws3}. More-
over, w3 ¢ A as A C Int(C"). Assume without loss of generality that Nc(w3) = {vi,v3} (see Fig.
5). We also consider two subcases according to |B;]|.

Figure 5: Three possible structures in Case 2.

Subcase 2.1. |By| = 2, that is, By = {w,w3}.

Since ws is a pendant vertex of G, which implies that G| is non-empty and has at least two
pendant vertices. On the other hand, since 6(G) > 3 while B; = &, we can see that G| contains no
isolated vertices, and w € B, = {w;, w3} for each pendant vertex w of G;. Therefore, G| contains
exactly two pendant vertices w; and w3, more precisely, G; is a path with endpoints wi and ws.
Let w be an arbitrary vertex in V(G1) \ {wi,ws}. Then, dc(w) =dg(w) —dg,(w) =dg(w) —2> 1.

If wvy € E(G), then G contains two vertex-disjoint cycles vow P’ wv, and viwsvs3vy, where
P"" is the subpath of G| from w; to w (see Fig. 5(a)). If wvs € E(G), then G contains two vertex-
disjoint cycles v3w3P""wvs and viwivovy, where P” is the subpath of G| from w3 to w (see Fig.
5(a)). If Ne(w) = {v1} for each w € V(G;) \ {w1,ws}, then G = K, + C,_1, as desired.

Subcase 2.2. |B,| > 3.

For each vertex w € By, it is clear that Nc(w) is one of {vi,v2}, {vi,v3} and {v2,v3}. We first
consider the case that there exist two vertices in B, which have the same neighbors in C. Without
loss of generality, assume that we can find a vertex w, € By with Ne(wz) = Ne(wy) = {vi,v2}.
Then w, € A. Recall that A C Int(C"") and C”" = wyvivowy (see Fig. 5(b)). Then, we can further
get that wy € int(C"). By Claim 2.4, there exists a cycle C,, such that V(C,,) C Int(C") and
V(C,,) NV (C) = {v2}. On the other hand, Claim 2.3 implies that w3 € ext(C""). Hence, ws ¢
V(C,,). Therefore, G contains two vertex-disjoint cycles C,, and wzviv3ws, as desired.

Now it remains the case that any two vertices in By have different neighborhoods in C. This
implies that |B,| = 3 and we can find a vertex wy € By with Ne(wz) = {v2,v3}. Now we have
By = {wi,wz,ws}. Furthermore, since 6(G) > 3 and B3 = &, we have dg, (w) > 1 for each
w € V(Gy), and if dg,(w) = 1, then w € B,. Since |Bz| = 3, we can see that G; has only one



connected component, that is, G is a tree and some w;, say w», is a pendant vertex of G;. Now,
— {w,} contains a subpath P"”" with endpoints w; and w3 (see Fig. 5(c)). Then G contains two
vertex-disjoint cycles viwi P""w3vy and wyvov3ws, as desired.
This completes the proof of Lemma 2.3. O

Let ¢ be the family of graphs obtained from 2K; + C3 and an independent set of size n — 5
by joining each vertex of the independent set to arbitrary two vertices of the triangle (see Fig. 6).
Clearly, every graph in ¢, is planar. Now, let ¢, be the family of planar graphs obtained from
2K + C3 by iteratively adding vertices of degree 2 until the resulting graph has n vertices. Then
ANGRTA

Figure 6: An extremal graph in ¥,

Lemma 2.4. For any graph G € 9, G is 2% -free if and only if G € ¥,;.

Proof. Let V| := {v|,v2,v3} be the set of vertices of degree 4 and V, := {w;,w;,} be the set of
vertices of degree 3 in 2K; + Cs, respectively. Then V; induces a triangle. We first show that
every graph G in ¢ is 2% -free. It suffices to prove that every cycle of G contains at least two
vertices in V). Let C be an arbitrary cycle of G. If V(C) C Vj, then there is nothing to prove. It
remains the case that there exists a vertex w € V(C) \ V;. By the definition of ¢, we can see that
Ne(w) € Ng(w) C V. Note that [Nc(w)| > 2. Hence, C contains at least two vertices in V.

In the following, we will show that every graph G € ¥, \ ¢, contains two vertex-disjoint
cycles. By the definition of &, G is obtained from 2K + C3 by iteratively adding n — 5 vertices
up,uy,...,u,—s of degree 2. Now, let G,_s = G, and G;—; = G; — {u;} fori € {1,2,...,n—5}.
Then Gy = 2K, + C3. Moreover, |G| =i+ 5 and dg,(u;) =2 for each i € {1,2,...,n—5}. Now
let

" =max{i|0<i<n—5, Gi€ Y}

Since Go = 2K+ C3 € 9¢ and G,,—5 ¢ 9", we have 0 < i* < n — 6. By the choice of i*, we know

that G+ € 4 5 and G- 1 ¢ 9%, which implies that Ng,. (1) € Vi and Ng,., (u11) € V1.

AAAAAA
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Figure 7: An extremal graph in ¥,



Now we may assume that G,_s is a planar embedding of G, and Gy is a plane subgraph of
G,_s. Observe that 2K + C3 has six planar embeddings (see Fig. 7). Without loss of generality,
assume that Gy is the leftmost graph in Fig. 7. Then, u;«; lies in one of the following regions (see
Fig. 7):

ext(wavivawa), int(Wavivawy), int(wavavawy),

int(wivivowy ), int(wivivawy ), int(wivovawy ).

