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Abstract

Let G = {G1, . . . , G2n} be a bipartite graph collection on the common vertex

bipartition (X,Y ) with |X| = |Y | = n. We say that G is bipancyclic if there exists

a partial G-transversal isomorphic to an `-cycle for each even integer ` ∈ [4, 2n],

while G is vertex-bipancyclic if any vertex v ∈ X ∪ Y is contained in a partial

G-transversal isomorphic to an `-cycle for each even integer ` ∈ [4, 2n]. Bradshaw

in [Transversals and bipancyclicity in bipartite graph families, Electron. J. Comb.,

2021] showed that for each i ∈ [2n], if dGi(x) >
n
2 for each x ∈ X and dGi(y) ≥ n

2 for

each y ∈ Y , then G is bipancyclic, which generalizes a classical result of Schmeichel

and Mitchem in [Bipartite graphs with cycles of all even lengths, J. Graph Theory,

1982] on the bipancyclicity of bipartite graphs to the setting of graph transversals.

Motivated by their work, we study vertex-bipancyclicity in bipartite graph collec-

tions and prove that if δ(Gi) ≥ n+1
2 for any i ∈ [2n], then G is vertex-bipancyclic

unless n = 3 and G consists of 6 identical copies of a 6-cycle. Moreover, we also

show the Hamiltonian connectivity of G.

Keywords: bipartite graph collection; transversal; vertex-bipancyclicity; Hamilto-

nian connectivity; minimum degree.

AMS subject classification 2020: 05C38, 05C45, 05C15, 05C07.

1 Introduction

Over the last decades, there has been much research on Hamiltonicity of graphs, which

is one of the most fundamental topics in graph theory. The classical Dirac’s theorem [12]

in 1952 states that every n-vertex graph with minimum degree at least n
2

is Hamiltonian.

In 1971, Bondy [4] proved that every n-vertex graph is pancyclic under the same degree

condition expect for Kn
2
,n
2
. Later, Bondy in [5] posed the following meta-conjecture:

Almost any nontrivial condition on a graph which implies that the graph is Hamiltonian
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also implies that it is pancyclic (except for possibly a simple family of exceptional graphs).

This has been verified for many sufficient conditions for Hamiltonicity. Actually, some

sufficient conditions forcing Hamiltonicity can even guarantee vertex-pancyclicity with

minor adjustments. For example, in 1990, Hendry in [14] proved that every n-vertex

graph with minimum degree at least n+1
2

is vertex-pancyclic. Note that when the graph is

a balanced bipartite graph, it is natural to study whether conditions forcing Hamiltonicity

can guarantee bipancyclicity, or even vertex-bipancyclicity. Indeed, in 1963, Moon and

Moser in [17] established a minimum degree condition for the existence of Hamiltonian

cycle in a balanced bipartite graph, which can be seen as a bipartite analogue of Dirac’s

theorem. Later in 1982, Schmeichel and Mitchem in [21] generalized the above result to

bipancyclicity under the same degree condition.

Very recently, the study of transversals over graph collections has received much at-

tention, and some classical results in extremal graph theory have been extended to the

setting of graph transversals. The concept of a graph transversal was first raised by Joos

and Kim [15] in 2020. Let G = {G1, . . . , Gs} be a graph collection with common vertex

set V and H be a graph with V (H) ⊆ V . We say that (H,φ) is a partial G-transversal

if there exists an injection φ : E(H)→ [s] such that e ∈ E(Gφ(e)) for each e ∈ E(H). In

particular, if |E(H)| = s, then we call (H,φ) a G-transversal. Aharoni, DeVos, González

Hermosillo de la Maza, Montejano and Šámal [2] considered Mantel’s theorem in the set-

ting of graph transversals and proposed the following conjecture motivated by Dirac’s

theorem.

Conjecture 1 ([2]). Let G = {G1, · · · , Gn} be a graph collection on the common vertex

set V of size n. If the minimum degree of Gi is at least n
2

for each i ∈ [n], then there

exists a G-transversal isomorphic to a Hamiltonian cycle on V .

This conjecture was verified asymptotically by Cheng, Wang and Zhao in [11], and

completely by Joos and Kim in [15]. Besides Hamiltonian cycles, results on other struc-

tures in extremal graph theory have also been generalized to the setting of graph transver-

sals, including cycles [7, 9, 20], matchings [1, 3, 13], trees [8, 16] and factors [10, 18].

Bradshaw in [7] initiated the study of (partial) transversals in bipartite graph collections

and obtained the following theorem analogous to Moon and Moser’s result in [17].

Theorem 1.1 ([7]). Let G = {G1, · · · , G2n} be a bipartite graph collection on the common

vertex bipartition (X, Y ) with |X| = |Y | = n. If for each i ∈ [2n], dGi
(x) ≥ n

2
and

dGi
(y) > n

2
for any x ∈ X and y ∈ Y , then there exists a G-transversal isomorphic to a

Hamiltonian cycle on X ∪ Y .

For convenience, in the following context we always use G to denote a bipartite graph

collection {G1, · · · , G2n} on the common vertex bipartition (X, Y ) with |X| = |Y | = n,

unless otherwise stated. We define δ(G) = min{δ(Gi) : i ∈ [2n]}, where δ(G) denotes

the minimum degree of a graph G. We say that G is bipancyclic if there exists a partial
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Figure 1: F = ({x} ∪X1 ∪X2, {y} ∪ Y1 ∪ Y2)

G-transversal isomorphic to an `-cycle for each even integer ` ∈ [4, 2n], while G is vertex-

bipancyclic if each vertex v ∈ X ∪Y is contained in a partial G-transversal isomorphic to

an `-cycle for each even integer ` ∈ [4, 2n]. Bradshaw in [7] proved a stronger result which

states that G is bipancyclic under the same degree condition as Theorem 1.1, generalizing

the result of Schmeichel and Mitchem in [21]. Hence, the degree condition in Theorem

1.1 fits Bondy’s meta-conjecture in the setting of graph transversals. This motivates us

to verify if this degree condition (with a minor adjustment) can guarantee the vertex-

bipancyclicity of G, since vertex-bipancyclicity implies bipancyclicity. It is noteworthy

that Kn
2
,n
2
∪Kn

2
,n
2

contains no Hamiltonian cycles. Thus, the condition δ(G) = n
2

can not

guarantee the vertex-bipancyclicity of G. As a result, we get a positive answer as follows.

Theorem 1.2. If δ(G) ≥ n+1
2
, then G is vertex-bipancyclic, unless n = 3 and G consists

of six identical copies of a 6-cycle.

Hamiltonian connectivity is closely related with Hamiltonicity and it is a significant

property in graph theory (see e.g. [19]). Inspired by this, we study the Hamiltonian

connectivity of bipartite graph collections. We say that G is Hamiltonian connected if

for any two vertices x ∈ X and y ∈ Y , there is a partial G-transversal isomorphic to

a Hamiltonian path from x to y. To state our result, we define the following graph

collection: Let n be an odd integer and F = ({x} ∪X1 ∪X2, {y} ∪ Y1 ∪ Y2) be a balanced

bipartite graph with |Xi| = |Yi| = n−1
2

for i = 1, 2 such that E(F ) consists of edges of 4

complete bipartite graphs F [{x}, Y1 ∪ Y2], F [{y}, X1 ∪X2] and F [Xi, Yi] for i = 1, 2. Let

F = {F1, · · · , F2n} be a bipartite graph collection on the common vertex bipartition such

that Fi = F or Fi = F ∪ {xy} for each i ∈ [2n]. Note that δ(F) = n+1
2

and there is no

partial F-transversal isomorphic to a Hamiltonian path from x to y, see Figure 1. Hence,

we give the following result on Hamiltonian connectivity of bipartite graph collections.

