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Abstract

The chromatic edge-stability number esχ(G) of a graph G is the minimum number

of edges whose removal results in a spanning subgraph with the chromatic number s-

maller than that of G. A graph G is called (3, 2)-critical if χ(G) = 3, esχ(G) = 2 and

for any edge e ∈ E(G), esχ(G − e) < esχ(G). In this paper, we characterize (3, 2)-

critical graphs which contain at least five odd cycles. This answers a question proposed

by Brešar, Klavžar and Movarraei in [Critical graphs for the chromatic edge-stability

number, Discrete Math. 343(2020) 111845].
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1 Introduction

Let G = (V (G), E(G)) be a graph. A function c : V (G)→ [k] = {1, . . . , k} is called a proper

coloring of G, if c(u) 6= c(v) for any uv ∈ E(G). The chromatic number of G, denoted by

χ(G), is the smallest integer k such that G admits a proper coloring using k colors. The

chromatic edge-stability number of G, denoted by esχ(G), is the minimum number of edges

∗The corresponding author.
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of G whose removal results in a graph with the chromatic number smaller than that of

G. The chromatic edge-stability number was first studied by Staton [7], which provided

upper bounds of esχ for regular graphs in terms of the size of a given graph. The invariant

was subsequently investigated in [2, 1, 6]. For a graph G with χ(G) = 3, the chromatic

edge-stability number is equal to the bipartite edge frustration [5], which is defined as the

smallest number of edges that have to be deleted from G to obtain a bipartite spanning

subgraph.

For any u, v ∈ V (G), let dG(u, v) denote the length of the shortest (u, v)-path. For

any A ⊆ E(G), let G− A be the graph obtained from G by deleting all the edges in A. If

A = {e}, we simply write G−e instead of G−{e}. We say a graph G is edge-stability critical

if esχ(G− e) < esχ(G) holds for every edge e ∈ E(G). A graph G is called (k, `)-critical, if

G is an edge-stability critical graph with χ(G) = k and esχ(G) = `, for k, ` ≥ 2. Naturally,

a graph G is (k, 2)-critical if and only if for every edge e ∈ E(G), χ(G− e) = k, and there

exists an edge f ∈ E(G − e) such that χ(G − {e, f}) = k − 1. In this paper we focus on

(3, 2)-critical graphs and the graphs we consider are simple.

In [4], the authors proved the following theorem.

Theorem 1.1 ([4]) A ∪ B ∪ C ∪ D is the family of (3, 2)-critical graphs (without isolated

vertices) that contain at most four odd cycles.

These four graph families are defined as follows. Let G + H denote the disjoint union of

graphs G and H. We use Cn to denote the cycle on n vertices. A path or a cycle is odd if

it has an odd number of edges, otherwise, we say it even. Then the families of (3, 2)-critical

graphs mentioned in [4] are as follows. Let A = {C2k+1 +C2`+1 | k, ` ≥ 1} and let B be the

family of graphs that are obtained from C2k+1 + C2`+1, k, ` ≥ 1, by identifying a vertex of

C2k+1 and a vertex of C2`+1. Let xi, yi be the end vertices of the paths Qi, i ∈ [4], exactly

two of the Qi are odd, and at most one of them is of length one. The family C consists of

the graphs that are obtained from such four paths, by identifying the vertices x1, x2, x3,

and x4 and also identifying the vertices y1, y2, y3, and y4. The family D consists of the

following subdivisions of the graph K4: (i) all the subdivided paths are of odd length, (ii)

exactly three of the paths are odd, and these three paths induce an odd cycle or a path, (iii)

exactly two of the paths are odd, and these two paths are vertex disjoint, and (iv) exactly

two of the paths are even and these two paths have a common vertex.

At the end of [4], Brešar, Klavžar, and Movarraei defined the family E , which is obtained

from the disjoint union of k even cycles C2n1 , . . . , C2nk
as follows. For each i ∈ [k], let xi

and yi be any two distinct vertices of C2ni , where they only require that
∑k

i=1 dC2ni
(xi, yi)

is odd. A graph G ∈ E is obtained by identifying yi and xi+1 for i ∈ [k− 1], and identifying

yk and x1. They proposed the following problem and suspected it has a positive answer.
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Problem 1.2 ([4]) Is it true that A ∪ B ∪ C ∪ D ∪ E is the family of (3, 2)-critical graphs

(without isolated vertices)?

We answer this problem by giving a positive proof.

Theorem 1.3 E is the family of (3, 2)-critical graphs (without isolated vertices) which con-

tain at least five odd cycles.

