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Abstract

Let k be a positive integer and let G = (V (G), E(G)) be a graph. A vertex set D
is a k-component dominating set of G if every vertex outside D in G has a neighbor
in D and every component of the subgraph G[D] of G induced by D contains at least
k vertices. The minimum cardinality of a k-component dominating set of G is the k-
component domination number γk(G) of G. It was conjectured that if G is a connected
graph of order n ≥ k + 1, and minimum degree at least 2, then γk(G) ≤ 2kn

2k+3 except
for a finite set of graphs. In this paper, we focus on the parameter γ3(G) of G. We first
determine the exact values of 3-component domination numbers of paths and cycles.
We then proceed to show that if G is a connected graph of order n with minimum
degree at least 2 and maximum degree at most 3, then γ3(G) ≤ 2n

3 , unless G is one
of seven special graphs. This result provides positive support for the conjecture and
also generalizes a result by Alvarado et al. [Discrete Math., 2016].
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1 Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. Let
G = (V (G), E(G)) be a graph. The order of G is n(G) := |V (G)|. The open neighborhood
of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G)|uv ∈ E(G)} and its closed neighborhood is
the set NG[v] = {v} ∪NG(v). The degree of v in G is dG(v) = |NG(v)|, and the minimum
and maximum degree in G are denoted by δ(G) and ∆(G), respectively. If G is clear from
the context, we omit writing it in the above expressions. Let v ∈ V (G). We denote the
graph obtained by deleting v from G by G − v. For a subset S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S], G[V \S] is denoted by G − S, and the edge set of
G[S] is denoted by E[S]. The girth g(G) of G is the length of the shortest cycle in G. We
use d(u, v) to denote the distance between u and v in G. We denote the path, cycle, and
complete graph on n vertices by Pn, Cn and Kn, respectively. Remark that for positive
integers t, let [t] = {1, 2, . . . , t}. We follow [3] for notation and terminology not defined
here.

Domination in graphs, together with its many variants, is a widely studied problem in
graph theory [5,6,10,21]. The two most prominent domination parameters, the domination
number γ(G) and the total domination number γt(G) of a graph G, have been extensively
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studied and many rich results have been obtained. For detailed surveys on domination and
total domination, we refer the reader to [11–13, 15]. In order to unify results and proofs
that generalize statements obtained separately for γ(G) and γt(G), Alvarado et al. [2]
introduced the important domination parameter γk(G), which is defined as follows. A set
D of vertices in G is dominating if every vertex not in D is adjacent to a vertex in D. Given
a positive integer k, the set D is a k-component dominating set of G if it is dominating and
every component of the subgraph G[D] of G has order at least k. The minimum cardinality
of a k-component dominating set of G is the k-component domination number γk(G) of
G. Clearly, γ1(G) coincides with the domination number of G, and γ2(G) coincides with
the total domination number of G. A k-component dominating set with cardinality γk(G)
will be referred to as a γk(G)-set. If a graph G has a k-component dominating set, then
we say G can be k-component dominated, and in this paper, when there is no ambiguity,
we simplify say “G can be dominated” instead of “G can be k-component dominated”.
Similarly, we say a graph G is c-dominated if γk(G) ≤ c · n(G), where c ≤ 1 is a positive
real number, and a set D is called c-dominating if it is a k-component dominating set and
|D| ≤ c · n(G).

Recall that an outerplanar graph is a planar graph that can be drawn in the plane
with all vertices on the outer face. A maximal outerplanar graph is an outerplanar graph
where no edge can be added and the graph remains outerplanar. For maximal outerplanar
graphs G, Matheson and Tarjan [16] derived the bound γ(G) ≤ bn3 c, and Dorfling et al. [8]
showed that γt(G) ≤ b2n5 c unless G is isomorphic to one of two exceptional graphs of order
12. In view of the results mentioned in the previous sentence, Alvarado et al. [2] were
able to obtain a common generalization using a unified proof. The result is stated in what
follows.

γk(G) =

{
d kn
2k+1e, if G ∈ Hk,

b kn
2k+1c, otherwise.

where Hk is a set of well-defined graphs of order 4k + 4 ≤ n(Hk) ≤ 4k2 − 2k.

Given a connected graph G of order n, recall that in [4,7,9,18,19], the bounds γ(G) ≤ n
2

and γt(G) ≤ 2n
3 are derived, and graphs achieving these bounds are characterized. In order

to unify the above results, Alvarado et al. [1] provided another graceful result. To state it
we define the following construction. Let F be the graph with vertex set {u1, . . . , un} and
let k be an integer. The graph F ◦ Pk is formed by the disjoint union of F and n copies
Pk, adding an edge between ui and one end-vertex of ith copy of Pk for every i ∈ [n].

Theorem 1.1. [1] If G is a connected graph of order n at least k + 1, where k is a
positive integer, then γk(G) ≤ kn

k+1 with equality if and only if G either has order k+ 1, or
is C2(k+1), or is F ◦ Pk for some connected graph F of order at least 2.

Recall that if G is a connected graph with minimum degree at least 2, then γ(G) ≤ 2n
5 ,

unless G is one of the seven exceptional graphs given in [17], and γt(G) ≤ 4n
7 , unless G is

one of the six exceptional cases given in [14, 20]. Based on these results, Alvarado et al.
gave the following conjecture.

Conjecture 1.2. [1] If G is a connected graph of order n at least k + 1, and minimum
degree at least 2, then γk(G) ≤ 2kn

2k+3 unless G belongs to a finite set of exceptional graphs.

In order to support their conjecture, they also get the following result.

Theorem 1.3. [1] If G is a graph of order n, minimum degree at least 2, maximum
degree at most 3, and girth at least 29, then γ3(G) ≤ 8n

11 .
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Part of the proof of Theorem 1.3 relies on bounds for the 3-component domination
number of paths and cycles. In this paper, we will follow their steps and focus on the
3-component domination numbers of graphs with maximum degree at most 3. We will
first derive the exact values for the 3-component domination numbers for paths and cycles
and then prove the following main result of this paper.

Theorem 1.4. If G is a connected graph of order n, minimum degree at least 2, maximum
degree at most 3, then γ3(G) ≤ 2n

3 unless G ∈ B := {C3, C4,K4 − e,K4, C7, C8, C13}.

This result improves the upper bound given in Theorem 1.3, and also verifies Conjec-
ture 1.2 when k = 3 and ∆(G) ≤ 3.

We proceed as follows. In Section 2, we determine the exact values of γ3(Pn) and
γ3(Cn), and derive upper bounds for graphs of small order. This will assist in establishing
the base cases of the induction hypothesis. In Section 3, we present the proof of our main
result by employing induction and providing a detailed case analysis. In addition, we close
Section 3 by demonstrating that our derived bound is sharp.

2 The 3-component domination number for special graphs

In this section, we first give the exact values of 3-component domination numbers of
paths and cycles, which are stated as follows.

Theorem 2.1. Let Pn and Cn (n ≥ 3) be a path and cycle, respectively. Then

γ3(Pn) = γ3(Cn) =



3n
5 , n ≡ 0(mod 5),
3n+2

5 , n ≡ 1(mod 5),
3n+4

5 , n ≡ 2(mod 5),
3n+6

5 , n ≡ 3(mod 5),
3n+3

5 , n ≡ 4(mod 5).

Proof. We will first prove that the result holds for Pn. Without loss of generality, assume
that Pn = v1v2 . . . vn. Let D be a 3-component dominating set of Pn. Define the function
f : V (Pn) → {0, 1} as f(vi) = 1 if vi ∈ D and f(vi) = 0 otherwise. The cardinality of D
is w(f) :=

∑
i∈[n] f(vi).

In order to give the upper bounds, we consider the following cases to construct a 3-
component dominating set of Pn. Whenever n ≡ 4(mod 5), we define f by f(v5i+2) =
f(v5i+3) = f(v5i+4) = 1 for 0 ≤ i ≤ bn5 c and f(v) = 0 otherwise. It is easy to check that
the set of vertices v with f(v) = 1 forms a 3-component dominating set of Pn, and that

γ3(Pn) ≤ 3(n−4)
5 + 3 = 3n+3

5 . We now consider the other cases. Define f as f(v5i+2) =
f(v5i+3) = f(v5i+4) = 1 for 0 ≤ i ≤ bn5 c − 1. If n ≡ 0(mod 5), then assign 0 to the
remaining vertices; if n ≡ 1(mod 5), then let f(vn−1) = 1; if n ≡ 2(mod 5), then define
f(vn−2) = f(vn−1) = 1; lastly, if n ≡ 3(mod 5), then let f(vn−2) = f(vn−1) = f(vn) = 1.
All the unassigned vertices in cases of n ≡ 1, 2, 3(mod 5) are assigned 0. It is clear that
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the set of vertices assigned 1 forms a 3-component dominating set of Pn. Hence,

γ3(Pn) ≤



3n
5 , n ≡ 0(mod 5),
3n+2

5 , n ≡ 1(mod 5),
3n+4

5 , n ≡ 2(mod 5),
3n+6

5 , n ≡ 3(mod 5),
3n+3

5 , n ≡ 4(mod 5).

