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Abstract

In an edge-colored graph G, let dmon(v) denote the maximum number of edges with the

same color incident with a vertex v in G, called the monochromatic-degree of v. The max-

imum value of dmon(v) over all vertices v ∈ V (G) is called the maximum monochromatic-

degree of G, denoted by ∆mon(G). Li et al. in 2019 conjectured that every edge-colored

complete graph G of order n with ∆mon(G) ≤ n−3k+1 contains k vertex-disjoint proper-

ly colored (PC for short) cycles of length at most 4, and they showed that the conjecture

holds for k = 2. Han et al. showed that every edge-colored complete graph G of order n

with ∆mon(G) ≤ n − 2k contains k PC cycles of different lengths. They further got the

condition ∆mon(G) ≤ n− 6 for the existence of two vertex-disjoint PC cycles of different

lengths. In this paper, we consider the problems of the existence of edge-disjoint PC cycles

of length at most 4 (different lengths) in an edge-colored complete graph G of order n.

Keywords: edge-colored complete graph; (maximum) monochromatic-degree; properly

colored (PC ) cycle; edge-disjoint.
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1 Introduction

Let G be a simple graph consisting of a vertex-set V (G) and an edge-set E(G). An edge-

coloring of G is a mapping c : E(G) → N, where N is called the color-set. An edge-colored

graph is a graph equipped with an edge-coloring. In an edge-colored graph G, we use c(e) to

denote the color of an edge e of G and c(G) to denote the set of colors assigned to the edges
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of G. A subgraph is properly colored in an edge-colored graph G, or PC for short, if no two

adjacent edges of the subgraph have the same color. Similarly, a subgraph is rainbow in an

edge-colored graph G if no two edges of the subgraph have the same color. In an edge-colored

graph G, for a color α ∈ c(G) and a vertex v ∈ V , we define the α-neighbor of v in G by

Nα
G(v) = {u ∈ NG(v) : c(uv) = α}, where NG(v) denotes the neighbors of v in G, and we

denote by dαG(v) the number of vertices in Nα
G(v). Let dc(v) denote the number of different

colors on the edges incident with a vertex v in G, called the color-degree of v. Denote by

δc(G) the minimum value of dc(v) over all vertices v in G, called the minimum color-degree

of an edge-colored graph G. Similarly, denote by ∆c(G) the maximum value of dc(v) over all

vertices v in G, called the maximum color-degree of an edge-colored graph G. Let dmon(v)

denote the maximum number of edges with the same color incident with a vertex v in G, called

the monochromatic-degree of v. The maximum value of dmon(v) over all vertices v ∈ V (G) is

called the maximum monochromatic-degree of G, denoted by ∆mon(G).

The length of a path or a cycle is the number of edges on the path or cycle. A cycle of length

` is denoted by C`. For a vertex subset X of V (G), G[X] denotes the subgraph induced by X.

For any two distinct vertex subsets X and Y in G, we use E[X, Y ] to denote the edge subset of

G such that one end of each edge of E[X, Y ] is in X and the other end is in Y . For convenience,

let c(X, Y ) = {c(e), e ∈ E[X, Y ]}. If X = {v}, then we write c(v, Y ) for c({v}, Y ). For an edge

subset E ′ ⊆ E(G), set ψ(E ′) = V (E ′). In particular, if E ′ = {e}, then ψ(e) denotes the set of

the two endvertices of e. For terminology and notation not defined here, we refer the reader to

[4].

In recent years, the problems on the existence of PC cycles and rainbow cycles in an edge-

colored complete graph attract much attention, and thus a lot of work has been done extensively.

For more details, we refer the reader to literatures [14, 16, 17] (for rainbow cycles) and Chapter

16 in [2] (for PC cycles). In fact, there are a lot of researches on the existence of long PC cycles

in edge-colored complete graphs; see [1, 19, 20]. It is also worthwhile to study the numbers of

vertex-disjoint and/or edge-disjoint cycles in edge-colored graphs. The reader can find some

results about vertex-disjoint cycles in [5–7], edge-disjoint cycles in [10, 15], and arc-disjoint

subgraphs in [3].

The following result gives a sufficient condition for the existence of PC cycles in edge-colored

graphs.

Theorem 1 ([11, 21]). Suppose G is an edge-colored graph with no PC cycle. Then G contains

a vertex v such that the edges from v to every component of G− v are assigned the same color.

In paper [18], Li et al. observed that in an edge-colored complete graph G, for any PC

cycle C, each vertex v in V (C) is contained in a PC cycle C ′ of length at most 4 such that

V (C ′) ⊆ V (C). Combining this observation and Theorem 1, they got the following result.
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Theorem 2 ([18]). Suppose G is an edge-colored graph of order n ≥ 3 with ∆mon(G) ≤ n− 2.

Then G has a PC cycle of length at most 4.

Furthermore, the authors conjectured that there exists a positive function h(k) ≥ 3k − 1

such that for every edge-colored complete graph G, if ∆mon(G) ≤ n − h(k), then G has k

vertex-disjoint PC cycles, and they confirmed it for k = 2.

Theorem 3 ([18]). Suppose G is an edge-colored graph of order n ≥ 6 with ∆mon(G) ≤ n− 5.

Then G has two vertex-disjoint PC cycles of length at most 4.

Motivated by the vertex-disjoint PC cycles, we pose the following problem for edge-disjoint

PC cycles.

Problem 4. For every positive integer k, does there exist an integer f(k) such that every edge-

colored complete graph G with n vertices and ∆mon(G) ≤ n− f(k) contains k edge-disjoint PC

cycles of length at most 4.

We also consider this problem for k = 2 and get the following result.

Theorem 5. Suppose G is an edge-colored graph of order n ≥ 6 with ∆mon(G) ≤ n− 3. Then

G contains two edge-disjoint PC cycles of length at most 4.

We continue here with two examples showing that the bounds on ∆mon(G) and n in Theorem

5 are sharp, respectively.

Example 6. LetG be an edge-colored complete graph of order n ≥ 6 with V (G) = {x, v1, v2, · · · ,
vn−1}. Color all the edges inG[{v1, v2, · · · , vn−1}] by c1 and color the edges in E[x, {v1, v2, · · · , vn−2}]
by c2 and xvn−1 by c3. Then it is easy to check that ∆mon(G) = n− 2, but G does not contain

two edge-disjoint PC cycles.

Example 7. Let G be an edge-colored complete graph with V (G) = {v1, v2, · · · , v5}. Color

the Hamilton cycle v1v2 · · · v5v1 by red and color the rest edges by blue. Then it is easy to

check that ∆mon(G) = 5− 3 = 2, but G does not contain two edge-disjoint PC cycles.

As for the existence of (vertex-disjoint) PC cycles of different lengths under the maximum

monochromatic-degree condition, Han et al. in [13] got the following results and the bounds

are sharp.

Theorem 8 ([13]). Suppose G is an edge-colored complete graph of order n ≥ 2k + 1 with

∆mon(G) ≤ n− 2k. Then G contains k PC cycles of different lengths.

Theorem 9 ([13]). Suppose G is an edge-colored complete graph of order n ≥ 7 with ∆mon(G) ≤
n− 6. Then G contains two vertex-disjoint PC cycles of different lengths.
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In this paper, we study the problem on the existence of edge-disjoint PC cycles of different

lengths, and prove it for the case k = 2.

Problem 10. For every positive integer k, does there exist an integer g(k) such that every

edge-colored complete graph G with n vertices and ∆mon(G) ≤ n−g(k) contains k edge-disjoint

PC cycles of different lengths.

Theorem 11. Suppose G is an edge-colored complete graph of order n ≥ 5 with ∆mon(G) ≤
n− 4. Then G contains two edge-disjoint PC cycles of different lengths.

Example 12. Let G be an edge-colored complete graph of order n ≥ 5 and V (G) = {v1, v2, · · · ,
vn}. Suppose G has a vertex partition (V1, V2) with V1 = {v1, v2, · · · , vn−3} and V2 = {x, y, z}.
Color the edge-cut E(V1, V2) by c1, and color the edges in E(V1) and E(V2) by c2. Then it is

easy to check that ∆mon(G) = n − 3, but G does not contain two edge-disjoint PC cycles of

different lengths. Hence, this shows that the bound in Theorem 11 is sharp.

The paper is organized as follows. In the next section, we set up some basic terminology

and useful lemmas for the proofs of our results. In Section 3, we are devoted to studying the

existence of edge-disjoint PC short cycles in edge-colored complete graphs and proving Theorem

5 and some additional results. In Section 4, we consider the problem on the existence of edge-

disjoint PC cycles of different lengths in edge-colored complete graphs and prove Theorem

11.

2 Terminology and lemmas

Let G be an edge-colored complete graph. A partition of G is a family of pairwise disjoint

subsets U1, U2, · · · , Uq of V (G) such that
⋃

1≤i≤q Ui = V (G). Now we introduce some types of

partitions which are useful in the following proofs of our theorems.

Definition 13. (Gallai partition). A partition U1, U2, · · · , Uq of an edge-colored complete graph

G is called a Gallai partition, if |
⋃

1≤i<j≤q c(Ui, Uj)| ≤ 2 and |c(Ui, Uj)| = 1 for 1 ≤ i < j ≤ q

and q ≥ 2.

Lemma 14 ([9]). If an edge-colored complete graph G contains no rainbow triangle, then G

has a Gallai partition.

A vertex in an edge-colored graph is bad if there is no PC cycle passing through the vertex.