2 Properties of (3, 2)-critical graphs

In this section, we establish some structural results on (3, 2)-critical graphs. The following

lemmas and propositions were proved in [3, 4] and will be used in this paper.

Lemma 2.1 ([4]) If G is a (3, 2)-critical graph that contains at least three odd cycles, then

every two distinct odd cycles intersect in more than one vertex.

Let Gi (i ∈ [7]) be the family of graphs as shown in Figure 1. For i ∈ [7] and Gi ∈ Gi,
three internally disjoint (x, y)-paths of Gi formed by solid lines from left to right are denoted

as Q1, Q2, Q3. Let D1 = Q1 ∪ Q2 and D2 = Q2 ∪ Q3. Every graph in Gi (i ∈ [7]) satisfies

that D1 and D2 are odd cycles, and the dotted line is internally disjoint from these solid

lines. Let G =
⋃
i∈[7] Gi.

Proposition 2.2 ([4]) If G is a (3, 2)-critical graph that contains at least three odd cycles,

then there exists an H ∈ G such that H ⊆ G.

A graph G is connected if there is a (u, v)-path in G for any u, v ∈ V (G). A separation of

a connected graph is a decomposition of the graph into two nonempty connected subgraphs

which have just one vertex in common. This common vertex is called a separating vertex of

the graph. A graph is nonseparable if it is connected and has no separating vertices. Let F

be a nontrivial proper subgraph of a graph G. An ear of F in G is a nontrivial path in G

whose endpoints lie in F but whose internal vertices do not. An ear is an open ear if the

endpoints of the path are distinct. For completeness, we present the proof of the following

proposition from [3].

Proposition 2.3 ([3]) Let F be a nontrivial proper subgraph of a nonseparable graph G.

Then F has an open ear in G.

Proof. If F is a spanning subgraph of G, then E(G) \ E(F ) is nonempty because, by

hypothesis, F is a proper subgraph of G. Any edge in E(G) \ E(F ) is then an ear of F in

G. We may suppose, therefore, that F is not spanning. Since G is connected, there is an

edge xy of G with x ∈ V (F ) and y ∈ V (G) \ V (F ). Because G is nonseparable, G − x is
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Figure 1: Seven families of subgraphs of (3,2)-critical graphs.

connected. So there is a (y, F − x)-path Q in G− x. The path P := xyQ is an open ear of

F .

We first prove the following lemma.

Lemma 2.4 If G is a (3, 2)-critical graph that contains at least three odd cycles (without

isolated vertices), then G is nonseparable.

Proof. We claim that if G is (3, 2)-critical, then every edge of G is contained in at least one

odd cycle. Suppose e ∈ E(G) and e is not contained in any odd cycle. By the definition of

(3, 2)-critical graph, there exists at least one edge f ∈ E(G)\{e} such that χ(G−{e, f}) = 2.

Since e is not contained in any odd cycle, we have χ(G−f) = 2, contradicting the fact that

G is (3, 2)-critical.

Let G be a (3, 2)-critical graph that contains at least three odd cycles (without isolated

vertices). Suppose G is not a connected graph or G contains a separating vertex v. Let

G = G1 ∪ G2 with G1 ∩ G2 = ∅ or {v}, and there is at least one edge in Gi (i ∈ [2]). By

Lemma 2.1, one of G1 and G2 contains all odd cycles. Thus there exists at least one edge

that is not contained in any odd cycle, a contradiction. Hence, G is nonseparable.

For an edge ei, let Fi = {fi ∈ E(G) | χ(G− {ei, fi}) = 2}.
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Theorem 2.5 Let G be a (3, 2)-critical graph with at least three odd cycles. Suppose there

are two odd cycles D1 and D2 in G satisfying the following three conditions.

(1) The intersection of D1 and D2 is a nontrivial path;

(2) There are two edges e1 and e2 in G such that e1 ∈ E(D1)\E(D2) and e2 /∈ E(D2);

(3) F1 ⊆ E(D1) ∩ E(D2) and F2 ∩ (E(D1) ∩ E(D2)) 6= ∅.

Then F1 ⊆ F2. In particular, if e2 ∈ E(D1)\E(D2) and F2 ⊆ E(D1) ∩ E(D2), then

F1 = F2.

Figure 2: Subgraphs of G.

Proof. Since G is (3, 2)-critical, F1 and F2 are non-empty. Suppose that there are two odd

cycles D1 and D2 in G satisfying the above three conditions, but F1 * F2. Then there exists

an edge f1 ∈ F1 \ F2 such that χ(G− {e2, f1}) = 3. This implies that there exists at least

one odd cycle C which is distinct from D1 and D2 in G such that e2, f1 /∈ E(C), since G is

a (3, 2)-critical graph with at least three odd cycles. Moreover, we have ({e1}∪F2) ⊆ E(C)

since e2, f1 /∈ E(C). Next we show that this will lead to a contradiction.