Now we demonstrate the inverse inequality. One can check that γ3(P3) = γ3(P4) = 3.
For n ≥ 5, let g be the function corresponding to a minimum 3-component dominating
set. It is easy to see that

∑i+4
t=i g(vt) ≥ 3 for any i ∈ [n − 4]. Furthermore, we also

note that
∑3

i=1 g(vi) ≥ 2 (similarly
∑n

i=n−2 g(vi) ≥ 2), and
∑4

i=1 g(vi) ≥ 3 (similarly∑n
i=n−3 g(vi) ≥ 3) hold. Thus we get that w(g) =

∑
i∈[n] g(vi) ≥ 3n

5 for n ≡ 0( mod 5); for

n ≡ 1(mod 5), w(g) =
∑3

i=1 g(vi) +
∑

i∈[4,n−3] g(vi) +
∑n

i=n−2 g(vi) ≥ 4 + 3(n−6)
5 = 3n+2

5 ;

for n ≡ 2(mod 5), w(g) =
∑3

i=1 g(vi) +
∑

i∈[4,n−4] g(vi) +
∑n

i=n−3 g(vi) ≥ 5 + 3(n−7)
5 =

3n+4
5 ; for n ≡ 3(mod 5), w(g) =

∑4
i=1 g(vi) +

∑
i∈[5,n−4] g(vi) +

∑n
i=n−3 g(vi) ≥ 6 +

3(n−8)
5 = 3n+6

5 ; for n ≡ 4(mod 5), w(g) =
∑4

i=1 g(vi) +
∑

i∈[5,n] g(vi) ≥ 3 + 3(n−4)
5 = 3n+3

5 .
Hence, the result holds for Pn.

In order to complete the proof of this theorem, we will show that γ3(Cn) = γ3(Pn),
where Pn and Cn have the common vertex set V . Without loss of generality, we assume
that V = v1v2 . . . vn. Clearly γ3(C3) = γ3(P3) = 3 and γ3(Cn) ≤ γ3(Pn) always hold. Now
we claim that γ3(Cn) ≥ γ3(Pn) for n ≥ 4. Let D be a γ3(Cn)-set of Cn, and let g be the
corresponding function g : V → {0, 1}, g(vi) = 1 if vi ∈ D and g(vi) = 0 otherwise. Then
the cardinality of D is γ3(Cn) = w(g) =

∑
i∈[n] g(vi). Note that there must exist a vertex

assigned 0 under g. Now without loss of generality, we assume first that g(vi) = 0, and
one of its neighbors is also assigned 0 under g, say g(vi+1) = 0 and g(vi−1) = 1, where
the subscript is modulo n. We form Pn by removing from Cn the edge vivi+1. For this
Pn define a new function h : V → {0, 1} as h(vi) = g(vi) for i ∈ [n]. Clearly, the vertex
set D is a 3-component dominating set of Pn. Thus γ3(Cn) = w(g) = w(h) ≥ γ3(Pn). We
now may assume that g(vi) = 0 and g(vi−1) = g(vi+1) = 1. Removing the edge vivi+1, the
resulted graph is also a Pn. For this Pn define h : V → {0, 1} as h(vi) = g(vi) for i ∈ [n],
and then we also have γ3(Cn) = w(g) = w(h) ≥ γ3(Pn). Therefore, the proof of the result
is complete.

Lemma 2.2.
⌈

kn
k+2

⌉
≤ γk (Pn) = γk (Cn) ≤

⌈
kn
k+2

⌉
+ 1.

Proof. γ3(Pn) = γ3(Cn) is already shown in Theorem 2.1, one can follow the same idea to
verify that γk(Pn) = γk(Cn). Let D be a γk(Pn)-set and K1 be a component of G[D] with
order at least k, then the total number of vertices dominated by K1, including V (K1),
is at most k + 2. Assume that there are m components in G[D], and each component is
of order si over 1 ≤ i ≤ m, then the maximum number of vertices that D can dominate
is
∑m

i=1(si + 2) = |D| + 2m. From the definition of k-component domination, we know

that si ≥ k for all i ∈ [m]. Thus m ≤ b |D|k c. Since D is also a dominating set, we have

|D|+ 2b |D|k c ≥ |D|+ 2m ≥ n, that is γk(Pn) = |D| ≥ d kn
k+2e.

The upper bound is proved by construction. Let f be a function defined similarly
to the one in the above theorem. Now we define f as follows: If n ≡ i mod (k + 2),
where 0 ≤ i ≤ k + 1, then f

(
v(k+2)j+2

)
= f

(
v(k+2)j+3

)
= · · · = f

(
v(k+2)j+k+1

)
= 1 for
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0 ≤ j ≤
⌊

n
k+2

⌋
− 1, and f(vn−i) = f(vn−i+1) = · · · = f(vn−1) = 1. Thus,

∑
v∈V f(v) =

(
⌊

n
k+2

⌋
− 1)k + k + i = nk+2i

k+2 < kn
k+2 + 2 ≤ d kn

k+2e + 2. Since nk+2i
k+2 is an integer, and

nk+2i
k+2 < d kn

k+2e+ 2, we have that the desired result is obtained.

We give the following result by utilizing some simple calculations from Theorem 2.1.

Corollary 2.3. (1) Let G be a path of order n. Then γ3(G) ≤ 2n
3 unless G ∈ {P3, P4, P7, P8, P13}.

(2) Let G be a cycle of order n. Then γ3(G) ≤ 2n
3 unless G ∈ {C3, C4, C7, C8, C13}.

Now we examine the 3-component domination number of the graph G with a small
number of vertices. Before that, let us make some observations.

Observation 2.4. (1) Let G be a connected graph of order n with δ(G) ≥ 2 and ∆(G) ≤
3. If G has exactly two vertices of degree 3, then G has a spanning path Pn.

(2) Let Cn be a cycle. Then for any vertex v ∈ V (Cn), there exists a γ3(Cn)-set of Cn

which contains v.

(3) Let G be a connected graph of order n(G) ≤ 6 with ∆(G) ≤ 3 and δ(G) ≥ 2 (or there
is exactly one vertex with degree 1). Then for any vertex v ∈ V (G), there exists a
2
3 -dominating set D which contains v.

(4) Let G be a 7-vertex connected graph with δ(G) = 1 and ∆(G) ≤ 3. Then γ3(G) ≤ 4
except when G = P7 with γ3(P7) = 5.

Proof. (1) and (2) are clearly obtained.

(3) The statement clearly holds whenG is a cycle. Now we assume thatG is a connected
graph with δ(G) ≥ 2 (or there is at most one vertex with degree 1) which contains a vertex
of degree 3, say v1. For n(G) = 5, suppose that N(v1) = {v2, v3, v4} and the remaining
vertex v5. Since G is connected, without loss of generality, we assume v2 ∈ N(v5). Thus
v1, v2 and any other vertex can be added to get a 3-component dominating set of size
3, the result holds. For n(G) = 6, let N(v1) = {v2, v3, v4} and the remaining vertices
v5, v6. If v5 is not adjacent to v6, then v5 and v6 are at least adjacent to a vertex in N(v1)
by connectivity of G. If there is a vertex in N(v1) such that N(v5) ∩ N(v6) 6= ∅, say
v3 ∈ N(v5) ∩N(v6), then v1, v3 and any other vertex can be added to get a 3-component
dominating set of size 3. The result holds. Now we assume that v5 and v6 are adjacent to
distinct vertices in N(v1), say v2 and v3. Then v1, v2, v3 forms a 3-component dominating
set of size 3. If v5 is adjacent to v6, then assume that there exists an edge between v5
and N(v1), say v2v5. If follows v1, v2, v5 forms a 3-component dominating set of size 3.
Combining the above cases, we get the result.

(4) From Theorem 2.1, we know that γ3(P7) = 5. Without loss of generality, we assume
thatG contains a vertex v of degree 3. Let T be a BFS-spanning tree ofG with v as the root
vertex. Let vx1 . . . xr, vy1 . . . ys and vz1 . . . zt be the three paths that start in v in T , where
r, s, t ≥ 1. Furthermore, if r, s, t ≥ 2, then we choose x1, . . . , xr−1, y1, . . . , ys−1, z1, . . . , zt−1
and v to form a 3-component dominating set in G; if there is a value of 1 among r, s and
t, then we do not choose any vertex on that branch except for vertex v. Thus the number
of the chosen vertices is n(G)− 3, whence γ3(G) ≤ 4.

Next we examine the 3-component domination number for graphs of small order. This
will establish the base cases for the inductive hypothesis.

5



Lemma 2.5. Let G be a connected graph of order n(G) ≤ 13 with minimum degree at
least 2 and maximum degree at most 3. Then γ3(G) ≤ 2n

3 unless G ∈ {C3, C4,K4 −
e,K4, C7, C8, C13}.

