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Abstract

The Turán number ex(n,H) of H is the maximum number of edges of an n-vertex
simple graph containing no copy of H as a subgraph. Denote EX(n,H) as the set of
graphs that have no copy of H as a subgraph and with size ex(n,H). In this paper,
utilizing a celebrated theorem of Hajnal and Szemerédi together with some results of
Chen, Lih, and Wu, and of Kierstead and Kostochka, we determine ex(n, 3Kp+1) and
ex(t(p + 1), tKp+1), and characterize all extremal graphs EX(t(p + 1), tKp+1) for all
positive integers t, n, and p with p ≥ 2.
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1 Introduction

Our notations in this paper are standard (see, e.g. [18]). All graphs considered in this paper
are simple. Let G = (V (G), E(G)) be a simple graph of size e(G). The complement G of a
simple graph G is the simple graph with vertex set V (G), two vertices being adjacent in G

if and only if they are not adjacent in G. For a set S, by |S| we denote the cardinality of S.
Let G and H be two disjoint graphs, denote by G ∪H the disjoint union of G and H and
by tG the disjoint union of t copies of a graph G. For a subgraph H of G, by G − H we
mean a graph obtained from G by deleting all vertices of H and all incident edges. Denote
by G +H the join of graphs G and H, that is the graph obtained from G ∪H by joining
each vertex of G with each vertex of H.

A graph is said to be equitably t-colourable if its vertex set can be partitioned into t

independent subsets V1, V2, . . . , Vt such that
∣∣|Vi|− |Vj |

∣∣ ≤ 1 for any i, j ∈ [t]. The smallest
integer t for which G is equitably t-colourable is called the equitable chromatic number of
G, denoted by χ=(G).

∗Corresponding author
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Let H be a graph. We say the graph G is H-free, if G contains no copy of H as a
subgraph. Here G is tKp+1-free means that G contains no t disjoint independent sets with
size p+1. The Turán number ex(n,H) of H is the maximum number of edges of an n-vertex
H-free graph. Let EX(n,H) = {G : G is H-free with |V (G)| = n and e(G) = ex(n,H)}.

It is widely considered that the starting point of extremal graph theory is the Mantel’s
theorem [13] in 1907, which determines the maximum number of edges in a triangle-free
graph on n vertices. In 1941, this theorem was strengthened by Turán [17] who determined
ex(n,Kp+1) and proved EX(n,Kp+1) = {Tn,p}, where Tn,p is a complete p-partite graph on
n vertices with as equal parts as possible with p ≥ 1 and n ≥ p+1. Here Tn,1 = Kn, which
is an empty graph on n vertices. In 1959, Erdős and Gallai [4] determined ex(n, tK2) for
any positive integers n and t.

Theorem 1.1 (Erdős et al. [4]) Let n ≥ 2t. Then

ex(n, tK2) = max

{(
2t− 1

2

)
,

(
n

2

)
−
(
n− t+ 1

2

)}
.

Some years later, Erdős [5] proved ex(n, (t+1)K3) = e(Kt+Tn−t,2), provided that n > 400t2,
and this was improved to a linear bound that n > 9t

2 + 4 by Moon [15]. For general cases,
Simonovits [16] showed that Kt−1 + Tn−t+1,p is the unique extremal graph containing no
tKp+1 for sufficiently large n, and some special cases were appeared also in [15]. For the
generalized Turán numbers about cliques, see [6, 12, 19].

Notice that determining all values of ex(n, tKp+1) is still an open problem, in views of
the difficulty of obtaining the whole picture without asking n sufficiently large. Recently,
Chen, Lu, and Yuan [3] determined ex(n, 2Kp+1) for all positive integers n and p.

Theorem 1.2 (Chen et al. [3]) Let n ≥ 2(p+ 1) and p ≥ 2. Then

ex(n, 2Kp+1) =

{ (
n
2

)
− 3(n− 2p− 1), n ≤ 3p+ 1;

(n− 1) + tn−1,p, n ≥ 3p+ 2.

In this paper, we determine ex(n, 3Kp+1) and ex(t(p+1), tKp+1) for all positive integers
n, t, and p, with p ≥ 2 and n ≥ 3(p+1). In addition, we provide a unified proof to determine
ex(n, 2Kp+1) and ex(n, 3Kp+1). Our results are as follows.

Theorem 1.3 Let p ≥ 2, t ≥ 1, and n = t(p+ 1). Then

ex(n, tKp+1) =

{ (
n
2

)
−
(
t+1
2

)
, t ≤ 2p;(

n
2

)
− (n− p), t ≥ 2p+ 1.

Let H be an extremal graph for tKp+1 with |V (H)| = t(p+ 1). Then

(1) for t ≤ 2p− 1, H ∈ {Kt+1 ∪Kn−(t+1)};
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(2) for t = 2p, H ∈ {Kt+1 ∪Kn−(t+1)} or
H ∈ {K1,x ∪ (n− x− p)K2 ∪ (2p+ x− 1− n)K1 : n− 2p+ 1 ≤ x ≤ n− p};

(3) for t ≥ 2p+1, H ∈ {K1,x∪ (n−x−p)K2∪ (2p+x−1−n)K1 : n−2p+1 ≤ x ≤ n−p}.

