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Abstract

Let G = {G1,...,G2,} be a bipartite graph collection on the common vertex
bipartition (X,Y) with |X| = |Y| = n. We say that G is bipancyclic if there exists
a partial G-transversal isomorphic to an ¢-cycle for each even integer ¢ € [4,2n],
while G is wvertex-bipancyclic if any vertex v € X UY is contained in a partial
G-transversal isomorphic to an ¢-cycle for each even integer ¢ € [4,2n]|. Bradshaw
in [Transversals and bipancyclicity in bipartite graph families, Electron. J. Comb.,
2021] showed that for each i € [2n], if dg,(x) > § for each x € X and dg,(y) > § for
each y € Y, then G is bipancyclic, which generalizes a classical result of Schmeichel
and Mitchem in [Bipartite graphs with cycles of all even lengths, J. Graph Theory,
1982] on the bipancyclicity of bipartite graphs to the setting of graph transversals.
Motivated by their work, we study vertex-bipancyclicity in bipartite graph collec-
tions and prove that if §(G;) > "T‘H for any ¢ € [2n], then G is vertex-bipancyclic
unless n = 3 and G consists of 6 identical copies of a 6-cycle. Moreover, we also

show the Hamiltonian connectivity of G.
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1 Introduction

Over the last decades, there has been much research on Hamiltonicity of graphs, which
is one of the most fundamental topics in graph theory. The classical Dirac’s theorem [12]
in 1952 states that every n-vertex graph with minimum degree at least % is Hamiltonian.
In 1971, Bondy [4] proved that every n-vertex graph is pancyclic under the same degree
condition expect for Kn» ». Later, Bondy in [5] posed the following meta-conjecture:

Almost any nontrivial condition on a graph which implies that the graph is Hamiltonian



also implies that it is pancyclic (except for possibly a simple family of exceptional graphs).
This has been verified for many sufficient conditions for Hamiltonicity. Actually, some
sufficient conditions forcing Hamiltonicity can even guarantee vertex-pancyclicity with
minor adjustments. For example, in 1990, Hendry in [I4] proved that every n-vertex
graph with minimum degree at least "T“ is vertex-pancyclic. Note that when the graph is
a balanced bipartite graph, it is natural to study whether conditions forcing Hamiltonicity
can guarantee bipancyclicity, or even vertex-bipancyclicity. Indeed, in 1963, Moon and
Moser in [I7] established a minimum degree condition for the existence of Hamiltonian
cycle in a balanced bipartite graph, which can be seen as a bipartite analogue of Dirac’s
theorem. Later in 1982, Schmeichel and Mitchem in [21] generalized the above result to
bipancyclicity under the same degree condition.

Very recently, the study of transversals over graph collections has received much at-
tention, and some classical results in extremal graph theory have been extended to the
setting of graph transversals. The concept of a graph transversal was first raised by Joos
and Kim [I5] in 2020. Let G = {G4,...,Gs} be a graph collection with common vertex
set V and H be a graph with V(H) C V. We say that (H, ¢) is a partial G-transversal
if there exists an injection ¢ : E(H) — [s] such that e € E(Gy)) for each e € E(H). In
particular, if |E/(H)| = s, then we call (H, ¢) a G-transversal. Aharoni, DeVos, Gonzélez
Hermosillo de la Maza, Montejano and Sémal [2] considered Mantel’s theorem in the set-
ting of graph transversals and proposed the following conjecture motivated by Dirac’s

theorem.

Conjecture 1 ([2]). Let G = {G1, -+ ,G,} be a graph collection on the common vertex
set V' of size n. If the minimum degree of G is at least § for each ¢ € [n], then there

exists a G-transversal isomorphic to a Hamiltonian cycle on V.

This conjecture was verified asymptotically by Cheng, Wang and Zhao in [I1], and
completely by Joos and Kim in [I5]. Besides Hamiltonian cycles, results on other struc-
tures in extremal graph theory have also been generalized to the setting of graph transver-
sals, including cycles [7, O, 20], matchings [Il, B, [13], trees [8, 16] and factors [10] [18].
Bradshaw in [7] initiated the study of (partial) transversals in bipartite graph collections

and obtained the following theorem analogous to Moon and Moser’s result in [17].

Theorem 1.1 ([7]). Let G = {G1,- -+ ,Ga,} be a bipartite graph collection on the common
vertex bipartition (X,Y) with |X| = |Y| = n. If for each i € 2n], dg,(z) > § and
da,(y) > 5 for any v € X and y € Y, then there evists a G-transversal isomorphic to a

Hamiltonian cycle on X UY .

For convenience, in the following context we always use G to denote a bipartite graph
collection {G, -+ ,Ga,} on the common vertex bipartition (X,Y) with |X| = |Y| = n,
unless otherwise stated. We define §(G) = min{d(G;) : i € [2n]}, where 6(G) denotes
the minimum degree of a graph G. We say that G is bipancyclic if there exists a partial



Figure 1: FF= ({z} UX; UXo, {y} UY1 UY3)

G-transversal isomorphic to an ¢-cycle for each even integer ¢ € [4,2n], while G is vertez-
bipancyclic if each vertex v € X UY is contained in a partial G-transversal isomorphic to
an (-cycle for each even integer ¢ € [4,2n]. Bradshaw in [7] proved a stronger result which
states that G is bipancyclic under the same degree condition as Theorem [I.1], generalizing
the result of Schmeichel and Mitchem in [21]. Hence, the degree condition in Theorem
fits Bondy’s meta-conjecture in the setting of graph transversals. This motivates us
to verify if this degree condition (with a minor adjustment) can guarantee the vertex-
bipancyclicity of G, since vertex-bipancyclicity implies bipancyclicity. It is noteworthy
that Kn » U K= » contains no Hamiltonian cycles. Thus, the condition 6(G) = § can not

guarantee the vertex-bipancyclicity of G. As a result, we get a positive answer as follows.

Theorem 1.2. If§(G) > "T“, then G is vertez-bipancyclic, unless n = 3 and G consists

of six identical copies of a 6-cycle.

Hamiltonian connectivity is closely related with Hamiltonicity and it is a significant
property in graph theory (see e.g. [19]). Inspired by this, we study the Hamiltonian
connectivity of bipartite graph collections. We say that G is Hamiltonian connected if
for any two vertices z € X and y € Y, there is a partial G-transversal isomorphic to
a Hamiltonian path from x to y. To state our result, we define the following graph
collection: Let n be an odd integer and F' = ({2} U X; U Xy, {y} UY; UY>) be a balanced
bipartite graph with |X;| = |V;| = 25 for i = 1,2 such that E(F) consists of edges of 4
complete bipartite graphs F[{z},Y; UYs], F[{y}, Xi1 U Xy] and F[X;,Y;] for i = 1,2. Let
F = {F,,- -, F,,} be a bipartite graph collection on the common vertex bipartition such
that F; = F or F; = F U {xy} for each i € [2n]. Note that §(F) = 2! and there is no
partial F-transversal isomorphic to a Hamiltonian path from z to y, see Figure [l Hence,

we give the following result on Hamiltonian connectivity of bipartite graph collections.
Theorem 1.3. If §(G) > 2+, then G is Hamiltonian connected or G = F.