By Lemma 2.2, we can assume that u;« lies in the outer face, that is, u;«1| € ext(wvivowy). For
simplify, we denote C' = wyvivows. Let u be an arbitrary vertex with uvy € E(Gy41). Then by
Lemma 2.1 and v3 € inf(C’'), we have u € int(C'), and thus uu;+11 ¢ E(Gj41). This implies that
Ng.. (u,’*+1) C V(Cl) UWi,, where Wi, = {u | uc V(Gi*Jrl), NG'*+1 (u) = {Vl,VQ}}. Recall that

*+1 i

dGI.*Jr] (um_l) =2 and NGi*+1 (ui*+1) Z V. Then, NGi*+I (u,‘*+1) N {vl,V2}| <1.If ’NGI.*+1 (u,‘*_H) N
{vi,»2}| = 1, then we may assume without loss of generality that vi € Ng,, ,, (ui+1), and u’ €
NG, (ui11) \ {v1}. Since Ng,.,, (up+1) C V(C") UWia, we have u' € {wr} UWi, and so u'v; €
E(Gj+41). Thus, G,_s contains two vertex-disjoint cycles u;viu'u;1 1 and wivavawy, as desired.
Now consider the case that [Ng,.,  (u;+1) N {v1,v2}| = 0. This implies that Ng,., , (1) C {wa} U
Wiz, Let Ng,. (up41) = {u,u"}. Then u'vi,u"v, € E(Gj11). Therefore, G, s contains two

vertex-disjoint cycles u; 1t/ viu"uy 1 and wivovawy. d

Given a graph G, let G be the largest induced subgraph of G with minimal degree at least 3. It
is easy to see that G can be obtained from G by iteratively removing the vertices of degree at most
2 until the resulting graph has minimum degree at least 3 or is empty. It is well known that G is
unique and does not depend on the order of vertex deletion (see [21]).

In the following, we give the proof of Theorem 1.5.

Proof. Let n > 5 and G be an extremal graph corresponding to ex 4 (n,2%). Observe that K, +
(P3U(n—5)K)) is a planar graph which contains no two vertex-disjoint cycles (see Fig. 6). Thus,
e(G) > e(Kr+ (PsU(n—5)K;)) =2n—1.

If G is empty, then ¢(G) < 2(n— 1) because G is simple, a contradiction.

Now we know that G is nonempty. Then, G contains no two vertex-disjoint cycles as GCG.
By the definition of G, we have §(G) > 3. By Lemma 2.3, we get that G € {2K, +C3,K; +Cg }.

fG=K,+C then

IG|-1°
¢(G) < e(G)+2(n—|G|) =2(|G| - 1) +2(n—|G]) = 2n -2,

a contradiction. Thus, G 2 2K +C3. Now, ¢(G) < ¢(G) +2(n—5) = 2n— 1. Therefore, ¢(G) =
2n — 1, which implies that ex»(n,2%) =2n—1 and G € ¥,. By Lemma 2.4, we have G € ¥;.
This completes the proof of Theorem 1.5. O

3 Proof of Theorem 1.6

We shall further introduce some notations on a plane graph G. A vertex or an edge of G is said
to be incident with a face F, if it lies on the boundary of F. Clearly, every edge of G is incident
with at most two faces. A face of size i is called an i-face. The numbers of i-faces and total faces
are denoted by f;(G) and f(G), respectively. Let E3(G) be the set of edges incident with at least
one 3-face, and particularly, let E3 3(G) be the set of edges incident with two 3-faces. Moreover,
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let e3(G) and e33(G) denote the cardinalities of E3(G) and E33(G), respectively. We can easily
see that 3f3(G) = e3(G) +e33(G).

Lan, Shi and Song proved that ex 5 (n, K|+ P3) < , with equality when n =12 (mod 20)
(see [13]), and ex 5 (n, K| + Piy1) < % — % for k € {3,4,5} (see [14]). For k > 6, one can
easily see that ex »(n, K| 4 Pi11) = 3n— 6. In [8], the authors obtained the following sharp result.

12(n—-2)
5

Lemma 3.1. (8]) Let n,k be two integers with k € {2,3,4,5} and n > % + 1. Then ex»(n,K; +
Peyq) < %(m —2), with equality if n = % (mod %).

To prove Theorem 1.6, we also need an edge-extremal result on outerplanar graphs. Let
exg 2 (n,Cy) denote the maximum number of edges in an n-vertex Ci-free outerplanar graph.

Lemma 3.2. (9]) Let n,k, A be three integers withn >k >3 and A = Lg’:gllzjj + 1. Then

2n—A+2|
2n—A+2|

| =3 ifk|A,

J —2 otherwise.

exg(n,Cy) = {

A
k
A
k
In particular, we can obtain the following corollary.

Corollary 3.1.

12 ;
n—>5 if7|n,
exgp(n—1,C) = { [12n727j

5 otherwise.

v, Vs
15)
"ﬁ L L ]
Va4 / /
) €3 €| e e @ |&r,, /
/ i -
Va ¥
= V1 >
V3
G G G,

Figure 8: The constructions of G,G1,Ga,...,G,.

For arbitrary integer n > 4, we can find a unique (a,b) suchthata > 0,1 <b<7andn—1=
7a+ b+ 2. Let G be a 9-vertex outerplanar graph and Gi,...,G, be a copies of G (see Fig. 8).
Then, we define Gy as the subgraph of G induced by {u;,u} U{vi,va,...,vp}. One can check
that |Go| = b+2 and

le(b+2)715J

7

12(h+2)—23 . .
o(Gy) = —— if7|(b+2-6),
otherwise.

We now construct a new graph G* from Gy, Gy, ...,G, by identifying the edges ey; and ep;1 for
eachi € {0,...,a—1}. Clearly, G* is a connected C4-free outerplanar graph with

a
|G*| = Z|Gi]—2a: 2+b)+9a—2a=n—1.
i=0

1
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Moreover, since n =b+2 — 6 ( mod 7), we have

a 12 .
“n—>5 if7|n
G)=Y e(G)—a=e(Go)+12a={ [, ’
e(G") l_;,)e( )—a=e(Go)+12a {L12n727J otherwise.

Combining Corollary 3.1, G* is an extremal graph corresponding to exy 2 (n —1,Cy).

Lemma 3.3. Let n > 2661 and G** be an extremal plane graph corresponding to ex s (n,2Cy).
Then G** contains at least fourteen quadrilaterals and all of them share exactly one vertex.

Proof. Note that ¢(G*) = exgp(n—1,Cy) > %n — 5 and G* is a Cy4-free outerplanar graph of
order n— 1. Then K| + G* is an n-vertex 2C,-free planar graph, and thus

19
e(G™)>e(Ki+G*)=e(G")+n—1> 7n—6_
On the other hand, by Lemma 3.1, we have
8
exz(n,Ki+FPy) < 3(n=2).