Theorem 1.4 Let p ≥ 2 and T k
n−k,p = Kk + Tn−k,p for k ≥ 1. Then

ex(n, 2Kp+1) =

{ (
n
2

)
− 3(n− 2p− 1), 2p+ 2 ≤ n ≤ 3p+ 1;

e(T 1
n−1,p), n ≥ 3p+ 2,

and

ex(n, 3Kp+1) =


(
n
2

)
− 6, n = 3p+ 3;(

n
2

)
− 5(n− 3p− 2), 3p+ 4 ≤ n ≤ 5p+ 2;

e(T 2
n−2,p), n ≥ 5p+ 3.

When n = t(p + 1), a graph H is tKp+1-free if and only if H is not equitably t-
colourable. Meyer [14] introduced the notion of equitably colourable and conjectured that
χ=(G) ≤ ∆(G) for any connected graph G, which is neither a complete graph nor an odd
cycle. Lih and Wu [11] confirmed Mayer’s conjecture for bipartite graphs. Later, Chen
and Lih [2] determined the formula of equitable chromatic numbers of trees. This line of
research prompted Chen, Lih, and Wu [1] to put forth the following conjecture.

Conjecture 1.5 (Chen et al. [1]) Every connected graph G, different from Km, C2m+1,
and K2m+1,2m+1 for m ≥ 1, is equitably ∆(G)-colourable.

In the same paper, Chen, Lih, and Wu confirmed the conjecture for ∆ ≤ 3. Later,
Kierstead and Kostochka [10] confirmed the conjecture for ∆ = 4.

Theorem 1.6 (Chen et al. [1] and Kierstead et al. [10]) Every connected graph G with
∆(G) ≤ 4, different from Km, C2m+1, and K2m+1,2m+1 for m ≥ 1, is equitably ∆(G)-
colourable.

The rest of this paper is organized as follows. In Section 2, some basic lemmas are
provided, which will be used frequently in this paper. The proofs of Theorems 1.3 and 1.4
are presented in Sections 3 and 4, respectively.

2 Preliminaries

In 1970, one well-known result of Hajnal and Szemerédi [7] implied the following theorem,
whereas a shorter proof appeared in [9].
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Theorem 2.1 (Hajnal et al. [7] and Kierstead et al. [9]) Every graph G is equitably
k-colourable for all k ≥ ∆(G) + 1.

We say P is a perfect matching of G if P ⊆ E(G) and |P | = |V (G)|
2 such that no two

edges of P are adjacent.

Theorem 2.2 (Hall [8]) Let G = G[X,Y ] be a bipartite graph. Then G contains a matching
that saturates every vertex in X if and only if |N(S)| ≥ |S| for all S ⊆ X.

Inspired by Theorem 1.1 and Lemma 2.2 in the paper of Chen, Lu, and Yuan [3], we
obtain the following two lemmas.

Lemma 2.3 Let G be a tKp+1-free graph on n ≥ t(p + 1) vertices with p ≥ 1 and t ≥ 2.
Then ∆(G) ≥

⌊
n−t
p

⌋
≥ t and δ(G) ≤ n− 1−

⌊
n−t
p

⌋
.

Proof. By contradiction, we may assume that ∆(G) ≤
⌊
n−t
p

⌋
− 1. By Theorem 2.1, the

graph G is equitably
⌊
n−t
p

⌋
-colourable. Let ℓ =

⌊
n−t
p

⌋
. We can see ℓ ≥ t and

⋃
i∈[ℓ]Ai =

V (G), where all of Ai are disjoint independent sets with |A1| ≥ |A2| ≥ · · · ≥ |Aℓ| and
|A1| − |Aℓ| ≤ 1. Since G is tKp+1-free, we have |At| ≤ p, which follows that |Ai| ≤ p + 1

for any i ∈ [t− 1] and |Aj | ≤ |At| ≤ p for any t ≤ j ≤ ℓ. Thus

n = |V (G)| =
∣∣ ⋃
i∈[ℓ]

Ai

∣∣
≤ (t− 1) · (p+ 1) + (ℓ− t+ 1) · p

= p · ℓ+ t− 1

≤ p · n− t

p
+ t− 1

= n− 1,

a contradiction. Thus ∆(G) ≥
⌊
n−t
p

⌋
≥ t. We see δ(G) = n − 1 −∆(G) ≤ n − 1 −

⌊
n−t
p

⌋
.

This proves Lemma 2.3.

Lemma 2.4 Let Hp+1(n) be an extremal graph for tKp+1, T (t−1)
n−(t−1),p = Kt−1 + Tn−(t−1),p,

and n0 ≥ t(p + 1), where p ≥ 1 and t ≥ 2. If ex(n0, tKp+1) = e(T
(t−1)
n0−(t−1),p), then

ex(n, tKp+1) = e(T
(t−1)
n−(t−1),p) for any n ≥ n0.

