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Abstract. A connected graph Γ = (V,E) of valency at least 3 is called a basic
2-arc-transitive graph if its full automorphism group has a subgroup G with the
following properties: (i) G acts transitively on the set of 2-arcs of Γ, and (ii) every
minimal normal subgroup of G has at most two orbits on V . Based on Praeger’s
theorems on 2-arc-transitive graphs, this paper presents a further understanding on
the automorphism group of a basic 2-arc-transitive graph.
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1. Introduction

All graphs considered in this paper are assumed to be finite, simple and undirected.

Let Γ = (V,E) be a graph with vertex set V and edge set E. Denote by Aut(Γ) the
full automorphism group of the graph Γ. A subgroup G of Aut(Γ), written as G 6
Aut(Γ), is called a group of Γ. For a vertex α ∈ V , let Gα = {g ∈ G | αg = α} and
Γ(α) = {β ∈ V | {α, β} ∈ E}, called the stabilizer of α in G and the neighborhood of
α in Γ, respectively. A group G of Γ is call locally-primitive on Γ if for each α ∈ V the
stabilizer Gα acts primitively on Γ(α), that is, Γ(α) has no nontrivial Gα-invariant
partition. Recall that an arc of Γ is an ordered pair of adjacent vertices, and a 2-
arc is a triple (α, β, γ) of vertices with {α, β}, {β, γ} ∈ E and α 6= γ. A group G
of Γ is said to be vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive
on Γ if G acts transitively on the vertices, edges, arcs or 2-arcs of Γ, respectively.
A graph is called vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive
if it has a vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive group,
respectively.

A connected regular graph Γ = (V,E) of valency at least 3 is called a basic 2-arc-
transitive graph if it has a 2-arc-transitive group G such that every minimal normal
subgroup of G has at most two orbits on V . Praeger [17, 18] observed that a con-
nected 2-arc-transitive graph of valency at least 3 is a normal cover of some basic
2-arc-transitive graph. Based on the O’Nan-Scott theorem for quasiprimitive permu-
tation groups established in [17], Praeger [17, 18] characterized the group-theoretic
structures for basic 2-arc-transitive graphs. She proved that, except for complete bi-
partite graphs and another case about bipartite graphs, basic 2-arc-transitive graphs
are associated with quasiprimitive groups of type I, II, IIIb(i) or III(c) described as
in [17, Section 2], which is named HA, AS, PA or TW in [19], respectively.
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Praeger’s framework for 2-arc-transitive graphs stimulated a wide interest in classi-
fication or characterization of basic 2-arc-transitive graphs. For example, a construc-
tion of the graphs associated with quasiprimitive permutation groups of type TW
is given in [2], the graphs associated with Suzuki simple groups, Ree simple groups
and 2-dimensional projective linear groups are classified in [5, 6, 9] respectively, the
graphs of order a prime power are classified in [10]. Besides, Li [11] proved that
all basic 2-arc-transitive graphs of odd order can be constructed from almost simple
groups, which inspires the ongoing project to classify basic 2-arc-transitive graphs of
odd order, see [12] for some progress in this topic.

In this paper, we have a further understanding on the automorphism groups of
basic 2-arc-transitive graphs, which may be helpful to study the Praeger’s problem
proposed in [18]: Classify all finite basic 2-arc-transitive graphs. Assume that Γ =
(V,E) is a basic 2-arc-transitive graph with respect to G. Fix an edge {α, β} ∈ E,
and set G∗ = 〈Gα, Gβ〉. It is well-known that |G : G∗| 6 2, G∗ is edge-transitive
on Γ, and Γ is bipartite if and only if |G : G∗| = 2, refer to [21, Exercise 3.8]. If
Γ is not bipartite, then G is a quasiprimitive permutation group on V of type HA,
AS, PA or TW, refer to [17, Theorem 2] or [19, Theorem 6.1]. In this case, it is
easily deduced that G has a unique minimal normal subgroup, the socle soc(G) of
G. Somewhat surprisingly, this is almost true for the bipartite case. If Γ is bipartite,
that is, |G : G∗| = 2, then Praeger [18] proved that either Γ is a complete bipartite
graph, or G∗ acts faithfully on both parts of Γ and one of the following holds:

(I) G∗ is quasiprimitive on both parts of Γ with a same type HA, AS, PA or TW;
(II) G has a normal subgroup N which is a direct product of two intransitive

minimal normal subgroups of G∗.

For (I) and (II), we prove in Section 3 that soc(G∗) is the unique minimal normal
subgroup of G, and so soc(G) = soc(G∗). Thus, in general, soc(G) is the unique
minimal normal subgroup of G, provided that Γ is not a complete bipartite graph.
Based on this observation and the description of types HA, AS, PA or TW, we
investigate in Section 4 the action of soc(G) on the graph Γ, including the structure
of vertex-stabilizers and the semiregularity of simple direct factors of soc(G). Then
we formulate the following result, which is finally proved in Section 4.