Denote by x and y the two endpoints of the path which is the intersection of D1 and

D2. Suppose e1 = x1x2 and e2 = ab. Since F2 ∩ (E(D1) ∩ E(D2)) 6= ∅, let f2 ∈
F2 ∩ (E(D1) ∩ E(D2)). Since χ(G − {e2, f1}) = 3, we have f2 6= f1. Let x5, x6, x7, x8

be the endpoints of f1 and f2 of which assignment depends on their position in D1 ∩ D2

(see Figure 2, where each of the two cases has a separate figure). Let P2, P3, P4, P5 be the

(y, x5)-path, (x6, x7)-path, (x8, x)-path, (x, x1)-path of D1 and Q be the (y, x)-path of D2

in a counter clockwise direction, respectively, as shown in Figure 2. If e2 ∈ E(D1), then let

e2 = ab = x3x4 and P1, P6 be the (x4, y)-path, (x2, x3)-path of D1 in a counter clockwise
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direction, respectively. If e2 /∈ E(D1), then let P6 = P1 be the (x2, y)-path of D1 in a

counter clockwise direction and x2 = x3 = x4. We first prove the following claim.

Claim: Let u ∈ (V (D1) ∪ V (D2)) \ V (P3) and v ∈ V (P3). Then there is no (u, v)-path P

such that V (P ) ∩ (V (D1) ∪ V (D2)) = {u, v}, where P 6= f1, f2.

Proof. Suppose there is a (u, v)-path P such that V (P ) ∩ (V (D1) ∪ V (D2)) = {u, v} and

P 6= f1, f2. It suffices to consider the two structures as shown in Figure 2. The difference

between two graphs in Figure 2 is the position relation of the three edge e1, f1 and f2. In

the following, we will consider the two structures simultaneously. Let M1 and M2 be the

(x6, v)-path and (v, x7)-path of D1 in a counter clockwise direction, respectively.

First, suppose u ∈ V (P1). Let M3 and M4 be the (x4, u)-path and (u, y)-path of D1 in

a counter clockwise direction, respectively. If |E(P ∪M4)| and |E(M1 ∪ x5x6 ∪ P2)| have

different parity, then P ∪M4 ∪ P2 ∪ x5x6 ∪M1 is an odd cycle. Otherwise P ∪M4 ∪ Q ∪
P4 ∪ x8x7 ∪M2 is an odd cycle since D2 is an odd cycle. If P ∪M4 ∪ P2 ∪ x5x6 ∪M1 is an

odd cycle, then χ(G−{e1, f1}) = 3 in Figure 2 (1) and χ(G−{e2, f2}) = 3 in Figure 2 (2).

If P ∪M4 ∪ Q ∪ P4 ∪ x8x7 ∪M2 is an odd cycle, then χ(G − {e2, f2}) = 3 in Figure 2 (1)

and χ(G − {e1, f1}) = 3 in Figure 2 (2). This contradicts χ(G − {ei, fi}) = 2 for i ∈ [2].

Similarly, if u ∈ V (P5), then we also can get a contradiction.

Now suppose u ∈ V (P2). Let M5 and M6 be the (y, u)-path and (u, x5)-path of D1 in a

counter clockwise direction, respectively. If |E(P )| and |E(M1 ∪ x6x5 ∪M6)| have different

parity, then P∪M1∪x6x5∪M6 is an odd cycle. OtherwiseM5∪P∪M2∪x7x8∪P4∪Q is an odd

cycle since D2 is an odd cycle. If P ∪M1∪x6x5∪M6 is an odd cycle, then χ(G−{e1, f1}) = 3

in Figure 2 (1) and χ(G− {e2, f2}) = 3 in Figure 2 (2). If M5 ∪ P ∪M2 ∪ x7x8 ∪ P4 ∪Q is

an odd cycle, then χ(G− {e2, f2}) = 3 in Figure 2 (1) and χ(G− {e1, f1}) = 3 in Figure 2

(2), a contradiction. Similarly, if u ∈ V (P4 ∪Q), then we also can get a contradiction.