Proof. Let n ≥ t(p+1). Since Hp+1(n) is tKp+1-free, we have Hp+1(n)−{v} is tKp+1-free,
where v ∈ V (Hp+1(n)) and d(v) = δ(Hp+1(n)). By Lemma 2.3, it follows that

e(Hp+1(n− 1)) ≥ e(Hp+1(n))− d(v) ≥ e(Hp+1(n))− (n− 1−
⌊n− t

p

⌋
),
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that is,

e(Hp+1(n))− e(Hp+1(n− 1)) ≤ n− 1−
⌊n− t

p

⌋
= n−

⌈n− (t− 1)

p

⌉
= δ(T

(t−1)
n−(t−1),p)

= e(T
(t−1)
n−(t−1),p)− e(T

(t−1)
n−1−(t−1),p).

Thus
e(Hp+1(n))− e(T

(t−1)
n−(t−1),p) ≤ e(Hp+1(n− 1))− e(T

(t−1)
n−1−(t−1),p),

implying the sequence {e(Hp+1(n)) − e(T
(t−1)
n−(t−1),p)} is nonincreasing about n. Note that

the graph T
(t−1)
n−(t−1),p is tKp+1-free and so e(Hp+1(n)) − e(T

(t−1)
n−(t−1),p) ≥ 0. If e(Hp+1(n)) −

e(T
(t−1)
n−(t−1),p) = 0 when n = n0, then e(Hp+1(n)) − e(T

(t−1)
n−(t−1),p) = 0 and so e(Hp+1(n)) =

e(T
(t−1)
n−(t−1),p) for any n ≥ n0. That is, if ex(n0, tKp+1) = e(T

(t−1)
n0−(t−1),p), then ex(n, tKp+1) =

e(T
(t−1)
n−(t−1),p) for any n ≥ n0.

3 The proof of Theorem 1.3

Proof of Theorem 1.3. Let H be an extremal graph for tKp+1 on n vertices with
n = t(p+1). Then the graph H is tKp+1-free with minimum edges. Let G1 = Kt+1∪Kn−t−1

and G2 = K1,n−p ∪Kp−1. Notice that both G1 and G2 are tKp+1-free. We have

e(H) ≤ e(G1) =

(
t+ 1

2

)
(1)

and

e(H) ≤ e(G2) = n− p. (2)

Thus

e(H) ≤

{ (
t+1
2

)
, t ≤ 2p;

n− p, t ≥ 2p+ 1.
(3)

Next we need to prove

e(H) ≥

{ (
t+1
2

)
, t ≤ 2p;

n− p, t ≥ 2p+ 1,
(4)

and characterize the extremal graph when equalities hold. We will consider the following
two cases to finish the proof.
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Case 1. For any vertex v in H with dH(v) = ∆(H), there is no Kp+1 containing v.
In this case, there is no Kp in H1, where H1 = H − N [v]. By (2), e(H) ≤ n − p, we

have ∆(H) ≤ n − p. Here we want to provide a lower bound for e(H1), that is an upper
bound for e(H1). Note that H1 is Kp-free, we have H1 is Kp-free. By Turán’s theorem,

e(H1) ≤ ex(|V (H1)|,Kp) = e(T|V (H1)|,p−1).

Observe that there are at most p− 1 components in the complement of T|V (H1)|,p−1. Thus

e(H1) ≥
(
|V (H1)|

2

)
− e(T|V (H1)|,p−1) ≥ |V (H1)| − p+ 1,

the equalities hold only when each component of H1 has at most two vertices and H1 =

e(H1)K2 ∪ (|V (H1)| − 2e(H1))K1 = (|V (H1)| − p+ 1)K2 ∪ (2p− 2− |V (H1)|)K1. It yields
that |V (H1)| ≤ 2p− 2. We can see

e(H) ≥ e(H1)+dH(v) ≥ |V (H1)|−p+1+dH(v) = (n−dH(v)−1)−p+1+dH(v) = n−p.

Then (4) holds. By (3), then t ≥ 2p and e(H) = n− p. In this case, |V (H1)| ≤ 2(p− 1)

and H = K1,dH(v) ∪ (n− dH(v)− p)K2 ∪ (2p+ dH(v)− 1−n)K1, where dH(v) = ∆(H) and
n− 2p+ 1 ≤ dH(v) ≤ n− p. This completes the proof of Case 1.

Case 2. There exists some vertex v ∈ V (H) with dH(v) = ∆(H) which is contained
in some Kp+1.