In Section 3, we will give the proofs of Theorems [I.2] and [1.3]



2 Preliminaries

We first give some necessary notation and lemmas in this section, which will be used in

next sections.

2.1 Notation

In this paper, we only consider finite, undirected, connected and simple graphs. For
terminology and notation used but not defined here, we refer the reader to [6]. Let G be
a graph. We use V(G) and E(G) to denote the set of vertices and the set of edges of G,
respectively. For a vertex subset U C V(G), let G[U] denote the subgraph of G induced
by U. We use GG; U G5 to denote the union of two vertex-disjoint graphs G; and Gs. A
path or cycle of order k is called a k-path or k-cycle, respectively. For two distinct vertices
v; and v; in a cycle C' = v1vg - - - vpvy, the segment v;v;qq -+ v;-10; and V;v;_1 - - - Vj410;
are denoted by v;Cv; and v;C~vj, respectively, where the subscripts are taken modulo
|[V(C)|. Meanwhile, we use u;Pu; to denote the subpath of P = wjus - --u, between u;
and u;. For two positive integers a < b, let [a] = {1,2,...,a} and [a,b] = {a,a+1,...,b}.

Recall that when (H,¢) is a partial G-transversal, ¢ is an injection from E(H) to
[2n]. Let im(¢) be the image of ¢. For an integer i € [2n], if ¢ ¢ im(¢), then we say that
i is missed by (H, ¢). If there exists a partial G-transversal (H, ¢), then we also say that
G contains a partial transversal (H, ¢). When there is no possible confusion, we replace
(H, ) by H in the following context.

2.2 Lemmas

Now we will give some lemmas which will be used in the sequel.

Lemma 2.1. Let G = {G; : i € [2n]} be a bipartite graph collection on the same biparti-
tion V = (X,Y) with | X| = |Y| = n. If §(G) > 5, then one of the following statements
holds:

(1) G contains a partial transversal isomorphic to a Hamiltonian path;

(2) nis even and Gy =+ = Gop = Knn UKn n.
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Proof. Let X = {x1,x9, -+ ,x,} and Y = {y1,99, -+ ,yn}. Suppose that neither state-
ments (1) nor (2) holds. Let P be a partial G-transversal isomorphic to a path with
|V (P)| maximum. We divide into two cases to discuss depending on the parity of |V (P)].

Case 1. P is a partial G-transversal isomorphic to a 2¢-path.
Evidently, ¢ < n — 1. We first prove an easy but crucial claim.

Claim 2.2. There is no partial G-transversal isomorphic to a 2¢-cycle.



Proof. Suppose G has a partial transversal isomorphic to a cycle C' = z1y122ys - - - Tpypxy.
Without loss of generality, assume that C' has an associated injection ¢ : E(C) — [2n]
and [2n]\im(¢) = [2¢ + 1, 2n].

We assert that there is no edge between V(C') and V\V(C) in G; for each i € [2¢ +
1, 2n]. Otherwise, if there exists some i € [20+1,2n], j € [(] and a vertex z € V\V (C) (let
x € X by symmetry) such that xy; € E(G;), then P, = xy;Cz; is a partial G-transversal
isomorphic to a (2¢ 4 1)-path, contradicting with the maximality of P. Since §(G;) > %
for each i € [2¢ + 1,2n], it follows that |V(C)| > n and |[V\V(C)| > n. Then n is even
and Gopy1 = --- = Go, = K%,g U K%,%.

We also assert that there is no edge between V(C') and V\V(C') in G; for each i € [2/].
Otherwise, there exists some i € [2(], j € [(] and a vertex x € V\V(C) (let z € X by
symmetry) such that zy; € E(G;). Let uv be the edge of E(C) with ¢(uv) = i. As
Goy = Ko n UKz, we have uv € E(Gy,). Then (P2, ¢1) with P, = 2y;Cx; is a
partial G-transversal isomorphic to a (2¢ + 1)-path where ¢; arises from ¢ by setting
¢1(uv) == 2n (if wv exists in P») and ¢q(xy;) := 4, a contradiction. Similarly, we can
deduce that G; = -+ = Gg = K%% U K%%

Hence, Lemma[2.1](2) holds and the assumption is wrong. Thus Claim [2.2]follows. [

Without loss of generality, let P = zyy129ys - - - 4y, have an associated injection ¢ :
E(P) — [2n] with [2n]\im(¢) = [2¢,2n]. Choose two arbitrary integers ¢y, co € |20, 2n].
Let 1., and I., be the following sets:

I, ={i€[l—1]: 2y € BE(G.)},

I, ={i€[2,/]:xy € E(G,)}

By the maximality of P and Claim , we have Ng, (z1) € V(P)\{y,} and Ng,, (y¢) C
V(P)\{z1}. We also have I, N I., = 0, otherwise there exists a partial G-transversal
isomorphic to a 2¢-cycle. Therefore, n < |I,| + |I.,| = |I, UIl,| < ¢ < n—-1, a

contradiction.
Case 2. P is a partial G-transversal isomorphic to a (2¢ — 1)-path.

Let P = z1y129ys - - - Ty—1Ye—12¢ With its associated injection ¢* : E(P) — [2n]. With-
out loss of generality, set [2n]\im(¢*) = [2¢ — 1, 2n]. Obviously, ¢ < n. We first prove the
following result.

Claim 2.3. There is a partial G-transversal isomorphic to a (2¢ — 2)-cycle.

Proof. Suppose G has no partial transversal isomorphic to a (2¢—2)-cycle. Then 1y, ¢
E(Gs,) and xpy; ¢ E(Gapn—1). We consider the following two sets:

Ly :={i1€[l—-2]:x1y; € E(Ga,)},

Ioy_q = {Z S [3,6] Y1 € E(Gzn_l)}.