In [18], Li et al. introduced a new partition for an edge-colored complete graph G when there

is a bad vertex in G.
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Definition 15 ([18]). (v-partition) Let G be an edge-colored complete graph and v ∈ V (G).

Then U0, U1, · · · , Uq is a v-partition of G if it is a partition of G and satisfies the following

conditions for some distinct colors c1, c2, · · · , cq ∈ c(G):

(a) 2 ≤ q ≤ dc(v), v ∈ U0 and |Ui| ≥ 1 for 0 ≤ i ≤ q;

(b) c(U0, Ui) = {ci} for 1 ≤ i ≤ q;

(c) c(Ui, Uj) ⊆ {ci, cj} for 1 ≤ i < j ≤ q;

(d) c(G[Ui]) ⊆ {ci} for 1 ≤ i ≤ q.

Lemma 16 ([18]). Let G be an edge-colored complete graph with δc(G) ≥ 2. If G contains a

bad vertex v0, then G has a v0-partition U0, U1, · · · , Uq.

Lemma 17 ([18]). Suppose G is an edge-colored complete graph with δc(G) ≥ 2. If G has a

Gallai partition and contains a bad vertex v0, then G has a v0-partition V0, V1, V2 with v0 ∈ V0.

In [12], Han et al. gave a useful partition for an edge-colored complete graph G with the

minimum color-degree δc(G) ≥ 2 and the maximum color-degree ∆c(G) ≥ 3 when G contains

no PC odd cycles, where a cycle is odd if its length is odd. We also use the following partition

in our proofs.

Lemma 18 ([12]). Let G be an edge-colored complete graph with δc(G) ≥ 2 and ∆c(G) ≥ 3. If G

contains no PC odd cycles, then G has a partition {X, Y, Z} such that c(X) ⊆ c(X,Z) = {c1},
c(Y ) ⊆ c(Y, Z) = {c2} and c(X, Y ) ⊆ {c1, c2}.

In the same paper, Han et al. gave an equivalent condition for an edge-colored complete

graph G not to contain PC odd cycle.

Lemma 19 ([12]). An edge-colored complete graph G contains no PC odd cycle if and only if

G contains no PC triangle or C5.

3 Edge-disjoint PC cycles of length at most 4

We note that the existence of a monochromatic edge-cut acts a pivotal role when considering

the number of edge-disjoint PC cycles of length at most 4 in an edge-colored complete graph.

Thus, we begin this section with the following lemma.

Lemma 20. Suppose G is an edge-colored complete graph of order n ≥ k + 2 with ∆mon(G) ≤
n− k − 1. If G contains a monochromatic edge-cut, then G has k edge-disjoint PC C4’s.

Proof. Since G has a monochromatic edge-cut, G has a partition (V1, V2) such that (w.l.o.g.)

c(V1, V2) = {c1}. Since ∆mon(G) ≤ n − k − 1, there are k distinct edges xx1, xx2, · · · , xxk
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with colors distinct from c1 for all x ∈ V1. By symmetry, there are also k distinct edges

yy1, yy2, · · · , yyk with colors distinct from c1 for all y ∈ V2. Thus, xyiyxix for 1 ≤ i ≤ k are k

edge-disjoint PC C4’s of G.

3.1 Proof of Theorem 5

By our observation, Theorem 5 can be divided into two lemmas by considering whether G

contains PC triangles or not. Therefore, the following results are stated.

Lemma 21. Suppose G is an edge-colored complete graph of order n ≥ 5 with ∆mon(G) ≤ n−3.

If G contains a PC triangle, then G has two edge-disjoint PC cycles of length at most 4.

Lemma 22. Suppose G is an edge-colored complete graph of order n ≥ 6 with ∆mon(G) ≤ n−3.

If G contains no PC triangle, then G has two edge-disjoint PC C4’s.

From Lemmas 21 and 22, one can get Theorem 5 easily. Now we give the proofs of the two

lemmas.

Proof of Lemma 21: Suppose to the contrary that G contains no two edge-disjoint PC

cycles of length at most 4. W.l.o.g., label a PC triangle in G by C∗ = v1v2v3v1 and suppose

that c(v1v2) = c1, c(v2v3) = c2 and c(v3v1) = c3. In this proof, the index i is taken by

mod 3. Let Gi = G − {vi−1, vi+1}, i = 1, 2, 3. Then Gi contains no PC triangle. Clearly,

∆mon(Gi) = |V (Gi)| − 1 = n − 3; otherwise from Theorem 2, Gi contains a PC cycle, a

contradiction. Thus, there exists a vertex ui ∈ V (Gi) such that dcGi
(ui) = 1, for i = 1, 2, 3.

Since dmonG (ui) ≤ n− 3, we have

c(ui, Gi) ∩ {c(uivi−1), c(uivi+1)} = ∅. (1)

Note that ui /∈ {vi−1, vi+1}. In the following, we assert that |{u1, u2, u3} ∩ {v1, v2, v3}| ≥ 2.

If not, w.l.o.g., we may assume that u1 6= v1 and u2 6= v2. Since n ≥ 5, there exists a

vertex w in G − {v1, v2, v3, ui} such that c(wui) = c(viui) for i = 1, 2. Apparently, u1 6= u2;

otherwise c(u1v1) = c(u1w) = c(u2w) = c(u2v2) = c(u1v2). While by (1), c(u1v1) 6= c(u1v2), a

contradiction. Hence, c(v1u1) = c(u1u2) = c(u2v2). Together with (1), we get that v1u2v2u1v1

is a PC C4. Together with C∗, we obtain two edge-disjoint PC cycles of length at most 4, a

contradiction.

Now we distinguish two cases to proceed our discussion.

Case 1. |{u1, u2, u3} ∩ {v1, v2, v3}| = 2.

By symmetry, we can assume {u1, u2, u3} ∩ {v1, v2, v3} = {u1, u2}. Since u1 is chosen from

G1 = G−{v2, v3}, one has u1 = v1. Since u2 is chosen from G2 = G−{v1, v3}, we have u2 = v2.
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Hence, v3 6= u3 and vi = ui for all i = 1, 2. Since n ≥ 5, let x be a vertex in G−{v1, v2, v3, u3}.
By (1), we have

c(v1x) = c(v1u3) /∈ {c1, c3}, (2)

c(v2x) = c(v2u3) /∈ {c1, c2}, (3)

and

c(xu3) = c(v3u3) /∈ {c(u3v1), c(u3v2)}. (4)

Combining these three equalities, we can get that C = v1v2xu3v1 is a PC C4. From Equalities 3

and 4, we know that c(v2u3) 6= c2 = c(v2v3) and c(v2u3) 6= c(v3u3), respectively. If c(u3v3) 6= c2,

then v2v3u3v2 is a PC triangle edge-disjoint from C, a contradiction. Then c(u3v3) = c2, which

implies that c(xu3) = c2 and c(v1u3) 6= c2. We can see that v1v3u3v1 is a PC triangle. To

avoid that xu3v2v3x is a PC C4, we have c(xv3) = c2. Thus, c2 appears n − 2 times at v3, a

contradiction.

Case 2. vi = ui for all i = 1, 2, 3.

If c(v1, G1) 6= c(v2, G2), then c(v1w) 6= c(v2w) for all w ∈ V (G) − V (C∗). Since n ≥ 5,

there are two distinct vertices x, y in G−C∗. Then v1v2xv1 and v1v3v2yv1 are two edge-disjoint

PC cycles of length at most 4, a contradiction. Hence by symmetry, we have that c(v1, G1) =

c(v2, G2) = c(v3, G3), which means that c(v1w) = c(v2w) = c(v3w) for all w ∈ V (G) − V (C∗).

Then E[V (G) − V (C∗), V (C∗)] is a monochromatic edge-cut. Since ∆mon(G) ≤ n − 3 =

n − 2 − 1, by Lemma 20, G contains two edge-disjoint PC C4’s, a contradiction. The proof is

thus complete. �

Let G be a graph and X be a proper subset of V (G). To shrink X is to delete all the edges

whose both ends are in X and then identify all the vertices of X into a single vertex. The

resulting graph is denoted by G/X.

Proof of Lemma 22: Suppose to the contrary that G does not contain two disjoint

PC cycles of length at most 4. Since G has no PC triangle, G admits a Gallai partition

U1, U2, · · · , Uq. Assume that c(Ui, Uj) ⊂ {c1, c2} for (1 ≤ i < j ≤ q). We proceed by proving

the following claims.

Claim 1. G contains a PC C4 with vertices from distinct sets of U1, U2, · · · , Uq.

Proof. For this purpose, we first need the operation of shrinking. We obtain an edge-colored

complete graph H by shrinking Ui to a single vertex xi for all 1 ≤ i ≤ q and deleting the

parallel edges. The color of the edge xixj is just the one appearing on the edges between Ui

and Uj. If G contains a monochromatic edge-cut, from Lemma 20 and set k = 2, then there

are two edge-disjoint PC C4’s in G, a contradiction. Hence, G has no monochromatic edge-cut.

This implies that q ≥ 4. Then c(x,H − x) = {c1, c2} for each x ∈ V (H), which implies that
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∆mon(H) ≤ |V (H)| − 2. Thus by Theorem 2, H contains a PC C4. So, G has a PC C4 with

vertices from different parts of the Gallai partition.