Theorem 1.1. Assume that Γ = (V,E) is a basic 2-arc-transitive graph with respect
to a group G. Let G∗ = 〈Gα, Gβ〉 and N = soc(G∗), where {α, β} ∈ E. Then either
Γ is a complete bipartite graph, or the following statements hold:

(1) N is the unique minimal normal subgroup of G, in particular, N = soc(G);
(2) either N is simple, or every simple direct factor of N is semiregular on V ;
(3) either N is locally-primitive on Γ, or Nα is given as follows:

(i) Nα = 1; or
(ii) Nα = Zkp:(Zm1 .Zm) = (Zkp × Zm1).Zm and |Γ(α)| = pk, where m1

∣∣ m,

m
∣∣ (pd − 1) for some divisor d of k with d < k; or

(iii) Nα = Z4
3:(Q.Q8) = (Z4

3×Q).Q8 and |Γ(α)| = 34, where Q8 is the quater-
nion group and Q is isomorphic to a subgroup of Q8.

It is well-known that the order of a finite nonabelian simple group is divisible by 4
and two distinct odd primes. By (2) of Theorem 1.1, we have the following corollaries.
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Corollary 1.2. Assume that Γ = (V,E) is a basic 2-arc-transitive graph with respect
to a group G, and G∗ = 〈Gα, Gβ〉 for an edge {α, β} ∈ E. Assume that one of G∗-
orbits on V has length paqb, where a and b are positive integers, p and q are distinct
primes. If Γ is not a complete bipartite graph, then G is almost simple.

Corollary 1.3. Assume that Γ = (V,E) is a basic 2-arc-transitive graph with respect
to a group G, and G∗ = 〈Gα, Gβ〉 for an edge {α, β} ∈ E. Assume that one of G∗-
orbits on V has length n or 2n, where n is either an odd integer or a power of 2. If
Γ is not a complete bipartite graph then either G is almost simple, or |G∗ : Gα| = pk

and soc(G∗) ∼= Zkp, where p is a prime and k > 1.

Another consequence of Theorem 1.1 is stated as follows.

Theorem 1.4. Let Γ = (V,E) be a connected graph, G 6 Aut(Γ) and G∗ = 〈Gα, Gβ〉
for an edge {α, β} ∈ E. Assume that G is 2-arc-transitive on Γ, and G∗ acts primi-
tively on each G∗-orbit on V . Then one of the following holds:

(1) Γ is a complete bipartite graph;
(2) soc(G) = soc(G∗), and soc(G∗) is either simple or regular on each G∗-orbit;
(3) Γ is bipartite, soc(G) = soc(G∗) ×M with |M | = 2, and soc(G∗) is either

simple or regular on each G∗-orbit.

2. Some observations on 2-transitive permutation groups

This section gives some simple results about 2-transitive permutation groups, which
serve to analyze the structures of vertex-stabilizers of 2-arc-transitive graphs.

Let X be a transitive permutation group on a finite set Ω. Recall that the socle
soc(X) is generated by all minimal normal subgroups of X. It is easily shown that
soc(X) is a characteristic subgroup ofX. Assume thatX is a 2-transitive permutation
group on Ω. Then soc(X) is either elementary abelian and regular on Ω, or simple
and primitive on Ω, refer to [3, Page 101, Theorem 4.3] and [4, Page 107, Theorem
4.1B]. In particular, X is either affine or almost simple. Inspecting the lists of finite
2-transitive permutation groups (refer to [3, Pages 195-197, Tables 7.3 and 7.4]), we
have the following basic fact, see also [14, Corollary 2.5].

Lemma 2.1. Let X be a 2-transitive permutation group on a finite set Ω, and α ∈ Ω.
Assume that K is an insoluble normal subgroup of Xα. Then K has a unique insoluble
composition factor say S, and S is isomorphic to a composition factor of X if and
only if X is affine.

Recall that a transitive permutation group X on Ω is a Frobenius group if X is not
regular on Ω and, for α ∈ Ω, the point-stabilizer Xα, called a Frobenius complement
of X, is semiregular on Ω \ {α}.

By Frobenius’ Theorem (refer to [1, Pages 190-191, (35.23) and (35.24)]), for a
Frobenius group X on Ω, the identity and the elements without fixed-point form a
normal regular subgroup of X, which is called the Frobenius kernel of X.

Lemma 2.2. Let X = KH be an imprimitive Frobenius group on Ω with the Frobe-
nius kernel K ∼= Zkp and a Frobenius complement H, where p is a prime and k > 2.
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Then H is isomorphic to an irreducible subgroup of the general linear group GLl(p),
and |H| is a divisor of pd − 1, where 2l 6 k and d is a common divisor of k and l.

Proof. Note that H acts faithfully and semiregularly on K \ {1} by conjugation, see
[1, Page 191, (35.25)]. Then |H| is a divisor of pk − 1. Recall that X is imprimitive
on Ω. Then K is not a minimal normal subgroup of X. By Maschke’s Theorem (refer
to [1, Page 40, (12.9)]), K is a direct product of two H-invariant proper subgroups.
Thus we may choose a minimal H-invariant subgroup L of K with |L|2 6 |K|. It is
easily shown that LH is a primitive Frobenius group (on an L-orbit), which has the
Frobenius kernel L. Set |L| = pl. Then |H| is a divisor of pl − 1, 2l 6 k, and H is
isomorphic to an irreducible subgroup of GLl(p).