By the maximality of P, Ng,, (1) € V(C)\{yi—1} and Ng,, ,(x;) € V(C)\{x1}. No
partial G-transversal isomorphic to a (2¢ — 2)-cycle guarantees that I, N1s, 1 = @, which
implies that n < |Io,| 4 [lon_1| = [1on U I2,—1| < ¢ < n. Hence ¢ = n. Now we define the
following sets:

L, ={ie2,n—1]: y,x; € E(Gay)},

L, ={ie[n—2]:z1y; € E(Gan-1)}-

We can deduce I}, NI}, ; = 0, otherwise, there is a partial G-transversal isomorphic
to a Hamiltonian path. It follows that n < |I},| + |15, = |15, U L5, 4| < n—1,a

contradiction. Thus the claim follows. O

Without loss of generality, let (C, ¢) be a partial G-transversal isomorphic to a (2¢ —
2)-cycle with C' = x1y129Y0 - - - xp_1ye—121 and ¢ missing [2¢ — 1,2n]. We assert that
G;[V\V(C)] contains at least one edge for some integer i € [2¢ — 1,2n|. Otherwise,
G;[V\V(C)] is an empty graph for each i € [2¢ — 1,2n]. We define

Ly ={ie[l—1]: 2y € E(Gan)},

IQn—l = {Z S [f — 1] TXY; € E(ng_l)},

where z € X\V(C),y € Y\V(C). We have Iy, N I,_1 = (), otherwise there exists some
1 € Iy, N I, 1 such that P, = yx;C~y;x is a partial G-transversal isomorphic to a 2/-
path, contradicting with the maximality of P. Hence, n < |Io,| + [lon_1]| = |I2n U I3y _1| <
¢ —1<n-—1, a contradiction.

Without loss of generality, assume that Ga,[V\V(C)| contains at least one edge.
Choose an arbitrary edge zy in Ga,[V\V(C)]. We assert that Ng (z) N V(C) = 0
and Ng,(y) N V(C) = 0 for each j € [2¢ — 1,2n — 1]. Otherwise, there exists some
j€[20—1,2n—1] and k € [¢ — 1] such that zy, € E(G;). Then P, = yxy,Cxy is a
partial G-transversal isomorphic to a 2¢-path, a contradiction.

Fix an integer j € [2¢ —1,2n — 1], since dg,(z) > 5 and dg,(y) > 5, we have that
[VAV(C)| > n and G,[V\V(C)] is not empty. Choosing an edge in G;[V\V(C)] and
repeating the above discussion, we have Ng,, () NV(C) = 0 and Ng,, (y) N V(C) = 0.
Thus, for each v € V\V(C) and i € [2¢ — 1,2n], we have Ng,(v) N V(C) = 0. Tt follows
that there is no edge between V(C') and V\V(C) in G; for each i € [2¢ — 1,2n]. Hence,
nis even and Goy_; = -+ = Go,, = K%% U K%,%.

Next we consider G; for each i € [2¢ — 2]. Suppose that there exists a vertex = €
X\V(C) such that zy, € E(G;) for some k € [¢ — 1]. Let uv be the edge of C' with
uv € E(G;). As Gj = Kn n UKz » for each j € [20 —1,2n], we have uv € E(G2,-1) and
zy € E(Gy,) for each y € Y\V(C). Then (P4, ¢") is a partial G-transversal isomorphic to
a 2(-path such that Py = yry,Cx) and ¢” arises from ¢ by letting ¢ (uv) := 2n —1 (if uv
exists in Py), ¢"(xy) := 2n and ¢"(zyx) := i, a contradiction. Hence for each v € V\V(C)
and ¢ € [2¢ — 2], we have Ng,(v) N V(C) = 0, which implies that G; = +-+ = Ggy_o9 =
KnnUKnn.



Thus Lemma (2) holds. This completes the proof of Lemma [2.1] O

Lemma 2.4. Let G = {G; : i € [2n]} be a bipartite graph collection on the same biparti-
tion (X,Y) with | X| = Y| =n—1 such that 5(G) > 1. Let P = 1y1 -+ Ty_1Yn—1 be a
partial G-transversal isomorphic to a (2n—2)-path. Then one of the following statements
holds:

(1) there is a partial G-transversal isomorphic to a (2n — 2)-cycle;

(2) there is a partial G-transversal isomorphic to the disjoint union of a (2n — 4)-cycle

and a copy of Ko;

(3) n—1 is even and for each i missed by P, we have Ng,(z1) = {y1, Y2, - - - ,yanl} and

NGz‘(ynfl) = {‘%”T"’lax”T*'?’a T ,$n,1}-

Proof. Without loss of generality, let ¢ : F(P) — [2n] be the associated injection of
P with ¢(x;y;) = 2i — 1 for i € [n — 1] and ¢(y;xi41) = 20 for ¢ € [n — 2]. Then
[2n]\im(¢) = [2n — 2,2n]. Define the following sets:

Ly :={icn—1]: 2y € BE(Gy)},

I, 1 = {Z S [n — 1] P TiYn—1 € E(ngfl)}.

If Lo, N 15,1 7é @, then there exists some 7 € I, N Ig,_1. Thus C = xlpxiyn_leixl
is a partial G-transversal isomorphic to a (2n — 2)-cycle and so statement (1) holds. If
IQn N [2n_1 = @, then n — 1 < |[2n‘ + ’[2n—1‘ = |IQn U [zn_]_‘ S n — 1. It follows that

n —11is even, Iy, Uly, 1 = [n— 1] and |I,| = [lon_1| = "T’l If there exists some

1€ Ign_l such that 1+ 1€ Ign7 then CQ = lexiyn_lpyHlxl and YiTivr1 s a partial G-
transversal isomorphic to the disjoint of a (2n — 4)-cycle and a copy of K, and statement

(2) thus holds. Otherwise, I, = [”T_l] and Iy, = [”T“,n — 1], which implies that

Nng(xl) = {3/17 Yo, 7y"T_1} and NGzn_1 (ynfl) = {x"T""la x"T*'?’v T 7xn71}' BY symmetry,
we have Ng,(z1) = {y1,42,-+ ,ync2} and N, (yn-1) = {@npr, @ngs, -+ @1} for each
i € [2n — 2,2n]. Hence, statement (3) holds. O

3 Proofs of Theorems 1.2 and [1.3

After the preparations of the above section, we are ready to give the proofs of our main
results, Theorems [I.2] and [L.3]

3.1 Proof of Theorem [1.2

Given a positive integer d and aset A C Z,let A+d={i+d:i€ A} and A —d =
{i —d:ie A}. We first introduce a useful tool obtained in [7].



Lemma 3.1 ([7]). Let n be an integer and (Zay, +) be the cyclic group of 2n elements.
Let A C Zs, and B = (A+d)U(A—d) withd € 2n—1]. If |A| = |B|, then A = A+ 2d.