W.l.o.g., we label the PC C4 in Claim 1 by C∗ = v1v2v3v4v1 with c(v1v2) = c(v3v4) =

c1 and c(v2v3) = c(v1v4) = c2. In this proof, the index i is taken by mod 4. Let Gi =

G − {vi+1, vi+2, vi+3}, i = 1, 2, 3, 4. Since |V (Gi)| ≥ n − 3 ≥ 3, Gi is nonempty. Clearly,

∆mon(Gi) = |V (Gi)| − 1 = n− 4 for i = 1, 2, 3, 4; otherwise from Theorem 2, Gi contains a PC

cycle, a contradiction. Therefore, there exists a vertex ui ∈ V (Gi) such that dcGi
(ui) = 1 for

i = 1, 2, 3, 4. Define Si = {v ∈ V (Gi), d
c
Gi

(v) = 1} for i = 1, 2, 3, 4. Clearly, there is only one

color in c(Si, Gi − Si) ∪ c(Si).

Claim 2. The color in c(Si, Gi − Si) ∪ c(Si) must be c1 or c2 for all 1 ≤ i ≤ 4.

Proof. Suppose not. Then we assume c(S1, G1−S1)∪c(S1) = {c3}. According to the definition

of a Gallai partition, V (G1) ⊆ Ui for some i with 1 ≤ i ≤ q. Noticing that v1 ∈ V (G1), we

have c(v2, G1) = {c1} and c(v4, G1) = {c2}. According to Claim 1, c(v2v4) ∈ {c1, c2}. W.l.o.g.,

assume c(v2v4) = c2. Then dmonG (v4) = |V (Gi)| + 1 = n − 2, a contradiction. By symmetry,

c(Si, Gi − Si) ∪ c(Si) must be c1 or c2 for all 1 ≤ i ≤ 4.

Claim 3. Si − vi 6= ∅ for all 1 ≤ i ≤ 4.

Proof. Suppose not. Then we may assume S1 = {v1}. By Claim 2, w.l.o.g., assume c(v1, G1) =

{c1}. Since dmon(v1) ≤ n−3, we have c(v1v3) = c2. Noticing that dmon(v3) ≤ n−3, there exists

a vertex x ∈ V (G)− V (C∗) such that c(v3x) 6= c2. If c(v3x) 6= c1, then xv1v3x is a PC triangle

edge-disjoint from C∗, a contradiction. Hence, c(v3x) = c1. Since S1 − v1 = ∅ and n ≥ 6, there

exists a vertex y in V (G) − V (C∗) distinct from x such that c(xy) 6= c1. Then v1v3xyv1 is a

PC C4 edge-disjoint from v1v2v3v4v1, a contradiction. By symmetry, we have Si− vi 6= ∅ for all

1 ≤ i ≤ 4.

By Claim 2, we know that the color in c(S1, G1 − S1) ∪ c(S1) must be c1 or c2. W.l.o.g.,

assume c(S1, G1 − S1) ∪ c(S1) = {c1}. By Claim 3, we have S2 − v2 6= ∅, which means that

S2∩G1 6= ∅. The condition c(S1, G1−S1)∪ c(S1) = {c1} implies c(S1, S2) = {c1}. Using Claim

2 again, c(S2, G2 − S2) ∪ c(S2) must be c1. Hence, we have c(S1 ∪ S2) = {c1}. Repeating the

above discussion, we can get c(∪1≤i≤4Si) = {c1}.

Claim 4. Si ∩ Si+1 = ∅ for all 1 ≤ i ≤ 4.

Proof. Suppose to the contrary that S1 ∩ S4 6= ∅. Then there exists a vertex x ∈ S1 ∩ S4 such

that c(xv1) = c(xv4) = c1. Since dmon(x) ≤ n − 3, neither c(xv3) nor c(xv2) is c1. Therefore,

xv1v4v3x is a PC C4. Since by Claim 3, S3− v3 6= ∅, there exists another vertex y distinct from

v3 in S3 such that c(yv3) = c1. Then c(yv1) = c1; otherwise yv3v2v1y is a PC C4 edge-disjoint
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from xv1v4v3x, a contradiction. Since dmon(y) ≤ n−3, we have c(yv4) 6= c1. Therefore, v4yv3xv4

is a PC C4 edge-disjoint from C∗, a contradiction. By symmetry, we have Si ∩ Si+1 = ∅ for all

1 ≤ i ≤ 4.

According to Claims 3 and 4, S1 ∩ S2 = ∅ and Si − vi 6= ∅ for i = 1, 2. There are four

distinct vertices ui ∈ Si such that c(uivi) = c1 for 1 ≤ i ≤ 4. To avoid that v1u1v2u2v1

is a PC C4, we have c(u1v2) or c(u2v1) is c1. W.l.o.g., assume c(u1v2) = c1. Recall that

u1 ∈ S1 and c(S1, G1 − S1) ∪ c(S1) = {c1}. The condition ∆mon(G) ≤ n − 3 implies that

c(u1v3) 6= c1. If c(u3v1) 6= c1, then u1v3u3v1u1 is a PC C4 edge-disjoint from C∗, a contradiction.

Then c(u3v1) = c1. Since c(v3u3) = c1, if c(v2u3) 6= c1, then u1v2u3v3u1 is a PC C4 edge-

disjoint from C∗, a contradiction. Then c(u3v2) = c1. Recall that c(∪1≤i≤4Si) = {c1} and

c(S3, G3−S3)∪c(S3) = {c1}. Then dmon(u3) ≥ n−2, which contradicts the condition ∆mon(G) ≤
n− 3. The proof is thus complete. �

3.2 Some additional results

While for the case k ≥ 3, we get some additional results related to Problem 4. The following

results imply that if there exists a vertex in G that is not contained in any PC cycle, then G

contains k edge-disjoint PC cycles. For convenience, we call this type of vertex a bad vertex,

Theorem 23. Suppose G is an edge-colored complete graph of order n ≥ 2k+3 with ∆mon(G) ≤
n− k − 1. If G has a Gallai partition, then at least one of the following statements holds.

(1) G contains k edge-disjoint PC cycles of length at most 4.

(2) G contains no bad vertex.

Proof of Theorem 23: From Theorems 2 and 5, we can deduce that Theorem 23 holds for

k ∈ {1, 2}. Therefore, we set k ≥ 3. Suppose to the contrary that G does not contain k

edge-disjoint PC cycles of length at most 4 and G has a bad vertex v0. By induction on k,

assume that the result holds for k−1. Since G has a Gallai partition, by Lemma 17, G contains

a v0-partition V0, V1 and V2 with c(V0, Vi) = {ci}, c(V1, V2) ⊆ {c1, c2} and c(G[Vi]) = {ci}, for

i = 1, 2. Since ∆mon(G) ≤ n − k − 1, by Lemma 20, G contains no monochromatic edge-cut.

Hence, |V0|+ (|Vi| − 1) + 1 ≤ n− k − 1, for all i = 1, 2. Thus,

k + 1 ≤ |Vi| ≤ n− k − 2, i = 1, 2,

1 ≤ |V0| ≤ n− 2k − 2.

Let H1 = G − V0. Then for each v ∈ V1, we have |N c2
H1

(v)| = |N c2
G (v)| = n − |N c1

G (v)| ≥
n − (n − k − 1) = k + 1 ≥ 4, and |N c1

H1
(v)| ≥ |V1| − 1 ≥ k ≥ 3. For each v ∈ V2, we have

|N c2
H1

(v)| = |N c2
G (v)| = n−|N c1

G (v)| ≥ n−(n−k−1) = k+1 ≥ 4, and |N c1
H1

(v)| ≥ |V1|−1 ≥ k ≥ 3.
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This implies that ∆mon(H1) ≤ |V (H1)|−3. Hence, by Theorem 5, H1 contains two edge-disjoint

PC cycles of length at most 4. Since |c(H1)| = 2, these two PC cycles must be C4. It is easy to

deduce that if H1 has a PC C4, then H1 must contain two vertices, say x and z, in V1 and two

vertices, say y and w, in V2. Since c(xz) 6= c(yw), the C4 must be xyzwx. Therefore, we label

the two edge-disjoint PC C4
′s in H1 by x1y1x2y2x1 and x3y3x4y4x3. We assume that xi ∈ V1

and yi ∈ V2 for 1 ≤ i ≤ 4 (w.l.o.g., xi may be equal to xi+2 for i = 1, 2; see Figure 1).

V1 V2

x1(x3)

x2(x4)

y1
y2

y3

y4

Figure 1: Two edge-disjoint PC C4
′s in H1

Let H2 = G−{x1, x2, y3, y4}. For each vertex v ∈ V1\{x1, x2}, we have c(v,G−v) ⊆ {c1, c2}.
Then |N c1

H2
(v)| ≤ |N c1

G (v)| − 2 ≤ n − k − 3, and |N c2
H2

(v)| ≤ |V2| − 2 ≤ n − k − 4. For each

v ∈ V2 \ {y3, y4}, we have c(v,G− v) ⊆ {c1, c2}. Then |N c2
H2

(v)| ≤ |N c2
G (v)| − 2 ≤ n− k− 3, and

|N c1
H2

(v)| ≤ |V1|−2 ≤ n−k−4. Furthermore, for each v ∈ V0 we have |N ci
H2

(v)| ≤ |N ci
G (v)|−2 ≤

n − k − 3 for i = 1, 2, and |Nα
H2

(v)| ≤ |Nα
G(v)| ≤ |V0| − 1 ≤ n − 2k − 3 ≤ n − k − 3 for each

color α ∈ c(G) \ {c1, c2}. This implies that ∆mon(H2) ≤ n − k − 3 = |V (H2)| − (k − 2) − 1.