Note that 1—7911 —6> %(n —2) forn >2661. Then G** contains a copy, say Hj, of K; +P. Let G| be
the graph obtained from G** by deleting all edges within V (H;). Since |H;| =5, we have e¢(G;) >
e(G*™)— (3|Hi| —6) =e(G™) -9 > %(n —2). Thus, G| contains a copy, say H,, of K| + P;. Now
we can obtain a new graph G, from G by deleting all edges within V(H,). Note that e(G**) —
14 x9 > %(n —2). Repeating above steps, we can obtain a graph sequence Gi,G»,...,Gi4 and
fourteen copies Hy,H,,--- ,H4 of K; + P4 such that H; C G;_; and G; is obtained from G;_; by
deleting all edges within V (H;). This also implies that G** contains at least fourteen quadrilaterals.
We next give four claims on those copies of Kj + Pj.

Claim 3.1. Let i, j be two integers with 1 <i < j < 14 and v € V(H;) NV (H;). Then, V(H;)N
NHj (V) = .

Proof. Suppose to the contrary that there exists a vertex w € V(H;) N Np,(v). Note that v,w €
V(H;). By the definition of G;, whether vw € E(H;) or not, we can see that vw ¢ E(G;). On
the other hand, note that H; C G;_; C Gj, then vw € E(H;) C E(G;), contradicting vw ¢ E(G;).
Hence, the claim holds. O

Claim 3.2. |V(H;) NV (H,)| € {1,2} for any two integers i, j with 1 <i < j < 14.

Proof. If H; and H; are vertex-disjoint, then G** contains 2Cy4, a contradiction. Now suppose
that there exist three vertices vi,v2,v3 € V(H;) NV(H;). Observe that K| + P4 contains no an
independent set of size 3. Then H;[{v,v2,v3}] is nonempty. Assume without loss of generality
that vivy € E(H;). Then v, € V(H;) NNy, (v1), which contradicts Claim 3.1. Therefore, 1 <
‘V(Hi)ﬁV(Hj)’ <2. ]

Now for convenience, a vertex v in a graph G is called a 2-vertex if dg(v) =2, and a 2" -vertex

if dg(v) > 2. Clearly, every copy of K + P4 contains two 2-vertices and three 2" -vertices.

Claim 3.3. Let J7 be the family of graphs H; (1 <i < 14) such that every 2-vertex in H; is a
2% -vertex in Hy. Then || < 3.
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Proof. Note that H, contains only three 2" -vertices, say vi,v, and v3. Then every graph H; €
2 must contain two of vy, v, and v3 as 2-vertices. Suppose to the contrary that |7’ > 4. By
pigeonhole principle, there exist two graphs H, ,H;, € ¢ such that they contain the same two
2-vertices, say vi,va. It follows that H;, —{v;} contains a 4-cycle for j € {1,2}. By Claim 3.2, we
have V(H;,) NV (H;,) = {v1,v2}, which implies that H;, — {v; } and H;, — {v»} are vertex-disjoint.
Hence, G** contains two vertex-disjoint 4-cycles, a contradiction. O

Claim 3.4. Let j be an integer with 2 < j < 14 and H; ¢ . Then, there exists a vertex v €
V(H1)NV(H;) such that dg,(v) > 3 and dy,(v) > 3.

Proof. By Claim 3.2, we have 1 < |V(H;)NV(H;)| < 2. We first assume that V(H;) NV (H;) =
{u}. If dy, (u) > 3 and dp,(u) > 3, then there is nothing to prove. If dy, (u) = 2, then G** contains
two vertex-disjoint subgraphs Hy — {u} and H}, and thus 2Cy, a contradiction. If dp;(u) = 2, then
we can similarly get a contradiction. Therefore, |V (H;) NV (H;)| = 2.

Now, assume that V (H;) NV (H;) = {uy,uz }. We first deal with the case d, (u1) = dp; (u2) =2.
Since H; ¢ A, one of {ui,ur}, say ui, is a 2-vertex in H;. Hence, G** contains two vertex-
disjoint subgraphs Hy — {u; } and H; — {u»}, and so 2Cy, a contradiction. Thus, there exists some
i € {1,2} with dy;(u;) > 3. If dpy, (u;) > 3, then we are done. If dy, (u;) = 2, then we define H;
as the subgraph of H; induced by Ny, (u;) U {u;}. Since dp;(u;) > 3, we can check that H always
contains a C4. Moreover, since dy, (1;) = 2, we can see that H; — {u;} also contains a C4. On the
other hand, by Claim 3.1, we have Ny, (u;) NV (H;) = @, which implies that H} and H; — {u;} are
vertex-disjoint. Therefore, G** contains 2Cy, a contradiction. L]

By Claim 3.3, |7Z’| < 3, thus there are at least ten graphs in {H; | 2 < j < 14} \ 7. However,
H\ has only three 2" -vertices. By Claim 3.4 and pigeonhole principle, there exists a 2+ -vertex w
in H, and four graphs, say H,,H3,Hy,Hs, of {H; | 2 < j <14} \ 2. By Claim 3.1, we get that
Nu;(w)NV(H;) = @, and so Ny, (w) NNy, (w) = @, for any i, j with 1 <i < j <5. If G* — {w}
contains a quadrilateral C’, then there exists some ;' <5 such that Ny, (w) NV (C') = @ as |C'| = 4.
Since w is a 2" -vertex in Hy, we can observe that the subgraph of Hj induced by Ni, (w) U{w}

must contain a C4. Consequently, G** is not 2Cy-free, a contradiction. Thus, G** — {w} is Cs-free,
which implies that all quadrilaterals of G** share exactly one vertex. This completes the proof of
Lemma 3.3. O

Now we are ready to give the proof of Theorem 1.6.

Proof. Recall that G* is an extremal graph corresponding to exs % (n— 1,C4). Then K; + G* is
planar and 2Cy-free. By Corollary 3.1, we have

Yn—6 if7]|n,
4

9
& n-
e(Ki+G ):ex@@(ﬂ—l,&)—i—n—l:{ [19n—3 )
7

| otherwise.

To prove Theorem 1.6, it suffices to show ex 4 (n,2Cs) = e(K; + G*). Since G** is an extremal
plane graph corresponding to ex s (n,2Cs), we have ¢(G*™*) > e(K; + G*). In the following, we
show that e(G**) < e(K| + G").

By Lemma 3.3, all quadrilaterals of G** share a vertex w. Thus, G** — {w} is Cs-free. As-
sume that dg+(w) = s and wy, ..., wy are around w in clockwise order, with subscripts interpreted
modulo s. Let e be an arbitrary edge in E3 3(G*), that is, e is incident with two 3-faces, say F' and
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Wil Wi

Figure 9: Two possible structures of H (e).

