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Sandi Klavžar1,2,3,∗ Hui Lei4,† Xiaopan Lian5,‡ Yongtang Shi5,§

September 7, 2023

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

2 Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

3 Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

4 School of Statistics and Data Science, LPMC and KLMDASR

Nankai University, Tianjin 300071, China

5 Center for Combinatorics and LPMC, Nankai University, Tianjin, China

Abstract

If S = (s1, s2, . . .) is a non-decreasing sequence of positive integers, then the S-

packing k-coloring of a graph G is a mapping c : V (G)→ [k] such that if c(u) = c(v) = i
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1 Introduction

A packing k-coloring of a graph G = (V (G), E(G)) is a mapping c : V (G) → [k] such that

if u 6= v and c(u) = c(v) = i, then dG(u, v) > i. Here and later, dG(u, v) denotes the length

of a shortest u, v-path, and [k] = {1, . . . , k}. The packing chromatic number, χρ(G), of G is

the smallest integer k such that G admits a packing k-coloring. This concept was proposed

in [14]. The seminal paper was followed by [7], where the nowadays established name and

notation was proposed. The development on the packing chromatic number up to 2020 has

been summarized in the substantial survey [6]. Research into this concept is still flourishing,

the developments after the survey include [1, 2, 5, 8, 10].

A more general concept is the S-packing coloring. Let S = (s1, s2, . . .) be a non-

decreasing sequence of positive integers; we will refer to S as a packing sequence. An S-

packing k-coloring of G is a mapping c : V (G)→ [k] such that if u 6= v and c(u) = c(v) = i,

then dG(u, v) > si. For example, a (1, 1, 1, . . .)-packing coloring is the standard proper

vertex coloring, and if S = (1, 2, 3, . . .), then it is just the packing coloring. The S-packing

chromatic number, χS(G), of G is the smallest integer k such that G admits an S-packing

k-coloring. This concept was introduced by Goddard and Xu [15]; for more results see

[4, 11, 13, 16, 19, 20].

If S1 = (s11, s
1
2, . . .) and S2 = (s21, s

2
2, . . .) are (packing) sequences with |S1| = |S2|, then

S2 � S1 means the coordinate order, that is, S2 � S1 if s2i ≥ s1i for every i ∈ [|S1|].
If S2 � S1 and G admits an S2-packing k-coloring, then G also admits an S1-packing

k-coloring. In [11, Theorem 3.1], Gastineau proved the following appealing dichotomy

result: If S is a packing sequence with |S| = 4, then the decision problem whether a

given graph G admits an S-packing coloring is polynomial-time solvable if S � S′, where

S′ ∈ {(2, 3, 3, 3), (2, 2, 3, 4), (1, 4, 4, 4), (1, 2, 5, 6)}, and NP-complete otherwise.

We have now arrived to the central concept of interest in this paper. A graph G is

packing chromatic vertex-critical if χρ(G − u) < χρ(G) holds for each u ∈ V (G). When

χρ(G) = k, we more precisely say that G is k-χρ-vertex-critical. More generally, if S is a

packing sequence, then G is S-packing chromatic vertex-critical if χS(G−u) < χS(G) holds

for each u ∈ V (G), and if χS(G) = k, then we say that G is k-χS-vertex-critical. We also

add that a closely related concept of packing chromatic critical graphs, where the packing

chromatic number strictly decreases on an arbitrary proper subgraph, has been studied

in [3].

Packing chromatic vertex-critical graphs were introduced in [18]. Among other results,

3-χρ-vertex-critical graphs were characterized and a partial characterization of 4-χρ-vertex-

critical graphs was provided. The latter characterization has been completed in [9]. In [17],

3-χS-vertex-critical graphs were characterized for all possible packing sequences, while 4-χS-

vertex-critical graphs were characterized for packing sequences (s1, s2, s3, . . .) with s1 ≥ 2.
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In this article we supplement the latter result by characterizing 4-χS-vertex-critical graphs

for packing sequences with s1 = 1 and s2 ≥ 3. The result is given in Section 3, while in the

next section we introduce some additional notation and list known properties of S-packing

colorings needed here.

2 Preliminaries

If G is a graph, then we use n(G) to denote its order, diam(G) to denote its diameter, and

χ(G) to denote its chromatic number. For x ∈ V (G), let N i
G(x) be the set of vertices which

are at distance i from x in G. In particular, NG(x) = N1
G(x) is the neighborhood of x. The

degree of x is dG(x) = |NG(x)|. Let Cn, Pn, and Kn denote the cycle, the path, and the

complete graph on n vertices, respectively. A set A ⊆ V (G) is k-independent if A induces a

subgraph that can be properly colored by k colors. Let αk(G) be the cardinality of a largest

k-independent set of G.

If in a packing sequence the term i repeats ` times, we may abbreviate the corresponding

subsequence by i`. For example, if S = (1, . . . , 1, s`+1, . . .) (where clearly 1 appears ` times),

then we may shortly write S = (1`, s`+1, . . .). If ϕ : V (G)→ [k] is an S-packing k-coloring

of G, then ϕ−1(i), i ∈ [k], is the set of vertices x with ϕ(x) = i. We will also use the

following convention. Consider the vertex set V (G) = {v1, . . . , vn} of G as an ordered set,

and let ϕ be an S-packing coloring of G. Then we will explicitly describe ϕ as follows:

ϕ = “ϕ(v1) · · · ϕ(vn)”. Typically, the order of vertices will be alphabetic. For instance, if

V (G) = {a, b, c, d}, and ϕ(a) = 1, ϕ(b) = 2, ϕ(c) = 1, and ϕ(d) = 3, then ϕ = “1 2 1 3”.

We next recall some known results that will be needed in the rest.

Proposition 2.1 [14] Let n ≥ 3. If n = 3 or n = 4k, k ≥ 1, then χρ(Cn) = 3; otherwise

χρ(Cn) = 4.

Lemma 2.2 [15] If S is a packing sequence and H is a subgraph of G, then χS(H) ≤ χS(G).

Proposition 2.3 [15] Let S = (1`, s`+1, . . .), where ` ≥ 1 and s`+1 ≥ 2, and let G be a

graph. Then χS(G) ≤ n(G)− α`(G) + min{`, χ(G)} with equality if and only if diam(G) ≤
s`+1.

Lemma 2.4 [18] If S is a packing sequence and G is a χS-vertex-critical graph, then G is

connected.

Finally, the following notation will be useful. Suppose we wish to consider all the packing

sequences S = (s1, s2, s3, . . .), for which s1 = 2, s2 ≥ 4, and s3 = 5 hold. We will denote

the set of all such packing sequences by S2,4,5, that is,

S2,4,5 = {(s1, s2, s3, . . .) : s1 = 2, s2 ≥ 4, s3 = 5} .
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Note that since S2,4,5 is a set of packing sequences, we have s2 ∈ {4, 5} when S ∈ S2,4,5.
The general notation should be clear from this example. For instance, using this notation

we can state that S � (s1, s2, s3, . . .) if and only S ∈ Ss1,s2,s3,....