Now we are ready to prove Theorem

Proof. By Theorem [1.1], each vertex of X UY is contained in a G-transversal isomorphic
to a Hamiltonian cycle. It remains to show that each vertex of X UY is contained in a
partial G-transversal isomorphic to an ¢-cycle for every even integer ¢ € [4,2n — 2].

First, we consider the case n = 3. Let (C,¢) be a G-transversal isomorphic to a
6-cycle C' with C' = vyvy - - - vgv1 and its associated injection ¢ satisfying ¢(v;v;11) = i
for each ¢ € [6] (identify v; with v;). Without loss of generality, assume that v; is
not contained in any partial G-transversal isomorphic to a 4-cycle. Now we show that
V1vy, VU5, V30 & E(G;) for all @ € [6]. If vivy € E(G;) for some i € [6], then vjvovzvv;
or v1v4UsVgVy 1S a partial G-transversal isomorphic to a 4-cycle, a contradiction. Since
dg,(v1) > 2 and vy, v3,v5 belong to the same part, we have viv9, 1106 € E(G;) for each
i € [6]. If vovs € E(G;) for some i € [6]\{5}, then vvv5v6v1 is a partial G-transversal
isomorphic to a 4-cycle, a contradiction. So, vovs ¢ E(G;) for each i € [6]\{5}. It follows
from dg,(vs) > 2 that vsvg € E(G;) for each i € [6]\{5}. Therefore, vous ¢ E(G5),
otherwise, v1v9v5v4v; is a partial G-transversal isomorphic to a 4-cycle. By symmetry, we
have vsvg ¢ F(G;) for each i € [6]. Thus, G; = C for all i € [6].

Next we consider the case n > 4. Fix an arbitrary vertex x € X and suppose that x
is not contained in a partial G-transversal isomorphic to an ¢'-cycle for some even integer
0 € [4,2n —2]. Since 6(G) > 2, we have S22 dg,(z) > n(n + 1). By an averaging
argument, we can find a vertex y € Y such that the edge xy appears on at least n + 1

graphs of G. Set M; = G; — {z,y} for each i € [2n] and M’ = {My,--- , My, o}. Then
|M;| = 2n — 2 and §(M;) > 5 for each i € [2n]. By Lemma [2.1f M’ contains a partial

transversal isomorphic to a (2n — 2)-path or n — 1 is even and M; = -+ = My, o =
KD n-1 U KL*I n—1.

2 7 2 2 7 2

We first assume that n — 1 is even and M; = -+ = My, 5 = Kanlvanl U Kanl’anl.

Set X — {2} = XjUXyand Y — {y} = Y1 UY;, with X; = {21, 29, -- ,:ch—l}, X, =
{Togr, wugs, - mna}, Vi = {yn, 00, ,ynaa} and Yo = {ynp, ynss, -+ gy} Fur-
thermore, M;[X; UY}] = Koui i for every i € 2n — 2] and j € {1,2}. As 6(G) > 2,
we have zy;,yzr; € E(G;) for each i € [2n — 2] and j € [n — 1]. It is not difficult to
find that z is contained in a partial G-transversal isomorphic to an ¢-cycle for every even
integer ¢ € [4,2n — 2|, a contradiction.

Now we assume that M’ contains a partial transversal, denoted by P, isomorphic to a
(2n — 2)-path. It is clear that P is also a partial transversal isomorphic to a (2n — 2)-path
in M = {M,---, Ms,}. Thus applying Lemma on M, we know that one of the three
statements in Lemma holds. Next, we proceed with our proof by distinguishing three

cases according to the three statements.

Case 1. There is a partial M-transversal isomorphic to a (2n — 2)-cycle.



Assume that M has a partial transversal isomorphic to a cycle C' = v vy - - - Vo, _3V9,_201.
Without loss of generality, let ¢ be its associated injection with ¢(v;v;11) := @ for each i €
[2n—2] (identify vq,, 1 with v1). Set X = {vy, v, -+ v, 3,2} and Y = {vg, vy, -+ ,Vop_2,y}.
Let ¢ be an even integer with ¢ € [4,2n — 2]. We define

Ly :={i€2n—2]N2Z: zv; € E(Gs,)}

and
IZn—l = {Z € [Qn — 2] N 27 : TVj4p—9 € E(GZn—l)}-

If Iy, N 15,1 # 0, then choose an integer i € Iy, N I5,_1, and so v;Cv;,¢_sxv; is a partial
G-transversal isomorphic to an /-cycle, a contradiction. Hence, I, N I,_1 = (). Then,
"T_l + ”T_l < | Ian| + [I2n-1] < n — 1, which implies that I, U I, 1 = [2n — 2] N 2Z and
L] = |Iop—1] = %5*. Since 6(G) > 2+, we have zy € E(Ga,) N E(Ga,-1). In fact, for
any partial M-transversal (C’, ¢') isomorphic to a (2n — 2)-cycle with V(C") = V(C), we
have zy € E(G;) for each i € [2n] missed by (C’, ¢).

Claim 3.2. For any two consecutive edges e and f on C, we have xy € E(G ) ) UE(Gy(y))-

Proof. Without loss of generality, we only need to prove zy € E(G1) U E(Gs). Suppose
that zy ¢ E(G1) and xy ¢ E(Gs). If vijvg € E(Gs,), then (C,¢1) is a partial M-
transversal isomorphic to a (2n—2)-cycle where ¢; arises from ¢ by setting ¢y (viv9) := 2n.
Observe that (C, ¢1) misses 1, and then zy € E(G}), a contradiction. Thus vivs ¢ E(Gay,).
By symmetry, vjve ¢ E(Ga,—1).

For each even integer j € [2n — 2|, we pair {vy,v;} with {vs,vj41}. Note that if
vv; € E(Ga,), then vovj1 ¢ E(Gaop—1). Otherwise, (C7,¢2) with C¢' = C — vyvg —
VjVj11 + v1v; + vovj4 I8 a partial M-transversal isomorphic to a (2n — 2)-cycle where
¢o arises from ¢ by setting ¢o(viv;) = 2n and ¢a(vovj11) = 2n — 1. Observe that
(C', ¢2) misses 1, which implies xy € FE(G1), a contradiction. Therefore, |Ng,, (v1) N
V(C)| + |Ngg,_,(v2) N V(C)| < n—1. On the other hand, since §(Ga,) > “ and
6(Gap—1) > 2, we have |Ng,,(v1) N V(C)| + |Ngy,_,(v2) N V(C)| > n — 1. Then,
|NG,, (1) NV(C)| = [Nay,_, (v2) NV (C)| = 251, Hence for each even integer j € [2n — 2],
either v1v; € E(Ga,) and vovj1q ¢ E(Gan—1) or v1v; ¢ E(Gay) and vav,41 € E(Gap_1).
When j = 2, we have vovg € FE(Ga,_1) since vivg ¢ E(Gay,). Therefore, (C¢3) is a
partial M-transversal isomorphic to a (2n — 2)-cycle where ¢3 arises from ¢ by setting
¢3(vou3) :=2n — 1. So, (C, ¢3) misses 2 which implies zy € E(Gs), a contradiction. The

claim thus follows. 0

Recall that I, := {i € 2n — 2] N 2Z : 2v; € E(Ga,)} and |L,| = 251, In fact, we will

see that I, can be seen as a subgroup of Z,, 5. We consider the following sets
B:= (I, + (¢ —2)U (I, — (£ —2)),

B = (I + (£ = 3)) U (I, — (£ = 3)),



where £ € [4,2n — 2] N 2Z. So, |B| > |Iz,| and |B'| > |Is,].