In this case, we have H contains a copy of Kp+1, which yields that t ≥ 2. First we
want to prove e(H) ≥

(
t+1
2

)
. By contradiction, assume e(H) <

(
t+1
2

)
. Among all graphs,

we choose the minimum t such that H is tKp+1-free with t(p + 1) vertices, e(H) <
(
t+1
2

)
,

and there exists some vertex v ∈ V (H) with dH(v) = ∆(H) which is contained in some
Kp+1. Let the independent set with size p+ 1 containing v denote as F and H1 = H − F .
Then H1 is (t − 1)Kp+1-free with (t − 1)(p + 1) vertices. By Lemma 2.3, t ≤ ∆(H) =

dH(v) ≤ e(H[H1, F ]) = e(H) − e(H1), implying that e(H1) ≤ e(H) − t <
(
t
2

)
. By the

choice of t, we have for any vertex v ∈ V (H1) with dH1(v) = ∆(H1), there is no Kp+1

containing v. Notice that we obtain the lower bound e(H) ≥ n− p in Case 1 only use the
property of H is t(p + 1) vertices tKp+1-free. Similar with the proof in Case 1, we have
e(H1) ≥ |V (H1)|−p = (t−1)(p+1)−p. Since (t−1)(p+1)−p ≤ e(H1) <

(
t
2

)
, t ≥ 2p+2 or

t ≤ 1. Recall t ≥ 2. Thus t ≥ 2p+2 and so e(H) ≥ e(H1)+t ≥ (t−1)(p+1)−p+2p+2 > n−p,
which contradicts to (2). Therefore, e(H) ≥

(
t+1
2

)
. By (1) and (2), we have e(H) =

(
t+1
2

)
and t ≤ 2p.

We want to prove H ∈ {Kt+1 ∪ Kn−(t+1)}. By the condition of Case 2, we have
t ≥ 2, e(H) =

(
t+1
2

)
, and t ≤ 2p. Suppose there exists some 2 ≤ t ≤ 2p such that

H /∈ {Kt+1 ∪ Kn−(t+1)}. We choose the minimum such t. Recall that there exists some
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vertex v ∈ V (H) with dH(v) = ∆(H) which is contained in some Kp+1. Let the independent
set with size p+1 containing v denote as F and H1 = H−F . Then H1 is (t−1)Kp+1-free with
(t− 1)(p+ 1) vertices. By Lemma 2.3, t ≤ ∆(H) = dH(v) ≤ e(H[H1, F ]) = e(H)− e(H1),
implying e(H1) ≤

(
t
2

)
. If H1 satisfies the condition of Case 2, then t−1 ≥ 2 and e(H1) ≥

(
t
2

)
by the first paragraph of Case 2. That is e(H1) =

(
t
2

)
. By the choice of t is minimum, then

H1 ∈ {Kt ∪K(t−1)(p+1)−t}. If H1 satisfies the condition of Case 1, then by the same proof,
we have e(H1) ≥ (t − 1)(p + 1) − p. Recall e(H1) ≤

(
t
2

)
. Solving (t − 1)(p + 1) − p ≤

(
t
2

)
,

we obtain t ≥ 2p + 1 or t ≤ 2. By 2 ≤ t ≤ 2p, it follows that t = 2. In this case,
we have e(H1) =

(
t
2

)
and H1 = K2 ∪Kp−1 by Turán’s theorem. In a conclusion, we have

H1 ∈ {Kt∪K(t−1)(p+1)−t} and so dH(v) = t. Denote the Kt in H1 as F1. If V (F1)∩N(v) = ∅,
then there are exactly two nontrivial components in H, that is Kt and K1,t. Since each
component of H is equitably t-colourable, we have H is equitably t-colourable. Thus H

contains a copy of tKp+1, a contradiction. Next we only need to consider V (F1)∩N(v) ̸= ∅.
Let u ∈ V (F1) ∩N(v). Then dH(u) = t. Clearly, V (H) \N [u] is an independent set with
size tp− 1. Then there is an independent set with size p+1 containing u by t ≥ 2, denoted
by F2. Then H − F2 is (t − 1)Kp+1-free and e(H − F2) ≤ e(H) − dH(u) =

(
t
2

)
. Applying

H1 = H−F2, we have e(H−F2) =
(
t
2

)
and H−F2 = Kt∪K(t−1)(p+1)−t. Thus V (F1) = N(v)

and so H = Kt+1 ∪Kn−(t+1). This completes the proof of Case 2.

This completes the proof of Theorem 1.3. ■

4 The Proof of Theorem 1.4

Lemma 4.1 Let H be an extremal graph for tKp+1 on (2t− 1)p+ t− 1 vertices with t ≥ 2.
If e(H) ≥ (2t− 1)(t− 1)p, then ex(n, tKp+1) = e(T t−1

n−(t−1),p) for any n ≥ (2t− 1)p+ t− 1.