Proof. From Corollary 2.3, we know that the statement is true when G is a cycle, and it is
easy to verify that the result also holds when n(G) = 4. Thus we only consider the graphs
with order 5 ≤ n(G) ≤ 13 containing at least one vertex of degree 3. Furthermore, since
γ3(G) is an integer, we get that γ3(G) ≤ 2n

3 holds for n(G) = 5, 6, 8, 9, 12 by Theorem 1.1
(Note that when n(G) = 8 or 12, the bound in Theorem 1.1 is only achieved if G is C8).
Thus we only consider the remaining cases n(G) = 7, 10, 11 or 13.

Case 1. n(G) = 7.

In this case, we want to show γ3(G) ≤ 4. Suppose that v1 is a vertex of degree
3 and N(v1) = {v2, v3, v4}. Let H = {u1, u2, u3} be the remaining vertices of G. If
|E(G[H])| ≥ 2, then, without loss of generality, we assume that u2 is adjacent to u1 and
u3. Moreover, there exists an edge e = uv where u ∈ H and v ∈ N(v1) by the connectivity
of G. Now we choose {v1, v, u, u2} (note that u may be u2) as a 3-component dominating
set of G. Hence γ3(G) ≤ 4. If |E(G[H])| ≤ 1, then every vertex in H is adjacent to some
vertex in N(v1) because δ(G) ≥ 2. And thus we choose {v1, v2, v3, v4} as a 3-component
dominating set of G, so γ3(G) ≤ 4.

Up to now, the known upper bounds on the 3-component domination number of a
connected graph G (n(G) ≤ 9) with ∆(G) ≤ 3 and δ(G) = 1 or δ(G) ≥ 2 are summarized
in the following table.

Table 1: γ3(G) of a connected graph G with ∆(G) ≤ 3 when n(G) ≤ 9.

δ(G)
n(G) ≤ 5 6 7 8 9

1 γ3(G) = 3 γ3(G) ≤ 4 γ3(G) ≤ 4 expect γ3(P7) = 5 γ3(G) ≤ 5 except γ3(P8) = 6 γ3(G) ≤ 6
≥ 2 γ3(G) = 3 γ3(G) ≤ 4 γ3(G) ≤ 4 except γ3(C7) = 5 γ3(G) ≤ 5 except γ3(C8) = 6 γ3(G) ≤ 6

We next show that when n(G) = 10, 11 or 13, the 3-component domination number of
G is at most 6, 7 or 8, respectively. First, assume that G is a graph with minimum number
of edges satisfying δ(G) ≥ 2, ∆(G) ≤ 3 and G is connected. This is because removing
edges does not decrease the 3-component domination number of G. Moreover, according
to the edge minimality of G, we will not consider the occurrence of the configuration K4−e
later, and only consider C4 instead.

Case 2. n(G) ∈ {10, 11}.

We say a cycle is a pendant cycle if the cycle is attached by a vertex of degree 3 in G
(see Figure 1). In particular, if the cycle is C3, then we call it a pendant triangle. Now we
give the following claims regarding the graph with n(G) ∈ {10, 11}.

Claim 2.1. G contains no pendant triangles.

Proof of Claim 2.1. Suppose, to the contrary, that G contains a pendant triangle C3. And
let u be the vertex of degree 3 on C3 and v be the neighbor of u that is not on C3. Let
G′ = G − C3. Note n(G′) = 7 for n(G) = 10 (or n(G′) = 8 for n(G) = 11). By Table
1, we know that γ3(G

′) ≤ 4, except when G′ is P7 or C7, in which case γ3(G
′) = 5 (or
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Figure 1: Pendant cycle attached by the vertex u.

γ3(G
′) ≤ 5, except when G′ is P8 or C8, in which case γ3(G

′) = 6). First, it is clear that
G′ is not P7 (or P8), since the only possible vertex of degree 1 in G′ is v. Furthermore, if
G′ is C7 (or C8), then there is a spanning path in G by Observation 2.4 (1). Since G has
a spanning path Pn, we have that γ3(G) ≤ γ3(Pn) ≤ 2n

3 , where n = 10 or n = 11. Thus
γ3(G

′) ≤ 4 when n(G) = 10 (or γ3(G
′) ≤ 5 when n(G) = 11). We then only need to add

at most two vertices u and v in order to dominate G, regardless of whether v belongs to
the γ3(G

′)-set. Thus, γ3(G) ≤ 6 for n(G) = 10 (or γ3(G) ≤ 7 for n(G) = 11).

Claim 2.2. G contains no pendant 4-cycles.

Proof of Claim 2.2. Suppose, to the contrary, that G contains a pendant 4-cycle C4 :=
uu1u2u3. Let u be the vertex of degree 3 in C4, and v be the neighbor of u that is not on
C4. Let G′ = G − C4. Note that n(G′) = 6 for n(G) = 10 (or n(G′) = 7 for n(G) = 11).
We know from Table 1 that γ3(G

′) ≤ 4 (or γ3(G
′) ≤ 4, except when G′ is C7 or P7, in

which case γ3(G
′) = 5). Further for n(G) = 10, we have, by Observation 2.4 (3), that

G′ has a 3-component dominating set of size at most 4 containing v, and we can add two
more vertices u, u1 from C4 to form a 3-component dominating set of G, thus γ3(G) ≤ 6,
and so we are done. For n(G) = 11, firstly, G′ is clearly not a P7 because the only possible
vertex of degree 1 in G′ is v. If G′ is a C7, then Observation 2.4 (1) implies that there
exists a spanning path P11 in G, and so γ3(G) ≤ γ3(P11) ≤ 7, whence we are done. Thus,
recall that Table 1 gives γ3(G

′) ≤ 4. We can add at most three vertices u, v, u1 to the
γ3(G

′)-set to form a 3-component dominating set of G. It follows that γ3(G) ≤ 7, the
result holds true.

Note that according to the assumption of G having a minimal number of edges, if there
is an edge between two vertices of degree 3, the edge must be a bridge. Therefore, we give
the following claim.

Claim 2.3. No two degree 3 vertices of G are joined by a bridge.

Proof of Claim 2.3. Let e = uv be the bridge which joins two vertices u, v of degree 3.
Let G1 = (V1, E1) and G2 = (V2, E2) be the two components formed by removing e from
G. Considering Claim 2.1 and Claim 2.2, we know that (n(G1), n(G2)) is (5, 5) and (5, 6)
for n(G) = 10 and n(G) = 11, respectively. Thus, we get γ3(G) ≤ 2n

3 from Table 1.

Claim 2.3 and the edge minimality of G imply that G contains no two adjacent vertices
of degree 3. If we let Vi be the set of vertices of degree i in G, where i ∈ {1, 2, 3}, then we
can make the following assumption.

V3 is an independent set in G. (I)

Set ni(G) = |Vi(G)|, where i ∈ {1, 2, 3}. For any H ⊂ G, we get the following result.

Claim 2.4. n3(H) ≤ 2n(H)−n1(H)
5 .

Proof of Claim 2.4. Considering the Handshaking lemma
∑

v∈H d(v) = 2|E(H)|, its left
side is equal to n1(H)+2n2(H)+3n3(H), and noting that n(H) = n1(H)+n2(H)+n3(H),
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we have the left side as 2n(H) − n1(H) + n3(H). Furthermore, considering the right
side, it must be at least 6n3(H) due to the assumption (I). Hence, we have n3(H) ≤
2n(H)−n1(H)

5 .

In particular, we have n3(G) ≤ 2n(G)
5 since n1(G) = 0. Remark that for n(G) ≤ 11

(which is the current position we are in), we have n3(G) ≤ 4 and in fact, n3(G) can only
take the values of 2 or 4, since the number of vertices of odd degree is even.

Let C`(t) be a cycle of length ` containing t vertices of degree 3. Let ui be a vertex of
degree 3 on the cycle C`(t), and let vi be the neighbor of ui in G−C`(t), where 1 ≤ i ≤ t.
Note that the vertices vi may be the same. The example C6(2) is illustrated in the Figure
2. We know that {ui|i ∈ [t]} is an independent set in G and d(vi) = 2 for each i ∈ [t].

Figure 2: The example C6(2).

We will discuss the cases based on the occurrence of C`(t) in G, where ` ≥ 3 and
1 ≤ t ≤ 4 by considering the assumption (I).

If t = 1, then ` ≥ 5 for C`(1) by Claim 2.1 and Claim 2.2. Let G′ = G−C`(1), then we
have n(G′) ≤ 5 for n(G) = 10 and n(G′) ≤ 6 for n(G) = 11. Moreover, since there is only
one vertex vi of degree 1 in G′, applying Claim 2.4 to graph G′ yields n3(G−C`(1)) < 3,
and hence n3(G) ≤ 3. Since G has at least one vertex of degree 3 and an even number
of vertices of odd degree, we have that n3(G) = 2. Thus, we know from Observation (1)
that there is a spanning path in G, further, γ3(G) ≤ γ3(P10) ≤ 6 for n(G) = 10 and
γ3(G) ≤ γ3(P11) ≤ 7 for n(G) = 11, and so we are done.