Set A:={j € 2n—2|N2Z : zv; € E(Gap—1)} \ B. If |[B| > |I,] + 1, then |A] <
n—1— (|l +1) <252 < 2L So, there exists some i € Iy, satisfying j =i+ ({ —2) or
j = i—(¢{—2) such that xv; € E(Ga,_1). Then for every even integer ¢ € [4,2n—2], (C, ¢1)
with Cy = 2v;Cv; oz (or C1 = 2v;C™v;_(4_2)x) is a partial G-transversal isomorphic to
an (-cycle, where ¢; arises from ¢ by setting ¢;(zv;) := 2n and ¢ (zv4—2) == 2n — 1
(or ¢1(zvi—(e—2)) = 2n — 1), a contradiction. Then |I5,| = |B|, and by Lemma [3.1]
Lo = I, + (20 — 4).

Set A" :={k € 2n —2\(2ZU B') : yv, € Go_1}. If |B| > |I3,] + 1, then |A'| <
23 < 221 Thus, there exists some i € Iy, such that k =i+ ({ —3) or k =i — ({ — 3)
such that yv, € E(Ga,—1). By Claim , we know that zy € E(G;_1) or zy € E(G;_2),
and zy € E(G;) or zy € E(G;41). Without loss of generality, assume that zy € E(G;_1)
and xy € FE(G;). Then we obtain that (Cs, ¢a) with Cy = 2v;,Cviyy_syx (or Cy =
2v;C™v;_(e—3)yx) is a partial G-transversal isomorphic to an ¢-cycle, where ¢, arises from
¢ by setting ¢o(xv;) = 2n, ¢a(yvipe—3) = 2n — 1 (or ¢o(yvi—(i—3)) = 2n — 1) and
¢a(zy) :=1—1 (or ¢o(zy) := i), a contradiction. Then |I5,| = |B|, and by Lemma [3.1]
Iy, = Iy, + (20— 6).

Since Iy, = I, + (20 — 4) and Iy, = I, + (20 — 6), it follows that I, = I, + 2.
Then |, = n — 1, which contradicts with |I5,| = %5t. Therefore for each even integer
¢ € [4,2n — 2], there exists a partial G-transversal isomorphic to an ¢-cycle containing z,

a contradiction.

Case 2. There is a partial M-transversal isomorphic to the disjoint union of a (2n — 4)-

cycle and a copy of K.

Let C' = v1vg - v9,_4v; and C' U {wz} be the partial M-transversal isomorphic to
the disjoint union of a (2n — 4)-cycle and a copy of Kj. Let ¢ be its associated injection
with ¢(wz) = 2n — 3 and ¢(v;v;41) = i for each ¢ € [2n — 4] (identify vy,_5 with vy). Set

X ={vo, 04, , V94, 2,2} and Y = {wvy, v, -+ , 9, 5,y,w}. We define
Ly,={i€2n—4]N2Z: zv;11 € E(Ga,)},

Iy, = {’L € [2n — 4] N 27 : wv; € E(ng_l)}.

Since M contains no partial transversal isomorphic to a (2n—2)-cycle, we have Io,NIy,_1 =
0. Note that dg,, vy (2) = %52 and dg,,_ vy (w) = %52, So, n — 3 < |Ly| + [Ln-1| =
|5, U lop 1| <n—2.

If |Io, U I, 1] = n — 2, then I, U Iy, 1 = [2n — 4] N 2Z. So, there exists some
i € [2n — 4] N 27Z satisfying ¢ € Iy, and ¢ + 2 € Iy, 1. Therefore, (C',¢') is partial
M-transversal isomorphic to a (2n — 2)-cycle with C" = zwv;,2Cv;412z and ¢’ originating
from ¢ by adding ¢'(v;412) = 2n and ¢'(v;ow) := 2n — 1, a contradiction. Hence
|I5, U Iy, 1] = n — 3. It follows that n is odd and |Ip,| = |I3,_1] = %52. There exists

2
some i € [2n — 4] N 27Z such that i & Iy, U I, 1. Without loss of generality, we assume
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2n — 4 ¢ Iy, U Iy,_q, implying that I, U I5,—1 = [2n — 6] N 2Z. As 6(G) > "T“, we have
2w, zy € E(Gay) and wz,wz € E(Gay_q).

If there exists an i € [2n — 6] N 2Z such that ¢ € Iy, and i 4+ 2 € Iy, 1, then (Cy, ¢1)
is a partial M-transversal isomorphic to a (2n — 2)-cycle with C; = zwv;;2Cv; 11z and
¢1 obtained from ¢ by setting ¢1(zv;11) := 2n and ¢ (wv;12) := 2n — 1, a contradiction.
Therefore, I, = {n—1,n+1,--- ,2n — 6} and I, 1 = {2,4,--- ,n — 3}, which means
that Ng,, (2) = {Un, Uni2, "+ ,Von_s5,y,w} and Ng, (w) = {ve,v4, -+ ,v,_3,2,2}. By
symmetry, for each i € [2n — 3,2n|, we have Ng,(2) = {vn,Vni2,  * ,V2n_5,y, w} and
Ng,(w) ={vg,vg, -+ , V3,2, 2}.

Note that G — {z,w} contains no partial transversal isomorphic to a (2n — 2)-cycle,
since otherwise, the proof of Case [l| ensures that x is contained in a partial G-transversal
isomorphic to an ¢-cycle for each even integer ¢ € [4,2n — 2], a contradiction. Since yz €
E(Gan—3), we have that C'U {yz} is also a partial transversal isomorphic to the disjoint
union of a (2n — 4)-cycle and a copy of K, in G. Moreover, so far we have not used the
property that xy appears on at least n+ 1 graphs of G. Hence, we can exchange the roles
of y and w in the above proof of Case [ and obtain that Ng,(y) = {va, va, -+ , vn_s3, @, 2}
for each i € [2n — 3,2n].