Proof. Let G = pK2t−1 ∪ Kt−1 with |V (G)| = (2t − 1)p + t − 1. Clearly, G is tKp+1-
free and e(H) ≤ e(G) = (2t − 1)(t − 1)p. Note that e(H) ≥ (2t − 1)(t− 1)p. Then
e(H) = (2t− 1)(t− 1)p. In this case ex((2t− 1)p+ t− 1, tKp+1) = e(T t−1

(2t−1)p,p). By Lemma
2.4, ex(n, tKp+1) = e(T t−1

n−(t−1),p) for any n ≥ (2t− 1)p+ t− 1. This completes the proof of
Lemma 4.1.

Lemma 4.2 Let H be an extremal graph for tKp+1 on tp+ t− 1 + s vertices with 1 ≤ s ≤
(t− 1)p+ 1, where 1 ≤ t ≤ 3 and p ≥ 2. Then e(H) ≥ (2t− 1)s.

Proof. Clearly, the graph H is tKp+1-free and H has minimum number of edges. We
use induction on t and s. By Turán’s theorem [17], e(H) ≥ (2t − 1)s for t = 1 and
1 ≤ s ≤ (t − 1)p + 1. We may assume that t ≥ 2 and the result holds for t − 1. Next we
show the result holds for t and prove e(H) ≥ (2t− 1)s. We choose p as the smallest integer
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such that H is tKp+1-free and e(H) < (2t − 1)s with |V (H)| = tp + t − 1 + s, for some s

with 1 ≤ s ≤ (t− 1)p+1 and p ≥ 2. If such p does not exist, then e(H) ≥ (2t− 1)s and we
are done. Thus we assume that such p exists.

Claim 1 Let G be a tKp-free graph and G has minimum number of edges with |V (G)| =
t(p−1)+t−1+x, p ≥ 2, and t ≥ 2. For 1 ≤ x ≤ (t−1)(p−1)+1, we have e(G) ≥ (2t−1)x.
Furthermore, e(G) ≥ (2t− 1)x for any x ≥ 1.

Proof. First, we prove e(G) ≥ (2t− 1)x when 1 ≤ x ≤ (t− 1)(p− 1)+1. By contradiction,
suppose e(G) < (2t − 1)x for some 1 ≤ x ≤ (t − 1)(p − 1) + 1. If p ≥ 3, then the smallest
integer such that e(H) < (2t− 1)s is p− 1 rather than p, which contradicts the choice of p.
Thus we only need to consider the case p = 2. Then |V (G)| = 2t− 1 + x, where 1 ≤ x ≤ t.
By Theorem 1.1,

e(G) ≥ min

{(
|V (G)|

2

)
−
(
2t− 1

2

)
,

(
|V (G)| − t+ 1

2

)}
= min

{
1

2
[(4t− 3)x+ x2],

1

2
[t2 + 2tx+ x2 − t− x]

}
≥ (2t− 1)x.

Thus e(G) ≥ (2t− 1)x.
Next we prove the second part of Claim 1, that is e(G) ≥ (2t − 1)x for any x ≥ 1.

Let nx = t(p − 1) + t − 1 + x and nx+1 = nx + 1 = t(p − 1) + t + x with x ≥ 1. For
x ≥ (t− 1)(p− 1) + 1, Lemma 4.1 implies that

e(G) =

(
nx

2

)
− ex(nx, tKp) =

(
nx

2

)
− e

(
T t−1
nx−(t−1),p−1

)
.

Note that e(G) ≥ (2t− 1)x for x = (t− 1)(p− 1) + 1. If we can show(
nx+1

2

)
− e

(
T t−1
nx+1−(t−1),p−1

)
−
[(

nx

2

)
− e

(
T t−1
nx−(t−1),p−1

)]
≥ 2t− 1 (5)

for any x ≥ (t−1)(p−1)+1, then e(G) ≥ (2t−1)x for any x ≥ (t−1)(p−1)+1. Together
with e(G) ≥ (2t − 1)x for 1 ≤ x ≤ (t − 1)(p − 1) + 1, we have e(G) ≥ (2t − 1)x for x ≥ 1.
Thus we only need to show (5) holds. We can see
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(
nx+1

2

)
− e

(
T t−1
nx+1−(t−1),p−1

)
−
[(

nx

2

)
− e

(
T t−1
nx−(t−1),p−1

)]
= nx − e

(
T t−1
nx+1−(t−1),p−1

)
+ e

(
T t−1
nx−(t−1),p−1

)
= nx − δ

(
T t−1
nx+1−(t−1),p−1

)
= nx −

[
nx+1 −

⌈
nx+1 − t+ 1

p− 1

⌉]
=

⌈
nx − t+ 2

p− 1

⌉
− 1

≥ 2t− 1.

The last inequality holds because x ≥ (t − 1)(p − 1) + 1 and nx ≥ (2t − 1)(p − 1) + t.
Therefore, e(G) ≥ (2t− 1)x for any x ≥ 1. This completes the proof of Claim 1.