F'. We define H(e) as the plane subgraph induced by all edges incident with F and F’. Clearly,
H(e) = K; + P3 and so it contains a C4. Recall that all quadrilaterals of G** share exactly one
vertex w. Then, w € V(H,) and w is incident with at least one face of F and F’ (see Fig. 9). Note
that e is incident with F. Then, either e = ww; or e = wyw;y for some i € {1,2,...,s}. By the
choice of e, we have

E33(G™) C{wwi,wiwipr | 1 <i<s}. )

Assume first that f4(G*) =t > 1 and Fy,...,F; are 4-faces in G**. Since every 4-face is
a quadrilateral, w is incident with each 4-face. Consequently, there exists j; € {1,...,s} such
that ww;,,wwj,1 are incident with F; for each i € {1,...,t}. Thus, ww;, ¢ E33(G™) for 1 <
i <t. On the other hand, if wjwj1 € E33(G*™), then H(wjwj41) contains a C4, and so w €
V(H(wjwj1)). This implies that ww;w; 1w is a 3-face in G**, contradicting the fact that
wwj,, ww 11 are incident with the 4-face F;. Thus, we also have w;w ;.11 ¢ E33(G™) for 1 <i<t.
By the argument above, we can see that

E33(G)N{wwj,wjwj1 |1 <i<t} =@. 3)
Using (2) and (3) gives e33(G™) < 2s —2t =25 —2f4(G™"). Hence,
315(G™) = e3(G™) +33(G™) < e(G™) +25 —2/2(G™). @)
On the other hand,

2¢(G™) = ) ifi(G™) 2 3f5(G™) +4£(G™) +5(f(G™) = 5(G™) — fa(G™)),
i>3
which yields f(G**) < 1 (2¢(G*™*) +2f3(G*) + f4(G**)) . Combining this with Euler’s formula
f(G*) =e(G™)— (n—2), we obtain

o(G*) < 2n=2)+ 2 /(G") + S (G, 5)
If f4(G**) =1t =0, then (4) and (5) hold directly. Combining (4) and (5), we have e¢(G**) <
B(n—2)+2s— 1 £(G*). Recall that dg~(w) =s <n—1. If s <n—2, then ¢(G**) < [P (n—
2)] <e(Ki+ G*) by (1), as desired. If s =n— 1, then w is a dominating vertex of the planar
graph G**, which implies that G** — {w} is outerplanar. Recall that G** — {w} is C4-free. Thus,
e(G* —{w}) <exgp(n—1,Cy), and so e(G**) <exgp(n—1,C4) + n— 1. Combining (1), we
get e(G*™) < e(K; 4+ G*), as required. This completes the proof of Theorem 1.6. O
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4 Proof of Theorem 1.1

Let A(G) be the adjacency matrix of a planar graph G, and p(G) be its spectral radius, i.e.,
the maximum modulus of eigenvalues of A(G). Throughout this section, let G be an extremal
graph to spexz(n,.7 ), and p denote this spectral radius. By Perron-Frobenius theorem, there
exists a Perron eigenvector X = (x1,...,x,)” corresponding to p. Choose u’ € V(G) with x,, =
max{x; | i=1,2,...,n} = 1. For a vertex u and a positive integer i, let N;(u) denote the set of
vertices at distance i from u in G. For two disjoint subset S,7 C V(G), denote by G[S,T] the
bipartite subgraph of G with vertex set SUT that consist of all edges with one endpoint in S and
the other endpoint in 7. Set e(S) = |E(GIS])| and e(S,T) = |E(G]S,T])|. Since G is a planar
graph, we have

e(S) <3|S|—6 and e(S,T) <2(|S|+|T])—4. (6)
In this section we will often assume that n > 2.16 x 10'7. We first give the lower bound of p.

Lemma 4.1. p > +/2n—4.

Proof. Note that K> ,_» is planar and .#-free. Then, p > p(K2,-2) = v/2n—4, since G is an
extremal graph to spex(n, #). O

Set L ={uecV(G)|x,> 10*/1} for some constant A > 103
give an upper bound for |L'| and a lower bound for degrees of vertices in L!.

The following lemmas is used to

Lemma 4.2. |[}| < 2 165
Proof. By Lemma 4.1, p > v/2n — 4. Hence,

V2n—4
W < px, = Z X, < dG(u)
VENG (u)

for each u € L*. Summing this inequality over all vertices u € L*, we obtain

L] ”l(m ch )< Y dg(u) <2(3n—6).
uev(G)
It follows that |[L*| <3 x 103A4v/2n—4 < &% asn >2.16 x 1017 m

Lemma 4.3. |L'| <6 x 10%

Proof. Let u € V(G) be an arbitrary vertex. For convenience, we use N, Lf“ and E instead of
N;(u), N;(u) NL* and N;(u) \ L*, respectively. By Lemma 4.1, p > \/2n— 4. Then

(2n—4)x, < p2x, = de(u)x, + Z Z X @)
veEN; weN; (v)\{u}
Note that Ny (v) \ {u} € NyUN, = L} UL} UEU@. We can calculate Y,cn, Yen, (v)\ fu} *w
according to two cases w € L} UL} or w € L} UL}, We first consider the case w € L} UL},
Clearly, Ny = L} UL? and x,, < 1 for w € L} UL%. We can see that

Z Z Xy < (26(L%)—|—€(L’1,L%)) + Z Z Xppe 8)

VENI we(LAuL)) velr we(LtuL})
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By Lemma 4.2, we have |L*| < A% Moreover, L} ULX C L*. Then, by (6), we have

105°
2 P ) ) ) o 8An
Ze(Ly) +e(Ly,Ly) < 2(3|Ly| = 6) + (2(ILY | +[L7]) —4) <8IL%| < 5 )
Next, we consider the remain case w € EU@ Clearly, x,, < ﬁ forw e EU@ Then
A /1 /1 7 1 6n
VENT erFurk
where e(L?, L UL}) +2¢(L}) +e(LY, L*) < 2¢(G) < 6n.
Combining (7-10), we obtain
84 60\ n
@n—4)x, <dgwr+ Y Y xw+(ﬁ+7>ﬁ. (1)