Finally, we only need to consider the case of e2 ∈ E(D1) and u ∈ V (P6). In this case,

let M7 and M8 be the (x2, u)-path and (u, x3)-path of D1 in a counter clockwise direction,

respectively. In Figure 2 (1), since D1 is an odd cycle, either P ∪M7∪e1∪P5∪P4∪f1∪M2

or P ∪ M8 ∪ e2 ∪ P1 ∪ P2 ∪ f2 ∪ M1 is an odd cycle. Then χ(G − {e2, f2}) = 3 or

χ(G − {e1, f1}) = 3, a contradiction. In Figure 2 (2), since D1 and D2 are odd cy-

cles, we have either |E(P ∪ M8 ∪ e2 ∪ P1)| and |E(P2 ∪ f1 ∪ M1)| have the same par-

ity or |E(P ∪ M7 ∪ e1 ∪ P5)| and |E(P4 ∪ f2 ∪ M2)| have the same parity. So either

P ∪ M8 ∪ e2 ∪ P1 ∪ Q ∪ P4 ∪ f2 ∪ M2 or P ∪ M7 ∪ e1 ∪ P5 ∪ Q ∪ P2 ∪ f1 ∪ M1 is an

odd cycle. Then χ(G − {e1, f1}) = 3 or χ(G − {e2, f2}) = 3, a contradiction. Hence the

claim holds. �

Let w = x6 if f2 = x5x6 and w = x7 if f2 = x7x8. Since ({e1} ∪ F2) ⊆ E(C), we have

e1, f2 ∈ E(C). Let P0 be the (x1, w)-path contained in C with f2 /∈ E(P0). Let P ⊆ P0
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be the (u, v)-path where u ∈ {V (P0) ∩ (V (D1) ∪ V (D2)} \ V (P3) and v ∈ V (P0) ∩ V (P3)

such that dP0(u, v) is as small as possible. Since f1 /∈ E(C) and f2 /∈ E(P0), we have

P 6= f1, f2. By the choice of u and v, we know that V (P ) ∩ (V (D1) ∪ V (D2)) = {u, v}. So

there is a (u, v)-path P such that V (P ) ∩ (V (D1) ∪ V (D2)) = {u, v} and P 6= f1, f2, where

u ∈ (V (D1) ∪ V (D2)) \ V (P3) and v ∈ V (P3). By Claim, we get a contradiction. Hence

F1 ⊆ F2.

In particular, if e2 ∈ E(D1) and F2 ⊆ (E(D1) ∩ E(D2), then we have F1 = F2 by the

symmetry of e1 and e2. This completes the proof of Theorem 2.5.

Theorem 2.6 Let G be a (3, 2)-critical graph with at least five odd cycles and H ∈ G with

H ⊆ G. Then (i) H /∈ G \ {G4 ∪ G5}, and (ii) H ∈ G4 ∪ G5 (see Figure 1) satisfying that

P2 ∪ P3 is an even cycle in H.

Proof. By Proposition 2.2, there exists an H ∈ G such that H ⊆ G. Let D1 and D2 be

as stated when we introduce the definition of Gi for i ∈ [7]. Clearly we have known that D1

and D2 are odd cycles. By the definition of (3, 2)-critical, the following observation holds

directly.

Observation: If G is (3, 2)-critical, then for any e ∈ E(G), all odd cycles share one edge

in G− e.
It suffices to prove the following three claims.

Claim 1. H /∈ G1 ∪ G2 ∪ G3.
Proof. Suppose H ∈ G1 ∪ G2 ∪ G3. Let P = P5 ∪ P6, P = P5 and P = ∅ if H ∈ G1,

H ∈ G2 and H ∈ G3, respectively. Then D1 = P1 ∪P3 ∪P and D2 = P3 ∪P4 are odd cycles.

We first claim P1 ∪ P2 is an even cycle. Suppose H ∈ G1 or H ∈ G2. Let e ∈ E(P5). By

Observation, all odd cycles share one edge in G−e. Since there is no edge in (P1∪P2)∩D2,

P1 ∪ P2 is an even cycle. Suppose H ∈ G3. If P1 ∪ P2 is an odd cycle, then H contains

exactly four odd cycles D1, D2, P1 ∪ P2 and P2 ∪ P4. Since G contains at least five odd

cycles, there exists an edge e ∈ E(G) \ E(H). By Observation, all odd cycles share one

edge in G − e, contradicting the fact that E(P1 ∪ P2) ∩ E(D2) = ∅. So P1 ∪ P2 is an even

cycle. This means that D′1 = P2 ∪ P3 ∪ P is an odd cycle since D1 is an odd cycle. For any

e1, e2 ∈ E(P1) ∪ E(P2), we have ∅ 6= F1,F2 ⊆ E(P3). Without loss of generality, suppose

that e1, e2 ∈ E(P1), or e1 ∈ E(P1) and e2 ∈ E(P2). If e1, e2 ∈ E(P1), then D1, D2 and e1, e2

satisfy the conditions in Theorem 2.5 since D1 ∩D2 = P3. By the symmetry of e1 and e2,

we have F1 = F2 6= ∅ by Theorem 2.5. If e1 ∈ E(P1) and e2 ∈ E(P2), we have D1, D2, e1, e2

and D′1, D2, e1, e2 satisfy the conditions in Theorem 2.5 since D1 ∩D2 = D′1 ∩D2 = P3. In

this case again we have F1 = F2 6= ∅ by Theorem 2.5. Therefore, for any e1, e2 ∈ E(P1∪P2),