Next we prove e(G) ≥ (2t− 1)s for 1 ≤ s ≤ (t− 1)p+1. By Theorem 1.3 and 1 ≤ t ≤ 3,
e(H) ≥ (2t − 1)s for s = 1. Assume that s ≥ 2 and the result holds for s − 1. We assert
that if ∆(H) ≥ 2t − 1, then e(H) ≥ (2t − 1)s. Suppose there is a vertex u ∈ V (H) with
dH(u) = ∆(H) ≥ 2t−1. Then H−{u} is tKp+1-free with |V (H−{u})| = tp+ t−1+s−1,
where 2 ≤ s ≤ (t − 1)p + 1. By induction hypothesis on s, e(H − {u}) ≥ (2t − 1)(s − 1)

and so e(H) ≥ e(H − {u}) + dH(u) ≥ (2t − 1)s. Thus we only need to consider the case
∆(H) ≤ 2t− 2. We will complete our proof by the following two cases.

Case 1. (t− 2)p+ 1 ≤ s ≤ (t− 1)p+ 1.

By Lemma 2.3, ∆(H) ≥
⌊ |V (H)|−t

p

⌋
≥ 2t − 2. Thus ∆(H) = 2t − 2. We conclude

that H is not equitably (2t− 2)-colourable. By contradiction, suppose that H is equitably
(2t− 2)-colourable. Let (C1, . . . , C2t−2) be an equitable (2t− 2)-colouring of H with |C1| ≥
|C2| ≥ · · · ≥ |C2t−2| and |C1| − |C2t−2| ≤ 1. Since H is tKp+1-free, we have |Ct| ≤ p and so
|Ci| ≤ p+ 1 for any i ∈ [t− 1] and |Cj | ≤ p for any j ∈ [2t− 2] \ [t− 1]. It implies that

|V (H)| =
∑

i∈[2t−2]

|Ci| ≤ (t− 1)(p+1)+ (t− 1)p = (2t− 2)p+ t− 1 < tp+ t− 1+ s = |V (H)|

by s ≥ (t− 2)p+ 1, a contradiction. Thus H is not equitably (2t− 2)-colourable.
Notice that if each component of H is equitably (2t−2)-colourable, then H is equitably

(2t−2)-colourable. Since H is not equitably (2t−2)-colourable, there exists some component
of H, say F , that is not equitably (2t − 2)-colourable. Then ∆(F ) = ∆(H) = 2t − 2, else
∆(F ) < 2t − 2, by Theorem 2.1, F is equitably (2t − 2)-colourable, a contradiction. By
Theorem 1.6, Conjecture 1.5 holds for ∆ ≤ 2t − 2 ≤ 4. Note that 2t − 2 is even and
2t− 2 ≤ 4. Theorem 1.6 states that for any connected graph with maximum degree 2 that
is not equitably 2-colourable, it is isomorphic to an odd cycle; for any connected graph with
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maximum degree 4 that is not equitably 4-colourable, it is isomorphic to a complete graph
K5. Then F is isomorphic to K2t−1 or an odd cycle, denoted by F (here if H is connected,
we say some component of H is H, that is F = H). Let H1 = H −F . If F is isomorphic to
K2t−1, then |V (H1)| = t(p− 1)+ t− 1+ s− t+1, where 1 ≤ s− t+1 ≤ (t− 1)(p− 1)+1 by
s ≥ 2 and (t− 2)p+ 1 ≤ s ≤ (t− 1)p+ 1. We assert that H1 is tKp-free. If H1 contains a
copy of tKp, let {x1, x2, . . . , xt} ⊆ F and I1 ∪ · · · ∪ It = V (tKp), where Ii is an independent
set with size p for any i ∈ [t], then Ii∪{xi} is an independent set with size p+1 in H, which
contradicts the fact that H is tKp+1-free, as asserted. By Claim 1, e(H1) ≥ (2t−1)(s−t+1)

and so e(H) ≥ e(H1) +
(
2t−1
2

)
≥ (2t − 1)s. If F is isomorphic to an odd cycle, then t = 2.

We may assume that there are x components of H, each of which is isomorphic to an odd
cycle. We delete one vertex from each of these x components, the result graph denoted by
H2. Thus ∆(H2) ≤ ∆(H) = 2 and there is no component of H2 that is isomorphic to an
odd cycle. Theorem 1.6 implies that H2 is equitably 2-colourable. If |V (H2)| ≥ 2p+2, then
there is a copy of 2Kp+1 and so H has a copy of 2Kp+1, which contradicts the fact that
H is 2Kp+1-free. We have |V (H2)| ≤ 2p + 1. Thus there are at least |V (H)| − 2p − 1 = s

components of H, each of which is isomorphic to an odd cycle and has at least three edges.
It follows that e(H) ≥ 3s = (2t− 1)s.

Case 2. 1 ≤ s ≤ (t− 2)p.

For t = 2, we have proved that e(H) ≥ 3s, where 1 ≤ s ≤ p+ 1. It remains to consider
the case t = 3 and 1 ≤ s ≤ (t−2)p= p. Since H is 3Kp+1-free and H has minimum number
of edges, H contains a copy of Kp+1.

