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Abstract
This paper introduces a new way to extract a set of representative points from
a continuous distribution, which focuses on a method where the selection of
points is essentially deterministic, with an emphasis on achieving accurate
approximation when the size of points is small. These points are generated
by minimizing the Kullback-Leibler divergence, which is an information-based
measure of the disparity between two probability distributions. We refer to these
points as Kullback-Leibler points. Based on the link between the total variation
and the Kullback-Leibler divergence, we prove that the empirical distribution
of Kullback-Leibler points converges to the target distribution. Additionally,
we illustrate that Kullback-Leibler points have advantages in simulations when
compared with representative points generated by Monte Carlo or other rep-
resentative points methods. In addition, to prevent the frequent evaluation of
complex functions, a sequential version of Kullback-Leibler points is proposed,
which adaptively updates the representative points by learning about the complex
or unknown functions sequentially. Two potential applications of Kullback-
Leibler points in simulation of complex probability densities and optimization
of complex response surfaces are discussed and demonstrated with examples.

Keywords: Bayesian computation, computer experiments, gaussian process model,
representative points, space-filling design.
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1 Introduction
Computational statistics and machine learning face an important issue, approxi-
mating a complex distribution F with an empirical distribution supported on a set
of representative points {xi}

n
i=1. Markov chain Monte Carlo (Brooks et al., 2011)

methods are extensively used for this task. However, these methods suffer from ‘clus-
tering’ and require a large number of samples to approximate a complex distribution,
which can be costly when the distribution is expensive to evaluate. We illustrate this
with the banana-shaped density function given by (Haario et al., 1999):

f (x) ∝ exp
−1

2
x2

1

100
−

1
2

(x2 − 0.03x2
1 − 3)2

 . (1)

The left side of Figure 1 shows 1000 Monte Carlo (MC) samples obtained by the
R package mcmc. Cleary, although most of the samples are in high-density regions,
many of them are repeated or very close. These repeated or very close samples pro-
vide little additional information when conducting expensive computer simulations,
where the same input will lead to the same output, and then can be viewed as a waste
of evaluations. Therefore, if we can spread the samples as far apart as possible, then
more information about the distribution can be obtained with less effort. We can over-
come this problem by reducing the repeated samples and those that are close to each
other. This is the idea behind deterministic sampling methods such as Quasi-Monte
Carlo (QMC) methods (Sobol’, 1967). However, although QMC methods make the
samples achieve a well-spaced configuration, very few fall into high-density regions,
and thus, most of them are wasted. This is a major drawback of QMC methods since
they were originally developed for generating samples from uniform distributions.
One recommended strategy in the QMC literature is to map samples from a uniform
distribution to a nonuniform distribution F using the inverse of the distribution func-
tion. However, this can be performed only when the variables are independent, which
is rarely observed for most types of distributions.

This paper focuses on exploring a good deterministic sampling method when n
is small, which is an important small-data application in expensive computer simu-
lations (Worley, 1987) and Bayesian calibration (Kennedy and O’Hagan, 2001). A
good deterministic sampling method should satisfy the following: i) place more sam-
ples in high-density regions; ii) ensure that the samples are spread out well; and iii)
avoid a large number of evaluations on the distribution. Such a ‘space-filling’ prop-
erty can allow for improved integration performance over MC and QMC methods.
We outline two classes of deterministic sampling methods.

The first class of good deterministic sampling methods is minimum energy design
(MED, Joseph et al., 2015, 2019). The key ideas are the visualization of the sample
points as charged particles inside a box with the same electrical properties and the
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minimization of the total potential energy of these particles when the charged parti-
cles reach equilibrium. An MED {xi}

n
i=1 of the density function f can be obtained by

minimizing the following potential energy function:

∑
i, j

f (xi)−k/2d f (x j)−k/2d

‖ xi − x j ‖
k
2

, k ∈ [1,∞).

When k → ∞, the MED can be constructed by minimizing

max
i, j

1
f (xi)1/2d f (x j)1/2d ‖ xi − x j ‖2

,

where x is a d-dimensional vextor in Rd, and ‖·‖2 denotes the Euclidean norm.
Constructions on an MED require tedious global optimizations and a number of eval-
uations of the distribution, which can be computationally expensive. Thus, Joseph
et al. (2019) provided a fast algorithm for generating an MED, but the newly gen-
erated MED may perform worse in the space-filling property (see Figure 2), the
explanation can be seen in Section 4.1.