From the choice of G and the fact that v0 is also a bad vertex in H2, we know that H2 contains

k− 2 edge-disjoint PC cycles of length at most 4. Together with the PC cycles x1y1x2y2x1 and

x3y3x4y4x3, there exist k edge-disjoint PC cycles in G, a contradiction. �

Theorem 24. Suppose G is an edge-colored complete graph of order n ≥ 2k+3. If ∆mon(G) ≤
n− 2k + 1, then at least one of the following statements holds.

(1) G contains k edge-disjoint PC cycles of length at most 4.

(2) G contains no bad vertex.

Proof of Theorem 24: From Theorems 2 and 5, we can deduce that Theorem 24 holds

for k ∈ {1, 2}. Suppose to the contrary that G does not contain k edge-disjoint PC cycles

of length at most 4 and G has a bad vertex v0 ∈ V (G). Let G be such a graph that k ≥ 3

is as small as possible. If G contains a PC triangle xyzx, then let H = G − {y, z}. So,

∆mon(H) ≤ ∆mon(G) ≤ n − 2 − 2(k − 1) + 1. Since k is as small as possible, either H

has k − 1 edge-disjoint PC cycles of length at most 4 or H contains no bad vertex. This

yields that either G has k edge-disjoint PC cycles of length at most 4 or G contains no bad

vertex, a contradiction. Thus, G has no PC triangle. Then G admits a Gallai partition. Since

∆mon(G) ≤ n − 2k + 1 ≤ n − k − 1, by Theorem 23, either G has k edge-disjoint PC cycles
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of length at most 4 or G contains no bad vertex, a contradiction. The proof of Theorem 24 is

thus complete. �

4 Edge-disjoint PC cycles of different lengths

If ∆mon(G) ≤ n − 3, one can get a lemma that G contains a PC cycle of length at least

4, which was also proved by Han et al. in [13]. Moreover, from their proof for the case

∆mon(G) ≤ n− 3, we can see the following property.

Lemma 25. Suppose G is an edge-colored complete graph of order n ≥ 4 with ∆mon(G) ≤ n−3.

Then G contains a PC cycle of length k for any k with 4 ≤ k ≤ 6.

Next, we give some lemmas which will be used in the proof of Theorem 11.

Lemma 26. Suppose G is an edge-colored complete graph of order n with ∆mon(G) ≤ n − 4.

If G contains a PC C5 or C6, then G contains two edge-disjoint PC cycles of different lengths.

Proof. Suppose to the contrary that G does not contain edge-disjoint PC cycles of different

lengths. Assume that there exists a PC C` in G where ` = 5 or 6. If n = `, then G is

properly colored when n = 5, and δc(G) ≥ 3 when n = 6. It is easy to find two edge-disjoint

PC cycles of different lengths. Hence we assume n > `. If ` = 6, then C` = x1y1 · · ·x3y3x1
and set X = {x1, x2, x3}, Y = {y1, y2, y3}. If ` = 5, then C` = a0x1y1x2y2a0 and set X =

{a0, x1, x2}, Y = {a0, y1, y2}. Let G1 = G−X and G2 = G−Y . Clearly, Gi contains no PC cycle

of length at most 4. From Theorem 2, there exist two vertices v and u in G1 and G2 respectively

with dmonG1
(v) = |V (G1)| − 1 and dmonG2

(u) = |V (G2)| − 1. Suppose that c(v,G1) = {c1} and

c(u,G2) = {c2}.
Now, we distinguish four cases to proceed our proof.

Case 1. Neither u nor v is in C`.

If u 6= v, then c1 = c(uv) = c2 = c. This implies from ∆mon(G) ≤ n − 4 that there exist

two distinct vertices x ∈ X \ {a0} and y ∈ Y \ {a0} such that c(vx) 6= c and c(uy) 6= c. Since

c(vy) = c(ux) = c, uxvyu is a PC C4, a contradiction. Hence, it follows that u = v, and then

c1 6= c2. Thus, V (G) \ V (C`) = {u}.
Note that c(u,X \{a0}) = {c2} and c(u, Y \{a0}) = {c1}. For any two vertices x ∈ X \{a0}

and y ∈ Y \ {a0}, if xy /∈ C`, then c(xy) ∈ {c1, c2}; otherwise uxyu is a PC triangle. W.l.o.g.,

suppose c(xy) = c1. Since uxyy′u is not a PC C4 for y′ ∈ Y \ {a0}, we have c(yy′) = c1. Then

dmon(y) ≥ 3 if ` = 5 and dmon(y) ≥ 4 if ` = 6, a contradiction to the condition ∆mon(G) ≤ n−4.

Case 2. Both u and v are in C` and uv /∈ C`.
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Note that c(uv) /∈ {c1, c2} as ∆mon(G) ≤ n− 4. Then c1 = c2 = c; otherwise wuvw is a PC

triangle for w ∈ V (G)\C`. Since neither wuvyw nor wvuxw is PC, we have c(wx) = c(wy) = c

for x ∈ X \ {a0}, y ∈ Y \ {a0} and w ∈ V (G) \ V (C`). Hence, there exists a distinct vertex

w′ ∈ V (G) \ C` such that c(ww′) 6= c. Then ww′uvw is a PC C4, a contradiction.

When discussing the last two cases, we always divide them into two subcases by considering

` = 5 and ` = 6. We will prove them in detail for ` = 6 and always assume that G contains no

PC C6 for ` = 5.

Case 3. u ∈ C` while v /∈ C`.
Subcase 3.1. ` = 6. W.l.o.g., set u = x1. The condition ∆mon(G) ≤ n − 4 implies

that c1 6= c(vxi) for all i = 1, 2, 3. Recalling that c(vx1) = c2, we have c1 6= c2. Note that

c(vx1) = c2, c(vy2) = c1 and c(x1y2) 6= c2. To avoid that vx1y2v is a PC triangle, we have

c(x1y2) = c1. Since neither x1y2y1vx1 nor x1y2y3vx1 is a PC C4, we know c(y2y1) = c(y2y3) = c1.

Then, c(y2, {v, y1, y3, x1}) = {c1}. It follows from ∆mon(G) ≤ n − 4 that there is a vertex

w ∈ V \ V (C`) such that c(y2w) 6= c1. The condition c(v,G1) = {c1} implies that c(vw) = c1.

Then y2wvx1y2 is a PC C4 edge-disjoint from the PC C`, a contradiction.

Subcase 3.2. ` = 5. In this subcase, c(uv) = c2 and c1 6= c2; otherwise dmon(v) ≥ n − 3.

First suppose that u = x1. Since y1, y2 ∈ G1 and x2 ∈ G2, we have c(v, {y1, y2}) = {c1}
and c(x1, {x2, v}) = {c2}, respectively. The condition ∆mon(G) ≤ n − 4 implies that c1 /∈
c(v, {a0, x1, x2}) and c2 /∈ c(x1, {a0, y1, y2}). Since neither x1vy1x2y2a0x1 nor x2vy2a0x1y1x2 is

a PC C6, we have c(y1x2) = c(vy1) = c1 and c(y2a0) = c(vy2) = c1. Then a0vx1y1x2y2a0 is a

PC C6, a contradiction.

Next, we set u = x2. Since y1, y2 ∈ G1 and x2 ∈ G2, we have c(v, {y1, y2}) = {c1}
and c(x2, {x1, v}) = {c2}, respectively. The condition ∆mon(G) ≤ n − 4 implies that c1 /∈
c(v, {a0, x1, x2}) and c2 /∈ c(x2, {a0, y1, y2}). Since neither x2vy1x1a0y2x2 nor vy2a0x1y1x2y2 is

a PC C6, we have c(y1x1) = c(vy1) = c1 and c(y2a0) = c(vy2) = c1. Recall that C` is a PC C5.

Then c1 /∈ {c(a0x1), c(y1x2), c(x2y2)}. Thus, T1 = x2y2vx2 is a PC triangle. Since n ≥ 7, fixing

a vertex w ∈ V (G) \ (V (C`) ∪ {v}), the definitions of v and x2 implies that c(wv) = c1 and

c(wx2) = c2. Then vx1y1x2wv is a PC C5 edge-disjoint from T1, a contradiction.

Case 4. Both u and v are in C` and uv ∈ C`.
Subcase 4.1. ` = 6. W.l.o.g., set x1 = u and y1 = v. It is clear that c(y1x3) 6= c1

and c(x1y2) 6= c2. Note that c(y1x3) = c2 or c(x1y2) = c1 since y1y2x1x3y1 is not a PC

C4. By symmetry, set c(y1x3) = c2, which also implies c1 6= c2. Note that for each vertex w ∈
V (G)\V (C`), wx1y1w is a PC triangle. Then, c(x2y2) = c(x1x2) = c2; otherwise x1x2y2x3y3x1 is

a PC cycle of length 5 edge-disjoint from wx1y1w, a contradiction. Since C` = x1y1x2y2x3y3x1

is a PC cycle and c(x2y2) = c2, we have c(y1x2) 6= c2 and c(y2x3) 6= c2. The hypothesis

c(y1x3) = c2 implies that y1x2y2x3y1 is a PC C4 edge-disjoint from wx1y1w, a contradiction.
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Subcase 4.2. ` = 5. First, note that a0 /∈ {u, v}. By symmetry, we only need to consider

uv = x2y2 or uv = y1x2.

We assert that c1 = c2 = c. Suppose it is not the case. If uv = x2y2 (u = x2 and v = y2),

then the condition ∆mon(G) ≤ n−4 implies that c(y2a0) 6= c1 and c(x2y1) 6= c2. Fixing a vertex

w ∈ V (G) \ V (C`) (n ≥ 7), the definitions of u and v imply that c(wy2) = c1 and c(wx2) = c2.