Claim 2 For any independent set I with size p+ 1, then e(H[I, V (H) \ I]) ≤ 2s− 1.

Proof. By contradiction, suppose that there exists some independent set I with size p+ 1

such that e(H[I, V (H)\I]) ≥ 2s. Then H−I is (t−1)Kp+1-free with |V (H−I)| = 2p+ 1+s,
where 1 ≤ s ≤ p+ 1. By induction hypothesis on t, e(H − I) ≥ (2t − 3)s= 3s. Thus
e(H) ≥ e(H[I, V (H) \ I]) + e(H − I) ≥ (2t− 1)s= 5s, a contradiction.

We choose an independent set I with size p+ 1 such that e(H[I, V (H) \ I]) is as large
as possible. Let X = {u ∈ V (H) \ I : N(u) ∩ I = ∅}. Note that

2s− 1 ≥ e(H[I, V (H) \ I]) ≥ |V (H) \ I| − |X| = 2p+ 1 + s− |X|.

It follows that |X| ≥ 2p+ 2− s. Since 1 ≤ s ≤ p, we have |X| ≥ p+ 2.
We assert that min{dH(v) : v ∈ I} ≥ max{dH(x) : x ∈ X}. Let v1 ∈ I such that

dH(v1) = min{dH(v) : v ∈ I} and x1 ∈ X such that dH(x1) = max{dH(x) : x ∈ X}. Set
I ′ = I ∪ {x1} \ {v1}, we can see I ′ is an independent set with |I ′| = p + 1. If dH(x1) ≥
dH(v1) + 1, then

e(H[I ′, V (H) \ I ′]) = e(H[I, V (H) \ I])− dH(v1) + dH(x1) ≥ e(H[I, V (H) \ I]) + 1,
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which contradicts the maximality of e(H[I, V (H) \ I]), as asserted. Clearly, min{dH(v) :

v ∈ I} ≤ 1, since otherwise e(H[I, V (H) \ I]) ≥ 2|I| ≥ 2(p+1) ≥ 2s, a contradiction. That
is max{dH(x) : x ∈ X} ≤ 1.

Since max{dH(x) : x ∈ X} ≤ 1 and |X| ≥ p+2 ≥ 3, we can randomly choose 3 vertices
{x1, x2, x3} from V (H) such that dH(xi) ≤ 1 for any i ∈ [3]. Let H1 = H −{x1, x2, x3} and
{xi1} = N(xi) if it exists for any i ∈ [3].

Claim 3 Then H1 contains a copy of 3Kp and d(xi) = 1 for any i ∈ [3]. For any copy of
3Kp of H1, {x11, x21, x31} belongs to the same Kp.

Proof. Note that |V (H1)| = 3(p − 1) + 3 − 1 + s with 1 ≤ s ≤ p + 1. If H1 is 3Kp-free,
by Claim 1, then e(H1) ≥ 5s. Thus e(H) ≥ e(H1) ≥ 5s, a contradiction. Therefore, H1

contains a copy of 3Kp with V (3Kp)=Y1 ∪ Y2 ∪ Y3, where Yi is an independent set in H1

with |Yi| = p for each i ∈ [3]. Note that H is 3Kp+1-free and dH(xi) ≤ 1 for each i ∈ [3]. Let
us consider a bipartite graph B with V (B) = {x′1, x′2, x′3} ∪ {y1, y2, y3} and E(B) = {x′iyj :
if NH(xi) ∩ Yj = ∅ for any i, j ∈ [3]}. We can see if there is an edge x′iyj , then Yj ∪ {xi}
is an independent set in H. Thus, if there is a perfect matching in B, then there is a copy
of 3Kp+1 in H, which contradicts the fact that H is 3Kp+1-free. Thus B has no perfect
matching. By Theorem 2.2, there exists ∅ ̸= S ⊆ {x′1, x′2, x′3} such that |NB(S)| < |S|. Since
dH(xi) ≤ 1 for any i ∈ [3], dB(x′i) ≥ 2. We see |S| > |NB(S)| ≥ 2, then S = {x′1, x′2, x′3}
and |NB(S)| = 2, that is, dB(x′i) = 2 and dH(xi) = 3−dB(x

′
i) = 1 and there is some integer

j ∈ [3] such that N(xi) ⊆ Yj for any i ∈ [3].

We may assume that {x11, x21, x31} ⊆ Y1 and subject to it, e(H[Y1, V (H) \ Y1]) is as
small as possible.

Claim 4 For each vertex v ∈ V (H) \ Y1, we have N(v) ∩ Y1 ̸= ∅.

Proof. By contradiction, suppose that there exists some vertex u ∈ V (H) \ Y1 such that
N(u) ∩ Y1 = ∅. Then u /∈ {x1, x2, x3}. If u ∈ Y2, then Y1 ∪ {u}, Y2 ∪ {x1, x2} \ {u} and
Y3∪{x3} are disjoint independent sets with size p+1, a contradiction. The case that u ∈ Y3

is similar. If u /∈ Y2 ∪ Y3, then Y1 ∪ {u}, Yk ∪ {xk} for 2 ≤ k ≤ 3 are disjoint independent
sets with size p+ 1, a contradiction. Thus Claim 4 holds.