The second class of good deterministic sampling methods is support points
(Mak and Joseph, 2017, 2018), which can provide much better representative points
than the MED. Support points aim to generate representative points by minimizing
the energy distance, a statistical potential measure for testing goodness-of-fit. The
support points {xi}

n
i=1 of F can be obtained by minimizing

2
n

n∑
i=1

E ‖ xi − Y ‖2 −
1
n2

n∑
i=1

n∑
j=1

‖ xi − x j ‖2 −E ‖ Y − Y′ ‖2,

where Y,Y′ i.i.d.
∼ F. However, the algorithm for generating support points needs to

obtain a large number of MC samples first, and then compact these samples into a
set of representative points. Hence, this algorithm will be computationally expensive
when F is complex and expensive to sample.

In this paper, we propose a new deterministic sampling method based on the
Kullback-Leibler divergence to compact a continuous probability distribution F
into a set of representative points, hereafter referred to as Kullback-Leibler (KL)
points. The Kullback-Leibler divergence was first introduced in Kullback and Leibler
(1951); it measures the disparity between two probability distributions. This diver-
gence is widely used in goodness-of-fit and is more computationally efficient than
the classical Kolmogorov-Smirnov statistic (Dudewicz and Van, 1981). Jourdan and
Franco (2010) constructed a space-filling design by minimizing the Kullback-Leibler
divergence between the empirical distribution of the design points and the uniform
distribution. Inspired by this, we extend this method to a general probability distribu-
tion. The key idea is to optimize the divergence between the empirical distribution of
the sample points and the goal distribution, and the generated points are concentrated
in regions of high density and are separate from each other. The right side of Figure 1
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shows 100 KL points from a banana-shaped density function, and it is apparent that
the 100 KL points seem to be no less informative than the 1000 samples obtained
from the MC method.

The representative points of the mixed normal distribution generated by the four
methods are shown in Figure 2, the Monte Carlo points appear to be the worst, and
the number of KL points escaping from the density contour is less than the number
of MED and support points. To prevent the frequent evaluation of complex functions,
this paper also proposes a sequential version of KL points and illustrates two impor-
tant potential applications. One application is to obtain the representative points from
complex distributions. Another important application is exploring complex surfaces,
such as the objective is not only to find a global optimum, but also to find several good
points that can serve as alternatives to the global optimum. The traditional method of
exploring a complex surface mostly relies on a space-filling design (Fang et al., 2006;
Lin and Tang, 2015; Santner et al., 2019; Shi and Tang, 2020); however, these design
points may be placed in zero-yield regions that are not useful because they cannot
provide any information about the surface. The MED can also be used for sampling
from a complex distribution and exploring a complex surface. In later simulations,
we demonstrate that the KL points perform better than the MED in two examples (see
Figure 4-6). Because the energy distance criterion used for generating the support
points requires a normalized distribution, the support points fail to explore complex
distributions and surfaces.

This article is organized as follows. In Section 2, we define KL points using
Kullback-Leibler divergence and present several important theoretical properties of
KL points. In Section 3, we propose a greedy algorithm for efficiently generating
KL points. In Section 4, we outline several simulations to compare the space-filling
property and integration performance of KL points with those of Monte Carlo points,
MED points, and support points. In Section 5, to prevent the frequent evaluation of
complex functions, we develop a sequential version of KL points and propose a gen-
erating algorithm. Two potential applications, one that simulates complex probability
densities and another related to the optimization of nonnegative complex black-box
functions, are discussed in this section. In Section 6, we present some conclud-
ing remarks and directions for future research. All the proofs of the theorems are
presented in the appendix.

2 Kullback-Leibler Points
In this section, we first introduce the definition and some properties of Kullback-
Leibler divergence and then define KL points. To this end, we address some
theoretical results to demonstrate that KL points are appropriate for representing a
target distribution.

Definition 1 (Cover and Thomas, 2006). Suppose that f and g are two continuous probability
density functions supported by a compact set X, where X ∈ Rd . Then, the Kullback-Leibler
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Fig. 1 1000 MC samples (left) vs. 100 KL points (right).

divergence between them is defined as

D(g‖ f ) =

∫
X

g(x) log
g(x)
f (x)

dx. (2)

Proposition 1 (Theorem 8.6.1 of Cover and Thomas, 2006). D(g‖ f ) ≥ 0, with D(g‖ f ) = 0 if
and only if g = f almost everywhere.