Choose a minimal positive integer d such that |H| is a divisor of pd−1. Then d 6 l.
Set k = xd+y for integers x > 1 and 0 6 y < d. Then pk−1 = py(pxd−1)+(py−1),
and thus |H| is a divisor of py − 1. By the choice of d, we have y = 0, and so d is a
divisor of k. Similarly, d is a divisor of l. Then the lemma follows. �

Lemma 2.3. Let X be a 2-transitive permutation group on a finite set Ω. Assume
that 1 6= N �X. Then soc(N) = soc(X), and either N is primitive on Ω or one of
the following holds:

(1) N = Zkp:Zm and |Ω| = pk, where p is a prime, k > 2, m
∣∣ (pd − 1) for some

divisor d of k with d < k;
(2) N = Z4

3:Q8 and |Ω| = 34.

Proof. Since X is 2-transitive on Ω, by [4, Page 107, Theorem 4.1B], soc(X) is ei-
ther abelian or nonabelian simple. By [4, Page 114, Theorem 4.3B], the centralizer
CX(soc(X)) = soc(X) or 1, respectively. In particular, soc(X) is the unique min-
imal normal subgroup of X. Noting that soc(N) is characteristic in N , it follows
that soc(N) is a normal subgroup of X, and thus soc(X) 6 soc(N). Suppose that
soc(X) 6= soc(N). Then soc(N) has a simple direct factor T with T ∩ soc(X) = 1.
Since both T and soc(X) are normal in soc(N), we deduce that T centralizes soc(X),
and so T 6 CX(soc(X)) = soc(X) or 1, a contradiction. Therefore, soc(N) = soc(X).

Next we assume that N is imprimitive on Ω, and show that one of (1) and (2) holds.
By [4, Pages 215-217, Theorems 7.2C and 7.2E], soc(N) = soc(X) ∼= Zkp for a prime

p and integer k > 2 with |Ω| = pk, and either N = soc(X) or N is a Frobenius group
with the Frobenius kernel soc(X). In particular, by Lemma 2.2, we write N = KH,
where K ∼= Zkp and |H| is a divisor of pd−1 for a divisor d of k with d < k. Note that
X is an affine 2-transitive permutation group. Inspecting the finite affine 2-transitive
permutation groups listed in [3, Page 197, Table 7.4], we conclude that either H is
cyclic, or one of the following holds:

(i) H �X0 6 ΓL1(pk), where X0 is a point-stabilizer in X;
(ii) pk = 34, yielding d ∈ {1, 2}, and so |H| is a divisor of 8.

If H is cyclic then N is described as in part (1) of this lemma. In the following, we
assume further that H is not cyclic.

Suppose that (i) holds. If k = 2 then H is isomorphic to a subgroup of GL1(p)
by Lemma 2.2, and so H is cyclic, which is not the case. If pk = 26 then |H| is a
divisor of 2d − 1 with d ∈ {1, 2, 3} by Lemma 2.2, which yields that H is cyclic, a
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contradiction. Thus k > 2 and pk 6= 26. By the Zigmondy Theorem, there exists
a prime r such that pk − 1 ≡ 0 (mod r) but pl − 1 6≡ 0 (mod r) for 1 < l < k. In
particular, p has order k modulo r, and so k is a divisor of r − 1. Recall that |H|
is a divisor of pd − 1, where d < k. It follows that r is not a divisor of |H|, and
so H contains no element of order r. Since X is a 2-transitive group of degree pk,
the order of X0 is divisible by pk − 1. Pick an element x ∈ X0 with order r. Write
ΓL1(pk) = 〈a, τ | apk−1 = 1, τ k = 1, τ−1aτ = ap〉. Clearly, 〈a〉 is normal in ΓL1(pk),
and so 〈a〉〈x〉 6 ΓL1(pk). In particular, |〈a〉〈x〉| is a divisor of |ΓL1(pk)| = (pk − 1)k.

Noting that |〈a〉〈x〉| = |〈a〉||〈x〉|
|〈a〉∩〈x〉| = (pk−1)r

|〈a〉∩〈x〉| , it follows that r
|〈a〉∩〈x〉| is a divisor of k. Since

r > k and r is a prime, we have |〈a〉 ∩ 〈x〉| = r, yielding x ∈ 〈a〉. Then τ−1xτ = xp.
Since H is not cyclic, we take an element aiτ j ∈ H \ 〈a〉, where 1 < j < k. We

have x−1aiτ jx ∈ H as H � X0. Noting that x−1aiτ jx = xp
kj−j−1aiτ j = xp

k−j−1aiτ j,
we deduce that xp

k−j−1 ∈ H. Since 1 < k − j < k, by the choice of r, we have
pk−j−1 6≡ 0 (mod r). Thus H contains an element xp

k−j−1 of order r, a contradiction.