Theorem 1.3. If δ(G) ≥ n+1
2
, then G is Hamiltonian connected or G = F.

In Section 3, we will give the proofs of Theorems 1.2 and 1.3.
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2 Preliminaries

We first give some necessary notation and lemmas in this section, which will be used in

next sections.

2.1 Notation

In this paper, we only consider finite, undirected, connected and simple graphs. For

terminology and notation used but not defined here, we refer the reader to [6]. Let G be

a graph. We use V (G) and E(G) to denote the set of vertices and the set of edges of G,

respectively. For a vertex subset U ⊆ V (G), let G[U ] denote the subgraph of G induced

by U . We use G1 ∪ G2 to denote the union of two vertex-disjoint graphs G1 and G2. A

path or cycle of order k is called a k-path or k-cycle, respectively. For two distinct vertices

vi and vj in a cycle C = v1v2 · · · v`v1, the segment vivi+1 · · · vj−1vj and vivi−1 · · · vj+1vj

are denoted by viCvj and viC
−vj, respectively, where the subscripts are taken modulo

|V (C)|. Meanwhile, we use uiPuj to denote the subpath of P = u1u2 · · ·u` between ui

and uj. For two positive integers a < b, let [a] = {1, 2, . . . , a} and [a, b] = {a, a+1, . . . , b}.
Recall that when (H,φ) is a partial G-transversal, φ is an injection from E(H) to

[2n]. Let im(φ) be the image of φ. For an integer i ∈ [2n], if i /∈ im(φ), then we say that

i is missed by (H,φ). If there exists a partial G-transversal (H,φ), then we also say that

G contains a partial transversal (H,φ). When there is no possible confusion, we replace

(H,φ) by H in the following context.

2.2 Lemmas

Now we will give some lemmas which will be used in the sequel.

Lemma 2.1. Let G = {Gi : i ∈ [2n]} be a bipartite graph collection on the same biparti-

tion V = (X, Y ) with |X| = |Y | = n. If δ(G) ≥ n
2
, then one of the following statements

holds:

(1) G contains a partial transversal isomorphic to a Hamiltonian path;

(2) n is even and G1 = · · · = G2n = Kn
2
,n
2
∪Kn

2
,n
2
.

Proof. Let X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn}. Suppose that neither state-

ments (1) nor (2) holds. Let P be a partial G-transversal isomorphic to a path with

|V (P )| maximum. We divide into two cases to discuss depending on the parity of |V (P )|.

Case 1. P is a partial G-transversal isomorphic to a 2`-path.

Evidently, ` ≤ n− 1. We first prove an easy but crucial claim.

Claim 2.2. There is no partial G-transversal isomorphic to a 2`-cycle.
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Proof. Suppose G has a partial transversal isomorphic to a cycle C = x1y1x2y2 · · ·x`y`x1.
Without loss of generality, assume that C has an associated injection φ : E(C) → [2n]

and [2n]\im(φ) = [2`+ 1, 2n].

We assert that there is no edge between V (C) and V \V (C) in Gi for each i ∈ [2` +

1, 2n]. Otherwise, if there exists some i ∈ [2`+1, 2n], j ∈ [`] and a vertex x ∈ V \V (C) (let

x ∈ X by symmetry) such that xyj ∈ E(Gi), then P1 = xyjCxj is a partial G-transversal

isomorphic to a (2` + 1)-path, contradicting with the maximality of P . Since δ(Gi) ≥ n
2

for each i ∈ [2` + 1, 2n], it follows that |V (C)| ≥ n and |V \V (C)| ≥ n. Then n is even

and G2`+1 = · · · = G2n = Kn
2
,n
2
∪Kn

2
,n
2
.

We also assert that there is no edge between V (C) and V \V (C) in Gi for each i ∈ [2`].

Otherwise, there exists some i ∈ [2`], j ∈ [`] and a vertex x ∈ V \V (C) (let x ∈ X by

symmetry) such that xyj ∈ E(Gi). Let uv be the edge of E(C) with φ(uv) = i. As

G2n = Kn
2
,n
2
∪ Kn

2
,n
2
, we have uv ∈ E(G2n). Then (P2, φ1) with P2 = xyjCxj is a

partial G-transversal isomorphic to a (2` + 1)-path where φ1 arises from φ by setting

φ1(uv) := 2n (if uv exists in P2) and φ1(xyj) := i, a contradiction. Similarly, we can

deduce that G1 = · · · = G2` = Kn
2
,n
2
∪Kn

2
,n
2
.

Hence, Lemma 2.1 (2) holds and the assumption is wrong. Thus Claim 2.2 follows.

Without loss of generality, let P = x1y1x2y2 · · ·x`y` have an associated injection φ :

E(P ) → [2n] with [2n]\im(φ) = [2`, 2n]. Choose two arbitrary integers c1, c2 ∈ [2`, 2n].

Let Ic1 and Ic2 be the following sets:

Ic1 := {i ∈ [`− 1] : x1yi ∈ E(Gc1)},

Ic2 := {i ∈ [2, `] : xiy` ∈ E(Gc2)}.

By the maximality of P and Claim 2.2, we have NGc1
(x1) ⊆ V (P )\{y`} and NGc2

(y`) ⊆
V (P )\{x1}. We also have Ic1 ∩ Ic2 = ∅, otherwise there exists a partial G-transversal

isomorphic to a 2`-cycle. Therefore, n ≤ |Ic1 | + |Ic2| = |Ic1 ∪ Ic2| ≤ ` ≤ n − 1, a

contradiction.

Case 2. P is a partial G-transversal isomorphic to a (2`− 1)-path.

Let P = x1y1x2y2 · · ·x`−1y`−1x` with its associated injection φ∗ : E(P )→ [2n]. With-

out loss of generality, set [2n]\im(φ∗) = [2`− 1, 2n]. Obviously, ` ≤ n. We first prove the

following result.

Claim 2.3. There is a partial G-transversal isomorphic to a (2`− 2)-cycle.

Proof. Suppose G has no partial transversal isomorphic to a (2`−2)-cycle. Then x1y`−1 /∈
E(G2n) and x`y1 /∈ E(G2n−1). We consider the following two sets:

I2n := {i ∈ [`− 2] : x1yi ∈ E(G2n)},

I2n−1 := {i ∈ [3, `] : x`yi−1 ∈ E(G2n−1)}.

5



By the maximality of P , NG2n(x1) ⊆ V (C)\{y`−1} and NG2n−1(x`) ⊆ V (C)\{y1}. No

partial G-transversal isomorphic to a (2`−2)-cycle guarantees that I2n∩I2n−1 = ∅, which

implies that n ≤ |I2n|+ |I2n−1| = |I2n ∪ I2n−1| ≤ ` ≤ n. Hence ` = n. Now we define the

following sets:

I ′2n := {i ∈ [2, n− 1] : ynxi ∈ E(G2n)},

I ′2n−1 := {i ∈ [n− 2] : x1yi ∈ E(G2n−1)}.