By Claim 4, dH(v) ≥ 1 for any v ∈ V (H) \ Y1.

Claim 5 There exists at least one vertex y ∈ Y2 such that dH(y) = 1 and |N(y) ∩ Y1| = 1.

Proof. By contradiction, suppose dH(y) ≥ 2 for each vertex y ∈ Y2. Let I = Y2∪{x1}. We
can see I is an independent set with |I| = p+1. Thus, e(H[I, V (H)\I]) ≥ 2|Y2|+1=2p+1 >
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2s, which contradicts Claim 2. Thus there exists at least one vertex y ∈ Y2 such that
dH(y) = 1. It follows from Claim 4 that Claim 5 holds.

Let W = V (H) \ ({x1, x2, x3} ∪ Y1 ∪ Y2 ∪ Y3). Clearly, |W | = s− 1.

Claim 6 There exists at least one vertex w ∈ W such that N(w) ∩ Y2 = ∅.

Proof. By contradiction, suppose N(w) ∩ Y2 ̸= ∅ for any w ∈ W . Let I = Y2 ∪ {x1}. By
Claim 4, e(H[I, V (H)\I]) ≥ e(H[I, Y1])+e(H[Y2,W ]) ≥ p+1+s−1 ≥ 2s, a contradiction.

By Claim 5, let N(y) ∩ Y1 = {y1}. Then Y ′
1 = {y} ∪ Y1 \ {y1} is an independent set

in H1 with |Y ′
1 | = p. By Claim 6, Y ′

2 = {w} ∪ Y2 \ {y} is an independent set in H1 with
|Y ′

2 | = p. Thus Y ′
1 ∪ Y ′

2 ∪ Y3 consists a copy of 3Kp in H1. By Claim 3, {x11, x21, x31} ⊆
{y} ∪ Y1 \ {y1}. We assert that for any 1-degree vertex x ∈ V (H) with N(x) = {x′}, then
dH(x′) ≥ 2. Suppose dH(x′) = 1. By the randomness of {x1, x2, x3}, we may assume that
{x, x′} ⊆ {x1, x2, x3}, which contradicts Claim 3, as asserted. Thus dH(y1) ≥ 2. Therefore,

e(H[Y ′
1 , V (H) \ Y ′

1 ]) = e(H[Y1, V (H) \ Y1])− dH(y1) + dH(y) < e(H[Y1, V (H) \ Y1]),

which contradicts the minimality of e(H[Y1, V (H) \ Y1]). Therefore, the minimum p such
that e(H) ≤ (2t− 1)s− 1 does not exist, and so e(H) ≥ (2t− 1)s.

Proof of Theorem 1.4. Let H be an extremal graph for tKp+1 on n′ = tp + t − 1 + s

vertices with 1 ≤ s ≤ (t − 1)p + 1 and 1 ≤ t ≤ 3. Then the graph H is tKp+1-free
and H has minimum number of edges. By Lemma 4.2, e(H) ≥ (2t − 1)s. For t = 2,
let G1 = xK3 ∪ yK4 ∪ Kn′−3x−4y, where x + 2y = s and 1 ≤ s ≤ p + 1. For t = 3, let
G2 = zK5 ∪ ℓK6 ∪ Kn′−5z−6ℓ, where 2z + 3ℓ = s and 2 ≤ s ≤ 2p + 1. We can see Gi is
tKp+1-free and e(Gi) = (2t − 1)s for any i ∈ [2]. Then e(H) ≤ e(G) = (2t − 1)s. Thus
e(H) = (2t − 1)s for t = 2 with 1 ≤ s ≤ p + 1, and t = 3 with 2 ≤ s ≤ 2p + 1. Therefore,
for 2p+ 2 ≤ n′ ≤ 3p+ 2

ex(n′, 2Kp+1) =

(
n′

2

)
− 3(n′ − 2p− 1),

and for 3p+ 4 ≤ n′ ≤ 5p+ 3,

ex(n′, 3Kp+1) =

(
n′

2

)
− 5(n′ − 2p− 1).

By Theorem 1.3, ex(3p+ 3, 3Kp+1) =
(
3p+3
2

)
− 6.

By Lemma 4.1, we have

ex(n, 2Kp+1) =

{ (
n
2

)
− 3(n− 2p− 1), 2p+ 2 ≤ n ≤ 3p+ 1;

e(T 1
n−1,p), n ≥ 3p+ 2,
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and

ex(n, 3Kp+1) =


(
n
2

)
− 6, n = 3p+ 3;(

n
2

)
− 5(n− 3p− 2), 3p+ 4 ≤ n ≤ 5p+ 2;

e(T 2
n−2,p), n ≥ 5p+ 3.

This completes the proof of Theorem 1.4. ■
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