If t = 2, then ` ≥ 4 for C`(2) by (I). If ` = 4, we first observe that v1 and v2 are
distinct vertices, and v1 is not adjacent to v2 because (I) and n(G) ∈ {10, 11}. Delete
C4(2) and two vertices v1, v2, and let G′ = G−C4(2)−{v1, v2}. It follows that n(G′) = 4
when n(G) = 10 and n(G′) = 5 for n(G) = 11. Moreover, G′ is a connected graph,
otherwise, it would contradict assumption (I), or a pendant triangle would appear in G,
which contradicts Claim 2.1. Now γ3(G

′) ≤ 3 and we add 3 vertices u1, u2 and any other
vertex on the cycle C4(2) to dominate G. Thus we have that γ3(G) ≤ 6 for n(G) is 10 or
11, and so we are done. If ` ≥ 5, then we claim that n3(G) = 2 always holds in this case.
When v1 = v2, then ` = 9 for n(G) = 10 and ` = 10 for n(G) = 11, whence n3(G) = 2.
When v1 6= v2, let G′ = G − C`(2) − {v1, v2}. Note that n(G′) ≤ 4. Thus by Claim 2.4,
n3(G

′) < 2. Furthermore n3(G) ≤ 3, and so n3(G) = 2. Thus there is a spanning path Pn

by Observation 2.4 (1), further γ3(G) ≤ γ3(Pn) ≤ 2n
3 holds true for n(G) ∈ {10, 11}.

If t = 3, then 6 ≤ ` ≤ 7 by considering (I). Specifically, ` = 6 for n(G) = 10 and
` ∈ {6, 7} for n(G) = 11. Firstly, we consider the cases ` = 6 for n(G) = 10 and ` = 7
for n(G) = 11. Remark that vertices vi (i ∈ [3]) are distinct since assumption (I). Let w
be the single vertex of G − C`(3) − {v1, v2, v3}. The only possibility in this case is that
N(w) = {v1, v2, v3}. Now we can choose {u1, u2, u3, v1} and any other two vertices on
C`(3) to form a 3-component dominating set. Thus γ3(G) ≤ 6 for n(G) ∈ {10, 11}. Next,
we consider the case ` = 6 for n(G) = 11. Note that vertices vi (i ∈ [3]) are distinct,
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which can be inferred by considering assumption (I) and the absence of pendant triangles
in G. Let w1 and w2 be the two vertices of G − C6(3) − {v1, v2, v3}. Note that w1 must
be adjacent to w2, and without loss of generality, we assume N(w1) = {v1, v2, w2}. Thus
{u1.u2, u3, v1, w1} and any other two vertices on C6(3) form a 3-component dominating
set of G. Thus γ3(G) ≤ 7, and so we are done.

If t = 4, then ` = 8 for n = 10 and ` ∈ {8, 9} for n = 11, as illustrated in Figure 3. In
the third subfigure, u3 could be located at either of the two positions marked with P . We
can easily verify that γ3(G) ≤ 6 holds true for all of these cases.

Figure 3: The cases when t = 4 for n(G) ∈ {10, 11}.

Case 3. n(G) = 13.

In this case, we want to show γ3(G) ≤ 8. Now we give the following claims regarding
the graph with n(G) = 13.

Claim 2.5. G contains no pendant triangles.

Proof of Claim 2.5. Suppose that G contains a pendant triangle C3. Let u be the vertex of
degree 3 in C3 and let v be the neighbor of u not in C3. If d(v) = 3, then let G′ = G−C3.
We know that G′ is a 10-vertex graph with δ(G′) ≥ 2, and that from Case 2, γ3(G

′) ≤ 6.
We then only need to add at most two vertices u and v in order to dominate G, regardless
of whether v belongs to the γ3(G

′)-set. Thus, γ3(G) ≤ 8.

Now d(v) = 2. Let w be another neighbor of v different from u. If d(w) = 2, then
further let G′ = G−C3−{v, w}. Note that n(G′) = 8, and G′ is clearly not a P8, since x,
the neighbor of w different from v, is only one possible vertex of degree 1 in G′. Moreover,
if G′ is a C8, then we can check that γ3(G) ≤ 8. Thus, by Table 1, γ3(G

′) ≤ 5 holds. Then
we add three vertices u, v, w to dominate G, whence γ3(G) ≤ 8. We may assume that
d(w) = 3. Let the other two neighbors of w be x1 and x2. By the edge minimality of G
and the fact that n(G) = 13, we have that x1 and x2 are not adjacent. Delete C3 + {v, w}
and join x1, x2, and call the resulting graph G′. Note n(G′) = 8 and δ(G′) ≥ 2. If G′

is C8, then we can check that γ3(G) ≤ 7. Thus, by Table 1, γ3(G
′) ≤ 5. We add three

vertices u, v, w to dominate G, thus γ3(G) ≤ 8.

Claim 2.6. G contains no pendant 4-cycles.

Proof of Claim 2.6. If not, suppose that G contains a pendant 4-cycle C4. Let u be
the vertex of degree 3 in C4, and v be the neighbor of u not in C4. If d(v) = 2, then
further let G′ = G − C4 − {v}. Note that n(G′) = 8, and we can easily infer that G′ is
not a P8. Moreover, if G′ is a C8, then we can check that γ3(G) ≤ 8. Thus, by Table
1, γ3(G

′) ≤ 5. Then we add three vertices u, v and another neighbor of u to dominate
G, whence γ3(G) ≤ 8. If d(v) = 3, then further let the other two neighbors of v be w1
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and w2. Firstly, w1 and w2 are not adjacent, as this is due to considering the fact that
n(G) = 13 and G is edge minimal. Delete C4 + {v} and join w1, w2. Call the resulting
graph G′. Note n(G′) = 8 and δ(G′) ≥ 2. If G′ is C8, then we can check that γ3(G) ≤ 8.
Thus, by Table 1, γ3(G

′) ≤ 5. Then we add three vertices u, v and another neighbor of u
to dominate G. Thus, γ3(G) ≤ 8.

Recall that by the edge minimality of G, if there is an edge between two vertices of
degree 3, the edge must be a bridge. Therefore, we give the following claim.

Claim 2.7. If G contains two vertices of degree 3 which are joined by a bridge, then
γ3(G) ≤ 8.

Proof of Claim 2.7. Let u, v be two adjacent vertices of degree 3 and uv be a bridge
whose removal yields components G1 = (V1, E1) and G2 = (V2, E2). Also, assume that u
is contained in G1. Considering Claim 2.5 and Claim 2.6, the two possibilities for the pair
(n(G1), n(G2)) are (5, 8) and (6, 7) by symmetry. Suppose (n(G1), n(G2)) = (5, 8), and
G2 is a C8. Firstly, for G1, there exists a 3-component dominating set of size 3 containing
u by Observation 2.4 (3). Additionally, we notice that G2 − v can be dominated by 5
vertices. Hence, γ3(G) ≤ 8 holds. Thus, we have γ3(G2) ≤ 5 from Table 1, further
γ3(G) ≤ 5 + 3 = 8, and so we are done. Assume now that (n(G1), n(G2)) = (6, 7), and G2

is a C7. Firstly, for G1, there exists a 3-component dominating set of size 4 containing u.
Also, the graph G2 − v can be dominated by only 4 vertices. Hence, γ3(G) ≤ 8. Thus we
have γ3(G2) ≤ 4 from Table 1, further γ3(G) ≤ 8, and so we are done.

Now we can also make assumption (I) by Claim 2.7.

Define C`(t) as in Case 2. Let ui be the i’th vertex of degree 3 contained on the cycle
C`(t), and let the neighbor of ui in G−C`(t) be vi, where 1 ≤ i ≤ t. Note that the vertices
vi may be the same. Moreover, we know that the set of vertices consisting of all ui is
independent, and for each i, d(vi) = 2. We will discuss the cases based on the occurrence
of C`(t) in G, where 3 ≤ ` ≤ 12 and 1 ≤ t ≤ 4 by considering the assumption (I).

Case 3.1. ` = 11 or ` = 12.

We can find that for ` ∈ {11, 12}, there is a 3-component dominating set of size 8 that
contains any two nonadjacent vertices on C`(t). This can be inferred by observing the
structure of γ3(Cn)-set in any cycle Cn, and the result that a cycle of order 11 or 12 has
a 2

3 -dominating set.

Case 3.2. ` = 10.

