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Abstract. The Laguerre inequality and their higher order generalizations
have been proved to be closely relative with the Laguerre-Pólya class and
Riemann hypothesis. Wang and Yang concerned with the relation between
discrete sequences and higher order Laguerre inequality and show the La-
guerre inequality of order 2 holds for the partition function, the overparti-
tion function, the Bernoulli numbers, the derangement numbers, the Motzkin
numbers, the Fine numbers, the Franel numbers and the Domb numbers.
Wagner proved the partition function satisfies the Laguerre inequality of any
order as n → ∞ and conjectured the thresholds for order no more than 10.
In this paper, we will give N(m) such that for 3 ≤ m ≤ 10 and n > N(m),
the partition function satisfies the Laguerre inequality of order m. As con-
sequences, we affirm Wagner’s conjecture for 3 ≤ m ≤ 9.
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1 Introduction

The main objective of this paper is to find the thresholds N(m) such that for
n > N(m), the partition function satisfies the Laguerre inequality of order
m for m ≤ 10.

The Laguerre inequality [13] arises in the study of the real polynomials
with only real zeros and the Laguerre-Pólya class. Recall that a real entire
function

ψ(x) =
∞∑
k=0

γk
xk

k!
(1.1)

is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈ LP , if it can be

1



represented in the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(1 + x/xk) e
−x/xk , (1.2)

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and∑
x−2k < ∞. For more background on the theory of the LP class, we refer

to [16] and [20].

Recall that if a polynomial f(x) satisfies

f ′(x)
2 − f(x)f ′′(x) ≥ 0, (1.3)

then it is called to satisfy Laguerre inequality. Laguerre [13] stated that if
f(x) is a polynomial with only real zeros, then the Laguerre inequality holds
for f(x). Jensen [12] found a higher order generalization of the Laguerre
inequality, namely, for f belonging to Laguerre-Pólya class,

Ln(f(x)): =
1

2

2n∑
k=0

(−1)n+k
(

2n

k

)
f (k)(x)f (2n−k)(x) ≥ 0, (1.4)

for all real x, and f (k)(x) denotes the kth derivative of f(x) = f (0)(x). It
yields the classical Laguerre inequality for n = 1. Note that Csordas and
Vishnyakova [6] showed that if a function f(x) satisfies Ln(f(x)) ≥ 0 for all
n and all x ∈ R, then f(x) is in the Laguerre-Pólya class. It means that
Laguerre inequality is a characterizing property of functions in the Laguerre-
Pólya class. For more background on Laguerre inequality, see [2, 3, 4, 5, 8,
9, 10, 18, 19, 21]

Recently, Wang and Yang [23] considered whether the discrete sequence
{an}n≥0 has the similar results with higher order Laguerre inequality. Recall
that a sequence {an} satisfies Laguerre inequality of order m if

Lm(an): =
1

2

2m∑
k=0

(−1)k+m
(

2m

k

)
an+ka2m−k+n ≥ 0, (1.5)

These inequalities can be simply obtained from equation (1.4) by specializing
x = 0 where we can chose the function f(x) to have Taylor coefficients an+m.
For m = 1, the above inequality reduces to

a2n − an−1an+1 > 0,

i.e., the log-concavity of {an}n≥0. Nicolas [17], DeSalvo and Pak [7] inde-
pendently prove the partition function satisfies the log-concavity for n ≥ 26.
Chen, Jia and Wang [1] proved the partition function possesses the higher
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order Turán inequality. These results lead to the resurgence of the study of
combinatorial inequalities with a focus on partitions. Wang and Yang [23]
proved that the partition function, the overpartition function, the Bernoulli
numbers, the derangement numbers, the Motzkin numbers, the Fine num-
bers, the Franel numbers and the Domb numbers possess Laguerre inequality
of order 2. Wagner [22] showed the partition function satisfies the Laguerre
inequality of any order as n → ∞ and conjectured the thresholds for order
no more than 10.

In this paper, we will prove Wagner’s conjecture holds for order 3 through
9. The remaining of this paper is organized as follows. In Section 2, we shall
show the partition function satisfies the Laguerre inequality of order 3 for
n ≥ 531 by generalizing an approach mentioned in [24]. In Section 3, we will
find N(m) such that for 4 ≤ m ≤ 10 and n > N(m), the partition function
p(n) satisfies the Laguerre inequality of order m.