VGEWG (LiL UL% )

Now we prove that dg(u ) > for each u 6 L'. Suppose to the contrary that there exists a

104

vertex & € L' with d (i) < {&r. Note that x; > W asu € L'. Setting u =, A = 10 and combining
(11), we have
2n—4 14n
o <de@xi+ ), ) x+ (12)

veL0we(L{PULY)

By (6), we have

4n

(L1, L1 0Ly") <2(IL)+ LI VL)) < 2(IMi (@) + L)) < 1oz

where |N; ()| < ;5 and L] < 767 by Lemma 4.2. Combining this with dg () < 5z gives

G(mxll+ ; ; 0 XW+W§dG(iI)+e(L1 7L1 UL2 )+F§ 104’
veLlowe(L"ULy")

which contradicts (12). Therefore, dg(u) > for each u € L'. Summing this inequality over all

vertices u € L!, we obtain

104

|L 7o 04 < Z dg(u) <2e(G) < 6n,
uel!

which yields that |L'| < 6 x 10%. O
For convenience, we use L, L; and L; instead of L', N;(u) NL' and N;(u) \ L', respectively.

Lemma 4.4. For every u € L, we have dg(u) > (x, — 1955 )1

Proof. Let H’ be the subset of L; in which each vertex has at least 2 neighbors in L. We first claim
that |L;'| < |L|%. If |L| = 1, then L, is empty, as desired. It remains the case |L| > 2. Suppose to
the contrary that [L; | > |L|2. Since there are only ('é‘) options for vertices in L to choose a set

of 2 neighbors from L, we can find a set of 2 vertices in L with at least “f]’] / (%ﬂ > 3 common

neighbors in L. Moreover, note that u ¢ L and L CL,CN; (u). Hence, G contains a copy of



K3 3, contradicting that G is planar. Therefore, |L; | < |L|2. Thus, |L||L’| < (6 x 10*)? < 05 as

n>2.16 x 10'7. Hence

n

Li.L)<|L;\L, Ll < .
e(Ly,L) < [Ly\Ly [+ |L||Ly | <dg(u) + 1000

Since L1 UL, C L, we have

n
Y Y x < e(Li,LiULy) <dg(u)+ 000"
VEL1 WG(L]ULz)
Setting A = 1 and combining the above inequality with (11), we have
n 61n
(2n— 4, < do(u) + (do(u) + 5 03) Tor
which yields dg(u) > (n —2)x, — 5% > (X4 — 1905)1-
Lemma 4.5. There exists a vertex u” € Ly UL, such that x,» > %.
Proof. Setting u =u’, A = 1 and combining (11), we have
60.8n
m—d<dg(W)+ ), Y vt o
V€L1 weL ULy
which yields that
60.8 993
Z Z Xy > 2n—4—T4n—d(;(u’) > 1008.
VEEWGLl ULy
From Lemma 4.4 we have dg (i) > 3% as i’ € L. It infers that
995n
iy (0l) = do(ul) — du, () = do ()~ |L) = ~ =8

as |L| < 6 x 10* by Lemma 4.3. By (6), we further get

995n _ 1005n
<

e(E,Ll ULy) < e(H,L) —dE(u’) <(2n—4)— 1000 = 1000

By averaging, there is a vertex u” such that

993
> ZvefEWE(LluLz)xw > 1008 > 988
T e(liLiuLy) T e 1000°

as desired.

. By Lemma 4.4, we have dg (u') > tpen and dg (u”

Notice that x,; = 1 and x,,» > 656

16

O

984

= T000"%

Now, let D = {u',u"}, R be the subset of V(G) \ {«//,u” } in which every vertex is a non-neighbor of

some vertex in {«/,u"} and R' =V (G)\ ({¢/,u”"} UR). Thus, [R| < (n—dg(u/)) + (n —de(u”

2n
100

Lemma 4.6. Letu € V(G)\ {u,u"}. Then x, < ;.

) <
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Proof. For any vertex u € R, we have dp(u) < 1 by the definition of R. Moreover, dg (1) < 2
(otherwise G contains a copy of K33, contradicting that G is planar). Then, dg(u) = dp(u) +
dr (1) +dg(u) < 3+dg(u). Note that e(R) < 3|R| and |R| < 2. Thus
18n
pY < X do(u) < X (3+da(u)) < 3R +2¢(R) < OIR| < 1

ueR UeER UER

which yields Y ,cyx, < 100% as p > +/2n—4. Since G is K3 3-free, dpur (1) < 4 for any
vertex u € RUR'. Tt follows that

18n
Px, = x, <4+ Xy < .
! MZG ' % =t 00y =4
Dividing both sides by p, we get x,, < 11—0. O

Now, we are ready to give the proof of Theorem 1.1.

Proof. We first claim that R is empty. Suppose to the contrary that |R| > 1. Then, G[R] is planar,
and so there exists a vertex v € R with dg(v) < 5. Furthermore, v has at most 2 neighbours in R’
and at most one neighbour in {u,u"}. Then,

Z xw<xu+2xw+2xw_10 (13)

wENG(v) veR' VER

where the last inequality holds as x,, < % for any w € RUR' by Lemma 4.6. We modify the graph
G by deleting all edges incident to v and adding edges vu’ and vi”, to obtain the graph G'. We first
claim that G’ is .7 -free. Otherwise, G’ contains a subgraph F € .%. From the modification, we
can see that v € V(F) and dr(v) C {u’,u”}. Note that

980
R = INa() O No(u")| = NG () |+ IN6(u")| ~n = ooin > V()]
Thus, there exists a vertex v/ € R'\ V(F) such that dg(v') = {«/,u"}. This indicates that an iso-
morphic copy of F is already present in G, a contradiction. On the other hand, x,s +x,» > iggg

Combining this with (13), we have

2x,

p(G)—p(G) > XTX()cu +xe)— Y, xw) > 0.