We can deduce I ′2n ∩ I ′2n−1 = ∅, otherwise, there is a partial G-transversal isomorphic

to a Hamiltonian path. It follows that n ≤ |I ′2n| + |I ′2n−1| = |I ′2n ∪ I ′2n−1| ≤ n − 1, a

contradiction. Thus the claim follows.

Without loss of generality, let (C, φ) be a partial G-transversal isomorphic to a (2`−
2)-cycle with C = x1y1x2y2 · · ·x`−1y`−1x1 and φ missing [2` − 1, 2n]. We assert that

Gi[V \V (C)] contains at least one edge for some integer i ∈ [2` − 1, 2n]. Otherwise,

Gi[V \V (C)] is an empty graph for each i ∈ [2`− 1, 2n]. We define

I2n := {i ∈ [`− 1] : xiy ∈ E(G2n)},

I2n−1 := {i ∈ [`− 1] : xyi ∈ E(G2n−1)},

where x ∈ X\V (C), y ∈ Y \V (C). We have I2n ∩ I2n−1 = ∅, otherwise there exists some

i ∈ I2n ∩ I2n−1 such that P1 = yxiC
−yix is a partial G-transversal isomorphic to a 2`-

path, contradicting with the maximality of P . Hence, n ≤ |I2n|+ |I2n−1| = |I2n∪ I2n−1| ≤
`− 1 ≤ n− 1, a contradiction.

Without loss of generality, assume that G2n[V \V (C)] contains at least one edge.

Choose an arbitrary edge xy in G2n[V \V (C)]. We assert that NGj
(x) ∩ V (C) = ∅

and NGj
(y) ∩ V (C) = ∅ for each j ∈ [2` − 1, 2n − 1]. Otherwise, there exists some

j ∈ [2` − 1, 2n − 1] and k ∈ [` − 1] such that xyk ∈ E(Gj). Then P2 = yxykCxk is a

partial G-transversal isomorphic to a 2`-path, a contradiction.

Fix an integer j ∈ [2` − 1, 2n − 1], since dGj
(x) ≥ n

2
and dGj

(y) ≥ n
2
, we have that

|V \V (C)| ≥ n and Gj[V \V (C)] is not empty. Choosing an edge in Gj[V \V (C)] and

repeating the above discussion, we have NG2n(x) ∩ V (C) = ∅ and NG2n(y) ∩ V (C) = ∅.
Thus, for each v ∈ V \V (C) and i ∈ [2` − 1, 2n], we have NGi

(v) ∩ V (C) = ∅. It follows

that there is no edge between V (C) and V \V (C) in Gi for each i ∈ [2` − 1, 2n]. Hence,

n is even and G2`−1 = · · · = G2n = Kn
2
,n
2
∪Kn

2
,n
2
.

Next we consider Gi for each i ∈ [2` − 2]. Suppose that there exists a vertex x ∈
X\V (C) such that xyk ∈ E(Gi) for some k ∈ [` − 1]. Let uv be the edge of C with

uv ∈ E(Gi). As Gj = Kn
2
,n
2
∪Kn

2
,n
2

for each j ∈ [2`− 1, 2n], we have uv ∈ E(G2n−1) and

xy ∈ E(G2n) for each y ∈ Y \V (C). Then (P4, φ
′′) is a partial G-transversal isomorphic to

a 2`-path such that P4 = yxykCxk and φ′′ arises from φ by letting φ′′(uv) := 2n− 1 (if uv

exists in P4), φ
′′(xy) := 2n and φ′′(xyk) := i, a contradiction. Hence for each v ∈ V \V (C)

and i ∈ [2` − 2], we have NGi
(v) ∩ V (C) = ∅, which implies that G1 = · · · = G2`−2 =

Kn
2
,n
2
∪Kn

2
,n
2
.
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Thus Lemma 2.1 (2) holds. This completes the proof of Lemma 2.1.

Lemma 2.4. Let G = {Gi : i ∈ [2n]} be a bipartite graph collection on the same biparti-

tion (X, Y ) with |X| = |Y | = n− 1 such that δ(G) ≥ n−1
2
. Let P = x1y1 · · ·xn−1yn−1 be a

partial G-transversal isomorphic to a (2n−2)-path. Then one of the following statements

holds:

(1) there is a partial G-transversal isomorphic to a (2n− 2)-cycle;

(2) there is a partial G-transversal isomorphic to the disjoint union of a (2n− 4)-cycle

and a copy of K2;

(3) n− 1 is even and for each i missed by P , we have NGi
(x1) = {y1, y2, · · · , yn−1

2
} and

NGi
(yn−1) = {xn+1

2
, xn+3

2
, · · · , xn−1}.

Proof. Without loss of generality, let φ : E(P ) → [2n] be the associated injection of

P with φ(xiyi) = 2i − 1 for i ∈ [n − 1] and φ(yixi+1) = 2i for i ∈ [n − 2]. Then

[2n]\im(φ) = [2n− 2, 2n]. Define the following sets:

I2n := {i ∈ [n− 1] : x1yi ∈ E(G2n)},

I2n−1 := {i ∈ [n− 1] : xiyn−1 ∈ E(G2n−1)}.

If I2n ∩ I2n−1 6= ∅, then there exists some i ∈ I2n ∩ I2n−1. Thus C1 = x1Pxiyn−1Pyix1

is a partial G-transversal isomorphic to a (2n − 2)-cycle and so statement (1) holds. If

I2n ∩ I2n−1 = ∅, then n − 1 ≤ |I2n| + |I2n−1| = |I2n ∪ I2n−1| ≤ n − 1. It follows that

n − 1 is even, I2n ∪ I2n−1 = [n − 1] and |I2n| = |I2n−1| = n−1
2

. If there exists some

i ∈ I2n−1 such that i + 1 ∈ I2n, then C2 = x1Pxiyn−1Pyi+1x1 and yixi+1 is a partial G-

transversal isomorphic to the disjoint of a (2n− 4)-cycle and a copy of K2 and statement

(2) thus holds. Otherwise, I2n = [n−1
2

] and I2n−1 = [n+1
2
, n − 1], which implies that

NG2n(x1) = {y1, y2, · · · , yn−1
2
} and NG2n−1(yn−1) = {xn+1

2
, xn+3

2
, · · · , xn−1}. By symmetry,

we have NGi
(x1) = {y1, y2, · · · , yn−1

2
} and NGi

(yn−1) = {xn+1
2
, xn+3

2
, · · · , xn−1} for each

i ∈ [2n− 2, 2n]. Hence, statement (3) holds.

3 Proofs of Theorems 1.2 and 1.3

After the preparations of the above section, we are ready to give the proofs of our main

results, Theorems 1.2 and 1.3.

3.1 Proof of Theorem 1.2

Given a positive integer d and a set A ⊆ Z, let A + d = {i + d : i ∈ A} and A − d =

{i− d : i ∈ A}. We first introduce a useful tool obtained in [7].
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Lemma 3.1 ([7]). Let n be an integer and (Z2n,+) be the cyclic group of 2n elements.

Let A ⊆ Z2n and B = (A+ d)∪ (A− d) with d ∈ [2n− 1]. If |A| = |B|, then A = A+ 2d.

Now we are ready to prove Theorem 1.2.