Suppose that (ii) holds. By Lemma 2.2, H is isomorphic to an irreducible subgroup
of GL2(3). Choose a minimal H-invariant subgroup L of K with L ∼= Z2

3. Then LH
is a primitive Frobenius group of degree 9 and of order a divisor of 72. Confirmed
by GAP [20], up to permutation isomorphism, there are four affine primitive groups
of degree 9 which have order a divisor of 72, say Z2

3:Z4, Z2
3:Z8, Z2

3:D8 and Z2
3:Q8. In

addition, the group Z2
3:D8 is not a Frobenius group. Since H is not cyclic, we have

H ∼= Q8, and thus part (2) of this lemma follows. This completes the proof. �

Lemma 2.4. Let X be an affine 2-transitive permutation group, and soc(X) = K1×
· · · ×Kl, where 1 < Ki < soc(X) for 1 6 i 6 l. Then there exist x ∈ X and i such
that Kx

i 6∈ {Ki | 1 6 i 6 l}.

Proof. Clearly, ∪i(Ki \ {1}) 6= soc(X) \ {1}. Let H be a point-stabilizer in X. Then
H acts transitively on soc(X)\{1} by conjugation. Thus H does not fix ∪i(Ki \{1})
set-wise by conjugation, and the lemma follows. �

3. The uniqueness of minimal normal subgroup

In this section, we assume that Γ = (V,E) is a connected regular graph, and

G 6 Aut(Γ). Denote by G
Γ(α)
α the permutation group induced by Gα on Γ(α). Let

G
[1]
α be the kernel of Gα acting on Γ(α). Then

GΓ(α)
α
∼= Gα/G

[1]
α .

Let β ∈ Γ(α), and set G
[1]
αβ = G

[1]
α ∩G[1]

β . Then G
[1]
αβ is the kernel of the arc-stabilizer

Gαβ acting on Γ(α) ∪ Γ(β). Noting that G
[1]
α �Gαβ, we have

G[1]
α /G

[1]
αβ
∼= (G[1]

α )Γ(β) �G
Γ(β)
αβ = (G

Γ(β)
β )α.

Assume that G is arc-transitive on Γ, and N is an arbitrary normal subgroup of
G. Then

Nα �Gα, N
[1]
α �G[1]

α , Nαβ �Gαβ, N
[1]
αβ �G

[1]
αβ.
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Taking x ∈ G with (α, β)x = (β, α), we have

Nβ = Nx
α , N

x
αβ = Nαβ, Γ(β) = Γ(α)x.

It follows that N
Γ(β)
αβ
∼= N

Γ(α)
αβ . Since Nαβ �Gαβ, we have N

Γ(α)
αβ �G

Γ(α)
αβ , and so

(3.1) N [1]
α /N

[1]
αβ
∼= (N [1]

α )Γ(β) �N
Γ(β)
αβ
∼= N

Γ(α)
αβ = (NΓ(α)

α )β � (GΓ(α)
α )β.

In particular, (N
[1]
α )Γ(β) is isomorphic to a normal subgroup of (N

Γ(α)
α )β.

Assume that G is 2-arc-transitive on Γ. Then G
[1]
αβ has order a prime power, see [7,

Corollary 2.3]. In particular, G
[1]
αβ is soluble. Then (G

[1]
α )Γ(β) is soluble if and only if

G
[1]
α is soluble. Noting that G

Γ(α)
α is a 2-transitive group on Γ(α), by Lemma 2.1 and

(3.1), we have the following fact.

Lemma 3.1. Assume that G is 2-arc-transitive on Γ = (V,E), N � G and Nα is

insoluble, where α ∈ V . Then N
Γ(α)
α has a unique insoluble composition factor, and

N
[1]
α has at most one insoluble composition factor. If N

[1]
α and N

Γ(α)
α have isomorphic

insoluble composition factors then G
Γ(α)
α is an affine 2-transitive permutation group.

Proof. Let β ∈ Γ(α). Then N
[1]
αβ is soluble as N

[1]
αβ 6 G

[1]
αβ. By (3.1), we may write

Nα = N
[1]
αβ.(N

[1]
α )Γ(β).N

Γ(α)
α . In addition, (N

[1]
α )Γ(β) is isomorphic to a normal subgroup

of (N
Γ(α)
α )β. If N

Γ(α)
α is soluble, then (N

[1]
α )Γ(β) is soluble, and so Nα is soluble,

a contradiction. Thus N
Γ(α)
α is an insoluble normal subgroup of the 2-transitive

permutation group G
Γ(α)
α . Inspecting the 2-transitive permutation groups listed in

[3, Pages 195-197, Tables 7.3 and 7.4], it follows that N
Γ(α)
α has a unique insoluble

composition factor, which is the unique insoluble composition factor of G
Γ(α)
α .