Then x2wy2a0x1y1x2 is a PC C6, a contradiction. If uv = y1x2 (u = x2 and v = y1), then

the condition ∆mon(G) ≤ n − 4 implies that c(x2y2) 6= c2 and c(y1x1) 6= c1. Fixing a vertex

w ∈ V (G) \ V (C`) (n ≥ 7), the definitions of u and v imply that c(wx2) = c2 and c(wy1) = c1.

Then wx2y2a0x1y1w is a PC C6, a contradiction.

First, suppose that uv = x2y2 (u = x2 and v = y2). Then c(y2y1) = c(x2x1) = c and

c /∈ {c(y2x1), c(x2y2), c(x2y1)}. Choosing any two vertices w1, w2 ∈ V (G)\V (C`), if c(w1w2) 6= c,

then w1w2x2y2w1 is a PC C4. This implies that x1x2y1x1 is not a PC triangle. Then c(x1y1) =

c(x1x2) = c. Hence, w1w2x2y1x1y2w1 is a PC C6, a contradiction. Then c(V (G) \ V (C`) = {c}.
Fixing two vertices w1, w2 ∈ V (G) \ V (C`), we have c(w1w2) = c. The condition ∆mon(G) ≤
n − 4 implies that c /∈ c(wi, {a0, x1, y1}) for i = 1, 2. Then w1w2y1y2x2x1w1 is a PC C6, a

contradiction.

Now suppose that uv = y1x2 (u = x2 and v = y1). Then c(x1x2) = c(y1y2) = c and

c /∈ {c(x1y1), c(y1x2), c(x2y2)}. Choosing any two vertices w1, w2 ∈ V (G) \ V (C`), if c(w1w2) 6=
c, then w1w2y1x2w1 is a PC C4. This implies that w1y1x1w1 is not a PC triangle. Then

c(x1w1) ∈ {c, c(x1y1)}. Note that a0x1w1y1x2y2a0 is a PC C6 when c(x1w1) = c(x1y1), a

contradiction. Hence, c(w1x1) = c. Since w2x2y2w2 is not a PC triangle, it follows that

c(y2w2) ∈ {c(w2x2), c(x2y2)} = {c, c(x2y2)}. Since a0y2w2x2y1x1a0 is a PC C6 when c(y2w2) =

c(x2y2), we have c(y2w2) = c. Thus, x1w1w2y2x2y1x1 is a PC C6, a contradiction. Then

c(V (G) \ V (C`)) = {c}. Fixing two vertices w1, w2 ∈ V (G) \ V (C`), we have c(w1w2) = c. The

condition ∆mon(G) ≤ n−4 implies that c /∈ c(wi, {a0, x1, y2}) for i = 1, 2. Then w1w2x1x2y1y2w1

is a PC C6, a contradiction. The proof of Lemma 26 is thus complete.

Next, we prove that the existence of PC C8 implies the existence of two edge-disjoint PC

cycles of different lengths in a 2-edge-colored (using only two colors) complete graph of order

n with ∆mon(G) ≤ n− 4.

Lemma 27. Suppose G is an edge-colored complete graph of order n with c(G) = {c1, c2} and

∆mon(G) ≤ n − 4. If G contains a PC C8, then G contains two edge-disjoint PC cycles of

different lengths.

Proof. Suppose to the contrary that G does not contain two edge-disjoint PC cycles of different

lengths. By Lemma 26, G contains no PC C6. Assume that C∗ = x1y1x2y2x3y3x4y4x1 is a

PC C8 with c(xiyi) = c1 and c(yixi+1) = c2 for all i = 1, 2, 3, 4, where x5 = x1. To avoid
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that y1x2y2x3y3x4y1 is a PC C6, we have c(y1x4) = c2. Then we have c(x2y3) = c(x1y2) =

c(x3y4) = c2 and c(y1x3) = c(x1y3) = c(x2y4) = c(y2x4) = c1. It is easily seen that C ′ =

x1y2x4y1x3y4x2y3x1 also is a PC C8.

Let G1 = G − {y1, y2, y3, y4} and G2 = G − {x1, x2, x3, x4}. From Theorem 2 and the

hypothesis that G does not contain two edge-disjoint PC cycles of different lengths, we have

∆mon(Gi) = |V (Gi)| − 1 = n− 5, which implies that there are two vertices x ∈ G1 and y ∈ G2

such that |c(x,G1)| = |c(y,G2)| = 1, respectively.

We assert that x, y /∈ C∗. If x ∈ C∗, w.l.o.g., set x = x1 and c(x,G1) = {c1}. Since

c(x1y1) = c(x1y3) = c1, d
c1
G (x1) = n − 3, a contradiction. If y ∈ C∗, w.l.o.g., set y = y1 and

c(y,G2) = {c1}. Since c(y1x1) = c(y1x3) = c1, we have dc1G (y1) = n− 3, a contradiction.

If x 6= y, then c(x,G1) = c(y,G2) = {c(xy)}. W.l.o.g., set c(xy) = c1. The condition

∆mon(G) ≤ n − 4 implies that dc2C∗(x) ≥ 3 and dc2C∗(y) ≥ 3. Choose an edge xiyi. Note that

c(xxi) = c(yyi) = c(xy) = c1. If c(xyi) = c(yxi) = c2, then xxiyiyx is a PC C4 edge-disjoint

from C ′, a contradiction. Hence, there is at most one edge colored by c2 between {x, y} and

{xi, yi}. This means that there are at most four edges colored by c2 between {x, y} and C∗,

which contradicts the fact that dc2C∗(x) ≥ 3 and dc2C∗(y) ≥ 3.

If x = y, then c(x,G1) 6= c(x,G2); otherwise |c(x,G)| = 1, a contradiction. Then, n = 9

and V (G) = V (C∗) ∪ {x}. W.l.o.g., set c(x, {x1, x2, x3, x4}) = {c2} and c(x, {y1, y2, y3, y4}) =

{c1}. If c(x1x2) = c1, then x1x2xy4x1 is a PC C4 edge-disjoint from C ′, a contradiction. If

c(x1x2) = c2, then {x1, x, y1, y4} ⊆ N c2
G (x2). The condition ∆mon(G) ≤ n− 4 = 5 implies that

c(x2x3) = c1 or c(x2x4) = c1. If c(x2x3) = c1, then xx2x3y4x is a PC C4 edge-disjoint from C∗, a

contradiction. If c(x2x4) = c1, then xx2x4y1x is a PC C4 edge-disjoint from C∗, a contradiction.

The result thus follows.

Lemma 28 ([13]). Suppose that G is an edge-colored complete graph and C = xyzwx is a PC

C4 in G, where c(xy) = c(zw) = c1 and c(yz) = c(xw) = c2. If uv is an edge with no end on

C such that c(uv) = c1 and dc2C (u) + dc2C (v) ≥ 5, then G[V (C) ∪ {u, v}] contains a PC cycle of

length 6.

Lemma 29 ([13]). Suppose that G is an edge-colored complete graph with c(G) = {c1, c2} and G

does not contain two vertex-disjoint PC cycles of different lengths. If G contains m ≥ 3 pairwise

vertex-disjoint PC C4’s, say Q1, Q2, · · · , Qm, let Qi = xiyiziwixi for each i ∈ {1, 2, ...,m}. Then

up to renaming the vertices, for every pair i, j of integers with 1 ≤ i < j ≤ m,

{c(xizi)} = {c(xiyi)} = {c(ziwi)} = c({xi, zi}, V (Qj)) = {c1}, and

{c(yiwi)} = {c(xiwi)} = {c(ziyi)} = c({yi, wi}, V (Qj)) = {c2}.
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Lemma 30. Suppose that G is an edge-colored complete graph with c(G) = {c1, c2} and

∆mon(G) ≤ n − 4, and suppose G does not contain two edge-disjoint PC cycles of differen-

t lengths. If G contains m ≥ 2 pairwise vertex-disjoint PC C4’s, say Q1, Q2, · · · , Qm, let

Qi = xiyiziwixi for each i ∈ {1, 2, ...,m}. Then up to renaming the vertices, for every pair i, j

of integers with 1 ≤ i < j ≤ m,

{c(xizi)} = {c(xiyi)} = {c(ziwi)} = c({xi, zi}, V (Qj)) = {c1}, and

{c(yiwi)} = {c(xiwi)} = {c(ziyi)} = c({yi, wi}, V (Qj)) = {c2}.

Proof. If m ≥ 3, then the result follows from Lemma 29. Hence we suppose m = 2. W.l.o.g.,

we assume that c(xiyi) = c(ziwi) = c1 and c(yizi) = c(wixi) = c2 for i = 1, 2. From Lemmas 26

and 27, G[V (Q1) ∪ V (Q2)] contains neither PC C6 nor PC C8. By symmetry of c1 and c2, we

assume that c(x1x2) = c1. Since y1z1w1x1x2w2y1, w1x1x2w2z2y2w1 and z1w1x1x2w2z2z1 are not

PC C6, we have c(y1w2) = c(w1y2) = c2 and c(z1z2) = c1.

If c(x1z2) = c2, then since y1x1z2w2x2y2y1, w1z1y1x1z2w2w1 and z1y1x1z2w2x2z1 are not PC

C6, we have c(y1y2) = c(w1w2) = c1 and c(z1x2) = c2. This implies that x1y1z1w1y2x2w2z2x1 is

a PC C8, a contradiction. So we have c(x1z2) = c1. Since y1z1w1x1z2y2y1, w1x1z2y2x2w2w1

and z1w1x1z2y2x2z1 are not PC C6, we have c(y1y2) = c(w1w2) = c2 and c(z1x2) = c1.