F1 = F2. For any edge f ∈ F1 = F2 and e ∈ E(P1) ∪ E(P2), we have χ(G − f) = 3 and

χ(G−{e, f}) = 2 as G is (3, 2)-critical. So there is at least one odd cycle C in G− f such
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that e ∈ E(C). By the arbitrariness of e, we have P1 ∪ P2 ⊆ C. Hence C = P1 ∪ P2 is an

odd cycle, contradicting the fact that P1 ∪ P2 is an even cycle. �

Claim 2. H /∈ G6 ∪ G7.
Proof. Suppose H ∈ G6. Let P1, P2, P3 be the (x, u)-path, (u, y)-path, (y, x)-path of D1

and P4, P5 be the (y, v)-path, (v, x)-path of D2 in a counter clockwise direction, respectively,

as shown in Figure 1. Then D1 = P1 ∪ P2 ∪ P3 and D2 = P4 ∪ P5 ∪ P3. Let P6 denote

the (u, v)-path that is internally disjoint from D1 ∪ D2. Since both D1 and D2 are odd

cycles, P1 ∪ P5 ∪ P4 ∪ P2 is an even cycle. So the two cycles D3 = P6 ∪ P2 ∪ P4 and

D4 = P6 ∪ P5 ∪ P1 have the same parity. If D3 and D4 are odd cycles, then H contains

exactly four odd cycles. Since G contains at least five odd cycles, there exists an edge

e ∈ E(G) \ E(H). By Observation, all odd cycles share one edge in G− e, contradicting

the fact that E(D1) ∩ E(D2) ∩ E(D3) ∩ E(D4) = ∅. So D3 and D4 are even cycles. Then

D5 = P5 ∪ P6 ∪ P2 ∪ P3 and D6 = P1 ∪ P6 ∪ P4 ∪ P3 are odd cycles. For e1 = w1v ∈ E(P6),

e2 = w2v ∈ E(P5) and e3 = w3v ∈ E(P4), let Fi = {fi ∈ E(G) | χ(G − {ei, fi}) = 2} for

i ∈ [3]. Then we have ∅ 6= F1 ⊆ E(P3), ∅ 6= F2 ⊆ E(P1 ∪ P3) and ∅ 6= F3 ⊆ E(P2 ∪ P3).

Note that D1 ∩ D6 = P1 ∪ P3 with e1 ∈ E(D6) \ E(D1) and e2 /∈ E(D1) ∪ E(D6), and

D1 ∩ D5 = P2 ∪ P3 with e1 ∈ E(D5) \ E(D1) and e3 /∈ E(D1) ∪ E(D5). We have

that D6, D1, e1, e2 and D5, D1, e1, e3 satisfy the conditions in Theorem 2.5. Therefore by

Theorem 2.5, we have ∅ 6= F1 ⊆ F2 and ∅ 6= F1 ⊆ F3. For any edge f ∈ F1 and ei (i ∈ [3]),

we have χ(G− f) = 3 and χ(G−{ei, f}) = 2. So there is at least one odd cycle C in G− f
such that e1, e2, e3 ∈ E(C). Then the degree of v in C is three, a contradiction.

Suppose H ∈ G7. Let P1, P2, P4, P5 be the (x, u)-path, (u, y)-path, (y, v)-path, (v, x)-

path of D1 and P6 be the (y, x)-path of D2 in a counter clockwise direction, respectively,

as shown in Figure 1. Then D1 = P1 ∪ P2 ∪ P4 ∪ P5 and D2 = P4 ∪ P5 ∪ P6. Let P3 denote

the (u, v)-path that is internally disjoint from D1 ∪ D2. Since both D1 and D2 are odd

cycles, we have P1 ∪ P2 ∪ P6 is an even cycle and either P1 ∪ P3 ∪ P5 or P2 ∪ P3 ∪ P4 is

an odd cycle. Without loss of generality, we assume D3 = P2 ∪ P3 ∪ P4 is an odd cycle.