Since (N
Γ(α)
α )β � (G

Γ(α)
α )β, by Lemma 2.1, (N

Γ(α)
α )β has at most one insoluble com-

position factor. Recall that N
[1]
α /N

[1]
αβ
∼= (N

[1]
α )Γ(β) � (N

Γ(β)
β )α ∼= (N

Γ(α)
α )β, see (3.1).

It follows that N
[1]
α has at most one insoluble composition factor. Suppose that N

[1]
α

and N
Γ(α)
α have isomorphic insoluble composition factors. Then (N

Γ(α)
α )β and G

Γ(α)
α

have isomorphic insoluble composition factors. By Lemma 2.1, G
Γ(α)
α is an affine

2-transitive group. This completes the proof. �

Lemma 3.2. Assume that G is 2-arc-transitive on Γ = (V,E), and N �G. Suppose
that, for α ∈ V , the stabilizer Nα has a normal subgroup K ∼= T k for an integer k ≥ 1
and a nonabelian simple group T . Then k = 1.

Proof. Note that every normal subgroup of K is isomorphic to T l for some l 6 k,

where T 0 = 1. Set K ∩G[1]
α
∼= T l. Then

KΓ(α) ∼= KG[1]
α /G

[1]
α
∼= K/(K ∩G[1]

α ) ∼= T k−l.

Since KΓ(α) � N
Γ(α)
α � G

Γ(α)
α , by Lemma 3.1, we conclude that l, k − l ∈ {0, 1}. If

G
Γ(α)
α is of affine type, then k − l = 0, and so k = l = 1. If G

Γ(α)
α is almost simple,

then either k = l = 1 or k − l = 1 and l = 0, and so k = 1. This completes the
proof. �

Theorem 3.3. Assume that Γ = (V,E) is a basic 2-arc-transitive graph with respect
to G, and G∗ = 〈Gα, Gβ〉 for {α, β} ∈ E. Then either Γ is a complete bipartite
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graph, or soc(G∗) = soc(G) is the unique minimal normal subgroup of G and one of
the following holds:

(1) soc(G) is semiregular on V ;
(2) soc(G) is a nonabelian simple group;
(3) G∗ is a quasiprimitive permutation group of type PA on each G∗-orbit on V ;
(4) Γ is a bipartite graph, G∗ is faithful on each part of Γ, soc(G) = M1 ×M2

for minimal normal subgroups M1 and M2 of G∗, and both M1 and M2 are
semiregular and intransitive on each part of Γ.

Proof. If Γ is not bipartite then G = G∗ and, by [17, Theorem 2], G has a unique
minimal normal subgroup, and one of parts (1)-(3) follows. Thus we assume that Γ
is a bipartite graph with two parts U and W . In particular, |G : G∗| = 2. By [18,
Theorem 2.1], either Γ is a complete bipartite graph, or G∗ is faithful on each of U
and W . In the following, we assume that the latter case occurs.

Let K be an arbitrary minimal normal subgroup of G. Suppose that K 66 G∗.
Then K ∩ G∗ = 1 and G = G∗K, yielding |K| = 2. Since K has at most two orbits
on V , we have |V | 6 4, which is impossible as Γ is bipartite and of valency at least
3. Therefore, K 6 G∗. Let K1 be a minimal normal subgroup of G∗ with K1 6 K,
and let x ∈ G \G∗. Then Kx

1 is also a minimal normal subgroup of G∗. Noting that

x2 ∈ G∗, we have (Kx
1 )x = Kx2

1 = K1. This implies that K1K
x
1 is normal in G. Since

Kx
1 6 Kx = K, we have K = K1K

x
1 6 soc(G∗). It follows that soc(G) 6 soc(G∗).

Case 1. Assume that G∗ is quasiprimitive on both U and W . Then, by [18,
Theorem 2.3], soc(G∗) is the unique minimal normal subgroup of G∗, and one of parts
(1)-(3) of Theorem 3.3 occurs. Noting that G∗�G and soc(G∗) is characteristic in G∗,
we have soc(G∗) � G, and hence soc(G∗) is a minimal normal subgroup of G. Then
soc(G∗) 6 soc(G). Recalling that soc(G) 6 soc(G∗), we have soc(G) = soc(G∗), and
hence soc(G∗) is the unique minimal normal subgroup of G.

Case 2. Assume that G∗ is not quasiprimitive on one of U and W , say U . Then
G∗ has a minimal normal subgroup M which is intransitive on U . Let x ∈ G \ G∗.
Then Mx is a minimal normal subgroup of G∗, and Mx is intransitive on W . Note
that MMx is normal in G. Then MMx is transitive on both U and W . It follows
that M 6= Mx, and so M ∩Mx = 1. Then MMx = M ×Mx. If M is transitive on
W then Mx is semiregular on W by [4, Theorem 4.2A], and thus both M and Mx

are regular on W , a contradiction. Therefore, M is intransitive on W . Similarly, Mx

is intransitive on U . It follows from [8, Lemma 5.1] that M and Mx are semiregular
on both U and W .

Set N = MMx, and write M = T1×· · ·Tk, where Ti are isomorphic simple groups.
Then

N = T1 × · · ·Tk × T x1 × · · ·T xk .