2 Partition function

In this section, we will show the Laguerre inequality of order 3 holds for
partition function. Recall that an integer partition of a positive integer n is
a nonincreasing sequence (λ1, λ2, . . . , λr) of positive integers such that λ1 +
λ2 + · · ·+λr = n. Denote p(n) the number of integer partitions of n. Hardy-
Ramanujan-Rademacher formula for p(n) states that for n ≥ 1,

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N),

(2.1)

where Ak(n) is an arithmetic function, R2(n,N) is the remainder term and

µ(n) =
π

6

√
24n− 1. (2.2)

Lehmer [14, 15] gave an error bound for R2(n,N).

|R2(n,N)|< π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−
(

N

µ(n)

)2
]
, (2.3)

which is valid for all positive integers n and N . Let µ(n) = π
6

√
24n− 1. Using

this error bound, Wang and Yang [24] gave the following helpful estimate of
p(n).
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Lemma 2.1. For any given integer t, there exists N(t) such that for all
n ≥ N(t),

√
12π2eµ(n)

36µ(n)2

(
1− 1

µ(n)
− 1

µ(n)t

)
< p(n) <

√
12π2eµ(n)

36µ(n)2

(
1− 1

µ(n)
+

1

µ(n)t

)
.

(2.4)

This lemma is main tool in our proof. Now we are in a position to prove
the following theorem which affirms Wagner’s conjecture for m = 3.

Theorem 2.2. For n ≥ 531, p(n) satisfies the Laguerre inequality of order
3, i.e.,

10p(n+ 3)3 − 15p(n+ 2)p(n+ 4) + 6p(n+ 1)p(n+ 5)− p(n)p(n+ 6) > 0. (2.5)

Proof. To prove it, setting t = 10 in Lemma 2.1 gives that for n ≥ 1520,

eµ
√

12β(µ)π2

36µ12
< p(n) < eµ

√
12α(µ)π2

36µ12
, (2.6)

where
α(t) = t10 − t9 + 1, β(t) = t10 − t9 − 1. (2.7)

Let

f(n): = eµ
√

12β(µ)π2

36µ12
(2.8)

and

g(n): = eµ
√

12α(µ)π2

36µ12
. (2.9)

Then, in the remaining of this section, we aim to show that

10f(n+3)3−15g(n+2)g(n+4)+6f(n+1)f(n+5)−g(n)g(n+6) > 0. (2.10)

For convenience,we denote

y = µ(n), z = µ(n+ 1), w = µ(n+ 2), r = µ(n+ 3)

j = µ(n+ 4), k = µ(n+ 5), i = µ(n+ 6).
(2.11)

The left-hand side of the inequality (2.10) can be simplified to

−h1ey−2r+i + 6h2e
z−2r+k − 15h3e

w−2r+j + 10h4
h4

, (2.12)
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where

h1 = α(i)α(y)r24w12j12z12k12, (2.13)

h2 = β(z)β(k)r24w12j12y12i12, (2.14)

h3 = α(w)α(j)r24z12k12y12i12, (2.15)

h4 = β(r)2w12j12z12k12y12i12. (2.16)

Now we proceed to prove the numerator of (2.12) is positive for n ≥ 2.
Since h4 is positive for all n ≥ 1, we only need to prove

− h1ey−2r+i + 6h2e
z−2r+k − 15h3e

w−2r+j + 10h4 > 0. (2.17)

For this aim, we need to estimate h1, h2, h3, h4, e
y−2r+i, ez−2r+k and ew−2r+j.

We prefer to give the estimates of y, z, w, j, k and i by the following equalities.
For n ≥ 2,

y =
√
r2 − 2π2, z =

√
r2 − 4π2

3
, w =

√
r2 − 2π2

3
, (2.18)

j =

√
r2 +

2π2

3
, k =

√
r2 +

4π2

3
, i =

√
r2 + 2π2.