Firstly, we have 1 ≤ t ≤ 5, and considering assumption (I), V3 is an independent set.
We further deduce that t 6= 1, 3, 5 in this case. If t = 2, then v1 and v2 are distinct.
Let w be the single vertex of G − C10(2) − {v1, v2}. Moreover, the only possibility is
N(w) = {v1, v2}. Now, for C10(2), there is a 3-component dominating set of size 7
containing the nonadjacent two vertices of degree 3, u1 and u2. Furthermore, add one
more vertex v1 in order to dominate G. Thus γ3(G) ≤ 8, and so we are done. If t = 4,
then the only possibility is that among three 2-degree vertices, say v1, v2, v3, outside C`,
two of them, say v1 and v2, are adjacent to the distinct 3-degree vertices u1 and u2 of C10,
respectively. The remaining 2-degree v3 is adjacent to u3 and u4. Now we can easily check
that γ3(G) ≤ 6, whence we are done.

Case 3.3. ` = 9.

In this case, we have 1 ≤ t ≤ 4. If t = 1, then |G − (C9(1) + v1)| = 3, and further a
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pendant triangle appears, which contradicts Claim 2.5.

If t = 2, we first note that v1 6= v2 by considering n(G) = 13 and assumption (I). Let
w1 and w2 be the vertices of G− C9(2)− {v1, v2}. Note d(w1) = d(w2) = 2, and without
loss of generality we assume that vi is adjacent to wi for each i ∈ [2]. Now, for C9(2),
there is a 3-component dominating set of size 6 containing u1 and u2. Furthermore, we
only need to add two more vertices v1 and v2 in order to dominate G. Thus γ3(G) ≤ 8.

If t = 3, we note, once again, that vertices vi for i ∈ [3] are distinct. Let w be the single
vertex in G − C9(3) + {vi}3i=1. The only possibility is N(w) = {vi}3i=1. Now, for C9(3),
there is a 3-component dominating set of size 7 containing ui for all i ∈ [3]. Furthermore,
we add one more vertex v1 in order to dominate G. Thus γ3(G) ≤ 8.

If t = 4, we can find a 3-component dominating set of size 6 containing each ui.
Furthermore, if all vi adjacent to ui are distinct, where i ∈ [4], then γ3(G) ≤ 6, and so
we are done. If there are some vertices vi that are the same, say v1 = v2, then v3 must
be different from v4. Moreover, there exists a single vertex w, and without loss generality,
we say w and v3 are adjacent. Now, we add one more vertex v3 in order to dominate G.
Thus γ3(G) ≤ 7.

Case 3.4. ` = 8.

In this case, we have 1 ≤ t ≤ 4. If t = 1, then |G − (C8(1) + v1)| = 4, and further a
pendant triangle or a pendant 4-cycle appears, which contradicts Claim 2.5 or Claim 2.6.

Assume that t = 2, we first note that v1 6= v2 by considering n(G) = 13 and assumption
(I). Let w1, w2 and w3 be the vertices of G− C8(2)− {v1, v2}. The graph G− C8(2) has
no isolated vertices. If G− C8(2) has no 3-degree vertex then there exists a v1 − v2 path
in G− C8(2) on 5 vertices. Hence, G has a cycle on more than 8 vertices and these cases
have been considered. We may assume that G−C8(2) has a 3-degree vertex, say w1. The
vertex w1 needs to be adjacent to either v1 or v2, say v1. To avoid a contradiction with
assumption (I), G will have a vertex of degree 1, which is impossible.

Assume that t = 3. Consider the case where, without loss of generality, v1 = v2. Let
w1, w2, w3 be the vertices in G−C8(3)−{v1, v3}. Then w1, w2, w3 forms a pendant triangle,
which contradicts Claim 2.5. Thus the vertices vi are distinct, and let the remaining
vertices be w1 and w2. Then we can assume {v1, w2} ⊂ N(w1). Now, for C8(3), there is
a 3-component dominating set of size 6 containing ui (i ∈ [3]), further we add two more
vertices {v1, w1} in order to dominate G. Thus, γ3(G) ≤ 8.

If t = 4 and v1 = v2, then there exists a v3− v4 path in G−C8(4) on 4 vertices, as can
be seen in the first subfigure in Figure 4. Hence, G has a cycle on more than 8 vertices
and the case has been considered. Thus vi are distinct from each other, as illustrated in
the second subfigure in Figure 4. We can easily check that γ3(G) ≤ 7.

Figure 4: The cases when t = 4 for n(G) = 13.
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Case 3.5. ` = 7.

In this case, we have 1 ≤ t ≤ 3. Let G′ = G − (C7(t) + {vi}ti=1). If t = 2, then vi
is clearly distinct, since n(G) = 13 and assumption (I). If t = 3, assume, without loss
of generality, v1 = v2. To avoid contradiction with (I), a pendant triangle or a pendant
4-cycle appears, which also contradicts Claim 2.5 or Claim 2.6. Thus, vi are distinct from
each other. Now we know that 3 ≤ n(G′) ≤ 5. To avoid a pendant triangle and satisfy
assumption (I), we need G′ to be connected. Now, for G′, only 3 vertices are needed to
dominate G′, further, C7(t) has a 3-component dominating set of size 5 containing all ui
(i ∈ [t]). Thus, γ3(G) ≤ 8.

Case 3.6. ` = 6.

In this case, we have 1 ≤ t ≤ 3. Let G′ = G − (C6(t) + {vi}ti=1). Moreover, vi
(i ∈ [t]) are clearly distinct when t = 2, since n(G) = 13 and (I). Now, if t ∈ [2], then
we know that n(G′) ≤ 6, and to avoid a pendant triangle and satisfy assumption (I), we
need G′ to be connected. Thus, G′ can be dominated by at most 4 vertices. Also C6(t)
has a 3-component dominating set of size 4 containing ui (i ∈ [t]). Whence γ3(G) ≤ 8.
If t = 3, then C6(3) has a 3-component dominating set of size 5 containing ui (i ∈ [3]).
Furthermore, n(G′) = 4 or 5, depending on whether vi are distinct or not. We note, once
again, that to avoid a pendant triangle and satisfy assumption (I) and the condition of
degree, it can be deduced that G′ must be connected. Thus γ3(G

′) ≤ 3 always holds,
further γ3(G) ≤ 8.

Case 3.7. ` = 5 or 4.

In this case, we have 1 ≤ t ≤ 2. Moreover, we note that if t = 1, then ` can only be
5, since there are no pendant 4-cycles. Thus for t = 1, let G′ = G − C5(1). We know
n(G′) = 8 and G′ is not a P8, since v1 is only one vertex of degree 1 in G′. Thus γ3(G

′) ≤ 5
from Table 1, and γ3(G) ≤ 8 since we can choose 3 vertices on C5(1) to dominate G.

If t = 2 and ` = 4 or 5, then vi are distinct by considering n(G) = 13 and (I).
Let G′ = G − C`(2) − {v1, v2}. We notice that n(G′) ≤ 7, and further G′ is connected,
since otherwise a pendant 4-cycle or triangle appears in G, contradicting Claim 2.5 and
2.6. Consequently, γ3(G

′) ≤ 5, and γ3(G) ≤ 8 since we can choose 3 vertices containing
{u1, u2} on C`(2), in order to dominate G. Hence,we are done.

The result in Lemma 2.5 is true based on the analysis of all the above cases.

It now follows that if n(G) ≤ 13 with minimum degree at least 2 and maximum degree
at most 3, then γ3(G) ≤ 2n

3 unless G ∈ {C3, C4,K4 − e,K4, C7, C8, C13}. This establishes
the base cases for the subsequent induction hypothesis.

3 Proof of the main result

In this section, we will prove Theorem 1.4, which is stated as follows. IfG is a connected
graph satisfying minimum degree at least 2, maximum degree at most 3, then γ3(G) ≤ 2n

3 ,
unless G ∈ B := {C3, C4,K4 − e,K4, C7, C8, C13}.

Proof. Firstly, from Lemma 2.5, the result is true when n ≤ 13. Furthermore, suppose
that the result holds for graphs satisfying conditions in Theorem 1.4 and of order less than
n. Thus our aim is to show that for a connected graph G with order n(G) ≥ 14, δ(G) ≥ 2
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and ∆(G) ≤ 3, the result γ3(G) ≤ 2n
3 always holds true. In the sequel, we will refer to

“induction hypothesis” simply as “(IH)”.

We now assume that G is a connected graph, with minimum size, such that δ(G) ≥
2 and ∆(G) ≤ 3. This is because removing edges does not decrease the 3-component
domination number of G. Moreover, according to the edge minimality of G and ∆(G) ≤ 3,
we will not consider the occurrence of the 4-vertex configurations K4 − e and K4 later,
and only consider C4 instead.

In order to complete the proof, we will need the following claims. Recall that Vi is the
set of vertices of degree i in G, where i ∈ {2, 3}.

Claim 3.1. For any vertex v ∈ V3, there is no path vv1v2v3v4v5 starting from v, where
vi ∈ V2 for 1 ≤ i ≤ 5.