Let L be a minimal normal subgroup of G with L 6 N . Assume that M 66 L. Then
M ∩L = 1 as M is a minimal normal subgroup of G∗, and so Mx∩L = (M ∩L)x = 1.
Thus both M and Mx centralize L. Considering the action of G∗ on U or W , by
[4, Theorem 4.2A], L is nonabelian. This forces that every Ti is a nonabelian simple
group. Since L�N , it follows that L contains Ti or T xi for some i. Then M ∩ L 6= 1
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or Mx ∩ L 6= 1, a contradiction. Then M 6 L, and Mx 6 Lx = L. We have
N = MMx 6 L, and so N = L. Therefore, N is a minimal normal subgroup of
G. In addition, since M and Mx are minimal normal subgroups of G∗, we have
N = MMx 6 soc(G∗).

Suppose that N 6= soc(G∗). Then G∗ has a minimal normal subgroup M1 with
M1 ∩ N = 1. This implies that M1 6 CG∗(N) 66 N . Noting that CG∗(N) is a
normal subgroup of G, it follows that CG∗(N) acts transitively on both U and W .
Considering the action of G∗ on U , it follows from [4, Theorem 4.2A] that N is not
abelian, CG∗(N) ∼= N , and both CG∗(N) and N are regular on U . Let α ∈ U and
X = CG∗(N)N . Then X is normal in G, and X = CG∗(N)Xα. We have

Xα
∼= CG∗(N)N/CG∗(N) ∼= N = T1 × · · ·Tk × T x1 × · · · × T xk .

Then 2k = 1 by Lemma 3.2, a contradiction. Therefore, N = soc(G∗). Recall that
soc(G) 6 soc(G∗) and N is a minimal normal subgroup of G. We have soc(G) =
N = soc(G∗), and the result follows. �

4. Semiregular direct factors

Let Γ = (V,E) be a connected graph, and G 6 Aut(Γ).

Assume that G is a 2-arc-transitive group of Γ. Then G
Γ(α)
α is a 2-transitive per-

mutation group on Γ(α), where α ∈ V . Let N � G with Nα 6= 1. It is easily shown

that Nα acts transitively on Γ(α), see [13, Lemma 2.5] for example. Thus N
Γ(α)
α is

a transitive normal subgroup of G
Γ(α)
α . By Lemma 2.3, soc(N

Γ(α)
α ) = soc(G

Γ(α)
α ) and

one of the following holds:

(i) N
Γ(α)
α is a primitive permutation group on Γ(α);

(ii) N
Γ(α)
α = Zkp:Zm and |Γ(α)| = pk, where k > 2, m

∣∣ (pd − 1) for some divisor d
of k with d < k;

(iii) N
Γ(α)
α = Z4

3:Q8 and |Γ(α)| = 34.

Lemma 4.1. Assume that G is 2-arc-transitive on Γ, and N � G with Nα 6= 1 for

α ∈ V . Suppose that N
Γ(α)
α is not primitive on Γ(α). Then one of the following holds:

(1) Nα = Zkp:(Zm1 .Zm) = (Zkp × Zm1).Zm, |Γ(α)| = pk and N
[1]
α
∼= Zm1, where

m1

∣∣ m, m
∣∣ (pd − 1) for some divisor d of k with d < k;

(2) Nα = Z4
3:(Q.Q8) = (Z4

3 × Q).Q8, |Γ(α)| = 34 and Q ∼= N
[1]
α , where Q is

isomorphic to a subgroup of Q8.

Proof. By the foregoing argument, we may let N
Γ(α)
α = KH, where K = soc(N

Γ(α)
α ) ∼=

Zkp, and either H ∼= Zm or pk = 34 and H ∼= Q8. Without loss of generality, let

H = (N
Γ(α)
α )β for some β ∈ Γ(α). Then N

[1]
α /N

[1]
αβ is isomorphic to a normal subgroup

of H, see (3.1) given in Section 3.

Assume first that pk = 4. In this case, we have H = 1 and N
Γ(α)
α = Z2

2, and so Nα

acts faithfully on Γ(α), refer to [13, Lemma 2.3]. Then Nα = Z2
2, desired as in part

(1) of this lemma.



2-ARC-TRANSITIVE GRAPHS 9

Now assume that pk 6= 4. Then |Γ(α)| = pk > 5. By [21, Theorem 4.7], G
[1]
αβ = 1,

and so N
[1]
αβ = 1, where β ∈ Γ(α). Then N

[1]
α is isomorphic to a normal subgroup

of H, in particular, (p, |N [1]
α |) = 1. It is easily shown that |Aut(N

[1]
α )| < pk. Let P

be a Sylow p-subgroup of Nα. Then P ∼= Zkp, and PN
[1]
α /N

[1]
α is the unique Sylow

p-subgroup of Nα/N
[1]
α , in particular, PN

[1]
α �Nα. Noting that PN

[1]
α /CPN

[1]
α

(N
[1]
α ) is

isomorphic to a subgroup of Aut(N
[1]
α ), it follows that p is a divisor of |C

PN
[1]
α

(N
[1]
α )|.