3 Vertex-critical graphs for different packing sequences

As mentioned in the introduction, a characterization of 3-χS-vertex-critical graphs is known

for all possible packing sequences, while 4-χS-vertex-critical graphs were by now character-

ized for packing sequences from S2. In this section we supplement the latter result by

characterizing 4-χS-vertex-critical graphs for packing sequences S from S1,3. To this end

note that

S1,3 = S1,4 ∪S1,3,4 ∪S1,3,3 .

In view of this fact we will solve our problem by characterizing 4-χS-vertex-critical graphs

for packing sequences from each of the sets S1,4, S1,3,4, and S1,3,3.
In Figs. 1 and 2, several graphs are drawn that will turn out to be 4-χS-vertex-critical

for packing sequences from S1,3. Fig. 1 contains two small families of graphs, the family C5
contains four graphs of order 5, while C6 contains three graphs of order 6. Fig. 2 displays

the family of graphs H consisting of graphs Hi, i ∈ [15].

Figure 1: Family C5 (top row) and family C6 (bottom row)

In the rest we will frequently consider different subsets of H. To shorten the presen-

tation, we will specify subsets of H by (ranges of) indices. For instance, H1−3,7,9−11 =

{H1, H2, H3, H7, H9, H10, H11}.
First we detect the following critical graphs.

Lemma 3.1 Let S ∈ S1,3. Then each of the graphs from G = {K4, C5, C6}∪C5∪C6∪H1−5,7

is 4-χS-vertex-critical.
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Figure 2: Family H = {Hi : i ∈ [15]}

Proof. Observe that for each G ∈ G, diam(G) ≤ s2. Using Proposition 2.3 it is then

straightforward to check that χS(G) = 4 for each G ∈ G. It remains to show that each

graph G ∈ G is χS-vertex-critical.

By Proposition 2.3, we have χS(K3) = 3 − 1 + 1 = 3, χS(Pk) ≤ k − α(Pk) + 1 ≤ 3 for

k ≤ 5, χS(G−x) = 4−2+1 = 3 for any G ∈ C5 and x ∈ V (G), and χS(G−x) = 5−3+1 = 3

for any G ∈ C6 and x ∈ V (G). Therefore, K4, C5, C6, each of the graphs from C5, and each

of the graphs from C6 are χS-vertex-critical.

Now we prove that each graph in H1−5,7 is 4-χS-vertex-critical where S ∈ S1,3. First

consider the case that S ∈ S1,4. We give an S-packing 3-colorings ϕ for every G − x,

where G ∈ H1−5,7 and x ∈ V (G). (By symmetry, we need not to consider all the vertices.)

Suppose G = H1. Then we define ϕ as “1 2 3 1”,“1 1 3 2”,“1 2 3 2”,“1 2 1 3” when

x = a, b, c, e, respectively. Suppose G = H2. Then we define ϕ as “2 1 1 3”, when x = a
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or x = b. Suppose G = H3. Then we define ϕ as “2 3 1 1 1”, “1 2 3 1 1” when x = a, d,

respectively. Suppose G = H4. Then we define ϕ as “3 1 1 2”, “2 1 1 2”, “2 1 3 2”, “2 3 1

1” when x = a, b, d, e, respectively. Suppose G = H5. Then we define ϕ as “1 2 1 1 3”, “3

2 1 1 3”, “3 1 2 1 1” when x = a, b, f , respectively. Suppose G = H7. Then we define ϕ as

“1 2 1 1 3”, “1 2 3 1 1”, “2 1 1 1 3”, “1 2 1 3 1”, when x = a, b, c, e, respectively. We have

thus verified that each G ∈ H1−5,7 is χS-vertex-critical for S ∈ S1,4.
Finally suppose that S ∈ S1,3,4 ∪S1,3,3. Let G ∈ H1−5,7 and x ∈ V (G) be an arbitrary

vertex. Since χS(G) = 4, it suffices to show that χS(G − x) = 3. Observe that for any

packing sequence S ∈ S1,3 there is a packing sequence S′ ∈ S1,4 such that S′ � S. Thus, the

above S′-packing 3-coloring of G−x, where G ∈ H1−5,7 and x ∈ V (G), yields an S-packing

3-coloring of G− x. Therefore, we are finished.

3.1 4-χS-vertex-critical graphs for S ∈ S1,4 ∪S1,3,4

In this subsection we characterize 4-χS-vertex-critical graphs for S ∈ S1,4 and for S ∈ S1,3,4.
The results are given in Theorems 3.5, 3.6, and 3.7.

Lemma 3.2 P6, H6, and H8 are 4-χS-vertex-critical graph for S ∈ S1,4.

Proof. Let S ∈ S1,4.
First, we prove that P6 is 4-χS-vertex-critical. Suppose that P6 = abcdef has an S-

packing 3-coloring ϕ. Since |ϕ−1(1)| ≤ 3, we have |ϕ−1(2)| ≥ 2 or |ϕ−1(3)| ≥ 2. Since

s2 ≥ 4, we must have ϕ(a) = ϕ(f) = α ∈ {2, 3}. Then at least three vertices of {b, c, d, e}
must receive color 1, but this is impossible. The pattern “1 2 1 3 1 4” gives an S-packing

4-coloring of P6, so χS(P6) = 4. By Proposition 2.3, χS(Pk) ≤ k−α(Pk) + 1 ≤ 3 for k ≤ 5.

Hence, P6 is 4-χS-vertex-critical.

Now, we prove that both H6 and H8 are 4-χS-vertex-critical. Observe that α(H6) =

α(H8) = 3. By Proposition 2.3, we have χS(H6) = χS(H8) = 6 − 3 + 1 = 4. Now we give

an S-packing 3-coloring φ of G − x for G ∈ {H6, H8} and x ∈ V (G). If G = H6, then we

define φ as “1 2 1 1 3”, “1 1 2 3 1”, “2 1 1 1 3”, “3 1 2 1 3”, “3 1 2 1 1” when x = a, b, c, e, f ,

respectively. If G = H8, then we define φ as “1 2 1 3 1”, “2 2 1 3 1”, “2 1 1 3 1”, “1 2 1 3

1” when x = a, b, c, f , respectively.

Lemma 3.3 Each of the graphs from {P8, C8} ∪ H9,11−15 is 4-χS-vertex-critical for S ∈
S1,3,4.

Proof. Let S ∈ S1,3,4.
Suppose that P8 = abcdefgh has an S-packing 3-coloring ϕ. Since |ϕ−1(1)| ≤ 4,

|ϕ−1(2)| ≤ 2, and |ϕ−1(3)| ≤ 2, we have |ϕ−1(1)| = 4, |ϕ−1(2)| = 2 and |ϕ−1(3)| = 2.
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Without loss of generality assume ϕ(a) = ϕ(c) = ϕ(e) = ϕ(g) = 1. Then we have

c(b) = c(h) = 3 because s3 ≥ 4. Thus d and f must receive color 2, a contradiction.