Actually, for any partial M-transversal (C’,¢') with V(C") = V(C), we have zy €
E(G;) for each i € [2n] missed by (C’, ¢'). Next, we prove one more property for the edge

xy.

Claim 3.3. For any three consecutive edges e, f,g on C, we have zy € E(Gg)) U
E(Gor)) U E(Gy(g))-

Proof. Without loss of generality, we only need to consider the case that e = vvs, f = vou3
and g = vsvy, and prove that xy € E(G1)U E(G2) U E(G3). Suppose to the contrary that
xy ¢ E(Gh)U E(G2) U E(Gs).

If vovg € E(Gay), then (C,¢') is a partial M-transversal isomorphic to a (2n — 4)-
cycle where ¢’ arises from ¢ by setting ¢'(vovs) := 2n. So, (C,¢’) misses 2. Hence
zy € F(G3), a contradiction. Thus vyvs ¢ E(Gs,). By symmetry, we have vovs ¢ E(G;)
for each ¢ € [2n — 3, 2n]. Similarly, we have v;v;11 ¢ E(G;) for each i € {1,2,3} and each
J € [2n — 3,2n].

For each odd integer a € [2n—4], we pair {vq, v, } with {v3,v,11}. The total number of
such pairs is n—2. For any {j1, jo} C [2n—3,2n], if vav, € E(G},), then vzv,41 ¢ E(G,,).
Otherwise, (C”,¢") is a partial transversal isomorphic to a (2n — 4)-cycle with C" =
V90, C ™ 030,41Cv9, where ¢ arises from ¢ by setting ¢ (vov,) = j1 and ¢"(v3v,41) = Jo.
Observing that V(C") = V(C) and (C’, ¢") misses 2, we have xy € G, a contradiction.

Notice that {vy, v} and {vq,v3} are a pair, while {vq,v3} and {vs,v4} are a pair as
well.  Recall that vv;1 ¢ E(G;) for each i € {1,2,3} and j € [2n — 3,2n]. Then
vy ¢ E(Gj), vovs ¢ E(Gy,), vavs ¢ E(G),) and vsvy ¢ E(Gj,), which indicates that
|Ng,, (v2) NV(C)| + |Ng,, (v3) N V(C)| < n —4. Since §(G) > ol we have |Ng;, (v2) N

2
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V(CO)| + |Ng,, (vs) N V(C)| = n — 3, a contradiction. O
Claim 3.4. For each i € [2n — 3,2n], we have Ng,(z) = {vn, Uny2, "+ ,Von_5, Y, W}.

Proof. Suppose to the contrary that there exists some i € [2n — 3, 2n] and an odd integer
a € [n — 1] such that zv, € E(G;). Without loss of generality, we assume that zv, €
E(Gs,). Recalling that n is odd, we have a # n — 1.

If a = n — 2, then we can find a partial G-transversal isomorphic to an /¢-cycle
containing x for each even integer ¢ € [4,2n — 2]. In fact, for each even integer ¢ €
[4,n — 1], (Cq, @) is a partial G-transversal isomorphic to an ¢-cycle containing z, where
Cy = yv,_111Cv,_oxy and ¢o arises from ¢ by setting ¢o(zv,_2) = 2n, d(Yv,_ry1) =
2n — 1,¢(zy) := 2n — 2. For each even integer ¢ € [n + 3,2n — 2|, (Cy, ¢2) with
Cy = yv,_p11C v, oxy is a partial G-transversal isomorphic to an ¢-cycle containing
xz. For £ =n+ 1, (Cy, ¢9) is a partial G-transversal isomorphic to an ¢-cycle containing
x, where Cy = zyzwvyCv,_ox and ¢y arises from ¢ by setting ¢o(zv,_2) := 2n, ¢(yz) :=
2n — 1, ¢(zw) := 2n — 2, ¢(wvs) == 2n — 3,P(zy) € {n — 2,n — 1,n} (by Claim 3.3). In
conclusion, for each even integer ¢ € [4,2n — 2], x is contained in a partial G-transversal
isomorphic to an f-cycle, a contradiction.

Now we assume a # n — 2. Then the odd integer a is in [n — 4]. For each even integer
¢ € [4,n —al, (Cs,p3) is a partial G-transversal isomorphic to an ¢-cycle containing z,
where C3 = 2v,Cv,1¢_3yx and ¢3 arises from ¢ by setting ¢3(zxv,) := 2n, ¢3(Yvare—3) =
2n — 1, ¢3(xy) := 2n — 2. By symmetry, for each even integer ¢ € [n + a + 2,2n — 2|, set
0 +0=2n+2 then {* € [4,n—a|. Thus, (Cs, ¢3) with C35 = 2v,C~v,1¢+_3yz is a partial
G-transversal isomorphic to an ¢-cycle containing .

For { =n —a+ 2, (Cs,¢3) is a partial G-transversal isomorphic to an (n + 2 — a)-
cycle with C5 = v,Cv,_swzyzrv, and ¢3 obtained from ¢ by setting ¢3(xv,) = 2n,
O3(wu,_3) :=2n — 1, ¢3(yz) = 2n — 2, ¢3(zw) :=2n — 3, ¢3(zy) € {a —3,a — 2,a — 1}
(by Claim [3.3)).

For each even integer ¢ € [n —a + 4,2n — a — 1], (Cs, ¢3) with C3 = 20,Cvq 42y
is a partial G-transversal isomorphic to an (-cycle, where ¢3 arises from ¢ by setting
O3(xvy) = 2n, P3(xy) == 2n — 1, ¢3(yz) = 2n — 2, Pp3(2v440—4) := 2n — 3. Likewise, for
each even integer ¢ € [a+5,n+al, set £*+¢ = 2n+4, then (* € [n—a+4,2n—a—1]. Thus,
(Cs, ¢3) with C3 = 2v,C v _42yz is a partial G-transversal isomorphic to an ¢-cycle,
where ¢3 arises from ¢ by setting ¢3(xv,) := 2n, ¢3(zy) = 2n — 1, ¢3(yz) = 2n — 2,
B3(2Vaspe—q) := 2n — 3.