By the expansions of y, z, w, j, k, i, we have that for n ≥ 41,

y1 < y < y2, z1 < z < z2, w1 < w < w2, (2.19)

j1 < j < j2, k1 < k < k2, i1 < i < i2.

where

y1 = r − π2

r
− π4

2r3
− π6

2r5
− 5π8

8r7
− 8π10

8r9
,

y2 = r − π2

r
− π4

2r3
− π6

2r5
− 5π8

8r7
− 7π10

8r9
,

z1 = r − 2π2

3r
− 2π4

9r3
− 4π6

27r5
− 10π8

81r7
− 29π10

243r9
,

z2 = r − 2π2

3r
− 2π4

9r3
− 4π6

27r5
− 10π8

81r7
− 28π10

243r9
,

w1 = r − π2

3r
− π4

18r3
− π6

54r5
− 5π8

648r7
− 8π10

1944r9
,
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w2 = r − π2

3r
− π4

18r3
− π6

54r5
− 5π8

648r7
− 7π10

1944r9
,

j1 = r +
π2

3r
− π4

18r3
+

π6

54r5
− 5π8

648r7
,

j2 = r +
π2

3r
− π4

18r3
+

π6

54r5
− 5π8

648r7
+

7π10

1944r9
,

k1 = r +
2π2

3r
− 2π4

9r3
+

4π6

27r5
− 10π8

81r7
,

k2 = r +
2π2

3r
− 2π4

9r3
+

4π6

27r5
− 10π8

81r7
+

28π10

243r9
,

i1 = r +
π2

r
− π4

2r3
+
π6

2r5
− 5π8

8r7
,

i2 = r +
π2

r
− π4

2r3
+
π6

2r5
− 5π8

8r7
+

7π10

8r9
.

Applying (2.19) to the definition (2.7) of α(t) and β(t) and substituting
these α(t) and β(t) into h1, h2, h3, we get

h1 <
(
i10 − i1i8 + 1

) (
y10 − y1y8 + 1

)
r24w12j12z12k12, (2.20)

h2 >
(
z10 − z1z8 − 1

) (
k10 − k2k8 − 1

)
r24y12w12j12i12,

h3 <
(
w10 − w1w

8 + 1
) (
w10 − w1w

8 + 1
)
r24z12k12y12i12,

Next we turn to estimate ew−2r+j, ez−2r+k and ey−2r+i. By (2.19), one can
see that for n ≥ 41,

w1 − 2r + j1 < w − 2r + j < w2 − 2r + j2, (2.21)

z1 − 2r + k1 < z − 2r + k < z2 − 2r + k2,

y1 − 2r + i1 < y − 2r + i < y2 − 2r + i2

which implies that

ew1−2r+j1 < ew−2r+j < ew2−2r+j2 , (2.22)

ez1−2r+k1 < ez−2r+k < ez2−2r+k2

ey1−2r+i1 < ey−2r+i < ey2−2r+i2 .
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In order to give a feasible bound for ew−2r+j, ez−2r+k and ey−2r+i, we define

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24

and

φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
.

It can be checked that for t < 0,

φ(t) < et < Φ(t). (2.23)

To apply this result to (2.22), it suffices to show that w2−2r+j2, z2−2r+k2
and y2 − 2r + i2 are negative. By straightforward calculation, one can get
that

w2 − 2r + j2 = −π
4 (5π4 + 36r4)

324r7
,

z2 − 2r + k2 = −4π4 (9π4 + 5r4)

81r7
,

y2 − 2r + i2 = −4π4 (π4 + 5r4)

4r7
.

Obviously, for n ≥ 2, w2−2r+j2, z2−2r+k2 and y2−2r+i2 are negative.
Thus, applying (2.23) to (2.22), we obtain that for n ≥ 41,

φ(w1 − 2r + j1) < ew−2r+j < Φ(w2 − 2r + j2), (2.24)

φ(z1 − 2r + k1) < ez−2r+k < Φ(z2 − 2r + k2),

φ(y1 − 2r + i1) < ey−2r+i < Φ(y2 − 2r + i2).

Now, we proceed to prove (2.17). For convenience, let

A(r) = −h1ey−2r+i + 6h2e
z−2r+k − 15h3e

w−2r+j + 10h4, (2.25)

we need to show the positivity of A(r). Using (2.20) and (2.24), we obtain
that for n ≥ 41,

A(r) >−
(
i10 − i1i8 + 1

) (
y10 − y1y8 + 1

)
r24w12j12z12k12Φ(y2 − 2r + i2)

+ 6
(
z10 − z2z8 + 1

) (
k10 − k2k8 + 1

)
r24w12j12y12i12φ(z1 − 2r + k1)

− 15
(
w10 − w1w

8 + 1
) (
j10 − j1j8 + 1

)
r24z12k12y12i12Φ(w2 − 2r + j2)
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+ 10β(r)2w12j12z12k12y12i12.