WENG )
Thus, p(G’) > p(G), contradicting that G is extremal to spex(n,.#). Hence, the claim holds.
So, R' =V(G)\ {«',u"}. Therefore, G contains a copy of K ,_». O

S Spectral extremal problems on planar graphs

In case .# = {C3}, by Theorem 1.1, G contains a copy of K, ». we further obtain that
G = K;,2 as G is triangle-free (otherwise, adding any edge increases triangles, a contradic-
tion). In case .7 = {C4}, clearly, J, is planar. Nikiforov [20] and Zhai and Wang [23] deter-
mined spex(n,Cy) for odd and even n, respectively. This implies that J, is the extremal graph
to spexz(n,Cy). In this section, we always assume that G is an extremal graph to spexs(n, F),
where F € {Cy | £ > 5}U{2C; | £ > 3}. Clearly, K, is F-free. By Theorem 1.1, G contains a
copy of K ,_2, where V(K) = {u’,u"}. We first prove that «’ is adjacent to «” in G.
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Figure 10: A local structure of G*.
Lemma 5.1. We have u'u" € E(G).

Proof. Suppose to the contrary that u'u” ¢ E(G). Assume that G* is a planar embedding of G,
and uy,...,u, o are around «’ in clockwise order in G*, with subscripts interpreted modulo n — 2
(see G* in Fig. 10). If R induces an cycle ujus . . . u,_ouy, then we can easily check that G contains
a copy of F, a contradiction. Thus, there exists an integer i < n — 2 such that w;u;+; ¢ E(G[R']).
Then, u'uju"u; 14 is a 4-face of the plane graph G*.

We modify the graph G* by adding the edge «'u” crossing the above 4-face, to obtain the
graph G'. Clearly, G’ is a plane graph. We claim that G’ is F-free. Suppose to the contrary that
G’ contains a copy of F. If F = C; for some ¢ > 5, then G’ contains an ¢-cycle containing u'u”,
say u'u"uluy .. .u, yu'. Tt follows that G already contains a copy of ¢-cycle w/u|u"u,, ... u, ', a
contradiction. If F = 2C; for some ¢ > 3, then F contains two disjoint /-cycles C' and C2. From
the modification, we can see that one of C! and C2, say C I contains the edge u'u”. This implies
that C? is a subgraph of G[R']. However, G[V(C?)U {u',u""}] contains a Ks-minor, contradicting
the fact that G is planar. Hence, the claim holds. However, p(G’) > p, contradicting that G is
extremal to spex (n, F). Therefore, u'u” € E(G). O

Lemma 5.2. G[R'] is a disjoint union of paths.

Proof. Theorem 1.1 and Lemma 5.1 imply that ' and «” are dominating vertices. Furthermore,
since G is Ks-minor-free and K3 3-minor-free, we can find that G[R'] is K3-minor-free and K 3-
minor-free. Furthermore, this implies that G[R'] is an acyclic graph with maximum degree at most
2. Thus, G[R'] is a disjoint union of paths. O

We shall give characterizations of eigenvector entries of vertices in R’ in the following lemmas.
Lemma 5.3. For any vertex u € R', we have x,, € [%, % + %].

Proof. Recall that «’ and u” are dominating vertices of G. So, x,, = x,» = 1. Then

PXy = Xy + Xy + Z X, =2+ Z Xy. (14)

vENG (u)NR' vENG (u)NR'

Moreover, dg/(v) < 2 for any vertex v € R'. Combining this with Lemma 4.6 and (14), we have

Xy € [5. 5] Furthermore, by (14), px, € [2,2+ ], which yields that x, € [2, 2 + % ]. O

Now we give a transformation that we will use in subsequent proof.
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Definition 5.1. Let 51,52 and s3 be three integers with s1 > s > s3+1> 1, and let H = P, UP,, U
Hy, where Hy is a disjoint union of paths. We say that H* is a (s1,$2,s3)-transformation of H if

H*: PS3UPS]+_S‘2—S3UHO if1§S3§52—1,
Ps1+s2 UHy l'fS3 =0.

Lemma 5.4. Let H and H* be defined as in Definition 5.1. Assume that G|R'| = H. Then, p(K, +
H*) > p for n > max{2.16 x 10!7,9 x 252 4 3},

Proof. Assume that P! := v;v,.. .vg, and P2 :=wiw,.. .wy, are two components of H. Clearly,
G=K,+HasG|[R|=H. Ifs3=0,then H C H*,and so G C K, + H*. It follows that p(P,+ H*) >
p(G), the result holds. Next, we deal with the case s3 = 1. If x,, <x,,, then let H' be obtained
from H by deleting the edge x,,x,, and adding the edge x,,x,,. Clearly, H' = H*. Moreover,

XT(A(K,+H*)—A(G))X 2

) — > >
p(K2+H) p(G)— xXTx = XTx

(%, — Xy, )Xy, > 0.

Since K, + H* % G, we have p(K, + H*) > p(G), the result holds. The case x,, > x,,, is similar
and hence omitted here.
It remains the case s3 > 2. So, 51 > s, > 3.

Claim 5.1. (i) Foranyie {1,..., L‘Y'EIJ}, Xy, —Xy; € [p12+1 — 2,&22'./ p,2+, + Z,ﬁzﬂ

(ii) Forany i€ {1,..., L%J} Xy — Xw; € [p[ZH _ ?yﬁzz‘ 7 p%l Z[sz']

. 1 i i
(iii) For any i € {1,..., 5=}, x,, —x, € [—%,%]

Proof. (i) It suffices to prove that for any i € {1, ..., lez_l 1},

' 2 6x20 2 6><2’] ifj=i
"Xy, —xy,) EAj = popEIRL P ’
P =) €4 { [— &7, OF] ifit1<j<si—i—1
We shall proceed the proof by induction on i. Clearly,
2+x, if j=1,
px, = X = LI (15)
vj ve}%w) v { 2—|—va +x0;, if2<j<s;—1.

Then,
p(-xv« l—xv.): Xy Xy — Xy, €A 1fj:1,
j+ J (x"«/'ix"j—l)+(xvj+2*ijLl) GAl 1f2§j§_gl vy

So the result is true when i = 1. Assume then that 2 < i < L%J, which implies that s1 > 2i+ 1.
Fori < j<si—1i,p(x,;,, —%,;)= (xy; =%, )+ (X, —%,,, ). By the induction hypothesis,
pi(x\’/wrl —xvj) - pi_l (XV_;' — Xy ) +pi_1 (xl’_/+2 _x\’/+1) €A

So the result holds.
The proof of (ii) is similar to that of (i) and hence omitted here.
(iii) It suffices to prove that for any i € {1,..., LSZZ_] |}and je{i,...,so—i},

6 x2 6><2i]

pi(x‘,f —Xy,;) €EB; = [— FERR:
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We shall proceed the proof by induction on i. Clearly,

2+ Xy, if j=1,
PXy. = Xy = . .
wj wez%(w,-) w { 2—|—xWJ.71 + X if2<j<s,—1.