Proof. By Theorem 1.1, each vertex of X ∪ Y is contained in a G-transversal isomorphic

to a Hamiltonian cycle. It remains to show that each vertex of X ∪ Y is contained in a

partial G-transversal isomorphic to an `-cycle for every even integer ` ∈ [4, 2n− 2].

First, we consider the case n = 3. Let (C, φ) be a G-transversal isomorphic to a

6-cycle C with C = v1v2 · · · v6v1 and its associated injection φ satisfying φ(vivi+1) := i

for each i ∈ [6] (identify v7 with v1). Without loss of generality, assume that v1 is

not contained in any partial G-transversal isomorphic to a 4-cycle. Now we show that

v1v4, v2v5, v3v6 /∈ E(Gi) for all i ∈ [6]. If v1v4 ∈ E(Gi) for some i ∈ [6], then v1v2v3v4v1

or v1v4v5v6v1 is a partial G-transversal isomorphic to a 4-cycle, a contradiction. Since

dGi
(v1) ≥ 2 and v1, v3, v5 belong to the same part, we have v1v2, v1v6 ∈ E(Gi) for each

i ∈ [6]. If v2v5 ∈ E(Gi) for some i ∈ [6]\{5}, then v1v2v5v6v1 is a partial G-transversal

isomorphic to a 4-cycle, a contradiction. So, v2v5 /∈ E(Gi) for each i ∈ [6]\{5}. It follows

from dGi
(v5) ≥ 2 that v5v6 ∈ E(Gi) for each i ∈ [6]\{5}. Therefore, v2v5 /∈ E(G5),

otherwise, v1v2v5v6v1 is a partial G-transversal isomorphic to a 4-cycle. By symmetry, we

have v3v6 /∈ E(Gi) for each i ∈ [6]. Thus, Gi = C for all i ∈ [6].

Next we consider the case n ≥ 4. Fix an arbitrary vertex x ∈ X and suppose that x

is not contained in a partial G-transversal isomorphic to an `′-cycle for some even integer

`′ ∈ [4, 2n − 2]. Since δ(G) ≥ n+1
2

, we have
∑2n

i=1 dGi
(x) ≥ n(n + 1). By an averaging

argument, we can find a vertex y ∈ Y such that the edge xy appears on at least n + 1

graphs of G. Set Mi = Gi − {x, y} for each i ∈ [2n] and M′ = {M1, · · · ,M2n−2}. Then

|Mi| = 2n − 2 and δ(Mi) ≥ n−1
2

for each i ∈ [2n]. By Lemma 2.1, M′ contains a partial

transversal isomorphic to a (2n − 2)-path or n − 1 is even and M1 = · · · = M2n−2 =

Kn−1
2
,n−1

2
∪Kn−1

2
,n−1

2
.

We first assume that n − 1 is even and M1 = · · · = M2n−2 = Kn−1
2
,n−1

2
∪ Kn−1

2
,n−1

2
.

Set X − {x} = X1 ∪ X2 and Y − {y} = Y1 ∪ Y2 with X1 = {x1, x2, · · · , xn−1
2
}, X2 =

{xn+1
2
, xn+3

2
, · · · , xn−1}, Y1 = {y1, y2, · · · , yn−1

2
} and Y2 = {yn+1

2
, yn+3

2
, · · · , yn−1}. Fur-

thermore, Mi[Xj ∪ Yj] = Kn−1
2
,n−1

2
for every i ∈ [2n− 2] and j ∈ {1, 2}. As δ(G) ≥ n+1

2
,

we have xyj, yxj ∈ E(Gi) for each i ∈ [2n − 2] and j ∈ [n − 1]. It is not difficult to

find that x is contained in a partial G-transversal isomorphic to an `-cycle for every even

integer ` ∈ [4, 2n− 2], a contradiction.

Now we assume that M′ contains a partial transversal, denoted by P , isomorphic to a

(2n−2)-path. It is clear that P is also a partial transversal isomorphic to a (2n−2)-path

in M = {M1, · · · ,M2n}. Thus applying Lemma 2.4 on M, we know that one of the three

statements in Lemma 2.4 holds. Next, we proceed with our proof by distinguishing three

cases according to the three statements.

Case 1. There is a partial M-transversal isomorphic to a (2n− 2)-cycle.
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Assume that M has a partial transversal isomorphic to a cycle C = v1v2 · · · v2n−3v2n−2v1.
Without loss of generality, let φ be its associated injection with φ(vivi+1) := i for each i ∈
[2n−2] (identify v2n−1 with v1). SetX = {v1, v3, · · · , v2n−3, x} and Y = {v2, v4, · · · , v2n−2, y}.
Let ` be an even integer with ` ∈ [4, 2n− 2]. We define

I2n := {i ∈ [2n− 2] ∩ 2Z : xvi ∈ E(G2n)}

and

I2n−1 := {i ∈ [2n− 2] ∩ 2Z : xvi+`−2 ∈ E(G2n−1)}.

If I2n ∩ I2n−1 6= ∅, then choose an integer i ∈ I2n ∩ I2n−1, and so viCvi+`−2xvi is a partial

G-transversal isomorphic to an `-cycle, a contradiction. Hence, I2n ∩ I2n−1 = ∅. Then,
n−1
2

+ n−1
2
≤ |I2n| + |I2n−1| ≤ n − 1, which implies that I2n ∪ I2n−1 = [2n − 2] ∩ 2Z and

|I2n| = |I2n−1| = n−1
2

. Since δ(G) ≥ n+1
2

, we have xy ∈ E(G2n) ∩ E(G2n−1). In fact, for

any partial M-transversal (C ′, φ′) isomorphic to a (2n− 2)-cycle with V (C ′) = V (C), we

have xy ∈ E(Gi) for each i ∈ [2n] missed by (C ′, φ′).

Claim 3.2. For any two consecutive edges e and f on C, we have xy ∈ E(Gφ(e))∪E(Gφ(f)).

Proof. Without loss of generality, we only need to prove xy ∈ E(G1) ∪ E(G2). Suppose

that xy /∈ E(G1) and xy /∈ E(G2). If v1v2 ∈ E(G2n), then (C, φ1) is a partial M-

transversal isomorphic to a (2n−2)-cycle where φ1 arises from φ by setting φ1(v1v2) := 2n.

Observe that (C, φ1) misses 1, and then xy ∈ E(G1), a contradiction. Thus v1v2 /∈ E(G2n).

By symmetry, v1v2 /∈ E(G2n−1).

For each even integer j ∈ [2n − 2], we pair {v1, vj} with {v2, vj+1}. Note that if

v1vj ∈ E(G2n), then v2vj+1 /∈ E(G2n−1). Otherwise, (C ′, φ2) with C ′ = C − v1v2 −
vjvj+1 + v1vj + v2vj+1 is a partial M-transversal isomorphic to a (2n − 2)-cycle where

φ2 arises from φ by setting φ2(v1vj) := 2n and φ2(v2vj+1) := 2n − 1. Observe that

(C ′, φ2) misses 1, which implies xy ∈ E(G1), a contradiction. Therefore, |NG2n(v1) ∩
V (C)| + |NG2n−1(v2) ∩ V (C)| ≤ n − 1. On the other hand, since δ(G2n) ≥ n+1

2
and

δ(G2n−1) ≥ n+1
2

, we have |NG2n(v1) ∩ V (C)| + |NG2n−1(v2) ∩ V (C)| ≥ n − 1. Then,

|NG2n(v1)∩V (C)| = |NG2n−1(v2)∩V (C)| = n−1
2

. Hence for each even integer j ∈ [2n− 2],

either v1vj ∈ E(G2n) and v2vj+1 /∈ E(G2n−1) or v1vj /∈ E(G2n) and v2vj+1 ∈ E(G2n−1).