Then D4 = P3 ∪ P1 ∪ P6 ∪ P4 is an odd cycle. For e1 = v1x ∈ E(P1), e2 = v2x ∈ E(P5)

and e3 = v3x ∈ E(P6), let Fi = {fi ∈ E(G) | χ(G − {ei, fi}) = 2} for i ∈ [3]. Then

we have ∅ 6= F1 ⊆ E(P4), ∅ 6= F2 ⊆ E(P3 ∪ P4), and ∅ 6= F3 ⊆ E(P2 ∪ P4). Note that

D3∩D4 = P3∪P4 with e1 ∈ E(D4)\E(D3) and e2 /∈ E(D3)∪E(D4), and D1∩D3 = P4∪P2

with e1 ∈ E(D1) \ E(D3) and e3 /∈ E(D1) ∪ E(D3). We have that D3, D4, e1, e2 and

D3, D1, e1, e3 satisfy the conditions in Theorem 2.5. Therefore, we have ∅ 6= F1 ⊆ F2 and

∅ 6= F1 ⊆ F3 by Theorem 2.5. For any edge f ∈ F1 and ei (i ∈ [3]), we have χ(G−f) = 3 and

χ(G−{ei, f}) = 2. So there is at least one odd cycle C in G−f such that e1, e2, e3 ∈ E(C).

Then the degree of x in C is three, a contradiction. �

Claim 3. H ∈ G4 ∪ G5 and P2 ∪ P3 is an even cycle in H.
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Proof. Suppose H ∈ G4 ∪ G5. Let D3 = P2 ∪ P3. If D3 is an odd cycle, then G4 = G2
and G5 = G1. By Claim 1, we know G contains no graph from G1 ∪ G2 as a subgraph.

Therefore if H ∈ G4 ∪ G5, then D3 = P2 ∪ P3 is an even cycle. �

The proof is thus complete.

3 Proof of Theorem 1.3

Let {Hi | i ∈ [k]} (k ≥ 3) be a family of graphs satisfying the following three conditions:

(1) Hi is an even cycle or a path for any i ∈ [k]; (2) there are at least two even cycles and at

least one path; (3) for i ∈ [k], if Hi is a path, then Hi−1 and Hi+1 are not paths, where the

subscripts are taken cyclically modulo k. We define the family E ′, which is obtained from

the disjoint union of k graphs H1, H2, . . . ,Hk as follows. For each i ∈ [k], let xi and yi be

any two distinct vertices of Hi if Hi is an even cycle, and be the two endpoints of Hi if Hi

is a path, where we only require that
∑k

i=1 dHi(xi, yi) is odd. A graph H ∈ E ′ is obtained

by identifying yi and xi+1 for i ∈ [k − 1], and identifying yk and x1. Similarly, denote the

even cycle C2ni in a graph F ∈ E by Hi for i ∈ [k]. We have the following lemma.

Lemma 3.1 If we add an open ear P with endpoints u and v to F ∈ E ′ ∪ E, then F + P

contains a graph from G1 ∪ G2 ∪ G3 ∪ G6 ∪ G7 as a subgraph except when u and v belong to

the same Hi which is a path and the new cycle generated by Hi ∪ P is an even cycle.

Proof. Let F ∈ E ′ ∪ E and P be an open ear of F with endpoints u and v.

Case 1. u, v ∈ V (Hi) and Hi is an even cycle.

Denote by P1 and P2 the two internally disjoint (xi, yi)-paths in Hi. By the construction

of F , there exists an (xi, yi)-path P3 in F which is internally disjoint with P1 and P2 such that

D1 = P1∪P3 andD2 = P2∪P3 are odd cycles. If u, v ∈ V (P1), thenD1∪D2∪P ∈ G1∪G2∪G3.
If u ∈ V (P1) and v ∈ V (P2), then D1∪D2∪P ∈ G6. Therefore, D1∪D2∪P ∈ G1∪G2∪G3∪G6.

Case 2. u ∈ V (Hi) and v ∈ V (Hj) (i < j), where Hi and Hj are even cycles.