Then c({x1, z1}, {x2, z2}) = {c1} and c({y1, w1}, {y2, w2}) = {c2}. By symmetry of c1 and

c2, we assume that c(x1y2) = c1. Then we can also have c({x1, z1}, {y2, w2}) = {c1} and

c({y1, w1}, {x2, z2}) = {c2}. Then c({x1, z1}, V (Q2)) = {c1} and c({y1, w1}, V (Q2)) = {c2}. S-

ince x1z1x2w2z2y2x1 and y1w1x2y2z2w2y1 are not PC C6, we have c(x1z1) = c1 and c(y1w1) = c2.

The result thus follows.

Lemma 31. Suppose G is an edge-colored complete graph of order n ≥ 5 with ∆mon(G) ≤
n − 4. If G contains a monochromatic edge-cut, then G contains two edge-disjoint PC cycles

of different lengths.

Proof. Suppose not. Since G contains a monochromatic edge-cut, G has a bipartition {V1, V2}
with (w.l.o.g.,) c(V1, V2) = {c1}. Since ∆mon(G) ≤ n− 4, each vertex v ∈ Vi is connected with

at least three vertices in Vi by edges with colors distinct from c1 for i = 1, 2. Clearly, there are

two independent edges x1x2 and x3x4 in V1 and two independent edges y1y2 and y3y4 in V2 such

that c1 /∈ {c(x1x2), c(x3x4), c(y1y2), c(y3y4)}. Then we can find a PC cycle x1x2y1y2x3x4y3y4x1

of length 8. Let G1 = G − {x1, x3, y1, y3}. Then ∆mon(G1) = |V (G1)| − 1; otherwise G1

contains a PC cycle of length at most 4 by Theorem 2. W.l.o.g., assume that the vertex v with

dcG1
(v) = 1 is in V1. It is obvious that c(v,G1) = {c1}. Then c(vy1) = c(vy3) = c1 follows from

c(V1, V2) = {c1}. Thus dc1G (v) ≥ n− 3, which contradicts the condition ∆mon(G) ≤ n− 4. The

lemma thus follows.
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In 2018, Fujita et al. in [8] gave a sufficient condition for the existence of PC triangles in

edge-colored complete graphs.

Lemma 32 ([8]). Let G be an edge-colored complete graph order n ≥ 3 with δc(G) > log2 n.

Then G contains a PC triangle.

4.1 Proof of Theorem 11

Note that n = 5 implies that ∆mon(G) = 1 and δc(G) = 4. i.e., G is a properly edge-colored

complete graph. We can easily find two edge-disjoint PC cycles of different lengths. Thus, we

always assume n ≥ 6 in the proof. Theorem 11 can be divided into two lemmas by considering

whether G contains PC triangles or not. Therefore, the following results are stated.

Lemma 33. Let G be an edge-colored complete graph of order n with ∆mon(G) ≤ n− 4. If G

contains a PC triangle, then G contains two edge-disjoint PC cycles of different lengths.

Lemma 34. Let G is an edge-colored complete graph of order n with ∆mon(G) ≤ n − 4. If G

contains no PC triangle, then G still contains two edge-disjoint PC cycles of different lengths.

From Lemmas 33 and 34, we can get Theorem 11 easily.

v1

v2 v3

v4v5

v6

PC C3’s: v1v2v3v1

v4v5v6v4

PC C4: v2v3v4v5v2

Figure 2: The edge-colored graph F ∗

First, for convenience we construct a graph F ∗, which is an edge-colored graph with 6

vertices {v1, v2, v3, v4, v5, v6} as shown in Figure 2. In F ∗, v1v2v3v1, v4v5v6v4 and v2v3v4v5v2 are

PC cycles. Now we are ready to prove Lemmas 33 and 34.

Proof of Lemma 33: Suppose to the contrary that G does not contain two edge-disjoint PC

cycles of different lengths. Assume that the PC C3 in G is C∗ = v1v2v3v1.

Next, we prove the following claims.

Claim 1. Any two PCs C3 and C4 in G share exactly one edge.

Proof. Suppose to the contrary that there exists a PC C4 that shares two edges v1v2 and v2v3

with C∗. We label the PC C4 by v1v2v3v4v1. Let G1 = G − {v1, v3}. Then ∆mon(G1) ≤
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∆mon(G) ≤ |V (G1)| − 2. Theorem 2 guarantees that G1 contains a PC cycle of length at most

4. Apparently, this cycle is edge-disjoint from both v1v2v3v4v1 and v1v2v3v1, a contradiction.

Let G′ = G− v1. Then ∆mon(G′) ≤ ∆mon(G) ≤ |V (G′)| − 3. Hence, Lemma 25 guarantees

that G′ contains a PC cycle of length k for 4 ≤ k ≤ 6. While from Lemma 26, G contains no

PC C5 or C6. Thus, G has a PC C4 which is connected with C∗ by the edge v2v3, and we label

the PC C4 by v2v3v4v5v2.

Claim 2. G contains a copy of F ∗.

Proof. Let G1 = G−{v1, v2}. Then the condition ∆mon(G1) ≤ n− 4 = |V (G1)| − 2 guarantees

that G1 contains a PC cycle of length at most 4 by Theorem 2. If G1 contains a PC C4, then

this cycle is edge-disjoint from C∗, a contradiction. Thus, G1 has one PC triangle containing

v3v4 or v4v5. According to Claim 1, v3v4v5v3 is not a PC triangle. If there exists a vertex

u ∈ V (G) \ {v1, · · · , v5} such that uv4v5u is a PC triangle, then the claim follows. Hence, we

assume that there exists no such vertex. Then there exists a vertex u1 ∈ V (G) \ {v1, · · · , v5}
such that u1v3v4u1 is a PC triangle. By symmetry, let G2 = G − {v1, v3}. We can also get

a PC triangle u2v2v5u2 with u2 ∈ V (G) \ {v1, · · · , v5}. If u1 6= u2, the claim follows from

G[{v2, · · · , v5, u1, u2}]. If u1 = u2, then set G3 = G − {v3, u1}. Repeating the analysis above,

we know that v1v4v5v1 is a PC triangle. Then we get a copy of graph shown as Figure 3. Then

v1

v2 v3

v4v5

PC C4: v2v3v4v5v2
PC C3’s: v1v2v3v1

v4v5v2v4
v4v5v3v4

Figure 3: The edge-colored graph in Claim 2

let G4 = G− {v2, v4} and G5 = G− {v3, v5}. The condition ∆mon(G4) ≤ n− 4 = |V (G4)| − 2

guarantees that G4 contains a PC cycle of length at most 4 by Theorem 2. If G4 contains a PC

triangle, then this PC triangle is edge-disjoint from PC cycle v2v3v4v5v2. Hence, G4 contains

a PC C4. Note that such a PC C4 must contains at least one edge from each PC triangles of

{u1v2v5u1, u1v3v4u1, C∗, v1v4v5v1}. Hence, v1v5u1v3v1 is the desired PC C4. Since G4 and G5

are isomorphic, we know that v2v1v4u1v2 is a PC C4.

Then, to avoid u1v3v5u1 and v1v3v5v1 being PC triangles, w.l.o.g. we have c(u1v3) =

c(v3v5) = c(v1v5) = c1. Recalling that both v1v4v5v1 and u1v4v3u1 are PC triangles, we

have c1 /∈ {c(v3v4), c(v4v5)}. Therefore, v3v4v5v3 is a PC C3 edge-disjoint from v2v1v4u1v2,

a contradiction.
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Continuing the proof of Lemma 33, we label the vertices of the copy F of F ∗ in G by

{v1, · · · , v6} such that v1v2v3v1, v4v5v6v4 and v2v3v4v5v2 are PC cycles. SetGi = G−{vi, vi+2, vi+4}
for i = 1, 2. Clearly, neither G1 nor G2 contains a PC cycle. Hence, Gi contains a vertex ui

such that dcGi
(ui) = 1 for i = 1, 2. W.l.o.g., set c(ui, Gi) = {ci} for i = 1, 2. Especial-

ly, c(u1, {v2, v4, v6}) = {c1} and c(u2, {v1, v3, v5}) = {c2}. Since ∆mon(G) ≤ n − 4, we have

c1 /∈ c(u1, {v1, v3, v5}) and c2 /∈ c(u2, {v2, v4, v6}).

Claim 3. ui /∈ V (F ) for i = 1, 2.

Proof. We prove the claim by contradiction. Note that u1 /∈ {v1, v3, v5} and u2 /∈ {v2, v4, v6}.
If u1 = v2, then we have c(v2v4) = c1 and c1 /∈ {c(v2v3), c(v2v5)}. From Claim 1, we know that

neither v2v3v4v2 nor v2v5v4v2 is a PC triangle. Since c(v2v3) 6= c(v3v4) and c(v2v5) 6= c(v4v5),

we have c(v3v4) = c(v4v5) = c1, which contradicts the fact that v2v3v4v5v2 is a PC C4. Hence,

u1 6= v2. Since G1 and G2 are isomorphic, we can deduce that u1 6= v4 and u2 /∈ {v3, v5}. If

u1 = v6 and u2 /∈ V (F ), it is clear that c1 6= c2. To avoid that u2v6v5v4v3u2 is a PC cycle of

length 5, we have c(v4v3) = c(v3u2) = c2. Since u2v4v3v1u2 and v4v5v6v4 are not edge-disjoint,

we have c(v1v3) = c2. Recall that v1v2v3v1 is a PC triangle. Then c2 /∈ {c(v1v2), c(v2v3)},
which implies that u2v4v3v2v1u2 is a PC cycle of length 5, a contradiction. Since G1 and G2 are

isomorphic, we can get a contradiction when u2 = v1 and u1 /∈ V (F ). Consequently, we only

have u1 = v6 and u2 = v1. Then c(v1v6) /∈ {c1, c2} and v1v3v2v5v4v6v1 is a PC cycle of length

6, a contradiction. The claim thus follows.