When j = 2, we have v2v3 ∈ E(G2n−1) since v1v2 /∈ E(G2n). Therefore, (C, φ3) is a

partial M-transversal isomorphic to a (2n − 2)-cycle where φ3 arises from φ by setting

φ3(v2v3) := 2n− 1. So, (C, φ3) misses 2 which implies xy ∈ E(G2), a contradiction. The

claim thus follows.

Recall that I2n := {i ∈ [2n− 2] ∩ 2Z : xvi ∈ E(G2n)} and |I2n| = n−1
2

. In fact, we will

see that I2n can be seen as a subgroup of Z2n−2. We consider the following sets

B := (I2n + (`− 2)) ∪ (I2n − (`− 2)),

B′ := (I2n + (`− 3)) ∪ (I2n − (`− 3)),
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where ` ∈ [4, 2n− 2] ∩ 2Z. So, |B| ≥ |I2n| and |B′| ≥ |I2n|.
Set A := {j ∈ [2n − 2] ∩ 2Z : xvj ∈ E(G2n−1)} \ B. If |B| ≥ |I2n| + 1, then |A| ≤

n− 1− (|I2n|+ 1) ≤ n−3
2
< n−1

2
. So, there exists some i ∈ I2n satisfying j = i+ (`− 2) or

j = i−(`−2) such that xvj ∈ E(G2n−1). Then for every even integer ` ∈ [4, 2n−2], (C1, φ1)

with C1 = xviCvi+`−2x (or C1 = xviC
−vi−(`−2)x) is a partial G-transversal isomorphic to

an `-cycle, where φ1 arises from φ by setting φ1(xvi) := 2n and φ1(xvi+`−2) := 2n − 1

(or φ1(xvi−(`−2)) := 2n − 1), a contradiction. Then |I2n| = |B|, and by Lemma 3.1,

I2n = I2n + (2`− 4).

Set A′ := {k ∈ [2n − 2]\(2Z ∪ B′) : yvk ∈ G2n−1}. If |B′| ≥ |I2n| + 1, then |A′| ≤
n−3
2
< n−1

2
. Thus, there exists some i ∈ I2n such that k = i + (` − 3) or k = i − (` − 3)

such that yvk ∈ E(G2n−1). By Claim 3.2, we know that xy ∈ E(Gi−1) or xy ∈ E(Gi−2),

and xy ∈ E(Gi) or xy ∈ E(Gi+1). Without loss of generality, assume that xy ∈ E(Gi−1)

and xy ∈ E(Gi). Then we obtain that (C2, φ2) with C2 = xviCvi+`−3yx (or C2 =

xviC
−vi−(`−3)yx) is a partial G-transversal isomorphic to an `-cycle, where φ2 arises from

φ by setting φ2(xvi) := 2n, φ2(yvi+`−3) := 2n − 1 (or φ2(yvi−(`−3)) := 2n − 1) and

φ2(xy) := i − 1 (or φ2(xy) := i), a contradiction. Then |I2n| = |B|, and by Lemma 3.1,

I2n = I2n + (2`− 6).

Since I2n = I2n + (2` − 4) and I2n = I2n + (2` − 6), it follows that I2n = I2n + 2.

Then |I2n| = n − 1, which contradicts with |I2n| = n−1
2

. Therefore for each even integer

` ∈ [4, 2n− 2], there exists a partial G-transversal isomorphic to an `-cycle containing x,

a contradiction.

Case 2. There is a partial M-transversal isomorphic to the disjoint union of a (2n− 4)-

cycle and a copy of K2.

Let C = v1v2 · · · v2n−4v1 and C ∪ {wz} be the partial M-transversal isomorphic to

the disjoint union of a (2n− 4)-cycle and a copy of K2. Let φ be its associated injection

with φ(wz) = 2n− 3 and φ(vivi+1) = i for each i ∈ [2n− 4] (identify v2n−3 with v1). Set

X = {v2, v4, · · · , v2n−4, x, z} and Y = {v1, v3, · · · , v2n−5, y, w}. We define

I2n = {i ∈ [2n− 4] ∩ 2Z : zvi+1 ∈ E(G2n)},

I2n−1 = {i ∈ [2n− 4] ∩ 2Z : wvi ∈ E(G2n−1)}.

Since M contains no partial transversal isomorphic to a (2n−2)-cycle, we have I2n∩I2n−1 =

∅. Note that dG2n[V (C)](z) ≥ n−3
2

and dG2n−1[V (C)](w) ≥ n−3
2

. So, n− 3 ≤ |I2n|+ |I2n−1| =
|I2n ∪ I2n−1| ≤ n− 2.

If |I2n ∪ I2n−1| = n − 2, then I2n ∪ I2n−1 = [2n − 4] ∩ 2Z. So, there exists some

i ∈ [2n − 4] ∩ 2Z satisfying i ∈ I2n and i + 2 ∈ I2n−1. Therefore, (C ′, φ′) is partial

M-transversal isomorphic to a (2n− 2)-cycle with C ′ = zwvi+2Cvi+1z and φ′ originating

from φ by adding φ′(vi+1z) := 2n and φ′(vi+2w) := 2n − 1, a contradiction. Hence

|I2n ∪ I2n−1| = n − 3. It follows that n is odd and |I2n| = |I2n−1| = n−3
2

. There exists

some i ∈ [2n − 4] ∩ 2Z such that i /∈ I2n ∪ I2n−1. Without loss of generality, we assume
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2n− 4 /∈ I2n ∪ I2n−1, implying that I2n ∪ I2n−1 = [2n− 6] ∩ 2Z. As δ(G) ≥ n+1
2

, we have

zw, zy ∈ E(G2n) and wx,wz ∈ E(G2n−1).

If there exists an i ∈ [2n − 6] ∩ 2Z such that i ∈ I2n and i + 2 ∈ I2n−1, then (C1, φ1)

is a partial M-transversal isomorphic to a (2n − 2)-cycle with C1 = zwvi+2Cvi+1z and

φ1 obtained from φ by setting φ1(zvi+1) := 2n and φ1(wvi+2) := 2n− 1, a contradiction.

Therefore, I2n = {n − 1, n + 1, · · · , 2n − 6} and I2n−1 = {2, 4, · · · , n − 3}, which means

that NG2n(z) = {vn, vn+2, · · · , v2n−5, y, w} and NG2n−1(w) = {v2, v4, · · · , vn−3, x, z}. By

symmetry, for each i ∈ [2n − 3, 2n], we have NGi
(z) = {vn, vn+2, · · · , v2n−5, y, w} and

NGi
(w) = {v2, v4, · · · , vn−3, x, z}.
Note that G − {x,w} contains no partial transversal isomorphic to a (2n − 2)-cycle,

since otherwise, the proof of Case 1 ensures that x is contained in a partial G-transversal

isomorphic to an `-cycle for each even integer ` ∈ [4, 2n− 2], a contradiction. Since yz ∈
E(G2n−3), we have that C ∪ {yz} is also a partial transversal isomorphic to the disjoint

union of a (2n− 4)-cycle and a copy of K2 in G. Moreover, so far we have not used the

property that xy appears on at least n+ 1 graphs of G. Hence, we can exchange the roles

of y and w in the above proof of Case 2, and obtain that NGi
(y) = {v2, v4, · · · , vn−3, x, z}

for each i ∈ [2n− 3, 2n].