Proof of Claim 3.1. Suppose, to the contrary, that there is a path vv1v2v3v4v5 starting
with the vertex v ∈ V3, and vi ∈ V2 for 1 ≤ i ≤ 5. Let v′ be the neighbor of v5, other than
v4. We first notice that v and v′ are not adjacent, since otherwise there is a contradiction
with the edge minimality of G when d(v′) = 3, or a contradiction with the requirement
in Claim 3.1 when d(v′) = 2. Thus, delete {vi}5i=1 from G and join vv′, specifically, let
G′ = G−{vi}5i=1 + vv′ (This implies that seven vertices vv1v2v3v4v5 and another 2-degree
neighbor of v5 do not form a cycle of length 7, otherwise, G′ has a parallel edge). Note
that G′ is connected with δ(G′) ≥ 2 and ∆(G′) ≤ 3. Actually G′ cannot be a cycle, since

dG(v) = dG′(v) = 3. Hence, γ3(G
′) ≤ 2(n(G)−5)

3 by (IH). Now we only need to add three
more vertices to dominate G, thus γ3(G) < 2n

3 .

Recall that C`(t) denotes the cycle of length ` containing t vertices of degree 3. If
the path between two end vertices of degree 3 only contains inter vertices of degree 2,
we define such a path as a special path. Moreover, we define the length of a special path
as the number of 2-degree vertices on this path. Notice that if two 3-degree vertices are
adjacent, then the length we define is 0. If there is no ambiguity, we will simply refer to a
special path as a path. Thus from the above claim, we know that the paths between two
3-degree vertices have length at most 4, and further 3 ≤ ` ≤ 7 for C`(1). Let H1, H2 be
two disjoint cycles, and let H be a graph of order at least 14 constructed in the following
way. Join a 2-degree vertex of H1 to a 2-degree vertex of H2 with an edge e. Subdivide
the e edge 0 or more times.

Claim 3.2. G 6= H. In particular, no two graphs belong to B are joined by an edge
or a path in G.

Proof of Claim 3.2. Suppose G = H. Then there is a spanning path of length at least
14 in G, and it implies, by Corollary 2.3, that γ3(G) ≤ 2n

3 , we are done. Thus, we can
assume that no two graphs belong to B are joined by an edge or a path, since we recall
that the configuration can be taken from B is {C3, C4, C7, C8, C13}.

Recall that the edge minimality of G, if there is an edge between two vertices of degree
3, the edge must be a bridge. Therefore, we give the following claim.

Claim 3.3. If G contains two adjacent vertices of degree 3 joined by a bridge, then
γ3(G) ≤ 2n

3 .

Proof of Claim 3.3. Let u, v be two adjacent vertices of degree 3 where uv is a bridge whose
removal yields two components G1 = (V1, E1) and G2 = (V2, E2). Also, assume that u is
contained in G1. Note that G1 and G2 do not both belong to B, otherwise it contradicts
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Claim 3.2. If G1 and G2 both have a 2
3 -dominating set, we are done. Thus, by symmetry,

we may assume that G1 ∈ B and G2 has a 2
3 -dominating set. Further, G1 ∈ {C3, C4, C7}

by Claim 3.1. Now we prove the claim by examining the following cases.

Case 1. G1 is a C3.

Since G2 has a 2
3 -dominating set, we only need to add at most two vertices u and

v in order to dominate G, regardless of whether v belongs to the γ3(G2)-set. Thus,

γ3(G) ≤ 2(n−3)
3 + 2 = 2n

3 .

Case 2. G1 is a C4.

Let w1 and w2 be two neighbors of v in G2 different from u. Assume w1 and w2 are
adjacent. If w1 and w2 both have degree two, then we contradict the fact that n(G) ≥ 14.
If, without loss of generality, deg(w1) = 3, then we contradict the edge minimality of G.
We may therefore assume that w1 and w2 are not adjacent.

Thus, we delete C4+{v} from G and join w1w2. Call the resulting graph G′. Note that
G′ is still connected with n(G′) ≥ 9 and δ(G′) ≥ 2. Furthermore G′ /∈ B, since otherwise

Claim 3.2 is contradicted. Thus γ3(G
′) ≤ 2n(G′)

3 by (IH). Now we only need to add {u, v}
and another neighbor of u to dominate G. Specially, γ3(G) ≤ 2(n−5)

3 + 3 < 2n
3 .

Case 3. G1 is a C7.

Let w1 and w2 be two neighbors of v in G2 different from u. Similar to the proof of Case
2, we assert that w1 and w2 are not adjacent. Thus, we let G′ = G−C7 − {v}+ {w1w2},
and note that n(G′) ≥ 6 and δ(G′) ≥ 2. Furthermore G′ /∈ B, since otherwise Claim 3.2 is

contradicted. Thus γ3(G
′) ≤ 2n(G′)

3 by (IH). Let D′ be a γ3(G
′)-set of G′. If w1, w2 /∈ D′,

then we add five consecutive vertices of C7 containing u, in order to dominate G. For
other cases, we add u, v and three more consecutive vertices of C7. Thus, we have that
γ3(G) ≤ 2(n−8)

3 + 5 < 2n
3 .

By Claim 3.3, we may assume that V3 is an independent set.

Claim 3.4. G does not contain a pendant cycle C`(1).

Proof of Claim 3.4. Suppose, to the contrary, that there is a pendant cycle C`(1) attached
by the vertex u. Let P be a path on which vertex u is located. Furthermore, let v be
the other end vertex of the path with degree 3, and let w be the last 2-degree vertex on
this path. Removing the bridge wv, we get two components G1 and G2. Assume that G1

contains u,w, and G2 contains v. As shown in Figure 5, the configurations are all cases
of G1 by considering Claim 3.1.

If G2 ∈ B, then there is a spanning path of G, and further γ3(G) ≤ 2n
3 by Corollary 2.3.

We may assume that G2 /∈ B. Now G2 has a 2
3 -dominating set by (IH). Furthermore, it

can be easily examined that the graphs in Figure 5 also has a 2
3 -dominating set, except for

(A1). Thus, when G1 is not configuration (A1), we have γ3(G) ≤ γ3(G1) + γ3(G2) ≤ 2n
3 .

We now consider the case where G1 resembles configuration (A1). Since d(v) = 3, let
the two neighbors of v other than w be w1 and w2. Note that d(w1) = d(w2) = 2, and w1

is not adjacent to w2, since otherwise there is a contradiction with n(G) ≥ 14. Thus, let
G′ = G−C3−{w, v}+{w1, w2}. Then δ(G′) ≥ 2 and G′ is connected. Also, G′ /∈ B, since

otherwise there is a contradiction with Claim 3.2. Thus γ3(G
′) ≤ 2n(G′)

3 , and we only need
to add three more vertices u,w, v to dominate G, regardless of whether wi belong to the
γ3(G

′)-set. Specifically, γ3(G) ≤ γ3(G′) + 3 ≤ 2(n−5)
3 + 3 < 2n

3 .
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Figure 5: The configurations of G1 in Claim 3.4.

We may assume that G contains no C`(1), and the length of paths between any two
vertices of degree 3 in G is at least 1 and at most 4.

Claim 3.5. G does not contain C`(2).

Proof of Claim 3.5. Suppose, to the contrary, that G contains C`(2). From Claim 3.1, we
know that 4 ≤ ` ≤ 10. Let ui be the vertex of degree 3 contained on the cycle C`(2), and
let vi be the neighbor of ui in G−C`(2), where i = 1, 2. Since V3 is an independent set in
G, u1 is not adjacent to u2 and d(vi) = 2 for i = 1, 2. We first notice that v1 and v2 are
distinct and are not adjacent, by considering n(G) ≥ 14 and assumption (I).

When ` = 5, 6, 9, 10, we let G1 = C`(2) and G′ = G−G1+v1v2. Then G′ is a connected
graph with δ(G′) ≥ 2 and ∆(G′) ≤ 3. Moreover, if G′ ∈ B, then a spanning path of G
appears. By Observation 2.4 γ3(G) ≤ 2n

3 and so we are done. Thus G′ has a 2
3 -dominating

set by (IH). Furthermore, we can examine graph G1 and find that it can be dominated
by three or four consecutive vertices containing both u1 and u2 when ` = 5 or 6. When
` = 9, G1 can be dominated by two vertex disjoint P3 paths that include both u1 and u2.
In short, G1 has a 2

3 -dominating set. Thus γ3(G) ≤ 2n
3 .

When ` = 4, 7, 8, we discuss the cases in detail based on whether v1 and v2 have a
common neighbor.