To access deterministic samples from a given target density function, we use
the Kullback-Leibler divergence between the kernel density estimator on the sample
points and the target density to measure the representation of the sample points. We
refer to fn as the kernel density estimator on {xi}

n
i=1 ⊆ X; then, the Kullback-Leibler

divergence between f and fn becomes:

D( fn‖ f ) =

∫
X

fn(x) log
fn(x)
f (x)

dx. (3)

Here, fn is defined as

fn(x) =
1

nhd
n

n∑
i=1

K
(

x − xi

hn

)
, (4)

where the kernel function K and bandwidth hn satisfy the following:
(K1) K is a continuous and compactly supported probability density function on X;
(K2) K(−t) = K(t), ∀t ∈ X;
(K3)

∫
X

tt′K(t)dt = µ2(K)I, where µ2(K) =
∫
X

t2
i K(t)dt < ∞;

(K4) ‖K‖22=
∫
X

K2(t)dt < ∞;
(K5) hn → 0, nhd

n → ∞ as n→ ∞.
Under the conditions (K1)-(K5), 0 ≤ D( fn‖ f ) < ∞, and it can be viewed as a

metric. Hence, we can define the KL points as the point set that minimizes D( fn‖ f ).

Definition 2 (KL points) Suppose that the support set of f is a compact set X, where X ⊆ Rd .
For a fixed point set size n ∈ N, the KL points of a continuous probability density function f
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are defined as:

{ξi}
n
i=1 = arg min

x1,...,xn
D( fn‖ f ) = arg min

x1,...,xn

∫
X

fn(x) log
fn(x)
f (x)

dx, (5)

where fn is defined as in (4).

Let F be the cumulative distribution function of the density f . Now, we present
the theoretical justification for using the KL points defined in (5) as the representative
points for the continuous distribution F.

Define f KL
n as the kernel density estimator on KL points {ξi}

n
i=1. We first illus-

trate the total variation and the Kullback-Leibler divergence between f KL
n and the

target density f converge to 0 as in Theorem 1. This result is important to proof the
theoretical justification for using the KL points as the representative points for the
continuous distribution F, which are described in Theorem 2 and Theorem 3.

Theorem 1 Suppose that density f satisfies the following:

(A1) The support set of f is a compact set X, X ⊆ Rd;

(A2) and f is Lipschitz continuous; i.e.,

| f (x) − f (y)| ≤ L‖x − y‖2, ∀x, y ∈ X,

where L is a positive number.

Suppose that the kernel K and bandwidth hn satisfying (K1)–(K5). Then, we have

lim
n→∞

D( f KL
n ‖ f ) = 0 (6)

and
lim

n→∞

∫
X

∣∣∣ f KL
n (x) − f (x)

∣∣∣ dx = 0. (7)

Now, we introduce the first theoretical justification for using the KL points as
the representative points. Let Fn be the absolutely continuous empirical distribution
corresponding to f KL

n . According to Theorem 1, the next theorem states that Fn con-
verges to F. Moreover, this result is an important bridge to prove that the standard
empirical distribution function of the KL points converges to F.

Theorem 2 Suppose probability density function f satisfies conditions (A1)-(A2), kernel K
and bandwidth hn satisfy (K1)–(K5). Let Fn(A) =

∫
A f KL

n (x)dx and A ∈ B, whereB is the Borel
σ-algebra of X; then,

lim
n→∞

sup
A∈B
|Fn(A) − F(A)| = 0.

In addition, if A = (−∞, x] ∈ B, we have

lim
n→∞

sup
x
|Fn(x) − F(x)| = 0.

Next, we introduce the second theoretical justification for using the KL points as
the representative points. Let FKL

n (x) = 1
n
∑n

i=1 I(ξi ≤ x) denote the standard empirical
distribution of KL points, where ξi ≤ x means that each component of vector ξi is less
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than or equal to the corresponding component of vector x. According to Theorem 1
and Theorem 2 we can show that FKL

n converges to F, which is presented in Theorem
3.

Theorem 3 Suppose probability density function f satisfies conditions (A1)-(A2), kernel K
and bandwidth hn satisfy (K1)–(K5). Then, we have

lim
n→∞

sup
x
|FKL

n (x) − F(x)| = 0.

Theorem 2 and Theorem 3 convincingly demonstrate that KL points are indeed
representative of the target distribution F as the number of points n becomes large.