Actually, for any partial M-transversal (C ′, φ′) with V (C ′) = V (C), we have xy ∈
E(Gi) for each i ∈ [2n] missed by (C ′, φ′). Next, we prove one more property for the edge

xy.

Claim 3.3. For any three consecutive edges e, f, g on C, we have xy ∈ E(Gφ(e)) ∪
E(Gφ(f)) ∪ E(Gφ(g)).

Proof. Without loss of generality, we only need to consider the case that e = v1v2, f = v2v3

and g = v3v4, and prove that xy ∈ E(G1)∪E(G2)∪E(G3). Suppose to the contrary that

xy /∈ E(G1) ∪ E(G2) ∪ E(G3).

If v2v3 ∈ E(G2n), then (C, φ′) is a partial M-transversal isomorphic to a (2n − 4)-

cycle where φ′ arises from φ by setting φ′(v2v3) := 2n. So, (C, φ′) misses 2. Hence

xy ∈ E(G2), a contradiction. Thus v2v3 /∈ E(G2n). By symmetry, we have v2v3 /∈ E(Gi)

for each i ∈ [2n− 3, 2n]. Similarly, we have vivi+1 /∈ E(Gj) for each i ∈ {1, 2, 3} and each

j ∈ [2n− 3, 2n].

For each odd integer a ∈ [2n−4], we pair {v2, va} with {v3, va+1}. The total number of

such pairs is n−2. For any {j1, j2} ⊆ [2n−3, 2n], if v2va ∈ E(Gj1), then v3va+1 /∈ E(Gj2).

Otherwise, (C ′, φ′′) is a partial transversal isomorphic to a (2n − 4)-cycle with C ′ =

v2vaC
−v3va+1Cv2, where φ′′ arises from φ by setting φ′′(v2va) = j1 and φ′′(v3va+1) = j2.

Observing that V (C ′) = V (C) and (C ′, φ′′) misses 2, we have xy ∈ G2, a contradiction.

Notice that {v1, v2} and {v2, v3} are a pair, while {v2, v3} and {v3, v4} are a pair as

well. Recall that vivi+1 /∈ E(Gj) for each i ∈ {1, 2, 3} and j ∈ [2n − 3, 2n]. Then

v1v2 /∈ E(Gj1), v2v3 /∈ E(Gj2), v2v3 /∈ E(Gj1) and v3v4 /∈ E(Gj2), which indicates that

|NGj1
(v2) ∩ V (C)| + |NGj2

(v3) ∩ V (C)| ≤ n − 4. Since δ(G) ≥ n+1
2

, we have |NGj1
(v2) ∩
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V (C)|+ |NGj2
(v3) ∩ V (C)| ≥ n− 3, a contradiction.

Claim 3.4. For each i ∈ [2n− 3, 2n], we have NGi
(x) = {vn, vn+2, · · · , v2n−5, y, w}.

Proof. Suppose to the contrary that there exists some i ∈ [2n− 3, 2n] and an odd integer

a ∈ [n − 1] such that xva ∈ E(Gi). Without loss of generality, we assume that xva ∈
E(G2n). Recalling that n is odd, we have a 6= n− 1.

If a = n − 2, then we can find a partial G-transversal isomorphic to an `-cycle

containing x for each even integer ` ∈ [4, 2n − 2]. In fact, for each even integer ` ∈
[4, n− 1], (C2, φ2) is a partial G-transversal isomorphic to an `-cycle containing x, where

C2 = yvn−`+1Cvn−2xy and φ2 arises from φ by setting φ2(xvn−2) := 2n, φ(yvn−`+1) :=

2n − 1, φ(xy) := 2n − 2. For each even integer ` ∈ [n + 3, 2n − 2], (C2, φ2) with

C2 = yvn−`+1C
−vn−2xy is a partial G-transversal isomorphic to an `-cycle containing

x. For ` = n + 1, (C2, φ2) is a partial G-transversal isomorphic to an `-cycle containing

x, where C2 = xyzwv2Cvn−2x and φ2 arises from φ by setting φ2(xvn−2) := 2n, φ(yz) :=

2n − 1, φ(zw) := 2n − 2, φ(wv2) := 2n − 3, φ(xy) ∈ {n − 2, n − 1, n} (by Claim 3.3). In

conclusion, for each even integer ` ∈ [4, 2n− 2], x is contained in a partial G-transversal

isomorphic to an `-cycle, a contradiction.

Now we assume a 6= n− 2. Then the odd integer a is in [n− 4]. For each even integer

` ∈ [4, n − a], (C3, φ3) is a partial G-transversal isomorphic to an `-cycle containing x,

where C3 = xvaCva+`−3yx and φ3 arises from φ by setting φ3(xva) := 2n, φ3(yva+`−3) :=

2n− 1, φ3(xy) := 2n− 2. By symmetry, for each even integer ` ∈ [n+ a+ 2, 2n− 2], set

`∗+ ` = 2n+ 2, then `∗ ∈ [4, n−a]. Thus, (C3, φ3) with C3 = xvaC
−va+`∗−3yx is a partial

G-transversal isomorphic to an `-cycle containing x.

For ` = n − a + 2, (C3, φ3) is a partial G-transversal isomorphic to an (n + 2 − a)-

cycle with C3 = vaCvn−3wzyxva and φ3 obtained from φ by setting φ3(xva) := 2n,

φ3(wvn−3) := 2n− 1, φ3(yz) := 2n− 2, φ3(zw) := 2n− 3, φ3(xy) ∈ {a− 3, a− 2, a− 1}
(by Claim 3.3).

For each even integer ` ∈ [n − a + 4, 2n − a − 1], (C3, φ3) with C3 = xvaCva+`−4zyx

is a partial G-transversal isomorphic to an `-cycle, where φ3 arises from φ by setting

φ3(xva) := 2n, φ3(xy) := 2n − 1, φ3(yz) := 2n − 2, φ3(zva+`−4) := 2n − 3. Likewise, for

each even integer ` ∈ [a+5, n+a], set `∗+` = 2n+4, then `∗ ∈ [n−a+4, 2n−a−1]. Thus,

(C3, φ3) with C3 = xvaC
−va+`∗−4zyx is a partial G-transversal isomorphic to an `-cycle,

where φ3 arises from φ by setting φ3(xva) := 2n, φ3(xy) := 2n − 1, φ3(yz) := 2n − 2,

φ3(zva+`∗−4) := 2n− 3.

Since a ≤ n− 4, we have 2n− a− 1 > a+ 5. Consequently, x is contained in a partial

G-transversal isomorphic to an `-cycle for every even integer ` ∈ [2n−2], a contradiction.

Therefore, we get that NG2n(x) = {vn, vn+2, · · · , v2n−5, y, w}. By symmetry, NGi
(x) =

{vn, vn+2, · · · , v2n−5, y, w} for each i ∈ [2n− 3, 2n]. The claim thus follows.