Since a < n —4, we have 2n —a — 1 > a + 5. Consequently, x is contained in a partial
G-transversal isomorphic to an ¢-cycle for every even integer ¢ € [2n — 2], a contradiction.
Therefore, we get that Ng, () = {vn, Vni2,+* ,Von_s,y,w}. By symmetry, Ng,(z) =

{Vn, Vnt2, -+, Van_5,y,w} for each i € [2n — 3,2n]. The claim thus follows. O

Therefore, for each even integer ¢ € [6,n + 1], (C',¢') is a partial G-transversal

isomorphic to an f-cycle with C" = yv,_3Cv,, s ¢ry and ¢ arising from ¢ by setting
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¢ (xy) == 2n, ¢'(xv,10-6) := 2n—1, ¢'(yvy) := 2n—2. For each even integer ¢ € [n+1,2n—
4], (C",¢") is a partial G-transversal isomorphic to an (-cycle with C” = yv,Cvp_jxy
and ¢” arising from ¢ by setting ¢”(xy) := 2n, ¢"(zv,_1) := 2n — 1, ¢"(yve) := 2n — 2.
Apparently, zyzwz and zyv,Cvswzx are partial G-transversals isomorphic to a 4-cycle and
a (2n — 2)-cycle, respectively. Hence, x is contained in a partial G-transversal isomorphic

to an (-cycle with any even integer ¢ € [2n — 2], a contradiction.
Case 3. Lemma [2.4] (3) holds in M.

Without loss of generality, we assume that P = zyy; « - - £, _1yn—1 With ¢(x;y;) = 2i—1
for each i € [n — 1] and ¢(y;z;41) = 2j for each j € [n —2].

Claim 3.5. For each i € {¢(x191), ¢(Tn—1yn—1)} or i missed by P, we have Ng,(z1) =
{yla Y2, 7y”T*1a y} and NGi(yn—l) = {mnTﬂax"Tﬁv T >:En—17x}'

Proof. Note that P misses 2n — 2, 2n — 1 and 2n. By Lemma (3), we know that

Nog, (1) =y, 92, - ,yanl} and Ny, (Yn—1) = {anH,anJr?), - X1} for each i € [2n —
2,2n]. Since §(G) > ™ we have Ng,(z1) = {y1,v2, - ,yan,y} and Ng,(Yn—1) =
{:chH,:chw, o Xy_1,x} for each i € [2n — 2,2n).

Let (P, ¢1) be a partial M-transversal isomorphic to a (2n — 2)-path with ¢; arising
from ¢ by setting ¢'(x1y;) := 2n. Note that (P,¢;) misses 1. Then by Lemma
(3) and 6(G1) > ™, we get that Ng,(z1) = Ng,,(z1) and N, (Y1) = Ny, (Yn-1)-
Since x,_1Yn—1 € F(Ga,-1), by the similar analysis, we can deduce that Ng,, . (yn—1) =

Ney, 1 (Yn—1) and Ng,, (1) = Ng,, _,(x1). The claim thus follows. O

Denote C(uv) := {i € [2n] : wv € E(G;)}. Let (P, ¢;) be a partial M-transversal
isomorphic to a (2n — 2)-path with P, = x;Px1y; Py,_1 and ¢; arising from ¢ by setting
¢i(z1y;) := 2n for each i € [2, ”T’l] Observe that (P, ¢;) misses 20 — 1 and ¢;(x;y;_1) =
2i — 2. By Claim [3.5, we know that [1,n — 2] U [2n — 3,2n] C C(zy,_1). Let (F/,¢})

be a partial M-transversal isomorphic to a (2n — 2)-path with P/ = y; Py,,—12; Pz, and

¢, arising from ¢ by setting ¢}(z;yn—1) := 2n for each i € [*H,
analysis, we have {1} U [n, 2n] C C(z1y).

Since |C'(zy)] > n+ 1 > 1, there exists some a € C(xy) satisfying a # n — 1. If

n — 2]. By the similar

a € [2n — 2,2n], say a = 2n, then yx,Py,_1xy is a partial G-transversal isomorphic
to a Hamiltonian cycle and zy,_12,_1y,_22 is a partial G-transversal isomorphic to a
4-cycle. Moreover, for each k € [3,n — 1], (Cay, ¢5,) is a partial transversal isomorphic to
a 2k-cycle with Cy, = yxlyanlﬂ%JPanHH%Jyn_lxy and ¢3, arising from ¢ by adding
¢§k($1y%1_t%ﬂ =1, Cb;k(ff%lﬂ%wn—l) i=2n—3, ¢, (xy) = 2n, ¢y (yz1) == 2n—1,
O3 (TYn—1) = 2n — 2, a contradiction. Furthermore, for any Hamiltonian G-transversal
C' satisfying xy € E(C), there exists a partial G-transversal isomorphic to a 2k-cycle
containing x for each k € [2,n].

Next, we consider the case a < n — 1. If ¢(x;y;) = a, then (P',¢’) is a partial M-
transversal isomorphic to a (2n —2)-path with P’ = P; and ¢’ = ¢,. Observe that (P', ¢')
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misses a. By Claim , (C, ¢*) is a G-transversal isomorphic to a Hamiltonian cycle with
C = yz;P'y,_1xy, where ¢* arises from ¢’ by setting ¢*(zy) = a, ¢*(z;y) :=2n — 1 and
¢*(2Yn_1) := 2n — 2, a contradiction.

If p(y;xj41) = a, then (Pji1, ¢j41) is a partial M-transversal isomorphic to a (2n — 2)-
path. Applying Claim yields that y;z,;+1 € E(Ga,—1). Therefore (P, ¢') is a partial
transversal isomorphic to a (2n — 2)-path as well, with P’ = P;;; and ¢ arising from
¢j+1 by setting ¢ (y;xj41) = 2n — 1. So, (P',¢') misses a and 2j + 1. Hence, (C,¢*) is a
Hamiltonian G-transversal with C' = yx ;41 P'y,_12y, where ¢* arises from ¢’ by setting
o*(zy) = a, ¢*(xj11y) := 2n—2 and ¢*(zy,—1) = 2j + 1, a contradiction. By symmetry,
we deduce that if a € [n,2n — 3], then x is contained in a partial G-transversal isomorphic
to a 2k-cycle for each k € [2,n], a contradiction.

This complete the proof for the case n > 4, and Theorem thus follows. O

3.2 Proof of Theorem [1.3

Proof. Take arbitrary vertices v € X and y € Y. Set M; = G; — {z,y} for each i € [2n]
with bipartition Xy, = X \ {z} and Yy =Y \ {y}. Let M = {M;, My, -- , Ms,}. Then
|M;| = 2n — 2 and 6(M;) > 25 for each i € [2n]. By Lemma , M contains a partial

transversal isomorphic to a (2n — 2)-path or My = -+ = My, = Kanl7anl U Kanaan (n
is odd).
tM=--=M,,,= Kn 1 U Kn Lt then without loss of generality, let X, =

XiUXy, Yy =Y1UY, Wlth X1 = {Il,{EQ,"' anl} X, = {anH SETENE  Tno1},
YVi=Ayn, 4, synca}, Yo = {ynpr, yngs, -+ ynoa . Moreover, Mi[X; UY)] = Kanl,anl
for every i € [2n] and j € {1,2}. As 0(G) > ”TH, we have zy;, yr; € E(G,) for each
i € [n—1] and j € [2n]. Therefore G = F.