The pattern “1 2 1 3 1 2 1 4” gives an S-packing 4-coloring of P8, so χS(P8) = 4. Since

χS(P8) = 4 and the pattern “1 2 1 3 1 2 1 4” gives an S-packing 4-coloring of C8, we have

χS(C8) = 4. The first k entries in the pattern “1 2 1 3 1 2 1” gives an S-packing 3-coloring

of Pk with k ≤ 7, so P8 and C8 are 4-χS-vertex-critical.

If G = H9, then the pattern “2 1 3 1 1 2 1 4” is an S-packing 4-coloring of H9, so

χS(H9) ≤ 4. Suppose that H9 has an S-packing 3-coloring ϕ. Observe that {ϕ(a), ϕ(c)} =

{2, 3}, which implies that ϕ(e) = ϕ(f) = 1 or ϕ(g) = ϕ(h) = 1, a contradiction. Hence

χS(H9) = 4. Now we give an S-packing 3-coloring φ of H9 − x for any x ∈ V (H9). We

define φ as “1 2 1 1 3 1 2”, “2 1 1 1 2 1 3”, “1 2 1 3 1 2 1”, “2 1 3 1 2 1 3”, “2 1 3 1 1 1 3”,

“2 1 3 1 1 2 3”, “2 1 3 1 1 2 1” when x = a, c, d, e, f, g, h, respectively.

If G = H11, then the pattern “2 1 3 1 1 2 1 4” is an S-packing 4-coloring, so χS(H11) ≤ 4.

Suppose that H11 admits an S-packing 3-coloring ϕ. Observe that {ϕ(a), ϕ(c)} = {2, 3}.
Then ϕ(g) = ϕ(h) = 1 or ϕ(e) = ϕ(f) = 1, a contradiction. Hence χS(H11) = 4. Now we

give an S-packing 3-coloring φ of H11 − x for any x ∈ V (H11). We define φ as “1 3 1 1 2 1

3”, “1 3 1 2 1 2 1”, “2 1 3 1 1 2 3”, “2 1 3 1 1 2 1” when x = a, d, g, h, respectively.

If G = H12, then the pattern “4 1 2 1 3 1 2 1” is an S-packing 4-coloring of H12.

Hence χS(H12) ≤ 4. Suppose H12 admits an S-packing 3-coloring ϕ, then ϕ(e) = 2 or

3. If ϕ(e) = 2, then we have {ϕ(f), ϕ(g)} = {1, 3} and ϕ(d) = 1. Thus ϕ(c) ∈ {2, 3},
a contradiction. If ϕ(e) = 3, then ϕ(d) = 1, ϕ(c) = 2, ϕ(b) = 1. Thus ϕ(a) ∈ {2, 3}, a

contradiction. Therefore χS(H12) = 4. Now we give an S-packing 3-coloring φ of H12 − x
for any x ∈ V (H12). We define φ as “1 2 1 3 1 2 1”, “3 2 1 3 1 2 1”, “3 1 1 3 1 2 1”,

“3 1 2 3 1 2 1”, “3 1 2 1 1 2 1”, “2 1 3 1 2 2 1”, “2 1 3 1 2 1 1”, “1 2 1 3 1 2 1” when

x = a, b, c, d, e, f, g, h, respectively.

If G = H13, then the pattern “1 2 1 3 1 2 1 4” is an S-packing 4-coloring. Hence

χS(H13) ≤ 4. Suppose that H13 admits an S-packing 3-coloring ϕ, then {ϕ(b), ϕ(e)} =

{2, 3}. Then ϕ(c) = ϕ(d) = 1, a contradiction. Therefore χS(H13) = 4. Now we give an

S-packing 3-coloring φ of H13 − x for any x ∈ V (H13). We define φ as “1 3 1 2 1 1 1”,“1 3

1 2 1 1 1”, “2 1 3 1 2 1 1” when x = b, c, g, respectively.

If G = H14, then the pattern “2 1 3 1 2 1 4” is an S-packing 4-coloring of H14. Hence

χS(H14) ≤ 4. Suppose that H14 admits an S-packing 3-coloring ϕ, then {ϕ(c), ϕ(d)} =

{2, 3}. Thus ϕ(a) = ϕ(c) > 1 or ϕ(a) = ϕ(d) > 1, a contradiction. Therefore χS(H14) = 4.

Now we give an S-packing 3-coloring φ of H14 − x for any x ∈ V (H14). We define φ as “1

2 3 1 1 1”,“2 2 3 1 1 1”, “1 2 3 1 1 1”, “2 1 3 2 1 1”,“1 2 1 3 1 1”,“2 1 3 1 2 1”, when

x = a, b, c, d, f, g, respectively.
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Finally, if G = H15, then the pattern “4 1 2 1 3 1 1” is an S-packing 4-coloring of

H15. Hence χS(H15) ≤ 4. Suppose that H15 admits an S-packing 3-coloring ϕ, then

{ϕ(c), ϕ(e)} = {2, 3} and ϕ(b) = ϕ(d) = 1. Thus ϕ(a) ∈ {2, 3}, a contradiction. Now we

give an S-packing 3-coloring φ of H15−x for any x ∈ V (H15). We define φ as “1 2 1 3 1 1”,

“1 1 2 3 1 1 ”, “2 1 1 3 1 1”, “1 3 1 2 1 1”, “2 1 3 1 1 2”, when x = a, b, c, e, f , respectively.

Lemma 3.4 If S ∈ S1,4 ∪S1,3,4, G is a 4-χS-vertex-critical graph with at least one cycle,

and C is a longest cycle of G, then the following hold.

(a) If n(C) = 3, then G ∈ H2−4.

(b) If n(C) = 4 and C contains a chord, then G ∈ {K4, H1}.

(c) If n(C) ∈ {5, 6}, then G ∈ {Cn(C)} ∪ Cn(C).

Proof. Let S ∈ S1,4 ∪S1,3,4. Note that the graphs from Lemma 3.1 are 4-χS-vertex-critical.

Let now G be 4-χS-vertex-critical and C its longest cycle.

(a) Suppose n(C) = 3. Let V (C) = {a, b, c}. We first assume that G contains only

one triangle. If H3 or H4 is a subgraph of G, then we actually have G = H3 or G = H4,

for otherwise we find another triangle in G or a cycle longer than 3. If dG(v) ≥ 3 holds

for each vertex of C, then G = H3 since H3 is 4-χS-vertex-critical. If dG(v) = 2 for some

v ∈ {a, b, c}, then assume without loss of generality that dG(a) = 2. If N2
G(b) \NG(c) = ∅

and N2
G(c) \NG(b) = ∅, then V (G) \ {b, c} is an independent set in G, and so a coloring ϕ

with ϕ(b) = 2, ϕ(c) = 3 and other vertices with color 1 is an S-packing 3-coloring of G, a

contradiction. So N2
G(b)\NG(c) 6= ∅ or N2

G(c)\NG(b) 6= ∅. Since H4 is 4-χS-vertex-critical,

G = H4.