First we consider N(v1) ∩N(v2) = ∅. Let the neighbors of vi, which are distinct from
ui, be wi for i ∈ [2]. Delete C`(2) + {v1} and join w1v2, the resulting graph we call G′.
Note that G′ is a connected graph with δ(G′) ≥ 2 and ∆(G′) ≤ 3. Moreover, if G′ ∈ B,

then there exists a spanning path of G by Observation 2.4, whence γ3(G) ≤ 2n(G)
3 . Thus

G′ has a 2
3 -dominating set by (IH), namely D′. Furthermore, for C` + {v1}, we can find

that it has a 2
3 -dominating set. Specifically, we can indeed choose 3 vertices when ` = 4,
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choose 5 vertices when ` = 7, and 6 vertices when ` = 8. Note that if neither w1 nor v2
belongs to set D′, all chosen vertices should contain u1. If w1 ∈ D′ and v2 /∈ D′, all chosen
vertices should contain three consecutive vertices including u2. If w1 /∈ D′ and v2 ∈ D′,
all chosen vertices should contain three consecutive vertices including v1, u1 and one of
u1’s neighbors. If w1, v2 ∈ D′, all chosen vertices should contain two consecutive vertices
including v1 and u1, or u2 and one of its neighbors. Thus γ3(G) ≤ 2n(G)

3 .

Now N(v1) ∩ N(v2) 6= ∅, and let their common neighbor be w. By Claim 3.1, we
know that the third path P with w as a starting vertex has length s at most 4, in other
words, P contains at most four vertices of degree 2, and let the vertices on the path be
xi (i ∈ [s]). Let G1 = C`(2) + {v1, v2, w} + {xi}si=1, and let G′ = G − G1. We notice
that n(G1) = ` + 3 + s, and δ(G′) ≥ 2. Claims 3.1 and 3.4 imply that G′ /∈ B. Thus

γ3(G
′) ≤ 2n(G′)

3 , and if γ3(G1) ≤ 2n(G1)
3 , we are done.

For ` = 4, we have that there exists a 7-vertex subgraph formed by C4(2)+{v1, v2, w},
and it can be dominated by 4 vertices containing w by Table 1. Now we only need to
choose {xi}s−1i=1 to dominate G1. Thus γ3(G1) ≤ s+ 3, and s+3

s+7 ≤
2
3 holds for s ≤ 5.

For ` = 7, first note C7(2) can be dominated by 5 vertices containing u1 and u2. Now
if s ≥ 2, then G1 can be dominated by 8 vertices, since we can add {xi}3i=1 or w, x1, x2.
Moreover, 8

10+s ≤
2
3 holds for s ≥ 2. If s = 1, we only add two vertices v1 and w to

dominate G1. Note 7
11 <

2
3 .

For ` = 8, first note C8(2) can be dominated by 6 vertices containing u1 and u2. Now
if s ≥ 3, then G1 can be dominated by 9 vertices, since we can add {xi}3i=1. Moreover,

9
11+s ≤

2
3 holds for s ≥ 3. If s ≤ 2, then only 5 vertices are needed to dominate all vertices

but one vertex u1 of C8(2). And further, we choose 3 vertices v1, w and x1 to dominate

G1. Note that 8
11+s ≤

2
3 holds for s ≥ 1. Thus γ3(G1) ≤ 2n(G1)

3 .

Claim 3.6. There are no paths that have length 1 between two 3-degree vertices u
and v.

Proof of Claim 3.6. Suppose that w is a vertex of degree 2 between two 3-degree vertices
u and v, and let the two longest paths starting from u be ux1 . . . xr and uy1 . . . ys, with
the endpoints of these paths being u1 and u2, respectively. Similarly, let the two longest
paths starting from v be ux′1 . . . x

′
r′ and uy′1 . . . y

′
s′ , with endpoints v1 and v2, respectively,

as illustrated in Figure 6.

First recall that V3 is an independent set, and by Claim 3.1, r, s, r′, s′ ∈ {1, 2, 3, 4}. By
Claim 3.5, we may assume that u1 6= u2 and v1 6= v2. By symmetry, we assume r ≥ s.

Figure 6: The pattern in Claim 3.6.
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Case 1. (r, s) /∈ {(1, 1), (4, 4)}.

By Claim 3.5, u1, u2 and v are distinct. Take the vertex u and all 2-degree ver-
tices on the three paths attached to it. Specifically, let G1 be the subgraph formed by
{u,w, x1, . . . , xr, y1, . . . , ys}. Note n(G1) = r+ s+ 2 and G1 has a 2

3 -dominating set, since
we can choose {u,w, x1, . . . , xr−1, y1, . . . , ys−1}, a total of n(G1) − 3 vertices, or choose

3 vertices {u, x1, y1} when r = 2, s = 1. Note that n(G1)−3
n(G1)

≤ 2
3 holds for n(G1) ≤ 9.

Indeed, this can be achieved since r + s ≤ 7 in this case, and we note that 3
5 <

2
3 when

(r, s) = (2, 1). Thus γ3(G1) ≤ 2n(G1)
3 . Now, let G′ = G−G1. If γ3(G

′) ≤ 2n(G′)
3 , then we

are done. Next, we discuss the cases to confirm that γ3(G
′) ≤ 2n(G′)

3 indeed holds.

If G′ has three components, say u1-component, u2-component and v-component, re-
spectively, then each component is not in B. This is because we know from Claim 3.4 that

no pendant cycle appears. Thus γ3(G
′) ≤ 2n(G′)

3 by (IH).

If G′ has two two components K1 and K2, where K1 contains u1, and K2 contains
u2 and v. By Claim 3.4, we know that K1 /∈ B. Moreover, K2 has at least one degree 3
vertex in {v1, v2}. If K2 ∈ B, then K2 can only be K4 − e, and this contradicts the edge
minimality of G. Thus, K2 /∈ B, and so, by (IH), we are done.

If G′ is a connected graph, then G′ ∈ B. Otherwise by (IH), γ3(G
′) ≤ 2n(G′)

3 , and
so we are done. Note that n(G) ≥ 14, and 5 ≤ n(G1) ≤ 9. Hence, n(G′) ≥ 5 and
so G′ ∈ {C7, C8, C13}. Note that if G′ is C7, C8 or C13, then there exists a γ3(G

′)-set

of size 5, 6, or 9 respectively, containing u1 and u2. In short, γ3(G
′) ≤ 2n(G′)+2

3 for
G′ ∈ {C7, C8, C13}.

Now, in order to dominateG, we only need to add n(G1)−5 vertices, namely {u, x1, . . . ,
xr−2, y1, . . . , ys−2} when n(G1) ≥ 8. Then γ3(G) ≤ n(G1)−5+2n(G′)+2

3 = 2n(G)+n(G1)−13
3 <

2n(G)
3 . When 6 ≤ n(G1) ≤ 7, we add at most 3 vertices, thus γ3(G) ≤ 3 + 2n(G′)+2

3 =
2n(G)+11−2n(G1)

3 < 2n(G)
3 . Lastly, when n(G1) = 5, we consider n(G) ≥ 14 and n(G′) ≥ 9,

thus G′ can only be a C13 in B. Then γ3(G) ≤ 3 + 9 = 12 = 2×18
3 .

Case 2. (r, s) = (4, 4).

Let G1 = {u, {xi}4i=1, {yi}4i=1}, and set G′ = G−G1 + wu2. Note that δ(G′) ≥ 2, and
dG′(u2) = 3. Then the graph G′ is not in B if G′ is connected, or the component of G′

containing u2 is not in B if G′ is disconnected, and further, the u1-component of G′ is not

in B by Claim 3.4. Thus γ3(G
′) ≤ 2n(G′)

3 . Let D′ be the γ3(G
′)-set of G′.

Now, we only need to add 6 vertices {{xi}3i=1, {yi}4i=2}} if u2 /∈ D′, or add 6 vertices

{{xi}3i=1, u, y3, y4} if u2 ∈ D′, whence γ3(G) ≤ 2(n(G)−9)
3 + 6 = 2n(G)

3 , and so we are done.

Case 3. (r, s) = (1, 1).

By Case 1 and 2 as well as symmetry, the paths starting from u and v have length of
1. Label the vertices as Figure 7 (a). By Claim 3.5, u1 6= u2 and v1 6= v2. By symmetry,
next we claim that u2 6= v1 (u1 6= v2 is similar).

Suppose that u2 = v1 (see Figure 7 (b)). Note that d(u2) = 3 and d(w′) = 2. Let
G1 = C6(3) + x1. Also, we know from Claim 3.5 that w′ 6= y′1 and w′ is not adjacent to
y′1. Let G′ = G − G1 + w′y′1. Note that δ(G′) ≥ 2, and dG′(v2) = 3. Then the graph
G′ is not in B if G′ is connected, or the component of G′ containing w′, y′1 is not in B if
G′ is disconnected, and further, the u1-component of G′ is not in B by Claim 3.4. Thus
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Figure 7: The configurations of (r, s) = (1, 1) in Claim 3.6.

γ3(G
′) ≤ 2n(G′)

3 .

Let D′ be the γ3(G
′)-set of G′, we only need to add 4 vertices to dominate G. Specifical-

ly, if w′, y′1 /∈ D′, then we add {u,w, v, x′1}. If w′ /∈ D′ and y′1 ∈ D′ or if w′, y′1 ∈ D′ and a-
part from the vertex y′1, w

′ does not have any neighbors inG′ that belong toD′, then we ad-

d {u, y1, u2, v}. For other cases, we add {u,w, v, u2}. Thus, γ3(G) ≤ 2(n(G)−7)
3 +4 < 2n(G)

3 .