Let Q be a Sylow p-subgroup of C
PN

[1]
α

(N
[1]
α ). Then Q is characteristic in C

PN
[1]
α

(N
[1]
α ),

and hence Q is normal in Nα. This implies that Op(Nα) 6= 1, where Op(Nα) is the
maximal normal p-subgroup of Nα. Since Nα�Gα, we have Op(Nα)�Gα. Recalling

that (p, |N [1]
α |) = 1, we deduce that Op(Nα) acts faithfully on Γ(α). Since G acts

2-transitively on Γ(α), the action of Op(Nα) on Γ(α) is transitive. Noting that
Op(Nα) 6 P is abelian, it follows that Op(Nα) is regular on Γ(α). Then |Op(Nα)| =
|Γ(α)| = pk, and hence Op(Nα) = P ∼= Zkp. We have Nα = P :Nαβ = (P × N [1]

α ).H.
Then part (1) or (2) of the lemma follows. �

Theorem 4.2. Assume that Γ = (V,E) is a basic 2-arc-transitive graph with respect
to G, and G∗ = 〈Gα, Gβ〉 for an edge {α, β} ∈ E. If Γ is not a complete bipartite
graph then either soc(G) is a nonabelian simple group, or every simple direct factor
of soc(G) is semiregular on V .

Proof. Assume that Γ is not a complete bipartite graph. Then G∗ is faithful on each
of its orbits on V . Let N = soc(G). By Theorem 3.3, N = soc(G) is the unique
minimal normal subgroup of G. If part (1), (2) or (4) of Theorem 3.3 occurs, then
our result is true. Thus, in the following, we suppose that part (3) of Theorem 3.3
occurs, that is, G∗ is a quasiprimitive permutation group of type PA on each G∗-orbit
on V . By [17, III(b)(i)], N is the unique minimal normal subgroup of G∗.

Write N = T1 × · · · × Tl, where l > 2 and Ti are isomorphic nonabelian simple
groups. Then Nα 6= 1, and Nα has no composition factor isomorphic to T1, see [17,
III(b)(i)]. We next show that every Ti is semiregular on V .

Let U be the G∗-orbit on V with α ∈ U , and let W = V \ U if Γ is bipartite.
Clearly, U is an N -orbit, and if Γ is bipartite then W is also an N -orbit. Recall that
N is a minimal normal subgroup of both G and G∗. Since G∗ = NGγ for γ ∈ V , it
follows that both G and Gγ act transitively on Ω := {T1, . . . , Tl} by conjugation. Let

Cγ = {(Ti)γ | 1 6 i 6 l}, C = ∪γ∈V Cγ.

For 1 6 i 6 l and x ∈ G, we have T xi ∈ Ω, and so

(Ti)
x
γ = (Ti ∩Gγ)

x = T xi ∩Gγx = (T xi )γx ∈ C, ∀γ ∈ V.

We deduce that Gγ acts transitively on Cγ by conjugation, and C is a conjugacy class
of subgroups in G. In particular, all orbits of each Ti on V have the same length
|T1 : (T1)α|. Thus, if T1 is semiregular on V then every Ti is semiregular on V .

Case 1. Assume that N
Γ(α)
α is primitive on Γ(α). For any γ ∈ V , letting γ = αg

for some g ∈ G, we have

Γ(γ) = Γ(α)g, Nγ = N ∩Gαg = (N ∩Gα)g = N g
α.
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It follows that Nγ acts primitively on Γ(γ). Thus N is locally-primitive on Γ. Suppose
that T1 is transitive on one of the G∗-orbits, say U . Since Tl centralizes T1, by [4,
Theorem 4.2A], Tl is semiregular on U . This implies that both T1 and Tl are regular
on U . Then N = TlNα, and so

T1 × · · · × Tl−1
∼= N/Tl = TlNα/Tl ∼= Nα/(Tl ∩Nα) = Nα/(Tl)α.

It follows that Nα has a composition factor isomorphic to T1, a contradiction. There-
fore, T1 is intransitive on every G∗-orbit, and hence T1 is semiregular on V , see [13,
Lemma 2.6]. Then every Ti is semiregular on V , and our result is true.

Case 2. Assume that (T1)α 6 G
[1]
α . Then (T1)α 6 (T1)β, where β ∈ Γ(α).

Recalling that C is a conjugacy class in G, it follows that |(T1)γ| = |(T1)α| for all
γ ∈ V . In particular, |(T1)α| = |(T1)β|, and so (T1)α = (T1)β. Note that Nβ acts
transitively on Γ(β), see [13, Lemma 2.5] for example. Since (T1)α = (T1)β �Nβ, all
(T1)α-orbits on Γ(β) have the same length. It follows that (T1)α fixes Γ(β) point-wise,

i.e., (T1)β = (T1)α 6 G
[1]
β . We deduce from the connectedness of Γ that (T1)γ = (T1)α

for all γ ∈ V . This forces that (T1)α = 1. Then our result is true in this case.