Combining this with (15) and Lemma 5.3 gives

va—xW2€[—%,%]CBI if j=1,

(x‘,jJr1 _ij+1) + (x‘,jf1 —wa)G By if2<j<s—1.

p(xvj _ij) = {

So the claim is true when i = 1. Assume then that 2 <i < L”;zj, which implies that s, > 2i +2.

Fori < j<sy—i,p(xy,,, —X,) = (%; —Xy_,) + (X, —Xv;,, ). By the induction hypothesis, we
have

pi('xv_j _'xW_/) = pi71<'xvj—] _xw.jfl)—i_piil(xv.fﬂ _)CWJ'+|)6 Bi

if i < j < s, —i. The result holds. This completes the proof of Claim 5.1. O

Let t1,1; be integers with 1 <7, <s; — 1 for each i € {1,2}, and H' be obtained from H by
deleting edges x,, Xy, ., ;Xw, X, ,, and adding edges x,, x, ,Xy, , Xw, ,,. Then

- XT(A(K, +H*) —A(G))X

p<K2+H )_p(G) XTX ZXTX

(thl+l _XWQ)(XWQH —Xv, ) (16)
Since n > 9 x 2312 43 we have
p>V2n—4>6x26+D/2, (17)

Now, we consider the following three cases:
Case 1. s3 is even.
Sett; =% and 1 = %. Clearly, #; +, = s3, and so H' = H*. By Claim 5.1 and (17), we have

2 6x2%/?
Mg a1 ~ v Z pS3/2+1 N pS3/2+2 =

Then, by (16), we have p(K> +H*) > p(G), as desired.
Case 2. s; = s and s3 is odd.

Note that s; = 5,. Then, by symmetry, we have Kooy iz = Xy 1120 Sett) = % andt, = "32_1 .
Clearly, 1) +1, = 53, and so H' = H*. By (16), we have p(K, + H*) > p(G). Furthermore, since
K>+ H* 2% G, we have p(K> +H*) > p(G), as desired.

Case 3. 51 > 5o+ 1 and s3 is odd.

We first consider the subcase Xuggy s < Xw

s3+1

e Settp === and , = eE

-1
(s3+1 5— Then, Koy >

Xy, - Clearly, #1 +1, = 53, and so H' = H*. Obviously, s; > s3 +2, and so L”;lJ < {S';lJ. By
Claim 5.1 and (17), we have

2 6x2 6 x 2! o s3+1
Xvipr = Xw; = (xVH—l _xvi)+(xvi_xwi) > <pi+1 - pi+2 ) - pi+2 >0 for i < [ D) Ja
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which implies thatx,, ., > Xy, ., > Xy, > Xy, . By (16), we have p(K>+H") > p(G). Furthermore,
p(Ky+H*) > p(G) as Ky + H* % G, as desired.

We then consider the subcase xy ) , > X, ;-
s3,and so H' = H*. By Claim 5.1 and (17), we have

Lett; = %5 Landt, = % Clearly, 1, +1, =

2 12 x2!
xWi+l —xvi:(xwl.“ —xwl.)+(xwi—xvi) 2 ﬁ*ﬁ >O (18)
P P
fori < min{ L‘“;lJ , PZZ_IJ } Then, x,, | > Xy, -
If s = s34 1, then s; is even. By symmetry, Xw(sg 1)z = Koy 13)/27 that is, Xy = Xy, More-

over, by (18), xy,, > xy, . SO, Xy, | > Xy, = X, > Xy, . By (16), p(Kx+H") > p(G), as desired.
If 5o > 53+ 2, then by (18), xy, ., > xy, ,, > X, > Xy, . By (16), we have p(Kx+H*) > p(G), as
desired.

This completes the proof of Lemma 5.4. O

According to Lemma 5.2, assume that G[R'] = U!_, P,,, where n; > --- > n, > 1. Having Lem-
mas 5.3 and 5.4, we are ready to give the proof of Theorems 1.2-1.4.

Proof of Theorem 1.2. We first give the following claim.

Claim 5.2. Assume that H = U_, P, ), where ny(H) > --- > n,(H) > 1. Then, K> + H is 2C-free
ifand only ifn)(H) <20 —3 and ny(H) < {—2.

Proof. We first claim that K, + H is 2Cy-free if and only if H is 2P,_-free. Equivalently, K, + H
contains a copy of 2Cy if and only if H contains a copy of 2P,_;. Assume that K, + H contains
two vertex-disjoint /-cycles C' and C2, and V(K,) = {u/,u"}. Since H is acyclic, we can see that
C' must contain at least one vertex of u' and u” for any i € {1,2}. Without loss of generality,
assume that ' € V(C') and u” € V(C?). Then, C' — {u'} = C* — {u"} = P,_1, and so H contains
a copy of 2P,_;. Conversely, assume that H contains two vertex-disjoint paths P! and P? such that
P! = P22 p, |. Thus, the subgraph induced by V(P')U {u'} contains a copy of C;. Similarly,
the subgraph induced by V(P?) U {u"} contains a copy of C,. This implies that K, + H contains a
copy of 2Cy.

We can easily check that H is 2P, -free if and only if P, (1) UP,, () 1s 2P, -free. Moreover,
we claim that P, 5y U P, m) is 2P, -free if and only if n)(H) <2¢—3 and np(H) < £—2. If
By (1) U By () s 2P, 1-free, then ny(H) < 20 — 3 (otherwise, P, (;) contains a copy of 2P, 1, a
contradiction); no(H) < ¢—2 (otherwise, P, (7)Y P, () contains a copy of 2P, a contradiction).
Conversely, if ny (H) <20 —3 and ny(H) < £—2, then P, () U Py, () is 2P, -free.