Thus, now u1, u2, v1 and v2 are all distinct. Redefine the new 7-vertex G1 with vertex
set {u,w, v, x1, y1, x′1, y′1} and G′ = G−G1. For G1, we have that γ3(G1) ≤ 2n(G1)

3 , since

{u,w, v} can dominate G1. Thus if γ3(G
′) ≤ 2n(G′)

3 , then γ3(G) ≤ 3 + 2(n(G)−7)
3 < 2n(G)

3 ,

we are done. Next, we discuss the cases to confirm that γ3(G
′) ≤ 2n(G′)

3 indeed holds.

First we consider G′ has four connected components Ki (i ∈ [4]), which contain

u1, u2, v1 and v2, respectively, then Ki /∈ B from Claim 3.4. Thus γ3(G
′) ≤ 2n(G′)

3 .

If G′ has three components K1, K2 and K3, where K1 contains u1, K2 contains u2
and v1, and K3 contains v2. By Claim 3.4, K1 and K3 are not in B. Note that K2 is not
a C3 since V3 is an independent set in G, and not a C4, C7 or C8 by Claim 3.5, and not
a C13 by Claim 3.1. Hence, K2 /∈ B. Thus using (IH), we get that γ3(Ki) ≤ 2n(Ki)

3 for

i = 1, 2, 3, and γ3(G
′) ≤ 2n(G′)

3 .

If G′ has two components K1 and K2, with K1 containing u1 and u2 and K2 containing
v1 and v2, then using a similar analysis to that for the K2 component in the previous
paragraph, we can get that Ki (i ∈ [2]) is not in B. Thus we are done. If G′ has two
components K1 and K2, with K1 containing u1 and K2 containing u2, v1 and v2, then
K1 /∈ B, and K2 cannot be C3, C4 from assumption (I). Further if K2 ∈ {C7, C8, C13},
then we know that γ3(K2) ≤ 2n(K2)+2

3 . Thus γ3(G) ≤ 3 + 2n(K1)
3 + 2n(K2)+2

3 = 2n(G)−3
3 ,

and so we are done. Hence, K2 /∈ B, and so, by (IH), γ3(G
′) ≤ 2n(G′)

3 .

We may assume that G′ is connected. Clearly G2 /∈ {C3, C4, C7}. Moreover, if G′ ∈
{C8, C13}, then γ3(G) ≤ 3 + 2n(G′)+2

3 = 2n(G)−3
3 , and so we are done. Thus, G′ /∈ B and

so γ3(G
′) ≤ 2n(G′)

3 . By (IH), we are done.

Claim 3.7. No paths between two 3-degree vertices u and v have length 2.

Proof of Claim 3.7. Let w1 and w2 be 2-degree vertices between u and v, and let the two
longest paths starting from u be ux1 . . . xr and uy1 . . . ys, with the other endpoints of these
paths being u1 and u2. Recall that V3 is an independent set. Claims 3.1 and 3.6 imply
that r, s ∈ {2, 3, 4}. Furthermore, u1, u2 and v are distinct by Claim 3.5. By symmetry,
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we assume r ≥ s.

Case 1. (r, s) /∈ {(4, 3), (4, 4)}.

Let G1 = {u,w1, w2, x1, . . . , xr, y1, . . . , ys}, and G′ = G − G1. Note that n(G1) =
r + s+ 3,
and we can choose {u,w1, x1, . . . , xr−1, y1, . . . , ys−1}, a total of n(G1)− 3 vertices to dom-

inate G1. Moreover, n(G1)− 3 ≤ 2n(G1)
3 holds for n(G1) ≤ 9. Indeed, this can be achieved

in this case. Thus, if γ3(G
′) ≤ 2n(G′)

3 , then we are done. Next, we discuss the cases to

confirm that γ3(G
′) ≤ 2n(G′)

3 indeed holds.

Now if G′ has three connected components Ki (i ∈ [3]), which contain u1, u2 and v,

respectively, then Ki /∈ B from Claim 3.4. Thus γ3(G
′) ≤ 2n(G′)

3 .

If G′ has two components K1 and K2, where K1 contains u1, and K2 contains u2 and
v. Clearly, K1 /∈ B from Claim 3.4. By assumption (I), K2 cannot be C3. Claim 3.5
implies that K2 cannot be a C4, C7 or C8. Lastly, by Claim 3.1, we can deduce that K2

cannot be C13. Thus using (IH), we get that γ3(Ki) ≤ 2n(Ki)
3 for i = 1, 2, and so we are

done.

Now G′ is connected. Clearly G′ /∈ {C3, C4, C7, C8}. Moreover, if G′ is C13, then there
is a 3-component dominating set containing v with a size of 9 to dominate C13, thus we
only need to choose {u, x1, . . . , xr−1, y1, . . . , ys−1} in G1, a total of n(G1) − 4 vertices to

dominate G1. Whence, γ3(G) ≤ n(G1) − 4 + 9 = n(G) − 8. Note that n(G) − 8 ≤ 2n(G)
3

holds when n(G) ≤ 24. Indeed, this is true in this case. Thus, G′ /∈ B and γ3(G
′) ≤ 2n(G′)

3
by (IH).

Case 2. (r, s) ∈ {(4, 3), (4, 4)}.

Let G1 = {u,w1, w2, x1, x2, x3, x4, y1, y2} and set G′ = G − G1 + u1y3. Note that
dG′(u1) = dG′(u2) = 3. The graph G′ is not in B if G′ is connected, or the component of
G′ containing u1 and y3 is not in B if G′ is disconnected, and further, the v-component of

G′ is not in B by Claim 3.4. Thus γ3(G
′) ≤ 2n(G′)

3 .

Let D′ be the γ3(G
′)-set of G′. We now only need to add 6 vertices {u,w1, y1, x1, x2, x3}

if u1, y3 /∈ D′, or add 6 vertices {u,w1, y1, x2, x3, x4} if u1 /∈ D′ and y3 ∈ D′. For the other

cases, we add {u,w1, y1, y2, x3, x4}. Then γ3(G) ≤ 2(n(G)−9)
3 + 6 = 2n(G)

3 .

Claim 3.8. There are no three vertices u, u1 and u2 of degree 3 such that the lengths
between u and u1 as well as u and u2 are both 3.

Proof of Claim 3.8. Let x1x2x3 and y1y2y3 be the two paths between u and u1 as well
as u and u2, respectively. Let w1 . . . wt be the third path linking u to a vertex v of
degree 3, where all internal vertices in the path are of degree 2. Note that t is 3 or
4 by above claims. Also u1, u2 and v are distinct by Claim 3.5. Now we let G1 =
{u,w1, w2, x1, x2, x3, y1, y2, y3}, and G′ = G−G1 + u2w3.

Note dG′(u2) = dG′(v) = 3. Then G′ is not in B if G′ is connected, or the component
of G′ containing u2 and w3 is not in B if G′ is disconnected, and further, the u1-component

of G′ is not in B by Claim 3.4. Thus γ3(G
′) ≤ 2n(G′)

3 . Let D′ be the γ3(G
′)-set of G′.

Now, in order to dominate G, we only need to add 6 vertices. Indeed, we can choose
u, x1, x2 and three additional vertices apart from those. Specifically, the three additional
vertices can be chosen as w1, y1, y2 when u2, w3 /∈ D′, as w1, w2, y1 when u2 ∈ D′ and
w3 /∈ D′, as y1, y2, y3 when u2 /∈ D′ and w3 ∈ D′. We may assume that u2, w3 ∈ D′. If
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apart from the vertex w3, u2 does not have any neighbors in G′ that belong to D′, we
can choose y2, y3, w2. Finally, for other cases, we can choose w1, w2, y3. Thus, γ3(G) ≤
2(n(G)−9)

3 + 6 = 2n(G)
3 .

Up to now, there is no C`(1) in G, and the length of paths between two vertices of
degree 3 in G is 3 or 4, and there are no two paths of length 3 that link the same vertex
of degree 3.

Note that all components of G − V3 are paths of length 3 or 4, and let p1 and p2 be
the number of the paths of G−V3 of length 3 and 4, respectively. Thus p1 + p2 = 3n3

2 and
p1 ≤ n3

2 by Claim 3.8. This implies that n ≥ n3 + 3n3
2 + 4n3 = 13n3

2 . Choose all vertices in
V3, and one end-vertex on each path of G− V3 of length 3, and two end vertices on each
path of G − V3 of length 4. This choice produces a 3-component dominating set D of G
such that

|D| = n3 + p1 + 2p2

≤ 4n3

≤ 8n

13
.

Clearly 8n
13 <

2n
3 , this completes the proof.

To end this section, we remark that the bound in Theorem 1.4 is sharp. Let H be the
graph formed by the disjoint union of two cycles C9 and joining them with an edge. It is
easy to check that if G ∈ {C6, C9, C12, C18, H}, then γ3(G) = 2n

3 .
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