Therefore, for each even integer ` ∈ [6, n + 1], (C ′, φ′) is a partial G-transversal

isomorphic to an `-cycle with C ′ = yvn−3Cvn+`−6xy and φ′ arising from φ by setting
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φ′(xy) := 2n, φ′(xvn+`−6) := 2n−1, φ′(yv2) := 2n−2. For each even integer ` ∈ [n+1, 2n−
4], (C ′′, φ′′) is a partial G-transversal isomorphic to an `-cycle with C ′′ = yv2Cv`−1xy

and φ′′ arising from φ by setting φ′′(xy) := 2n, φ′′(xv`−1) := 2n − 1, φ′′(yv2) := 2n − 2.

Apparently, xyzwz and xyv4Cv2wx are partial G-transversals isomorphic to a 4-cycle and

a (2n− 2)-cycle, respectively. Hence, x is contained in a partial G-transversal isomorphic

to an `-cycle with any even integer ` ∈ [2n− 2], a contradiction.

Case 3. Lemma 2.4 (3) holds in M.

Without loss of generality, we assume that P = x1y1 · · ·xn−1yn−1 with φ(xiyi) = 2i−1

for each i ∈ [n− 1] and φ(yjxj+1) = 2j for each j ∈ [n− 2].

Claim 3.5. For each i ∈ {φ(x1y1), φ(xn−1yn−1)} or i missed by P , we have NGi
(x1) =

{y1, y2, · · · , yn−1
2
, y} and NGi

(yn−1) = {xn+1
2
, xn+3

2
, · · · , xn−1, x}.

Proof. Note that P misses 2n − 2, 2n − 1 and 2n. By Lemma 2.4 (3), we know that

NMi
(x1) = {y1, y2, · · · , yn−1

2
} and NMi

(yn−1) = {xn+1
2
, xn+3

2
, · · · , xn−1} for each i ∈ [2n−

2, 2n]. Since δ(G) ≥ n+1
2

, we have NGi
(x1) = {y1, y2, · · · , yn−1

2
, y} and NGi

(yn−1) =

{xn+1
2
, xn+3

2
, · · · , xn−1, x} for each i ∈ [2n− 2, 2n].

Let (P, φ1) be a partial M-transversal isomorphic to a (2n − 2)-path with φ1 arising

from φ by setting φ′(x1y1) := 2n. Note that (P, φ1) misses 1. Then by Lemma 2.4

(3) and δ(G1) ≥ n+1
2

, we get that NG1(x1) = NG2n(x1) and NG1(yn−1) = NG2n(yn−1).

Since xn−1yn−1 ∈ E(G2n−1), by the similar analysis, we can deduce that NG2n−3(yn−1) =

NG2n−1(yn−1) and NG2n−3(x1) = NG2n−1(x1). The claim thus follows.

Denote C(uv) := {i ∈ [2n] : uv ∈ E(Gi)}. Let (Pi, φi) be a partial M-transversal

isomorphic to a (2n − 2)-path with Pi = xiPx1yiPyn−1 and φi arising from φ by setting

φi(x1yi) := 2n for each i ∈ [2, n−1
2

]. Observe that (Pi, φi) misses 2i − 1 and φi(xiyi−1) =

2i − 2. By Claim 3.5, we know that [1, n − 2] ∪ [2n − 3, 2n] ⊆ C(xyn−1). Let (P ′i , φ
′
i)

be a partial M-transversal isomorphic to a (2n − 2)-path with P ′i = yiPyn−1xiPx1 and

φ′i arising from φ by setting φ′i(xiyn−1) := 2n for each i ∈ [n+1
2
, n − 2]. By the similar

analysis, we have {1} ∪ [n, 2n] ⊆ C(x1y).

Since |C(xy)| ≥ n + 1 > 1, there exists some a ∈ C(xy) satisfying a 6= n − 1. If

a ∈ [2n − 2, 2n], say a = 2n, then yx1Pyn−1xy is a partial G-transversal isomorphic

to a Hamiltonian cycle and xyn−1xn−1yn−2x is a partial G-transversal isomorphic to a

4-cycle. Moreover, for each k ∈ [3, n− 1], (C2k, φ
∗
2k) is a partial transversal isomorphic to

a 2k-cycle with C2k = yx1yn−1
2
−b k−3

2
cPxn+1

2
+b k−3

2
cyn−1xy and φ∗2k arising from φ by adding

φ∗2k(x1yn−1
2
−b k−3

2
c) := 1, φ∗2k(xn+1

2
+b k−3

2
cyn−1) := 2n− 3, φ∗2k(xy) := 2n, φ∗2k(yx1) := 2n− 1,

φ∗2k(xyn−1) := 2n − 2, a contradiction. Furthermore, for any Hamiltonian G-transversal

C satisfying xy ∈ E(C), there exists a partial G-transversal isomorphic to a 2k-cycle

containing x for each k ∈ [2, n].

Next, we consider the case a < n − 1. If φ(xjyj) = a, then (P ′, φ′) is a partial M-

transversal isomorphic to a (2n−2)-path with P ′ = Pj and φ′ = φj. Observe that (P ′, φ′)
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misses a. By Claim 3.5, (C, φ∗) is a G-transversal isomorphic to a Hamiltonian cycle with

C = yxjP
′yn−1xy, where φ∗ arises from φ′ by setting φ∗(xy) := a, φ∗(xjy) := 2n− 1 and

φ∗(xyn−1) := 2n− 2, a contradiction.

If φ(yjxj+1) = a, then (Pj+1, φj+1) is a partial M-transversal isomorphic to a (2n−2)-

path. Applying Claim 3.5 yields that yjxj+1 ∈ E(G2n−1). Therefore (P ′, φ′) is a partial

transversal isomorphic to a (2n − 2)-path as well, with P ′ = Pj+1 and φ′ arising from

φj+1 by setting φ′(yjxj+1) := 2n− 1. So, (P ′, φ′) misses a and 2j + 1. Hence, (C, φ∗) is a

Hamiltonian G-transversal with C = yxj+1P
′yn−1xy, where φ∗ arises from φ′ by setting

φ∗(xy) := a, φ∗(xj+1y) := 2n− 2 and φ∗(xyn−1) := 2j+ 1, a contradiction. By symmetry,

we deduce that if a ∈ [n, 2n−3], then x is contained in a partial G-transversal isomorphic

to a 2k-cycle for each k ∈ [2, n], a contradiction.

This complete the proof for the case n ≥ 4, and Theorem 2.1 thus follows.

3.2 Proof of Theorem 1.3

Proof. Take arbitrary vertices x ∈ X and y ∈ Y . Set Mi = Gi − {x, y} for each i ∈ [2n]

with bipartition XM = X \ {x} and YM = Y \ {y}. Let M = {M1,M2, · · · ,M2n}. Then

|Mi| = 2n − 2 and δ(Mi) ≥ n−1
2

for each i ∈ [2n]. By Lemma 2.1, M contains a partial

transversal isomorphic to a (2n − 2)-path or M1 = · · · = M2n = Kn−1
2
,n−1

2
∪Kn−1

2
,n−1

2
(n

is odd).