3 Generating Kullback-Leibler Points
Because (5) is an integral, so generating KL points by (5) is very difficult or infeasible
in practice. According to the Pinsker’s inequalities (Tsybakov, 2009), we have

D( fn‖ f ) 6
∫
X

fn(x)
log

fn(x)
f (x)

 dx 6 D( fn‖ f ) +
√

D( fn‖ f )/2.

Hence, choosing the points {x1, . . . , xn} which minimize
∫
X

fn(x)
log fn(x)

f (x)

 dx will

lead to minimized D( fn‖ f ). If we let q(z; {xi}
n
i=1) := fn(z)

log fn(z)
f (z)

, then∫
X

fn(x)
log fn(x)

f (x)

 dx can be considered as the expectation of q(z; {xi}
n
i=1) under the

uniform distribution on X. Thus, we can sample N design points Z = {zi}
N
i=1 in X,

and use

D̂( fn‖ f ) =
1
N

N∑
j=1

q(z j; {xi}
n
i=1) =

1
N

N∑
j=1

1
nhd

n

n∑
i=1

K
(

z j − xi

hn

) log
1

nhd
n

∑n
i=1 K

( z j−xi

hn

)
f (z j)


to estimate

∫
X

fn(x)
log fn(x)

f (x)

 dx. We choose a large maximin Latin hypercube sam-
ples {zi}

N
i=1 using the R package LHD (Morris and Mitchell, 1995) as Z, which is a

space-filling design and can achieve variance reduction than the Monte Carlo method
(LHS, Mckay et al., 1979). Obviously, D̂( fn‖ f ) is nonnegative. Due to the large LHS
Z = {z1, · · · , zN} is a space-filling design which can span the support set X, so we
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can obtain the KL points by optimize D̂( fn‖ f ) onZ, i.e.

arg min
x1,...,xn⊆Z

D̂( fn‖ f ) = arg min
x1,...,xn⊆Z

1
N

N∑
j=1

1
nhd

n

n∑
i=1

K
(

z j − xi

hn

)
log


1

nhd
n

∑n
i=1 K

( z j−xi

hn

)
f (z j)


= arg min

x1,...,xn⊆Z

1
N


n∑

j=1

1
nhd

n

n∑
i=1

K
(

x j − xi

hn

)
log


1

nhd
n

∑n
i=1 K

( x j−xi

hn

)
f (x j)


+

∑
z j∈Z\{xi}

n−1
i=1

1
nhd

n

n∑
i=1

K
(

z j − xi

hn

)
log


1

nhd
n

∑n
i=1 K

( z j−xi

hn

)
f (z j)


 ,

(8)
where the kernel function K is a truncated multivariate exponential power distribu-
tion, i.e.

K(t) ∝ exp(−‖t‖2)I(t ∈ X).
We have tried many types of kernel functions include the multivariate Gaussian ker-
nel, but we observe that the multivariate exponential power kernel performs much
better than other types of kernels, which is also used in Wu and Ghosal (2008). The
bandwidth hn is chosen by the minimized approximate mean integrated squared error
criterion (Härdle et al., 2004); that is,

hn =

 d‖K‖22
nµ2

2(K)
∫
X

[tr(H f (x))]2dx

1/(d+4)

= O(n−1/(d+4)),

where H f (x) is the Hessian matrix of second partial derivatives of f (x).
Based on condition (K5), we recommend the empirical bandwidth hn =

d−1/(d+4)d−1 ∑d
i=1 σ

2
i n−1/(d+4) in practice, where σ2

i is the true marginal variance for
the i-th dimension of F. From (8), we can see that optimizing D̂( fn‖ f ) may place
more KL points in high-density regions and ensure them spread out well.

Finding the KL points is a computationally difficult problem. In theory, we should
adopt the optimal design algorithms such as the exchange algorithm to do a global
optimization directly on the n points by minimizing the criterion (8). But it is difficult
in practice and time-consuming. Consequently, in this section, we present a one-
point-at-a-time greedy algorithm to generate KL points. Suppose we have already
generated m − 1 points by (8); then, the m-th point is generated by

xm = arg min
x∈X

D̂( fm‖ f )

= arg min
x∈Z\{xi}

m−1
i=1

1
N

N∑
j=1

1
mhd

m

m−1∑
i=1

K
(

xi − z j

hm

)
+ K

(
x − z j

hm

) log


∑m−1

i=1 K
( xi−z j

hm

)
+ K

( x−z j

hm

)
mhd

m f (z j)


= arg min

x∈Z\{xi}
m−1
i=1

M(x|{xi}
m−1
i=1 ; {z j}

N
j=1),
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where, M(x|{xi}
m−1
i=1 ; {z j}

N
j=1) = 1

N
∑N

j=1
1

mhd
m

(∑m−1
i=1 K

( xi−z j

hm

)
+ K

( x−z j

hm

))
× log


∑m−1

i=1 K
(

xi−z j
hm

)
+K

(
x−z j
hm

)
mhd

m f (z j)

.