Suppose secondly that there are at least two triangles in G. Since H4 is χS-vertex-

critical, the triangles in G have exactly one common vertex, for otherwise H4 is a proper

subgraph of G. This implies that H2 is a spanning subgraph of G. Since n(C) = 3, we

conclude that G = H2.

(b) Suppose n(C) = 4. Let C = abcda. If ac ∈ E(G) and bd ∈ E(G), then G =

K4 by Lemma 3.1. Suppose bd ∈ E(G). If there is a vertex x ∈ NG(b) \ V (C) such

that NG(x) \ V (C) 6= ∅, then H4 ⊆ G − a, a contradiction. Therefore, for any vertex

x ∈ (NG(b) ∪ NG(d)) \ V (C) we have NG(x) \ V (C) = ∅. If dG(a) = dG(c) = 2, then

V (G) \ {b, d} is an independent set in G, and so a mapping ϕ with ϕ(b) = 2, ϕ(d) = 3

and ϕ(NG(b) ∪NG(d) \ {b, d}) = 1 is an S-packing 3-coloring of G, a contradiction. Thus

dG(a) ≥ 2 or dG(c) ≥ 2. It implies that H1 is a subgraph of G. Since n(C) = 4 and by

Lemma 3.1 H1 is 4-χS-vertex-critical, we have G = H1.
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(c) Suppose finally that n(C) ∈ {5, 6}. Since C is 4-χS-vertex-critical, C is a spanning

subgraph of G. If n(C) = 5, then since K4 and all the four graphs from C5 are 4-χS-vertex-

critical, C5 is the family of 4-χS-vertex-critical graphs that contain C5 as a proper spanning

subgraph. If n(C) = 6, then since C5 is 4-χS-vertex-critical, any two vertex at distance 2

are not adjacent in C6. Hence C6 is the families of 4-χS-vertex-critical graphs that contain

C6 as a proper spanning subgraph by Lemma 3.1. Therefore if n(C) ∈ {5, 6} and G is

4-χS-vertex-critical, then G ∈ {Cn(C)} ∪ Cn(C).

We can now state out first characterization.

Theorem 3.5 Let S ∈ S1,4. Then a graph G is 4-χS-vertex-critical if and only if

G ∈ {K4, C5, C6, P6} ∪ C5 ∪ C6 ∪H1−8 .

Proof. Let S ∈ S1,4 and let G be 4-χS-vertex-critical. First suppose that G contains a

cycle, and let C be a longest cycle of G. Since P6 is 4-χS-vertex-critical, Lemma 3.2 implies

n(C) ≤ 6. By Lemma 3.4 and the fact that χS(C4) = 3, it remains to consider the case in

which n(C) = 4, n(G) ≥ 5, and there is no chord in C. Let C = abcda. Since χS(C) ≤ 3,

there is a vertex w ∈ V (C) such that NG(w) \ V (C) 6= ∅. Let w1 ∈ NG(w) \ V (C).

First suppose NG(w1) \ V (C) 6= ∅. We may assume that w = c and w1 = e. Let

f ∈ NG(e) \ V (C). Then H6 is subgraph of G. By Lemma 3.2, H6 is a spanning subgraph

of G. Since G is Ck-free for k ≥ 5, at most one of the edges {ae, cf} can be possibly

contained in G. If ae /∈ E(G) and cf /∈ E(G), then G = H6 by Lemma 3.2. If ae ∈ E(G),

then G = H7 by Lemma 3.1. If cf ∈ E(G), then H4 ⊆ G− b, a contradiction.

Thus we may assume that NG(w1) \ V (C) = ∅ for each w1 ∈ NG(w) \ V (C). It implies

that NG(u) \ V (C) is an independent set for any u ∈ V (C). If NG(b) ∪NG(d) \ V (C) = ∅,
then V (G) \ {a, c} = N(a) ∪ N(c) is an independent set in G, and so a mapping ϕ with

ϕ(a) = 2, ϕ(c) = 3 and ϕ(N(a)∪N(c)) = 1 is an S-packing 3-coloring of G, a contradiction.

Thus NG(b) ∪NG(d) \ V (C) 6= ∅ and NG(a) ∪NG(c) \ V (C) 6= ∅, and so H5 is a spanning

subgraph of G by Lemma 3.1. If some edge from {af, de} or from {ef, cf, be} is contained in

G, then H4 ⊆ G− y for some y ∈ V (G) or Ck ⊆ G with k ≥ 5, a contradiction. Therefore,

only one of df and ae can be contained in G, and so G ∈ H5,7 by Lemma 3.1.

Suppose now that G is acyclic. If P is a longest path in G, then n(P ) ≤ 6 by Lemma 3.2.

If n(P ) = 6, then G = P6. If n(P ) = 5, then let P5 = abcde. If dG(c) = 2, then the mapping

ϕ with ϕ(b) = 2, ϕ(d) = 3 and ϕ(NG(b)∪NG(d)) = 1 is an S-packing 3-coloring of G which

implies that χS(G) ≤ 3, a contradiction. Therefore dG(c) ≥ 3. But then G = H8 by

Lemma 3.2. If n(P ) ≤ 4, then we have that χS(G) ≤ 3, so we get no new graph.
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Theorem 3.6 Let S ∈ S1,3,4 and let G be a graph with a cycle. Then G is 4-χS-vertex-

critical if and only if

G ∈ {K4, C5, C6, C8} ∪ C5 ∪ C6 ∪H1−5,7,9,11,15 .

Proof. Let S ∈ S1,3,4 and let C be a longest cycle of G. Since P8 is 4-χS-vertex-critical,

n ≤ 8. If n(C) = 8, then C is a spanning subgraph of G by Lemma 3.3. Since χS(C5) =

χS(C6) = 4, and χS(C7) = 7 − α(C7) + 1 > 4 by Proposition 2.3, there is no chord in C.

Therefore G = C when n(C) = 8. Since χS(C7) = 5, we have n(C) 6= 7. By Lemma 3.4

and the fact χS(C4) = 3 it remains to consider the case that n(C) = 4, n(G) ≥ 5, and there

is no chord in C.

Let C = abcda. First, suppose that there is an edge in E(C), say bc, such that dG(b) ≥ 3

and dG(c) ≥ 3. Then NG(b) ∩NG(c) = ∅, otherwise, G has a cycle of length at least 5. It

implies that H5 is a spanning subgraph of G by Lemma 3.1 because there is no chord in C.

If af or de is contained in G, then H4 ⊆ G − y for some y ∈ V (G). Hence at most one of

df and ae can be added to G, therefore G ∈ H5,7 by Lemma 3.1.