If M1 = · · · = M2n = Kn−1
2
,n−1

2
∪Kn−1

2
,n−1

2
, then without loss of generality, let XM =

X1 ∪ X2, YM = Y1 ∪ Y2 with X1 = {x1, x2, · · · , xn−1
2
}, X2 = {xn+1

2
, xn+3

2
, · · · , xn−1},

Y1 = {y1, y2, · · · , yn−1
2
}, Y2 = {yn+1

2
, yn+3

2
, · · · , yn−1}. Moreover, Mi[Xj ∪ Yj] = Kn−1

2
,n−1

2

for every i ∈ [2n] and j ∈ {1, 2}. As δ(G) ≥ n+1
2

, we have xyi, yxi ∈ E(Gj) for each

i ∈ [n− 1] and j ∈ [2n]. Therefore G = F.

Note that each partial M-transversal is also a partial G-transversal. If M contains

a partial transversal isomorphic to a (2n − 2)-path, then M satisfies one of the three

statements by Lemma 2.4. Next, we distinguish the following three cases to proceed the

proof.

Case 1. There is a partial M-transversal isomorphic to a (2n− 2)-cycle.

Assume that C = x1y1 · · ·xn−1yn−1x1 is a partial M-transversal isomorphic to a (2n−
2)-cycle. Let φ be an associated injection of C (identify xn with x1) with φ(xiyi) = 2i− 1

and φ(yixi+1) = 2i for each i ∈ [n− 1]. Then [2n]\im(φ) = {2n− 1, 2n}. We define

T2n := {i ∈ [n− 1] : xyi ∈ E(G2n)},

T2n−1 := {i ∈ [n− 1] : xiy ∈ E(G2n−1)}.

If T2n ∩ T2n−1 6= ∅, then xyiCxiy is a partial transversal isomorphic to a Hamiltonian

path from x to y. If T2n ∩ T2n−1 = ∅, then n−1
2

+ n−1
2
≤ |T2n| + |T2n−1| ≤ n − 1, which

implies that T2n ∪T2n−1 = [n− 1] and |T2n| = |T2n−1| = n−1
2

. Therefore, there exists some
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i ∈ [n − 1] such that i ∈ T2n and i + 1 ∈ T2n−1. Then yxi+1Cyix is a partial transversal

isomorphic to a Hamiltonian path from y and x.

Case 2. There is a partial M-transversal isomorphic to the disjoint union of a (2n− 4)-

cycle and a copy of K2.

Let C = x1y1 · · ·xn−2yn−2x1 (identify xn−1 with x1) and C ∪ {wz} (z ∈ XM and

w ∈ YM) be the partial M-transversal isomorphic to the disjoint union of a (2n− 4)-cycle

and a copy of K2 with associated injection φ, where φ(wz) = 2n− 3 and φ(xiyi) = 2i− 1

and φ(yixi+1) = 2i for each i ∈ [n− 2]. We define the following sets

T2n := {i ∈ [n− 2] : zyi ∈ E(G2n)},

T2n−1 := {i ∈ [n− 2] : wxi ∈ E(G2n−1)}.

Note that if M contains a partial transversal isomorphic to a (2n − 2)-cycle, then we

are done by Case 1. So, we have T2n ∩ T2n−1 = ∅. Then, n − 3 ≤ |T2n| + |T2n−1| =

|T2n ∪ T2n−1| ≤ n− 2.

If |T2n ∪ T2n−1| = n− 2, then we have T2n ∪ T2n−1 = [n− 2]. Observe that there exists

some i ∈ [n− 2] satisfying i ∈ T2n, i+ 1 ∈ T2n−1. Thus, (C, φ′) is a partial M-transversal

isomorphic to a (2n−2)-cycle such that C ′ = yizwxi+1Cyi and φ′ arises from φ by setting

φ′(yiz) := 2n, φ′(wxi+1) := 2n− 1, a contradiction.

If |T2n ∪ T2n−1| = n − 3, then we have |T2n| = |T2n−1| = n−3
2

, which indicates that n

is odd. Hence, there exists some i ∈ [n − 2] such that i /∈ T2n ∪ T2n−1. Without loss of

generality, say i = 1, implying that T2n ∪ T2n−1 = [2, n− 2]. As δ(G) ≥ n+1
2

, we have zw,

zy ∈ E(G2n), wx, wz ∈ E(G2n−1).

If there exists some i ∈ [n− 3] such that i ∈ T2n and i+ 1 ∈ T2n−1, then yizwxi+1Cyi

is a partial transversal isomorphic to a (2n − 2)-cycle, a contradiction. Hence, T2n−1 =

[2, n−1
2

] and T2n = [n+1
2
, n − 2]. It follows that NG2n−1(w) = {x2, x3, · · · , xn−1

2
, x, z} and

NG2n(z) = {yn+1
2
, yn+3

2
, · · · , yn−2, y, w}. By symmetry, we deduce that for any i ∈ [2n −

3, 2n], NGi
(w) = {x2, x3, · · · , xn−1

2
, x, z} and NGi

(z) = {yn+1
2
, yn+3

2
, · · · , yn−2, y, w}.

Observe that (C ′ ∪ {x1y1}, φ′) is a partial M-transversal with C ′ = wx2Cyn−2zw

(identify xn−1 with z), where φ′ arises from φ by setting φ′(wx2) := 2n, φ′(zyn−2) := 2n−1,

φ′(zw) := 2n− 2. Let

T2n−3 := {i ∈ [2, n− 2] : x1yi ∈ E(G2n−3)},

T2n−4 := {i ∈ [n− 2] : xi+1y1 ∈ E(G2n−4)}.

Since x1 /∈ NG2n−3(w), by the similar analysis we obtain that |T2n−3| = |T2n−4| = n−3
2

,

T2n−3 = [2, n−1
2

] and T2n−4 = [n+1
2
, n − 2]. Recall that xn−1 = z. Hence, NG2n−3(x1) =

{y, y1, y2, · · · , yn−1
2
} andNG2n−4(y1) = {x, x1, xn+3

2
, · · · , xn−2, z}. By symmetry, NG2n−3(y1) =

NG2n−4(y1), contradicting with y1 /∈ NG2n−3(z).

Case 3. Lemma 2.4 (3) holds in M.
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Let P = x1y1 · · ·xn−1yn−1 be a partial M-transversal isomorphic to a (2n − 2)-path

with φ(xiyi) = 2i − 1 for each i ∈ [n − 1] and φ(yixi+1) = 2i for each i ∈ [n − 2]. Then

[2n]\im(φ) = [2n− 2, 2n]. By Lemma 2.4 (3) and δ(Gj) ≥ n+1
2

for each j ∈ {2n− 1, 2n},
we have NG2n(x1) = {y1, y2, · · · , yn−1

2
, y} and NG2n−1(yn−1) = {xn+1

2
, xn+3

2
, · · · , xn−1, x}.

Hence, (P ′, φ′) is a partial G-transversal isomorphic to a Hamiltonian path from x to

y such that P ′ = xyn−1Px1y and φ′ arises from φ by setting φ′(xyn−1) := 2n − 1 and

φ′(yx1) := 2n.

This completes the proof of Theorem 1.3.

Note that Theorem 1.3 is about the rainbow Hamiltonian connectivity of a collection

of 2n bipartite graphs rather than 2n−1 bipartite graphs. The main reason is that in the

above proof, we need to use two colors not appearing on the rainbow cycle C of length

2n− 2 to find a rainbow Hamiltonian path for for any two vertices x ∈ X and y ∈ Y . It

would be interesting to study the rainbow Hamiltonian connectivity of a collection 2n−1

bipartite graphs under the same degree condition.
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