While if ui /∈ V (F ) for i = 1, 2, then c(u1, {v2, v4, v6}) = {c1} and c(u2, {v1, v3, v5}) =

{c2}. If u1 6= u2, then c1 = c(u1u2) = c2. This implies from ∆mon(ui) = n − 4 that c1 /∈
c(ui, {vi, vi+2, vi+4}) for i = 1, 2. Hence, u1v1u2v2u1 is a PC C4 edge-disjoint from the PC

triangle v4v5v6v4, a contradiction.

If u1 = u2, then c1 6= c2, and so V (G) \ V (F ∗) = {u1} and n = 7. Since v6u1v3v6 is not a

PC triangle, we have c(v6v3) ∈ {c(u1v6) = c1, c(u1v3) = c2}. W.l.o.g., we assume c(v6v3) = c1.

As neither v6v3u1v2v6 nor v6v3u1v4v6 is a PC C4, we get c(v2v6) = c1 and c(v4v6) = c1. Then

|N c1
G (v6)| ≥ 4 = n− 3, a contradiction. The proof of Lemma 33 is thus complete. �

Proof of Lemma 34: Suppose to the contrary that G does not contain two edge-disjoint PC

cycles of different lengths. If n = 6, from Lemma 32, G contains a PC triangle, a contradiction.

Hence, n ≥ 7. Since G contains no PC triangle, there is a Gallai partition {U1, U2, · · · , Uq} in

G. We assume c(Ui, Uj) ⊂ {c1, c2} for 1 ≤ i < j ≤ q. Furthermore, by Lemma 31 G contains

no monochromatic edge-cut, which implies q ≥ 4.

Let H be an edge-colored complete graph obtained from G by shrinking each Ui to a vertex

ui and deleting all parallel edges. Since G contains no monochromatic edge-cut, one can see

that dc(ui) = 2 for each i ∈ {1, ..., q} and ∆mon(H) ≤ |H| − 2. One can also see that H
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contains only two colors c1 and c2. From Theorem 2, H contains a PC cycle of length at most

4. If H has a PC triangle, then G has a PC triangle, a contradiction. Hence, H contains a

PC C4 with only two colors. Thus, there is a PC C4: C
∗ = x0y0z0w0x0 with only two colors

in G and each vertex is from different parts in the Gallai partition. W.l.o.g., we suppose that

c(x0y0) = c(z0w0) = c1 and c(y0z0) = c(w0x0) = c2. Let G1 = G− {y0, w0, z0}.
The subgraph of an edge-colored graph F induced by all the edges with color α is called

the i-color subgraph, denoted by Fα.

Claim 1. (1) If there is a color α such that Gα
1 is spanning and connected, then α ∈ {c1, c2}.

(2) c({y0, z0, w0}, V (G1)) ⊆ {c1, c2}.
(3) ∆mon(G1) ≤ |V (G1)| − 2.

Proof. (1) Suppose to the contrary that α /∈ {c1, c2}. Since c(Ui, Uj) ⊂ {c1, c2} for 1 ≤ i, j ≤ q,

V (G1) ⊆ Ui0 for some i0 ∈ {1, 2, · · · , q}. Since x0 ∈ V (G1), one has y0 /∈ Ui0 . Thus, dmonG (y0) ≥
|V (G1)| = n− 3, a contradiction.

(2) Suppose to the contrary that there is a vertex v ∈ V (G1)\{x0} such that c(y0v) = c3 /∈
{c1, c2}. Then y0, v are in the same part of the Gallai partition. Hence, c(x0v) = c(x0y0) = c1.

Then, vy0z0w0x0v is a PC C5. Lemma 26 implies that G contains two edge-disjoint PC cycles

of different lengths, a contradiction.

(3) If not, there is one vertex v ∈ G1 such that dcG1
(v) = 1, say c(v,G1) = {f}. Since G1

is a complete graph, Gf
1 is spanning and connected. By (1), we know f ∈ {c1, c2}. W.l.o.g., we

assume c(v,G1) = {f} = {c1}. If c1 ∈ (v, {y0, z0, w0}), then ∆mon(v) ≥ n− 3, a contradiction.

Hence c(v, {y0, z0, w0}) = {c2} and v 6= x0.

We assert that for each u ∈ V (G1) \ {v, x0}, c(u, {x0, y0, z0}) = {c1}. If not, choose an

arbitrary vertex u ∈ V (G1)\{v, x0}. If c(uy0) 6= c1, then uy0x0w0z0vu is a PC C6. If c(uz0) 6= c1,

then uz0w0y0z0vu is a PC C6. If c(uw0) 6= c1, then uw0z0y0x0vu is a PC C6. From Lemma 26,

there are two edge-disjoint PC cycles of different lengths, a contradiction.

If there exists a vertex u ∈ V (G1) \ {v, x0} such that c(x0u) 6= c1, then vux0y0z0w0v is a

PC C6. Hence, c(x0, G1) = {c1}. Then ∆mon(x0) ≥ n − 3, a contradiction. The claim thus

follows.

Next, we distinguish two cases by considering the maximum color-degree of G.

Case 1: ∆c(G) = 2.

Recall that G has a Gallai partition U1, U2, ..., Up and ∪1≤i<j≤pc(Ui, Uj) = {c1, c2}. Then

{c1, c2} ⊆ c(G). Since G contains no monochromatic-cut, we have {c1, c2} ⊆ c(v,G) for each

vertex v ∈ G. So, c(G) = {c1, c2}.

Claim 1.1 G contains at least two vertex-disjoint PC C4’s.
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Proof. Since ∆mon(G1) ≤ |V (G1)| − 2, there is a PC cycle Q1 of length 4 in G1 by Theorem

2. Suppose to the contrary that all PC C4’s in G1 intersect C∗ at x0. We can assume that

Q1 = x1y1z1w1x1 is a PC C4 in G1 and x1 = x0. W.l.o.g., we suppose c(x1y1) = c(z1w1) = c1

and c(y1z1) = c(w1x1) = c2. Let W = V (C∗) ∪ V (Q1) and G2 = G−W .

First, we assert that for all v ∈ G2, c(vy0) = c(vy1), c(vz0) = c(vz1) and c(vw0) = c(vw1).

In fact, if c(vy0) 6= c(vy1), we suppose that c(vy0) = c1 and c(vy1) = c2. Then vy0z0w0x0y1v is

a PC cycle of length 6, which contradicts Lemma 26. By a similar discussion, we can show the

other cases.

Moreover, since x0y0z0w0z1w1x0 is not a PC cycle of length 6, we have c(w0z1) = c1. By

symmetry, we can conclude that c(z0w1) = c1 and c(y0z1) = c(y1z0) = c2. Since neither

y0w0x0y1w1z0y0 nor y1w1x0y0w0z1y1 is a PC cycle of length 6, we have c(y0w0) = c(y1w1) = ci.

W.l.o.g., assume that c(y0w0) = c(y1w1) = c1. Then we get the subgraph G[W ] as shown in

Figure 4.

Now we define two vertex sets S = {v ∈ G2 : c(vw0) = c(vw1) = c1} and T = {v ∈
G2 : c(vw0) = c(vw1) = c2}. From Claim 2.1, we know that c(vw0) = c(vw1) for all v ∈ G2.

Recall that c(G) = {c1, c2}. Then for each vertex v ∈ G2, we have c(vw0) = c(vw1) = c1 or

c(vw0) = c(vw1) = c2. So, (S, T ) is a vertex partition of G2. Note that T 6= ∅; otherwise

∆mon(G) ≤ n− 4 implies that c(w1y0) = c(w1w0) = c2, which means that w1y0w0x0y1z1w1 is a

PC C6, a contradiction.

x0

y0 y1

z0 z1

w0 w1

c1

c2

S T

Figure 4: The edge-colored graph G[W ] and the vertex partition (S, T ) of G2

Next, we assert that c(T, T ∪W \ {x0}) = {c2}. For any t ∈ T , to avoid both tz1y1w1t and

ty1z1w1t being properly colored, we have c(t, {z1, y1}) = {c2}. By symmetry, c(t, {z0, y0}) =

{c2}. If there is an edge in G[T ] such that c(t1t2) 6= c2, then t1t2z1w1t1 is a PC C4 vertex-disjoint

from C∗, a contradiction. Then c(T ) ⊆ {c2}.
Hence, referring to G[T, S], we assert the following statements.

(1) For each vertex t ∈ T , there is a vertex st ∈ S such that c(tst) = c1. Note that

dc2G[W∪T ](t) ≥ |W ∪ T | − 2 for each vertex t ∈ T . Thus, there must be a vertex st ∈ S such that

c(stt) = c1.