Case 3. Now we suppose that (T1)α 66 G
[1]
α and N

Γ(α)
α is not primitive on Γ(α),

and produce a contradiction. Recall that Gα acts transitively on Cα by conjugation.

This implies that Gα acts transitively on {(T1)
[1]
α , . . . , (Tl)

[1]
α }, (T1)α×· · ·×(Tl)α�Gα,

and (Ti)α 66 G
[1]
α for 1 6 i 6 l. By Lemma 2.3, we have that

soc(((T1)α × · · · × (Tl)α)Γ(α)) = soc(GΓ(α)
α ) = soc(NΓ(α)

α ) ∼= Zkp,

and a Sylow p-subgroup of Nα has order pk, where p is a prime and k > 2. By Lemma

4.1, N
[1]
α has order coprime to p, and thus (p, (Ti)

[1]
α ) = 1 for 1 6 i 6 l.

Let Pi be a Sylow p-subgroup of (Ti)α, where 1 6 i 6 l. Then P = P1× · · · ×Pl is
a Sylow p-subgroup of Nα, and thus

P ∼= P Γ(α) = soc(NΓ(α)
α ) = soc(GΓ(α)

α ),

and Op((Ti)
Γ(α)
α ) = P

Γ(α)
i
∼= Pi for each i. It follows that

soc(GΓ(α)
α ) = P

Γ(α)
1 × · · · × P Γ(α)

l .

LetKi be the preimage of P
Γ(α)
i in (T1)α×· · ·×(Tl)α. ThenKi = (Ti)

[1]
α Pi for 1 6 i 6 l.

It is easily shown that Gα acts transitively on {K1, . . . , Kl} by conjugation. Then

G
Γ(α)
α acts transitively on {P Γ(α)

1 , . . . , P
Γ(α)
l } by conjugation, which is impossible by

Lemma 2.4. This completes the proof of the theorem. �

We are now ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let Γ = (V,E) be a basic 2-arc-transitive graph with respect to
a group G. Assume that Γ is not a complete bipartite graph. Fix an edge {α, β} ∈ E,
and let G∗ = 〈Gα, Gβ〉 and N = soc(G∗). By Theorem 3.3, N = soc(G) is the unique
minimal normal subgroup of G, desired as in part (1) of Theorem 1.1. By Theorem
4.2, we have part (2) of Theorem 1.1.

Let γ be an arbitrary vertex of Γ. Since G acts transitively on V , we write γ = αg

for some g ∈ G. Then Γ(γ) = Γ(α)g. Since N is normal in G, we deduce that

Nγ = N g
α. It follows that N

Γ(γ)
γ and N

Γ(α)
α are permutation isomorphic. Then N
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is locally-primitive on Γ if and only if N
Γ(α)
α is primitive on Γ(α). If N

Γ(α)
α is not

primitive on Γ(α) then either Nα = 1, or Nα is described as in part (1) or (2) of
Lemma 4.1. Thus we obtain part (3) of Theorem 1.1. This completes the proof. �

Finally, we give a proof of Theorem 1.4.

Proof of Theorem 1.4. Assume that G is a 2-arc-transitive group of Γ = (V,E). Let
G∗ = 〈Gα, Gβ〉 for {α, β} ∈ E. If Γ is not bipartite and G is primitive on V then
soc(G) is either simple or regular on V by [16, Theorem A], and the result is true.

Assume next that Γ is a bipartite graph with two parts U and W , and that G∗ acts
primitively on both U and W . If G∗ is unfaithful on U or W then Γ is a complete
bipartite graph. Thus we assume further that G∗ is faithful on both U and W . Let
α ∈ U and β ∈ W .

Case 1. Assume that soc(G) 6 G∗. If Γ has valency 2 then Γ is a cycle of length
2p for some prime p, and G ∼= D4p; in this case, the center of G is not contained
in G∗, and so soc(G) 66 G∗. Thus Γ has valency at least 3, and hence Γ is a basic
2-arc-transitive graph with respect to G. By Theorem 3.3, soc(G) = soc(G∗), and
either part (2) of Theorem 1.4 holds or G∗ is a primitive permutation group of type
PA on U . For the latter case, every simple direct factor of soc(G∗) is not semiregular
on U , refer to [15, Page 391, III(b)(i)]. Then part (2) of Theorem 1.4 occurs by
Theorem 4.2.

Case 2. Assume that soc(G) 66 G∗. Let M be a minimal normal subgroup of G
with M 66 G∗. Then, noting that |G : G∗| = 2, we have G = G∗ ×M and |M | = 2.
This implies that soc(G) = soc(G∗)×M . Set M = 〈x〉. Then Gαx = Gx

α = Gα, and
so Gα acts 2-transitively on Γ(αx). Note that Γ(αx) ⊂ U . Considering the (faithful)
action of G∗ on U , by [16, Theorem A], soc(G)∗ is either simple or regular on U .
Similarly, soc(G)∗ is either simple or regular on W . Then part (3) of Theorem 1.4
follows. This completes the proof. �
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