This completes the proof of Claim 5.2. O

By Claim 5.2, ny <2¢—3 and ny < ¢ —2. We first claim that n; = 2¢ — 3. Suppose to
the contrary that ny < 2¢ —4. If ny +n, > 2¢ — 3, then let H' be a (ny,n;,n; +n, — 20 + 3)-
transformation of G[R']. Clearly, n; (H') =2¢ —3 and ny(H') = ny. By Claim 5.2, K> + H' is 2C-
free. Moreover, nj +n, —20+3 <n;,—1 <npy—1 < ¢—3. By Lemma 5.4 and n > max{2.16 x
10'7,9 x 2=1 -3}, we have p(K, +H') > p, a contradiction. If ny +n, <2 —3, then let H' be a
(n1,n;,0)-transformation of G[R']. Clearly, ny(H') = ny +n, <2¢—3 and n(H') = ny. By Claim
5.2, Ky + H' is 2Cy-free. Moreover, by Lemma 5.4, we have p (K, + H') > p, a contradiction.
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In the following, we shall show that n; = ¢ —2 fori € {2,...,t — 1}. Suppose to the contrary,
then set
jp=min{i |2<i<r—1,n; <{-2}.

If n;, +n, < -2, thenlet H' be a (n,,, n;,0)-transformation of G[R']. Clearly, n;(H') =n; =2¢—3
and ny(H') = max{ny,n;, +n,} <{—2. By Claim 5.2, K, + H' is 2C,-free. Moreover, by Lemma
5.4, we have p(K,+ H') > p, a contradiction. If nj, +n, > ¢ —2, then let H' be a (n;,, n;, n;, +n; —
¢+ 2)-transformation of G[R']. Clearly, n;(H') = n; =2 —3 and np(H') = ¢ — 2. By Claim 5.2,
K, + H' is 2Cy-free. Moreover, by Lemma 5.4, we have p(K, + H') > p, a contradiction.

Since ny =2¢—3 andn; = ¢ —2fori € {2,...,t — 1}, we have G[R'] = H(2¢ —3,¢—2). This
completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. By Theorem 1.2, K, + H(3, 1) is the extremal graph to spex 4 (n,2Cs) for
n>2.16 x 10'7. One can observe that if a planar graph G’ is 2% -free then G’ is also 2C;-free.
Moreover, by Theorem 1.5, K, + H(3,1) is 2¢-free for n > 5. Thus, K, + H(3,1) is the extremal
graph to spex 5 (n,2¢) forn >2.16 x 107, O

Proof of Theorem 1.4. It remains the case ¢ > 5. We first give the following claim.

Claim 5.3. Assume that H = U§:1Pn,~(H); where ni(H) > --- > n,(H) > 1. Then, P, + H is C-free
ifand only ifni(H) +ny(H) < {—3.

Proof. It is not hard to verify that K, + (Pn](H) UP,,Z(H)) contains all cycles of order at most
ni(H)+ny(H)+2. Since K> +H is Cy-free, ny(H) +ny(H) +2 < {—1, yielding n; (H) +ny(H) <
¢—3. Conversely, if nj(H)+n2(H) < ¢ —3, then every cycle in K, + H contains vertices in at
most two paths of H. It implies that the longest cycle in K, + H is nj(H) + np(H) + 2. Clearly,
ni(H)+ny(H)+2 < {¢—1. Thus, K, + H is Cy-free. O

Since n; +ny <{£—3 and n; > ny, we have np < L%J We then prove that n; = £ — 3 — ny for

eachi € {2,...,r—1}. Suppose to the contrary, then set
jp=min{i |2<i<rt—1,m; <l—3—n}.

If nj, +n; < £—3—ny, then let H' be a (n,,,n;,0)-transformation of G[R'|. Clearly, n;(H') = n;
and ny(H') < max{na,n;, +n,} <¢—3 —ny, and so n(H') +ny(H') < ¢—3. By Claim 5.3,
K>+ H' is Cy-free. Moreover, by Lemma 5.4, we have p(K>+ H') > p, a contradiction. If n;, +
n; > £ —3 —ny, then let H' be a (n;,,n,n;, +n;, — £+ 3 + n;)-transformation of G[R']. Clearly,
ni(H') =n; and ny(H') = ¢ —3 —ny, and so ny(H') + np(H') = ¢ —3. By Claim 5.3, K, + H'
is Cy-free. Note that n; < n;y < ¢ —4—ny. Then, nj, +n, —¢+3+n; <n;;—1< V*TSJ By
Lemma 5.4 and n > 9 x 25 4 3, we have p(K, + H') > p, a contradiction. It follows that
G=K)+ (P, U(t—2)P,,UP,,).

By claim 5.3, n; +ny < ¢ — 3. Moreover, since ny > ny, we have ny < V*T%J Now we prove
that n; = | 53| for any i € {2,...,t — 1}. Otherwise, let G’ := K + (Py,—1 U (1o + 1) Py U (t —
ny —4)P,, UP,, ). More precisely, we can see that G’ can be obtained from G by
(1) deleting an edge incident to one endpoint u of P,, and connecting u to one endpoint of F,,;

(ii) deleting all edges in one path P of order n; and recursively connecting every vertex in V (P) to



23

an endpoint of a new F,,.
So, G’ is obtained from G by deleting n; edges and adding n; + 1 edges. By Lemma 5.3, we have

4 _ SRR CL O -
el S S .n R I )
pZ TS g2 T3 Ty d T 52 T 53

for any vertices u;,u; € R'. Then

p(G)—p= = A

XT(A(G) - A(G)X 2 (4 25m ~o
XTx XTX \p2 p '

where ny < 53] < sV/2n—4 forn > 2 15212 +2. So, p(G') > p, a contradiction.

Since n; +n, <f—3and ny = LE%J, we have n; < [27731 Finally, we prove that n; = {57—3}

2
Suppose to the contrary, then n; < V*Tﬂ Note that ny > ny = L%J It implies that ¢ is odd and
ny = L%J Let H' be a (ny,n;,n, — 1)-transformation of G[R']. Clearly, n;(H') =n; +1 = [4773]
and ny(H') = np. By Claim 5.3, K, + H' is Cy-free. Moreover, setting s3 = n, — 1, we have
s3<n—1<n-1< L/_TSJ By Lemma 5.4 and n > 9 x Pl +3,wehave p(K +H') > p, a
contradiction. Thus, n; = [6_731

Sincen; = [53] and n; = | 52| fori € {2,...,t — 1}, we have G[R'| =2 H([52], | 552]). This
completes the proof of Theorem 1.4. O
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