Now consider the case in which dG(s) = 2 or dG(t) = 2 for each edge st ∈ E(C).

Without loss of generality, suppose that dG(b) = 2 and dG(d) = 2. Let P be a longest path

with endpoint c, such that a, b, d /∈ V (P ), and let P ′ be a longest path with endpoint a,

such that c, b, d /∈ V (P ′). Without loss of generality assume that n(P ) ≥ n(P ′). If n(P ) ≥ 3

and V (P ) ∩ V (P ′) 6= ∅, then G = H7. Indeed, for otherwise by the definition of P and P ′

we have a, c 6∈ V (P )∩V (P ′), and then for some k ≥ 5 we have Ck ⊆ G− b, a contradiction.

In the rest of the proof we may thus assume that if n(P ) ≥ 3, then V (P ) ∩ V (P ′) = ∅.
Since P8 is 4-χS-critical, n(P ) + n(P ′) ≤ 6.

Claim. If n(P ) ≤ 4 and n(P ′) ≤ 2, then G = H15.

Proof. Since n(P ′) ≤ 2, we infer that if x ∈ NG(a) \NG(c) and y ∈ NG(a) ∩NG(c), then

dG(x) = 1 and dG(y) = 2. Hence NG(a) is an independent set in G. If there is a vertex

x ∈ NG(c) \ NG(a) such that dG(x) ≥ 3, then H15 ⊆ G. Since H15 is 4-χS-critical by

Lemma 3.3, H15 is a spanning subgraph of G. Since n(P ′) ≤ 2 and dG(b) = dG(d) = 2,

only edges in {fg, cf} possibly contained in G. If an edge from fg or cf is contained in G,

then there is a vertex v ∈ G such that H4 ⊆ G − v, a contradiction. Hence G = H15. It

remains to consider the case in which dG(x) ≤ 2 holds for each x ∈ NG(c). Then NG(c) is

an independent set in G, for otherwise H4 ⊆ G − b, a contradiction. Since n(P ) ≤ 4 and

dG(x) ≤ 2 for every x ∈ NG(c), the second neighborhood N2
G(c) is an independent set and

dG(y) = 1 for each y ∈ N3
G(c). (It is possible that N3

G(c) = ∅.) Then a mapping ϕ with

ϕ(c) = 3, ϕ(NG(c) ∪N3
G(c)) = 1, and ϕ(N2

G(c)) = 2, is an S-packing 3-coloring of G. This

contradiction proves the claim. �
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It remains to consider the following two cases: (i) n(P ) = 5, n(P ′) = 1, and (ii)

n(P ) = n(P ′) = 3. If n(P ) = 5, then H9 is a spanning subgraph of G. (The vertices of H9

are denoted as in Fig. 2.) If some edge from {cf, eg, fh} or ch or cg is contained in G, then

H4 ⊆ G− b or C5 ⊆ G− b or H5 ⊆ G− b, respectively, a contradiction. Now we only need

to check that whether eh can be added to H9. The graph obtained from H9 by adding the

edge eh is H10, cf. Fig. 2 again. Then H15 ⊆ H10 − g, a contradiction. Hence G = H9. If

n(P ) = 3 and n(P ′) = 3, then H11 ⊆ G. By symmetry, if some edge from {af, ge, gf} or

ah or ae is contained in G, then Ck ⊆ G − b with k ≥ 5 or H4 ⊆ G − b or H5 ⊆ G − b,
respectively, a contradiction. Since H11 is 4-χS-vertex-critical, no additional edge can be

added to H11. We conclude that G = H11.

It remains to consider acyclic graphs for S ∈ S1,3,4.

Theorem 3.7 Let S ∈ S1,3,4 and let G be an acyclic graph. Then G is 4-χS-vertex-critical

if and only if G ∈ {P8} ∪ H12−14.

Proof. Let G be 4-χS-vertex-critical and acyclic. Denote by P a longest path in G. If

n(P ) = 8, then Lemma 3.3 implies that G = P8. Since χS(G) ≤ 3 when n(P ) ≤ 4, it

remains to consider the cases 5 ≤ n(P ) ≤ 7.

Suppose n(P ) = 5 and let P = abcde. If dG(c) = 2, then a coloring ϕ with ϕ({c} ∪
N2
G(c)) = 1, ϕ(b) = 2, and ϕ(d) = 3 is an S-packing 3-coloring of G, contradicting the fact

that χS(G) = 4, hence dG(c) ≥ 3. If dG(x) ≤ 2 for any x ∈ NG(c), then the coloring ϕ with

ϕ(NG(c)) = 1, ϕ(N2
G(c)) = 2, and ϕ(c) = 3 is an S-packing 3-coloring of G, a contradiction.

So G = H14 by Lemma 3.3.

Suppose n(P ) = 6 and let P = abcdef . Then either dG(s) = 2 or dG(t) = 2 for

st ∈ E(P ) \ {ab, ef}, otherwise there is a vertex x ∈ V (G) such that H14 ⊆ G − x. If

dG(c) ≥ 3, then a mapping ϕ with ϕ(NG(c) ∪ N3
G(c)) = 1, ϕ(N2

G(c)) = 2, and ϕ(c) = 3 is

an S-packing 3-coloring of G, a contradiction. Thus dG(c) = dG(d) = 2. If dG(b) = 2, then

a mapping ϕ with ϕ(NG(e) ∪N3
G(e)) = 1, ϕ(a) = ϕ(e) = 2, and ϕ(c) = 3 is an S-packing

3-coloring of G. Thus dG(b) ≥ 3 and dG(e) ≥ 3. Hence G = H13 by Lemma 3.3.

Let finally P = abcdefg. If dG(x) = 2 for any x ∈ NG(d), a mapping ϕ with ϕ(NG(d)∪
N3
G(d)) = 1, ϕ(N2

G(d)) = 2, and ϕ(d) = 3 is an S-packing 3-coloring of G contradicting the

fact χS(G) = 4. Hence G = H12 by Lemma 3.3.

Combining Theorem 3.7 with Theorem 3.6 we get:

Corollary 3.8 Let S ∈ S1,3,4 and let G be a graph. Then G is 4-χS-vertex-critical if and

only if

G ∈ {K4, C5, C6, C8, P8} ∪ C5 ∪ C6 ∪H1−5,7,9,11−15 .
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3.2 4-χS-vertex-critical graphs for S ∈ S1,3,3

In this subsection we consider packing sequences S ∈ S1,3,3. In Lemmas 3.9, 3.10, and

3.11, we present some graphs that are 4-χS-vertex-critical. After that we characterize 4-

χS-vertex-critical graphs by distinguishing the distance between vertices of degree at least

3.

Lemma 3.9 If S ∈ S1,3,3, then the following hold.

(a) If n ≥ 4, then χS(Pn) = 3.