We choose the first point by

x1 = arg max
x∈Z

f (x).

We traverseZ to generate the m-th KL point xm. Algorithm 1 below outlines the
detailed steps for generating the n KL points of f .

Algorithm 1 Generating n KL points via the greedy algorithm
Input: n, {z j}

N
j=1

Output: x1, · · · , xn

1: if m=1 then
2: x1 = arg maxx∈Z f (x)
3: else
4: for m = 2, · · · , n do
5: xm = arg minx∈Z\{xi}

m−1
i=1

M(x|{xi}
m−1
i=1 ; {z j}

N
j=1)

6: end for
7: end if

4 Simulation Study
The KL points can be viewed as the optimal sampling points of F (in the sense of
minimum Kullback-Leibler divergence) for any desired sample size n. These points
are concentrated in regions with high densities and are sufficiently spread out to
maximize the representative power. Thus, KL points perform well as representative
points. This property allows improved integration performance, and these points tend
to perform well when used in other applications. In this section, we provide sev-
eral simulations to illustrate the distinct advantages of KL points compared with MC
points, MED points and support points. The MC points are generated by the R pack-
age mcmc, and the MED points, support points are generated by the R package mined
and support, respectively.

4.1 Space-Filling Property
For visualization, Figure 2 shows the n = 100 points for the mixed normal
distribution

P =
1
2

N(µ1,Σ1) +
1
2

N(µ2,Σ2)
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defined on [−5, 5]2, where µ1 = (−1.5, 0)
′

, µ2 = (1.5, 0)
′

, and Σ1 = Σ2 = I. From this
figure, the KL points appear to be slightly more representative than the MED points
and support points, and much more representative than the MC points. For MED
points, the worse space-filling property may be caused by the criteria for generating
MED points, I think the energy function may not be a good criterion to measure the
performance of the representative points for the target density f . For support points,
the worse space-filling property may be caused by the algorithm which needs to
obtain a large number of MC samples first, and then compress the large MC samples
into a set of representative points. Hence, the space-filling property of support points
rely on the large MC samples, and the worse space-filling property of large MC
samples may be result in worse space-filling property of the support points.

MC points

-5 -3 -1 1 3 5
-5
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1

3

5
MED points

-5 -3 -1 1 3 5
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Fig. 2 Space-filling for a mixed normal distribution with n = 100, solid lines represent density contours.

4.2 Numerical Integration
We now investigate the integration performance of KL points in comparison with
MC points, MED points, and support points. The absolute error is used to measure
the precision of the integral, i.e.

∫X g(x) f (x)dx − n−1 ∑n
i=1 g(xi)

, where {x1, · · · , xn}

are the representative points of f , which are obtained by these four methods. The
simulation setup is as follows. We generate MC points, MED points, support points,
and KL points with point set sizes ranging from n = 50 to 300. Since the MC points
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are randomized, we repeat it 1000 times to evaluate the error by its average. We use
the distributions and integrand functions based on the following cases.
(M1) a two-dimensional function

g(x) = exp(−4(x2
1 + x2

2)) + 6 sin(π(x1 + x2))/(2 − sin(π(x1 + x2)), where the
distribution of x = (x1, x2) is a truncated multivariate Gaussian N(0, σ2R),
whose support is [−5, 5]2, σ = 1, Ri j = 0.5|i− j| for i, j = 1, 2;

(M2) a five-dimensional function
g(x) = exp(−x2

1+x2+x3)+sin(x2
4+x5), where the distribution of x = (x1, · · · , x5)

is a truncated multivariate Gaussian N(0, σ2R), whose support is [−5, 5]5, σ =

1, Ri j = 0.5|i− j| for i, j = 1, 2;
(M3) a four-dimensional function

g(x) = exp(−
∑4

l=1 αl(xl − µl)) − sin(x3 + x4), where the distribution of x =

(x1, · · · , x4) is a truncated multivariate Gaussian ∼ N(0, I), whose support is
[−5, 5]4, αl = 1/45, µl is the marginal means of N(0, I);