If u or v ∈ V (Hi) ∩ V (Hj), then it can be reduced to Case 1. So we assume u, v /∈
V (Hi) ∩ V (Hj). Denote by P1 and P2 the two internally disjoint (xi, yi)-paths in Hi, P3

and P4 the two internally disjoint (xj , yj)-paths in Hj . By the construction of F , there exist

(yi, xj)-path P5 and (yj , xi)-path P6 such that (i) Ps and Pt are internally disjoint for s 6= t

and s, t ∈ [6], (ii) D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 = P2 ∪ P5 ∪ P3 ∪ P6 are odd cycles. Since

Hi and Hj are even cycles, we have P1 ∪ P5 ∪ P4 ∪ P6 is also an odd cycle. Without loss of

generality, let u ∈ V (P1) and v ∈ V (P3). Suppose u /∈ {xi, yi}. Since D1 = P1∪P5∪P3∪P6

and D2 = P2 ∪ P5 ∪ P3 ∪ P6 are odd cycles, D1 ∪D2 ∪ P ∈ G7. Suppose v /∈ {xj , yj}. Since

D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 = P1 ∪ P4 ∪ P5 ∪ P6 are odd cycles, D1 ∪ D2 ∪ P ∈ G7.
Suppose u ∈ {xi, yi} and v ∈ {xj , yj}. Since k ≥ 3, at least one of P5 and P6 is not an
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isolated vertex. Without loss of generality, we assume P5 is not an isolate vertex. It suffices

to consider the following two subcases.

Subcase 2.1. u = xi and v = xj .

Suppose that yj 6= xi, otherwise it can be reduced to Case 1. If P ∪ P5 ∪ P1 is an odd

cycle, then let D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 = P ∪ P5 ∪ P1. Thus D1 ∪D2 ∪ P4 ∈ G2. If

P ∪ P5 ∪ P1 is an even cycle, then P ∪ P3 ∪ P6 is an odd cycle since P1 ∪ P5 ∪ P3 ∪ P6 is an

odd cycle. Let D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 = P ∪ P3 ∪ P6. Thus, D1 ∪D2 ∪ P2 ∈ G2.
Subcase 2.2. u = yi and v = xj .

For the case that P5 is some Hi of F and Hi is a path, we will consider it in Case 5.

So we assume there is an even cycle Hs (s ∈ [k] and s 6= i, j) of F such that Hs ∩ P5 is

a nontrivial path. Let P ′ be the (u′, v′)-path with u′, v′ ∈ V (P5), P
′ ⊆ Hs and P ′ 6⊆ P5.

If P ∪ P5 is an odd cycle, then let D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 = P ∪ P5. Thus

D1 ∪D2 ∪ P4 ∈ G2. If P ∪ P5 is an even cycle, then let D1 = P1 ∪ P5 ∪ P3 ∪ P6 and D2 =

P1∪P ∪P3∪P6. If {u′, v′}∩{yi, xj} = ∅, then D1∪D2∪P ′ ∈ G1. If |{u′, v′}∩{yi, xj}| = 1,

then D1 ∪D2 ∪ P ′ ∈ G2. Otherwise, D1 ∪D2 ∪ P ′ ∈ G3. Thus, D1 ∪D2 ∪ P ′ ∈ G1 ∪ G2∪G3.
Case 3. u ∈ V (Hi) and v ∈ V (Hj) (i < j), where Hi is an even cycle and Hj is a path.

If v ∈ V (Hi)∩V (Hj), then it can be reduced to Case 1. If u ∈ V (Hi)∩V (Hj), then we

will consider it in Case 5. So we assume u, v /∈ V (Hi)∩ V (Hj). Denote by P1 and P2 the

two internally disjoint (xi, yi)-paths in Hi. By the construction of F , there are (yi, xj)-path

P3 and (yj , xi)-path P4 such that P1, P2, P3 and P4 are four internally disjoint paths in

F , P1 ∪ P3 ∪ Hj ∪ P4 and P2 ∪ P3 ∪ Hj ∪ P4 are odd cycles. Suppose u /∈ {xi, yi}. Since

D1 = P1 ∪ P3 ∪ Hj ∪ P4 and D2 = P2 ∪ P3 ∪ Hj ∪ P4 are odd cycles, D1 ∪ D2 ∪ P ∈ G7.
Suppose u ∈ {xi, yi}. Since k ≥ 3, we have xi 6= yj or xj 6= yi. Without loss of generality,

we assume xi 6= yj . Since u, v /∈ V (Hi) ∩ V (Hj), we may let u = xi in the following. Since

Hj is a path, by the definition of E ′, Hj−1 and Hj+1 are not paths, thus there is an even

cycle Hs (s ∈ [k] and s 6= i, j) of F such that Hs ∩ P4 is a path. Let P ′ be the (u′, v′)-path

with u′, v′ ∈ V (P4), P
′ ⊆ Hs and P ′ 6⊆ P4. Let D1 = P1 ∪P3 ∪Hj ∪P4. The two internally

disjoint (u, v)-paths of D1 are denoted by Q1 and Q2, where P1 ⊆ Q1. Obviously, Q1∪P or

Q2∪P is an odd cycle. If D2 = Q1∪P is an odd cycle, take the position of v ∈ V (Hj) and

the intersection of {u′, v′} and {xi, yj} into consideration, then D1 ∪D2 ∪P ′ ∈ G1 ∪G2 ∪G3.
If D2 = Q2 ∪ P is an odd cycle, then D1 ∪D2 ∪ P2 ∈ G2 ∪ G3.