(b) Let n ≥ 3. If n = 3 or n ≡ 0 mod 4, then χS(Cn) = 3. If n ≡ 1, 2 mod 4, or

n ≡ 3 mod 4 and s4 < bn/2c, then χS(Cn) = 4; otherwise, χS(Cn) = 5. Moreover,

Cn is χS-critical when n 6≡ 0 mod 4 and n ≥ 5.

Proof. (a) Note that χS(Pn) ≥ 3 for n ≥ 4. The pattern “1 2 1 3 1 2 1 3 . . . ” is an

S-packing 3-coloring of Pn. Thus χS(Pn) = 3 for n ≥ 4.

(b) First, χS(Cn) ≥ 3 for n ≥ 3. The pattern “1 2 3” gives an S-packing 3-coloring of

C3 and the pattern “1 2 1 3 1 2 1 3 . . . 1 2 1 3” gives an S-packing 3-coloring of Cn when

n ≡ 0 mod 4. Thus χS(Cn) = 3 when n = 3 or n ≡ 0 mod 4.

Next, if n ≥ 4 and n 6≡ 0 mod 4, then since (1, 3, 3) � (1, 2, 3), we have χS(Cn) ≥ 4 by

Proposition 2.1. The pattern “1 2 1 3 1 2 1 3 . . . 1 2 1 3 4” gives an S-packing 4-coloring of

Cn when n ≡ 1 mod 4 and the pattern “1 2 1 3 1 2 1 3 . . . 1 2 1 3 1 4” gives an S-packing

4-coloring of Cn when n ≡ 2 mod 4. Thus χS(Cn) = 4 when n ≡ 1, 2 mod 4.

Consider now the case n ≡ 3 mod 4. When n = 4k + 3, n ≥ 7, and s4 < bn/2c, we give

an S-packing 4-coloring ϕ of Cn = v0v1 . . . vn−1v0 as:

ϕ(vi) =


1; (i ≡ 0 mod 4) or (i ≡ 2 mod 4 and i 6= 4k + 2),

2; (i ≡ 3 mod 4 and i < 2k + 1) or (i ≡ 1 mod 4 and i > 2k + 1),

3; (i ≡ 1 mod 4 and i < 2k + 1) or (i ≡ 3 mod 4 and i > 2k + 1),

4; i ∈ {2k + 1, 4k + 2}.

Hence χS(Cn) = 4 when n ≡ 3 mod 4, n ≥ 7, and s4 < bn/2c.
When n = 4k + 3, n ≥ 7, and s4 ≥ bn/2c, the pattern “1 2 1 3 1 2 1 3. . . 1 2 1 3 1 4

5” is an S-packing 5-coloring of Cn. Hence 4 ≤ χS(Cn) ≤ 5. Now suppose that there is

an S-packing 4-coloring ϕ of Cn. Since s4 ≥ bn/2c, we have |ϕ−1(4)| = 1. Without loss

of generality we may assume that ϕ(v0) = 4. We claim that for any edge in Cn which is

not incident with v0, one of its endpoints receives color 1. Suppose on the contrary that

there is an edge vivi+1 ∈ E(Cn) such that {ϕ(vi), ϕ(vi+1)} = {2, 3}, where 1 ≤ i ≤ n − 2.

Since n ≥ 7, one of vi−2 and vi+3 (indices taken modulo n) cannot be colored under ϕ.
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This contradiction proves the claim. Since s2 = s3 = 3, we only need to consider two cases:

ϕ(v1) = 2 and ϕ(v1) = 1. If ϕ(v1) = 2, then the colors of v0, v1, . . . , v4k+2 under ϕ can be

described as the pattern “4 2 1 3 1 2 1 3 1. . . 2 1 3 1 2 1”. We have ϕ(v1) = ϕ(v4k+1) = 2

with dCn(v1, v4k+1) = 3 ≤ s2, a contradiction. If ϕ(v1) = 1, then we may without loss of

generality assume ϕ(v2) = 2. Then the colors of v0, v1, . . . , v4k+2 under ϕ can be described

as the pattern “4 1 2 1 3 1 2 1 3. . . 1 2 1 3 1 2”. However, we have ϕ(v2) = ϕ(v4k+2) = 2

with dCn(v2, v4k+2) = 3 ≤ s2, a contradiction. Therefore χS(Cn) = 5 when n ≡ 3 mod 4,

n ≥ 7, and s4 ≥ bn/2c.
If n 6≡ 0 mod 4, then Cn is χS-critical because χS(Pn) ≤ 3 and χS(Cn) ≥ 4.

Let G2k, k ≥ 3, be the graph obtained from the path P2k by attaching a pendent vertex

to each of the two support vertices of P2k. Equivalently, G2k is obtained from P2k−2 by

attaching two pendant vertices to each of the two leaves of P2k−2.

Lemma 3.10 If S ∈ S1,3,3 and k ≥ 3, then G2k is 4-χS-vertex-critical.

Proof. Let P2k = v1v2 . . . v2k, and let v′2 and v′2k−1 be the pendent vertices attached to v2

and v2k−1, respectively. Coloring the vertices of P2k with the pattern “1 2 1 3 1 2 1 3. . . ”

and the vertices v′2 and v′2k−1 with 1 and 4, respectively, we get χS(G2k) ≤ 4.

Suppose now that G2k admits an S-packing 3-coloring ϕ. Observe that ϕ(v2) ∈ {2, 3},
without loss of generality assume that ϕ(v2) = 2. Then we have ϕ(v1) = 1 and ϕ(v3) = 1,

for otherwise ϕ(v3) = ϕ(v4) = 1 or ϕ(v4) = ϕ(v5) = 1. If 2 ≤ i ≤ 2k − 2, then at least one

of vi and vi+1 must be colored 1. Indeed, if we would have ϕ(vi) = 2 and ϕ(vi+1) = 3, then

vi−2 or vi+3 can not be colored under ϕ. Thus we have ϕ(v2k−2) = 2 and ϕ(v2k−1) = 1, or

ϕ(v2k−2) = 3 and ϕ(v2k−1) = 1. However, this implies that v′2k−1 or v2k can not be colored

under ϕ, a contradiction. Hence, χS(G2k) = 4.

If v ∈ G2k, then an S-packing 3-coloring of G2k − v can be given by coloring a longest

path of each component of G2k − v with either the pattern “1 2 1 3 . . . ” or the pattern

“2 1 3 1 . . . ” and coloring the pendent vertices with 1. Therefore G2k is 4-χS-vertex-

critical.

Lemma 3.11 If S ∈ S1,3,3, then the graphs H14 and H15 are 4-χS-vertex-critical.

Proof. Since H14 and H15 are 4-χS′-vertex-critical, where S′ ∈ S1,3,4, and (1, 3, 4) �
(1, 3, 3), it suffices to show that χS(H14) = χS(H15) = 4. The pattern “4 1 2 3 1 1 1” is

an S-packing 4-coloring of H14, so χS(H14) ≤ 4. Suppose that H14 admits an S-packing

3-coloring ϕ. Then {ϕ(c), ϕ(d)} = {2, 3}, and so the vertex a cannot be colored under ϕ.