(2) If c1 ∈ c(s, T ) for s ∈ S, there is a vertex ts ∈ T such that c(sts) = c2. Suppose there is
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a vertex t ∈ T such that c(st) = c1. Since we want to avoid tsz1w1t and tsy1w1t being properly

colored, we have c(s, {y1, z1}) = {c1}. Since c(s,W \ {x0}) = {c1}, for any s′ ∈ S \ {s}, as

tss′w1t is not a PC C4, we have c(ss′) = c1. This implies that c(s, S ∪W \ {x0}) = {c1}. Then

there must exist a vertex ts ∈ T such that c(sts) = c2.

Next, we show that there is a PC C4 in G2. According to the above statements, there exists

an alternatively colored path in G[S, T ]. Let P = v1v2 · · · vl be a longest one which begins with

a vertex in T (v1 ∈ T ) and c(v1v2) = c1. Recall that (S, T ) is a vertex partition of G2. Then

vl ∈ S or vl ∈ T . In fact, the proofs of the two cases are similar. Hence, we assume vl ∈ S.

Then, the length of P is odd and c(vl−1vl) = c1. Thus by (2), there is a vertex vl+1 ∈ T such

that c(vlvl+1) = c2. Since P is longest, vl+1 = vk ∈ P . Then, C = vkvk+1 · · · vlvk is a PC cycle

vertex-disjoint from C∗. If |C| ≥ 6, we can get the lemma. Therefore, |C| = 4.

Then by the claim above, let C∗ = Q0, Q1, Q2, ..., Qm be vertex-disjoint PC C4’s in G such

that m is as large as possible. Apparently, m ≥ 1. Define Qi = xiyiziwixi for each i ∈
{1, 2, ...,m}, where c(xiyi) = c(ziwi) = c1 and c(xiwi) = c(yizi) = c2. Let W =

⋃
0≤i≤m V (Qi)

and G2 = G −W . Since G2 contains no PC cycle, we know that G2 contains a vertex v such

that |c(v,G2)| = 1. W.l.o.g., we set c(v,G2) = {c1}. From Lemma 30, there is an integer

i0 ∈ {0, 1, ...,m} such that dc2G[W ](xi0) = dc2G[W ](zi0) = 1 and dc1G[W ](yi0) = dc1G[W ](wi0) = 1.

W.l.o.g., we suppose i0 = 0.

Firstly, we assert that c(v,Q0) = {c1}. Suppose not. If c(vx0) = c2 for any u ∈ G2 − {v},
since vx0y0w0z0uv is not a PC cycle of length 6, we have c(uz0) = c1. Then, dc1G (z0) ≥ n− 3, a

contradiction. Thus, c(vx0) = c1. By a similar argument, we have c(vz0) = c(vy0) = c(vw0) =

c1.

Since dc2G[W ](x0) = dc2G[W ](z0) = 1, we can find two distinct vertices u1, u2 ∈ G2 such that

c(u1x0) = c(u2z0) = c2. If c(u1u2) = c1, then u1u2z0w0y0x0u1 is a PC cycle of length 6. So, we

have c(u1u2) = c2, which implies that v 6= ui for i = 1, 2. Recall that c(v,G2) = c(v,Q0) =

{c1}. Since ∆mon(G) ≤ n − 4, there exists an integer i ∈ {1, 2, ..,m} such that c2 ∈ c(v,Qi).

W.l.o.g., we assume i = 1. If c(vx1) = c2, then vu1x0y0y1x1v is a PC C6, a contradiction.

Since vu2z0w0x1y1v, vu2z0w0w1z1v and vu2z0w0z1w1v are not PC cycles of length six, we have

c(vy1) 6= c2, c(vz1) 6= c2 and c(vw1) 6= c2. This implies c2 /∈ c(v,Q1), a contradiction.

Case 2. ∆c(G) ≥ 3.

Recall that G contains no PC triangle and Lemma 26 implies that G contains no PC

C5. Then by Lemma 19, G contains no PC odd cycles. It is easily seen that G satisfies the

conditions of Lemma 18. Then we can get that G admits a partition {X, Y, Z} such that

c(X) ⊆ c(X,Z) = {c1}, c(Y ) ⊆ c(Y, Z) = {c2} and c(X, Y ) ⊆ {c1, c2}. Since ∆c(G) ≥ 3, there

exist at least three colors in G. However, c(X∪Y )∪c(X∪Y, Z) ⊆ {c1, c2}, which means Z 6= ∅.
We assert that |X| ≥ 4 and |Y | ≥ 4. By symmetry, we only need to prove |X| ≥ 4.
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Otherwise, for each vertex y ∈ Y , we have dc2G (y) ≥ n − 3, which contradicts the condition

∆mon(G) ≤ n− 4.

If G[X ∪ Y ] contains no PC cycle, then G[X ∪ Y ] contains a vertex v such that |c(v,G[X ∪
Y ])| = 1. W.l.o.g., we set v ∈ X. Since |X| ≥ 4 and c(X) ⊆ {c1}, we have c(v,G[X∪Y ]) = {c1}.
Recall that c(X,Z) = {c1}. This implies that dc1G (x) = n−1, a contradiction. Then by Theorem

2, there is a PC C4 in G[X ∪Y ]. Thus we assume that the C4 in G[X ∪Y ] is Q0 = x0y0x1y1x0,

where xi ∈ X and yi ∈ Y for i = 0, 1. Thus, G[X ∪ Y ] contains at least two vertex-disjoint PC

C4’s.

Let X ′ = X \ {x0, x1} and Y ′ = Y \ {y0, y1}. Next, we only need to show that G[X ′ ∪ Y ′]
contains a PC C4. Suppose not. Then G[X ′ ∪ Y ′] contains a vertex v such that |c(v,G[X ′ ∪
Y ′])| = 1. W.l.o.g., we set v ∈ X ′. Note that c(v, {x0, x1}) = c(v, Z) = {c1}, which implies

that dc1G (v) ≥ n− 3, a contradiction. Thus, we can conclude that G[X ′ ∪ Y ′] contains a PC C4.

Since G[X ∪ Y ] contains at least two vertex-disjoint PC C4’s and c(G[X ∪ Y ]) = {c1, c2},
noticing that ∆mon(G[X ∪ Y ]) ≤ |X ∪ Y | − 4. Let C∗ = Q0, Q1, Q2, ..., Qm be vertex-disjoint

PC C4’s in G[X ∪Y ] such that m is as large as possible. Recall that G[X ∪Y ] contains at least

two vertex-disjoint PC C4’s. Then m ≥ 1. Define Qi = xiyiziwixi for each i ∈ {1, 2, ...,m},
where c(xiyi) = c(ziwi) = c1 and c(xiwi) = c(yizi) = c2. Let W =

⋃
0≤i≤m V (Qi) and G2 =

G[X ∪ Y ] −W . Since G2 contains no PC cycle, we know that G2 contains a vertex v such

that |c(v,G2)| = 1. W.l.o.g., we set c(v,G2) = {c1}. From Lemma 30, there is an integer

i0 ∈ {0, 1, ...,m} such that dc2G[W ](xi0) = dc2G[W ](zi0) = 1 and dc1G[W ](yi0) = dc1G[W ](wi0) = 1.

W.l.o.g., we suppose i0 = 0.

Since dc2G[W ](x0) = dc2G[W ](z0) = c1, c({x0, z0}, Z) = {c1} and ∆mon(G) ≤ n − 4, there are

two vertices u1, u2 ∈ Y ∩ V (G2) such that c(x0u1) = c(z0u2) = c2, where u1 and u2 may be

identical. From Lemma 30, we have c({y0, w0}, Q1) = c2. By the definitions of G[X] and G[Y ],

assume that x0, z0 ∈ X and y0, w0 ∈ Y . Since v ∈ X, we have c(v, {x0, z0}) = {c1}. As

c(v,G2) = c(v, {x0, z0}) = {c1} and ∆mon(G) ≤ n− 4, there is an integer i ∈ {1, 2, . . . ,m} such

that c2 ∈ c(v,Qi), say i = 1.

If c(vx1) = c2, then vu1x0y0y1x1v is a PC cycle of length six, a contradiction. If c(vw1) = c2,

then vu1x0y0z1w1v is a PC cycle of length six, a contradiction. If c(vy1) = c2, then vu2z0w0x1y1v

is a PC cycle of length six, a contradiction. If c(vz1) = c2, then vu2z0w0w1z1v is a PC cycle of

length six, a contradiction.

Combining Cases 1 and 2, the proof of Lemma 34 is now complete. �
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[15] D. Kühn, D. Osthus, A survey on Hamilton cycles in directed graphs, Eurpean J. Combin.

33(2012), 750-766.

[16] B. Li, B. Ning, C. Xu, S. Zhang, Rainbow triangles in edge-colored graphs, Eurpean J.

Combin. 36(2014), 453-459.

[17] H. Li, G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, Eurpean

J. Combin. 33 (2012), 1958-1964.

[18] R. Li, H. Broersma, S. Zhang, Vertex-disjoint properly edge-colored cycles in edge-colored

complete graphs, J. Graph Theory 94(2020), 476-493.

[19] A. Lo, Properly coloured Hamiltonian cycles in edge-coloured complete graphs, Combina-

torica 36(2016), 471-492.

[20] G. Wang, T. Wang, G. Liu, Long properly colored cycles in edge colored complete graphs,

Discrete Math. 324(2014), 56-61.

[21] A. Yeo, A note on alternating cycles in edge-colored graphs, J. Combin. Theory Ser.B

69(1997), 222-225.

24


	1 Introduction
	2 Terminology and lemmas
	3 Edge-disjoint PC cycles of length at most 4
	3.1 Proof of Theorem 5
	3.2 Some additional results

	4 Edge-disjoint PC cycles of different lengths
	4.1 Proof of Theorem 11