Denote the right-hand side of the above inequality by A1(r). Using (2.18)
to A1(r), one can see A1(r) can be rewritten as a polynomial of r. We use
software Mathematica to expand A1(r) as a polynomials of r by elementary
commands. Note that all the coefficients of A1(r) can be known. To ensure
A1(r) > 0, it suffices to let r be larger than the sum of absolute value of the
coefficients of other terms divided by the coefficient of the terms with degree
235. We also make this approach effective using the elementary commands
in Mathematica. For details, by Mathematica we can quickly simplify A1(r)
as

A1(r) =

∑122
k=0 akr

k

2133555r39
, (2.26)

where ak are known real numbers, and the first few terms a122, a121, a120 are
given below,

a122 = 2143505π10(10π2 − 87), a121 = 2143505(−215π12 + 174π10 − 7776),

a120 = 2153505(875π12 − 108π10 + 3888).

Thus, for n ≥ 41, we have

A(r) >

∑122
k=0 akr

k

2133555r39
. (2.27)

Since r is positive for n ≥ 1, we have that

122∑
k=0

akr
k >

121∑
k=0

−|ak|rk + a122r
122. (2.28)

Thus, to get (2.27), we only need to show that for n ≥ 39839,

121∑
k=0

−|ak|rk + a122r
122 > 0. (2.29)

For 0 ≤ k ≤ 120, we find that for r ≥ 8

− |ak|rk > −a120r120. (2.30)

It follows that for r ≥ 8,

122∑
k=0

akr
k >

121∑
k=0

−|ak|rk + a122r
122 > (−121a120 + a121r + a122r

2)r120. (2.31)
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Combing (2.27) and (2.31), A(r) is positive provided

− 121a120 + a121r + a122r
2 > 0, (2.32)

which is true for r > 511, or equivalently, n ≥ 39839. Thus, we arrive at
that (2.17) is true for n ≥ 39839, which implies (2.10). On the other hand,
it can be checked that (2.2) is also true for 531 ≤ n ≤ 39838. Thus the proof
is completed.

3 For 4 ≤ m ≤ 10

In this section, we will concern with the Laguerre inequalities of any order. In
fact, the approach given in Section 2 still works for any order. We only need to
find an appropriate t in Lemma 2.1, adjust the terms of the Taylor expansion
of exponential function and the terms of the Taylor expansion of the upper
and lower bound of

√
r2 − 2nπ2 and

√
r2 + 2nπ2, where n = 1, 2, · · ·,m.

In the rest of this section, for 4 ≤ m ≤ 10, we will give N(m) such that
for n > N(m), p(n) satisfies the Laguerre inequality of order m. Since the
procedure is similar with that in Section 2, we omit tedious formulae and
just give the value of t, the terms of the Taylor expansion of et and the terms
of the Taylor expansion of the upper and lower bound of

√
r2 − 2nπ2 and√

r2 + 2nπ2, where n = 1, 2, · · ·,m.

For m = 4, set t = 18 in Lemma 2.1. Then for n ≥ 5720 we have

ey
√

12β(y)π2

36y20
< p(n) < ey

√
12α(y)π2

36y20
. (3.1)

where
α(t) = t18 − t17 + 1, β(t) = t18 − t17 − 1. (3.2)

We use the first several terms of the Taylor expansion to approximate the
exponential function. Specially, for t < 0, φ(t) < et < Φ(t) where

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
, (3.3)

φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
. (3.4)

It also requires more precise estimates for y, z, w, j, k, i, s, q as in the proof of
Theorem 2.2, where

s =

√
r2 − 8π2

3
, y =

√
r2 − 2π2, z =

√
r2 − 4π2

3
, w =

√
r2 − 2π2

3
,

j =

√
r2 +

2π2

3
, k =

√
r2 +

4π2

3
, i =

√
r2 + 2π2, q =

√
r2 − 8π2

3
.