It follows that χS(H14) = 4. The pattern “4 1 2 1 3 1 1” is an S-packing 4-coloring of H15.

Moreover, since H14 ⊆ H15, we conclude that χS(H15) = 4.

Our next result, Theorem 3.14, follows from the following lemma and theorem.
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Lemma 3.12 Let S ∈ S1,3,3 and let n 6≡ 0 mod 4, n > 3. If a graph G contains a cycle Cn

and V (G)− V (Cn) 6= ∅, then G is not 4-χS-critical.

Proof. Since V (G) − V (Cn) 6= ∅, there exists a vertex x ∈ V (G) such that Cn ⊆ G − x.

By Lemma 2.2, we have χS(G− x) ≥ χS(Cn) ≥ 4, and so G is not 4-χS-critical.

Theorem 3.13 [18, Theorem 4.3] If G is a graph that contains a cycle of length n ≥ 5,

where n 6≡ 0 mod 4, then G is 4-χρ-vertex-critical if and only if one of the following holds.

• n = 5 and G ∈ {C5} ∪ C5,

• n = 6 and G ∈ {C6} ∪ C6,

• n ≥ 7 and G is isomorphic to Cn.

Theorem 3.14 Let S ∈ S1,3,3. If G is a graph that contains a cycle of length n ≥ 5, where

n 6≡ 0 mod 4, then G is 4-χS-vertex-critical if and only if one of the following holds.

• n = 5 and G ∈ {C5} ∪ C5,

• n = 6 and G ∈ {C6} ∪ C6,

• n ≥ 7 and G = Cn except when n ≡ 3 mod 4 and s4 ≥ bn/2c.

In order to characterize 4-χS-vertex-critical graphs, where S ∈ S1,3,3, we need to dis-

tinguish whether there are two vertices of degree at least 3 that are at odd distance. For

this sake we need the following classes of cycles that depend on a positive integer s4 (this

s4 will, of course, be the fourth component of a packing sequence S):

Cs4 = {Cn, n ≥ 5 : (n ≡ 1, 2 mod 4) or (n ≡ 3 mod 4 and s4 < bn/2c} .

Theorem 3.15 Let S ∈ S1,3,3 and let G be a 4-χS-vertex-critical graph. If all the vertices

of G of degree at least 3 are pairwise at even distances in G, then G ∈ {H2, H4} ∪ Cs4.

Proof. By Lemmas 3.9 and 3.1, every graph from {H2, H4} ∪ Cs4 is 4-χS-vertex-critical. If

∆(G) ≤ 2, then G ∈ {Pn, Cn}, hence G ∈ Cs4 . Suppose now that ∆(G) ≥ 3 and that all

the vertices of degree at least 3 are pairwise at even distances in G. Let u ∈ V (G) be an

arbitrary vertex of degree at least 3. Then define ϕ : V (G)→ [3] by:

ϕ(v) =


1; dG(u, v) ≡ 1, 3 mod 4,

2; dG(u, v) ≡ 0 mod 4,

3; dG(u, v) ≡ 2 mod 4.
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By Lemma 2.2, G is a connected graph, and so ϕ is well-defined. Since G is 4-χS-vertex-

critical, there are two vertices x, y ∈ V (G) \ {u} such that ϕ(x) = ϕ(y) = i and dG(x, y) ≤
si for some i ∈ [3]. Let P and P ′ be arbitrary shortest u, x-path and u, y-path in G,

respectively. Let w ∈ V (P ) ∩ V (P ′) such that dG(u,w) is as large as possible. Then we

have w 6= x, y and dG(u, x) = dG(u, y). If w = x or dG(u, x) < dG(u, y), then dG(u, y) ≤
dG(u, x) + si < dG(u, x) + 4, and so ϕ(x) 6= ϕ(y) by the definition of ϕ, which leads to a

contradiction. Thus we have dG(w) ≥ 3, and so ϕ(w) ∈ {2, 3}.

Claim. G contains a cycle consisting of wPx, wP ′y, and a shortest x, y-path.

Proof. Let P ′′ be a shortest x, y-path. By the choice of w, it suffices to show that (V (P ′′)∩
V (P )) \ {x} = (V (P ′′) ∩ V (P ′)) \ {y} = ∅.

Suppose that (V (P ′′) ∩ V (P )) \ {x} 6= ∅. Note that this can only happen when ϕ(x) =

ϕ(y) ∈ {2, 3} and dG(x, y) ∈ {2, 3}. Without loss of generality, let ϕ(x) = ϕ(y) = 3. If

dG(x, y) = 2, let P ′′ = xzy. Then dG(z) ≥ 3 and dG(u, z) = dG(u, x) − 1 ≡ 1 mod 4,

contradicting the fact that the vertices of degree at least 3 are at even distance. For

dG(x, y) = 3, let P ′′ = xz1z2y. Then xz2 /∈ E(G). If z2 ∈ V (P ′′) ∩ V (P ), then dG(u, y) ≤
dG(u, z2) + dG(z2, y) = dG(u, x) − 2 + 1 < dG(u, x), contradicting the fact that dG(u, x) =

dG(u, y). Therefore z2 /∈ V (P ′′) ∩ V (P ). However, if z1 ∈ V (P ′′) ∩ V (P ), then dG(z1) ≥ 3

and dG(u, z1) = dG(u, x)− 1 ≡ 1 mod 4, a contradiction. Therefore G contains a cycle, say

Cn, consisting of wPx, wP ′y and a shortest x, y-path, and so n = 2dG(u, x)− 2dG(u,w) +

dG(x, y). �

Suppose ϕ(x) = ϕ(y) = 1 and dG(x, y) = 1. Then we have n ≡ 3 mod 4. If n ≡ 3 mod 4

and n > 3, then G = Cn with s4 < bn/2c by Theorem 3.14. If n = 3, then wxy is a triangle

with dG(w) ≥ 3 and dG(x) = dG(y) = 2. If N2
G(w) 6= ∅, then G = H4. If N2

G(w) = ∅ and

NG(w)\{x, y} is an independent set, then a mapping ϕ with ϕ(NG(w)\{x, y}) = ϕ(x) = 1,

ϕ(w) = 2 and ϕ(y) = 3 is an S-packing 3-coloring of G. Moreover, it is easy to see that

no edge can be added to H2 and to H4. Hence G ∈ {H2, H4} when n = 3. Suppose

ϕ(x) = ϕ(y) = 2 or ϕ(x) = ϕ(y) = 3. If dG(x, y) = i, i ∈ [3], then n ≡ i mod 4 ≥ 5 because

dG(u, x) and dG(u,w) are even. Therefore G ∈ Cs4 by Theorem 3.14.