Note that each partial M-transversal is also a partial G-transversal. If M contains
a partial transversal isomorphic to a (2n — 2)-path, then M satisfies one of the three
statements by Lemma 2.4 Next, we distinguish the following three cases to proceed the

proof.
Case 1. There is a partial M-transversal isomorphic to a (2n — 2)-cycle.

Assume that C' = z1y; - - - £,_1y,_121 is a partial M-transversal isomorphic to a (2n —
2)-cycle. Let ¢ be an associated injection of C' (identify x,, with x1) with ¢(z;y;) = 20 —1
and ¢(y;xi41) = 2i for each @ € [n — 1]. Then [2n]\im(¢) = {2n — 1,2n}. We define

Ton :={i € [n— 1] : zy; € E(Gan)},

Ton g :={i€n—1]: 2y € E(Gar_1)}-

If Ty, NTy,—1 # 0, then zy;Cx;y is a partial transversal isomorphic to a Hamiltonian
path from z to y. If Tb, N Toy1 = 0, then 25+ + 24 < |T2n| + [Ton_1] < n — 1, which
implies that T, UTy,—1 = [n— 1] and |Ty,| = |T2n 1| = "=, Therefore, there exists some
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i € [n— 1] such that i € Ty, and i + 1 € Ty, 1. Then yx;;1Cy;x is a partial transversal
isomorphic to a Hamiltonian path from y and =x.

Case 2. There is a partial M-transversal isomorphic to the disjoint union of a (2n — 4)-

cycle and a copy of K.

Let C = x1y1 -+ Tp_oYyn_ory (identify x, ; with x1) and C U {wz} (2 € X and
w € Yyy) be the partial M-transversal isomorphic to the disjoint union of a (2n — 4)-cycle
and a copy of Ky with associated injection ¢, where ¢(wz) = 2n — 3 and ¢(z;y;) = 20 — 1
and ¢(y;x,41) = 21 for each i € [n — 2]. We define the following sets

Ton:={i€[n—2]:z2y; € E(Ga,)},

Ton1:={i €n—2]:wzx; € E(Gop_1)}-

Note that if M contains a partial transversal isomorphic to a (2n — 2)-cycle, then we
are done by Case So, we have Ty, N Ty, 1 = 0. Then, n — 3 < |To,| + [Ton1| =
|Ton U T, 1| <n—2.

If | Ty, UTs, 1] = n — 2, then we have Ty, U Ty, 1 = [n — 2]. Observe that there exists
some i € [n — 2] satisfying i € Ty, i + 1 € Tp,—1. Thus, (C,¢’) is a partial M-transversal
isomorphic to a (2n — 2)-cycle such that ¢’ = y;zwx;,1Cy; and ¢’ arises from ¢ by setting
¢ (yiz) == 2n, ¢'(wx;41) = 2n — 1, a contradiction.

If |T5, UTo, 1| = n — 3, then we have |Ty,| = |To,_1| = %37 which indicates that n
is odd. Hence, there exists some i € [n — 2] such that i ¢ Ty, U Ts,_1. Without loss of
generality, say ¢ = 1, implying that 75, UT,—1 = [2,n — 2]. As 6(G) > 2!, we have zw,
2y € E(Gay), wr, wz € E(Gop_1).

If there exists some i € [n — 3| such that i € Ty, and ¢ + 1 € Ty, 4, then y;zwx; 1 Cy;
is a partial transversal isomorphic to a (2n — 2)-cycle, a contradiction. Hence, Ty, 1 =
2,22 and Ty, = [%+,n — 2]. Tt follows that Ng,, ,(w) = {za, x5, ,l'anl,l'7Z} and
Ng,, (2) = {ynTH7ynT+3, “  Yn—2,Y,w}. By symmetry, we deduce that for any i € [2n —
3,2n], Ng,(w) = {za, x5, - L1, T, z} and Ng,(2) = {ynTH,ynT%, e Yn—2, Y, W}

Observe that (C" U {z1y1},¢’) is a partial M-transversal with C" = wxsCy, 22w
(identify x, 1 with z), where ¢ arises from ¢ by setting ¢'(wxs) := 2n, ¢'(2y,_2) := 2n—1,
¢ (zw) :=2n — 2. Let

Tgn_g, = {Z - [2,7’L — 2] CY; € E(ng_g)},

Tgn_4 = {Z & [TL — 2] XY € E(ng_4)}.

Since z1 ¢ Ng,, ,(w), by the similar analysis we obtain that [T5,_3| = |Ton—4a| = 52,
Ton-s = [2,%57] and Th,—4 = [2+,n — 2]. Recall that x,_; = z. Hence, Ng,,_,(21) =
{%?le?ha T ’y%} and NG2n74(y1) = {I',.Tl, x"T+?H T T2, Z} By Symmetr}/7 NGzn—3(y1) -

Nea,, 4 (1), contradicting with y; ¢ N, .(2).
Case 3. Lemma (3) holds in M.
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Let P = x1y1 -+ - Tn_1Yyn—1 be a partial M-transversal isomorphic to a (2n — 2)-path
with ¢(z;y;) = 2i — 1 for each i € [n — 1] and ¢(y;x,41) = 2i for each i € [n — 2]. Then
[2n]\im(¢) = [2n — 2,2n|. By Lemma (3) and 6(G;) > ™ for each j € {2n — 1, 2n},
we have Ng,, (1) = {y1, 92, ,yan,y} and Ng,, (Y1) = {I%Jrl,anH,"'  Tp_1, T}
Hence, (P’,¢') is a partial G-transversal isomorphic to a Hamiltonian path from z to
y such that P’ = zy,_1Pz1y and ¢’ arises from ¢ by setting ¢'(zy,—1) := 2n — 1 and
¢ (yxy) = 2n.

This completes the proof of Theorem (1.3 O

Note that Theorem is about the rainbow Hamiltonian connectivity of a collection
of 2n bipartite graphs rather than 2n — 1 bipartite graphs. The main reason is that in the
above proof, we need to use two colors not appearing on the rainbow cycle C of length
2n — 2 to find a rainbow Hamiltonian path for for any two vertices x € X and y € Y. It
would be interesting to study the rainbow Hamiltonian connectivity of a collection 2n — 1

bipartite graphs under the same degree condition.
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