9



We use the first 7 and 8 terms of the Taylor expansion to approximate
y, z, w, j, k, i, s, q. It can be checked that for n ≥ 22,

y1 < y < y2, z1 < z < z2, w1 < w < w2, j1 < j < j2,

k1 < k < k2, i1 < i < i2, s1 < s < s2, q1 < q < q2.
(3.5)

where

y1 = r − 4π2

3r
− 8π4

9r3
− 32π6

27r5
− 160π8

81r7
− 896π10

243r9
− 1972π12

243r11
− 13000π14

729r13
,

y2 = r − 4π2

3r
− 8π4

9r3
− 32π6

27r5
− 160π8

81r7
− 896π10

243r9
− 1972π12

243r11
− 11264π14

729r13
,

z1 = r − π2

r
− π4

2r3
− π6

2r5
− 5π8

8r7
− 7π10

8r9
− 21π12

16r11
− 40π14

16r13
,

z2 = r − π2

r
− π4

2r3
− π6

2r5
− 5π8

8r7
− 7π10

8r9
− 21π12

16r11
− 33π14

16r13
,

w1 = r − 2π2

3r
− 2π4

9r3
− 4π6

27r5
− 10π8

81r7
− 28π10

243r9
− 28π12

243r11
− 100π14

729r13
,

w2 = r − 2π2

3r
− 2π4

9r3
− 4π6

27r5
− 10π8

81r7
− 28π10

243r9
− 28π12

243r11
− 88π14

729r13
,

j1 = r − π2

3r
− π4

18r3
− π6

54r5
− 5π8

648r7
− 7π10

1944r9
− 7π12

3888r11
− 12π14

11664r13
,

j2 = r − π2

3r
− π4

18r3
− π6

54r5
− 5π8

648r7
− 7π10

1944r9
− 7π12

3888r11
− 11π14

11664r13
,

k1 = r +
π2

3r
− π4

18r3
+

π6

54r5
− 5π8

648r7
+

7π10

1944r9
− 7π12

3888r11
,

k2 = r +
π2

3r
− π4

18r3
+

π6

54r5
− 5π8

648r7
+

7π10

1944r9
− 7π12

3888r11
+

11π14

11664r13
,

i1 = r +
2π2

3r
− 2π4

9r3
+

4π6

27r5
− 10π8

81r7
+

28π10

243r9
− 28π12

243r11
,

i2 = r +
2π2

3r
− 2π4

9r3
+

4π6

27r5
− 10π8

81r7
+

28π10

243r9
− 28π12

243r11
+

88π14

729r13
,

s1 = r +
π2

r
− π4

2r3
+
π6

2r5
− 5π8

8r7
+

7π10

8r9
− 21π12

16r11
,

s2 = r +
π2

r
− π4

2r3
+
π6

2r5
− 5π8

8r7
+

7π10

8r9
− 21π12

16r11
+

33π14

16r13
,
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q1 = r +
4π2

3r
− 8π4

9r3
+

32π6

27r5
− 160π8

81r7
+

896π10

243r9
− 1972π12

243r11
,

q1 = r +
4π2

3r
− 8π4

9r3
+

32π6

27r5
− 160π8

81r7
+

896π10

243r9
− 1972π12

243r11
+

11264π14

729r13
.

With the similar arguments as in Section 2, we have A(r) is a certain polyno-
mial of degree 235 with positive coefficient of the first term. One can easily
see that for n > 20701, A(r) is positive. It follows that for n > 20701 the
Laguerre inequality of order 4 holds. A direct calculation reveals that for
1102 ≤ n ≤ 20701, p(n) satisfies the Laguerre inequality of order 4. Hence,
we proved Wagner’s conjecture for m = 4.

For m = 5, we also set t = 18 in Lemma 2.1 and then for n ≥ 5720, (3.1)
holds. We use the first 7 and 8 terms of the Taylor expansion to approximate
the exponential function, i.e., for t < 0, φ(t) < et < Φ(t) where

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
, (3.6)

φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
+

t7

5040
. (3.7)

We use the first 9 and 10 terms of the Taylor expansion to approximate√
r2 − 2nπ2 and

√
r2 + 2nπ2, where n = 1, 2, 3, 4, 5. With the similar argu-

ments as in Section 2, we have A(r) is a certain polynomial of degree 334 with
positive coefficient of the first term. It can be checked that for n > 35612,
A(r) is positive. It affirms that p(n) satisfies the Laguerre inequality of or-
der 5 for n > 35612. Numerical evidence gives that for 1923 ≤ n ≤ 35612,
p(n) satisfies the Laguerre inequality of order 5. Hence, we proved Wagner’s
conjecture for m = 5.