Theorem 3.16 Let S ∈ S1,3,3 and let G be a 4-χS-vertex-critical graph in which there exist

two vertices with degree at least 3 that are at odd distance. Then

G ∈ {K4} ∪ H1,3,5,7,14,15 ∪ {G2k : k ≥ 3} ∪ C5 ∪ C6 .

Proof. Let u, v ∈ V (G) with dG(u), dG(v) ≥ 3 such that dG(u, v) = ` is odd and as small

as possible. We consider the following two cases.
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Case 1: ` ≥ 3.

By the choice of u and v, NG(u) ∩ NG(v) = ∅ and each vertex on a shortest u, v-path

has degree 2 in G. Therefore G`+3 = G2k is a spanning subgraph of G, where k = `+3
2

by Lemma 3.10. Let the vertices of G2k be denoted as in Lemma 3.10 with u = v2 and

v = v2k−1. By symmetry, only some of the edges v1v
′
2, v1v2k, and v1v2k−1 can possibly be

added to G2k. If v1v
′
2 ∈ E(G), then H4 ⊆ G − v2k, a contradiction. If v1v2k ∈ E(G), then

C2k ⊆ G. Further, we have 2k ≡ 0 mod 4 ≥ 8, for otherwise χS(C2k) = 4 by Theorem 3.14

and C2k ⊆ G − v′2. Then we can find a copy of G6 consisting of v3v2v1v2kv2k−1v2k−2 and

the pendent vertices v′2 and v′2k−1 contained in G− v4, which also leads to a contradiction.

If v1v2k−1 ∈ E(G), then there is a cycle C2k−1 ⊆ G−v′2 with 2k−1 6≡ 0 (mod 4) > 3, again

a contradiction. We conclude that in Case 1, G = G2k.

Case 2: ` = 1.

We claim that in this case, G ∈ {K4} ∪ H1,3,5,7,14,15 ∪ C5 ∪ C6.
If G contains a cycle from Cs4 , then G ∈ C5 ∪ C6 by Theorem 3.14 since there are two

vertices of degree degree at least 3 which are of distance 1 in G. Thus we may assume G does

not contain a cycle from Cs4 as a subgraph. Suppose G contains H4 as a subgraph. Then

H4 is a spanning subgraph of G. Since G has two vertex of degree at least 3, G ∈ C5 ∪H1.

By the same argument, if G contains H2 as a spanning subgraph, then G ∈ C5. Therefore

we may assume G does not contain a graph from Cs4 ∪H2 ∪H4 as a subgraph. Let a = u

and c = v.

Suppose that |NG(a) ∩ NG(c)| ≥ 2. If dG(x) = 2 for any x ∈ NG(a) ∩ NG(c), then

V (G) \ {a, c} is an independent set in G since G does not contain H2 or H4 as a subgraph,

and so a coloring ϕ of G with ϕ(V (G)\{a, c}) = 1, ϕ(a) = 2 and ϕ(c) = 3 is an S-packing 3-

coloring, a contradiction. Then either bd ∈ E(G) for some b, d ∈ NG(a)∩NG(c) and so G =

K4, or there is a vertex x ∈ NG(a)∩NG(c) such that NG(x)\({a, c}∪V (NG(a)∩NG(c))) 6= ∅
and so H1 ⊆ G. Since G contains no cycle from Cs4 , we infer that no more edges can be

added to H1. Hence G = H1.

Suppose that |NG(a) ∩NG(c)| = 1, and let b ∈ NG(a) ∩NG(c). If dG(b) = 2, then since

G does not contain H2 and H4 as a subgraph, a coloring ϕ of G with ϕ(V (G) \ {a, c}) = 1,

ϕ(a) = 2, and ϕ(c) = 3 is an S-packing 3-coloring, a contradiction. Therefore, dG(b) ≥ 3.

If |NG(b) ∩ NG(a)| ≥ 2 or |NG(b) ∩ NG(c)| ≥ 2, then G ∈ {K4 ∪ H1} because dG(a) ≥ 3,

dG(c) ≥ 3, and ac ∈ E(G). If NG(b) ∩ NG(a) = c and NG(b) ∩ NG(c) = a, then H3 ⊆ G

since dG(z) ≥ 3 for z ∈ {a, b, c}. Let d, e, f be the three vertices of H3 as shown in Fig. 2.

If af ∈ E(G), then H1 ⊆ G − d, a contradiction. If df ∈ E(G), then C5 ⊆ G − e, again a

contradiction. Therefore G = H3.

Lastly, consider the case when NG(a)∩NG(c) = ∅. If dG(w) = 1 for each w ∈ (NG(a)∪
NG(c)) \ {a, c}, then a mapping ϕ with ϕ(V (G) \ {a, c}) = 1, ϕ(a) = 2, and ϕ(c) = 3 is an
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S-packing 3-coloring of G, contradicting the fact that χS(G) = 4. Let x1 6= x2 ∈ NG(a)\{c}
and y1 6= y2 ∈ NG(c) \ {a}. Without loss of generality assume that NG(x1) \ {a} 6= ∅. If

x1x2 ∈ E(G), then H4 ⊆ G − y2, a contradiction. Hence x1x2 /∈ E(G) and y1y2 /∈ E(G)

by symmetry. If x1y1 ∈ E(G), then H5 ⊆ G. Moreover, H5 is a spanning subgraph of

G by Lemma 3.1. If x1y1 ∈ E(G) and x2y2 ∈ E(G), then C6 is a proper subgraph of G,

again a contradiction. If x1y1 ∈ E(G) and only one of x1y2 and x2y1 is contained in G,

then H7 ⊆ G. Since there is no more edge which can be added to H7, we get G ∈ H5,7

when x1y1 ∈ E(G). If there is a vertex x′1 ∈ N(x1) \ {a, x2, y1, y2}, then H14 is a spanning

subgraph of G by Lemma 3.11. If one of the edges x′1a, x1x2, and y1y2 is contained in G,

there is a vertex y ∈ V (G) such that H4 ⊆ G − y, a contradiction. If one of the edges

x′1c, x1y1, x1y2, y1x2, and x2y2 is contained in G, there is a vertex y ∈ V (G) such that

H5 ⊆ G − y, a contradiction. If x′1yi ∈ E(G), then C5 ⊆ G − x2, a contradiction. Since

ayi, cxi /∈ E(G) for i ∈ [2], only x′1x2 can be possibly contained in G, and H15 ⊆ G when

x′1x2 ∈ E(G). Moreover, since H15 is 4-χS-vertex-critical, and there is no more edge can be

added to G, we conclude that G ∈ H14,15 when N(x1) \ {a, x2, y1, y2} 6= ∅.

Theorems 3.16 and 3.15 are combined into the following final result of this paper.

Corollary 3.17 Let S ∈ S1,3,3. Then a graph G is 4-χS-vertex-critical if and only if

G ∈ {K4} ∪ H1−5,7,14,15 ∪ C5 ∪ C6 ∪ Cs4 ∪ {G2k : k ≥ 3} .
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