Case 4. u ∈ V (Hi) and v ∈ V (Hj) (i < j), where Hi and Hj are two paths.

By the construction of F , there are (yi, xj)-path P1 and (yj , xi)-path P2 such that P1,

P2, Hi and Hj are four internally disjoint paths of F and Hi ∪ P1 ∪ Hj ∪ P2 is an odd

cycle. By the definition of E ′, we have xi 6= yj , yi 6= xj , u, v /∈ V (Hi) ∩ V (Hj) and there

are two different even cycles Hs and Ht (s, t ∈ [k] and s, t 6= i, j) of F such that Hs ∩ P1

is a path and Ht ∩ P2 is a path. Let P ′1 be the (u′1, v
′
1)-path with u′1, v

′
1 ∈ V (P1), P

′
1 ⊆ Hs
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and P ′1 6⊆ P1. Let P ′2 be the (u′2, v
′
2)-path with u′2, v

′
2 ∈ V (P2), P

′
2 ⊆ Ht and P ′2 6⊆ P2. Let

D1 = Hi ∪ P1 ∪Hj ∪ P2. The two internally disjoint (u, v)-paths of D1 are denoted by Q1

and Q2, where P1 ⊆ Q1. Obviously, Q1 ∪ P or Q2 ∪ P is an odd cycle. If D2 = Q1 ∪ P
is an odd cycle, then D1 ∪D2 ∪ P ′2 ∈ G1 ∪ G2 ∪ G3. If D2 = Q2 ∪ P is an odd cycle, then

D1 ∪D2 ∪ P ′1 ∈ G1 ∪ G2 ∪ G3.
Case 5. u, v ∈ V (Hi), where Hi is a path and the new cycle generated by Hi ∪ P is an

odd cycle.

There are two internally disjoint (u, v)-paths in F , say P1 and P2 such that P1 ∪ P2 is

an odd cycle and P ∪P1 is the new odd cycle generated by Hi ∪P . By the definition of E ′,
there is an even cycle Hs (s ∈ [k] and s 6= i) of F such that Hs∩P2 is a path. Let P ′ be the

(u′, v′)-path with u′, v′ ∈ V (P2), P
′ ⊆ Hs and P ′ 6⊆ P2. Let D1 = P1 ∪P2 and D2 = P1 ∪P .

Since Hi is a path, we have |{u′, v′} ∩ {xi, yi}| ≤ 1 by the construction of F . Therefore,

D1 ∪D2 ∪ P ′ ∈ G1 ∪ G2.
The proof of Lemma 3.1 is thus complete.

Proof of Theorem 1.3. Let G be a (3, 2)-critical graph without isolated vertices with

at least five odd cycles. By Theorem 2.6, G contains a graph H from G4 ∪G5 (see Figure 1)

as a subgraph and P2 ∪ P3 is an even cycle in H. Obviously, H ∈ E ′. By Lemma 2.4, G

is nonseparable. Then by Proposition 2.3, G has a decomposition as D0, Q1, . . . , Q` and

G = D0 ∪ Q1 ∪ . . . ∪ Q`, where D0 = H ∈ G4 ∪ G5, Q1 is an open ear of D0, and Qi is an

open ear of Di−1 = Di−2∪Qi−1 for 2 ≤ i ≤ `. By combining Lemma 3.1 with Theorem 2.6,

Di = Di−1∪Qi ∈ E ′∪E for i ∈ [`−1]. Note that if F ∈ E ′, then there exists an edge e ∈ E(F )

such that χ(F −e) = 2. Since G is a (3, 2)-critical graph, we have G = D` = D`−1∪Q` ∈ E .

Thus, we complete the proof.
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[1] S. Akbari, S. Klavžar, N. Movarraei and M. Nahvi, Nordhaus-gaddum and other bounds

for the chromatic edge-stability number, European J. Combin. 84(2020) 103042.

[2] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, Independent domination and

graph colorings, Ramanujan Math. Soc. Lect. Notes Ser. 7(2008) 195–203.

[3] J.A. Bondy and U.S.R Murty, Graph Theory. Springer-Verlag, New York (2008).
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