For m = 6, we still set t = 18 in Lemma 2.1 and use the same Taylor
expansion of et as that in the case m = 5. We use the first 10 and 11
terms of the Taylor expansion to approximate

√
r2 − 2nπ2 and

√
r2 + 2nπ2,

where n = 1, 2, · · ·, 6. With the similar argument, we have A(r) is a certain
polynomial of degree 387 with positive first coefficient. It can be checked
that for n > 223615, A(r) is positive. It means the positivity of the Laguerre
inequality of order 6. A direct calculation gives that for 3014 ≤ n ≤ 223615,
p(n) satisfies the Laguerre inequality of order 6. Hence, we proved Wagner’s
conjecture for m = 6.

For m = 7, set t = 22 in Lemma 2.1, then for n ≥ 6084 we have

ey
√

12β(y)π2

36y24
< p(n) < ey

√
12α(y)π2

36y24
. (3.8)

where
α(t) = t22 − t21 + 1, β(t) = t22 − t21 − 1. (3.9)
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Let Φ(t) and φ(t) be the first 9 and 10 terms in the Taylor expansion of
et. Then, for t < 0, we have φ(t) < et < Φ(t).We use the first 12 and 13
terms of the Taylor expansion to approximate

√
r2 − 2nπ2 and

√
r2 + 2nπ2,

where n = 1, 2, · · ·, 7. With the similar argument, we have A(r) is a certain
polynomial of degree 541 with positive coefficient of the first term. It can
be verified that for n > 711707, A(r) is positive. It leads to the positivity of
the Laguerre inequality of order 7. The case for 4391 ≤ n ≤ 711707 can be
checked by Mathematica. Hence, we affirm Wagner’s conjecture for m = 7.

For m = 8, set t = 24 in Lemma 2.1, then for n ≥ 11327 we have

ey
√

12β(y)π2

36y26
< p(n) < ey

√
12α(y)π2

36y26
. (3.10)

where
α(t) = t24 − t23 + 1, β(t) = t24 − t23 − 1. (3.11)

We also set Φ(t) and φ(t) be the first 9 and 10 terms in the Taylor expansion
of et. We use the first 13 and 14 terms of the Taylor expansion to approximate√
r2 − 2nπ2 and

√
r2 + 2nπ2, where n = 1, 2, · · ·, 8. Then A(r) is a certain

polynomial of degree 663 with positive first coefficient. It is easily seen
that for n > 31423081, A(r) is positive. Then p(n) satisfies the Laguerre
inequality of order 8 for n > 31423081. A direct calculation reveals that
for 6070 ≤ n ≤ 31423081, p(n) satisfies the Laguerre inequality of order 8.
Hence, we proved Wagner’s conjecture for m = 8.

For m = 9, set t = 28 in Lemma 2.1, then for n ≥ 16350 we have

ey
√

12β(y)π2

36y30
< p(n) < ey

√
12α(y)π2

36y30
, (3.12)

where
α(t) = t28 − t27 + 1, β(t) = t28 − t27 − 1. (3.13)

Φ(t) and φ(t) are the same as those in m = 8. We use the first 15 and 16
terms of the Taylor expansion to approximate

√
r2 − 2nπ2 and

√
r2 + 2nπ2,

where n = 1, 2, · · ·, 9. It leads that A(r) is a certain polynomial of degree
835 with positive first coefficient. One can see that for n > 68197175, A(r)
is positive. It means the positivity of the Laguerre inequality of order 9.
We use mathematica to verify the case for 8063 ≤ n ≤ 68197175. It takes
about ten minutes. Thus p(n) satisfies the Laguerre inequality of order 9 for
n ≥ 8063, which proves Wagner’s conjecture for m = 9.

For m = 10, with the similar argument, we can deduce that for n >
218573927203706866261, A(r) is positive. It means the positivity of the
Laguerre inequality of order 10. But there exists a gap between Wagner’s
conjecture and this bound. We try to use mathematica to verify it, but it
takes few hours and do not give the result.
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