(M4) a six-dimensional function
g(x) = exp(−

∑6
l=1 αl(xl − µl)),where the distribution of x = (x1, · · · , x4) is

a truncated multivariate Gaussian ∼ N(0, I), whose support is [−5, 5]6, αl =

1/45, µl is the marginal means of N(0, I).
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Fig. 3 The absolute errors for the cases (M1)-(M4).
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Figure 3 shows the absolute errors of numerical integration for the cases (M1)-
(M4), where the true values for (M1)-(M3) are estimated by a large number of MC
points, and the true values for (M4) is 0.9362. From these figures, we observe that KL
points enjoy considerably reduced errors compared to MC points and MED points,
and even have smaller errors than support points in the case (M1)-(M3). Due to the
algorithm for generating support points need to obtain a large number of MC samples
first. Hence, it will be computationally expensive when F is expensive to sample.
Consequently, KL points may be a good alternative sampling method for expensive
distributions.

5 Sequential Kullback-Leibler Points for Complex
Functions

The direct application of Algorithm 1 for generating KL points cannot be performed
easily when f is complex and expensive to compute, because it requires to evaluate
N times f (z), i.e. f (z1), · · · , f (zN), where N � n is usually large. This section pro-
poses an approximate version of KL points to reduce the frequent evaluation of f .
By analogy with the method of sequential minimum energy design (SMED, Joseph
et al., 2015), we replace f with an easy-to-evaluate approximation f̂ . Here, a sequen-
tial strategy is used to implement KL points in such situations. The key idea is to learn
about f sequentially and implement the KL points accordingly. For this purpose, we
still adopt the one-point-at-a-time greedy algorithm described in the previous section.
To obtain a good estimator f̂ , we first generate a maximin Latin hypercube design
Dn0 = {x1, . . . , xn0 } using the R package LHD (Morris and Mitchell, 1995) as the initial
point set. Then, the corresponding outputs {yi}

n0
i=1 are obtained by yi = f (xi). Finally,

we can use statistical methods such as kriging to estimate f , denoting the estimator as
f̂ (n0). Based on the initial set Dn0 , we can generate the next n − n0 KL points sequen-
tially. At each m = n0 + 1, · · · , n, the estimator f̂ (m−1) can be updated via {x j, y j}

m−1
j=1 .

The m-th point xm can be generated by traversing onZ \ {xi}
m−1
i=1

xm = arg min
x∈Z\{xi}

m−1
i=1

D̂( fm‖ f̂ (m−1))

= arg min
x∈Z\{xi}

m−1
i=1

1
N

N∑
j=1

1
mhd

m

m−1∑
i=1

K
(

xi − z j

hm

)
+ K

(
x − z j

hm

) log


∑m−1

i=1 K
( xi−z j

hm

)
+ K

( x−z j

hm

)
mhd

m f̂ (m−1)(z j)


= arg min

x∈Z\{xi}
m−1
i=1

M′(x|{xi, yi}
m−1
i=1 , {z j}

N
j=1),

where, M′(x|{xi, yi}
m−1
i=1 , {z j}

N
j=1) = 1

N
∑N

j=1
1

mhd
m

(∑m−1
i=1 K

( xi−z j

hm

)
+ K

( x−z j

hm

))
× log


∑m−1

i=1 K
(

xi−z j
hm

)
+K

(
x−z j
hm

)
mhd

m f̂ (m−1)(z j)

 .
We also choose the multivariate exponential power distribution as the ker-

nel function K, and hm is chosen as similar in Section 3, i.e. hm =
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d−1/(d+4)d−1 ∑d
i=1 σ̂

2
i m−1/(d+4), where σ̂2

i is the estimation variance for the i-th dimen-
sion of f with the sampling points . We call the KL points generated by the above
algorithm as sequential Kullback-Leibler (SKL) points.

Algorithm 2 outlines the detailed process for generating n− n0 SKL points based
on the initial set Dn0 . The rest of this section demonstrates two important applications

Algorithm 2 Generating the n − n0 SKL points via the greedy algorithm
Input: n, Dn0 ,Z = {z j}

N
j=1

Output: xn0+1, · · · , xn

1: Compute {yi}
n0
i=1 by yi = f (xi)

2: for m = (n0 + 1), · · · , n do
3: Estimate f̂ (m−1) via {x j, y j}

m−1
j=1

4: Compute f̂ (m−1)(z1), · · · , f̂ (m−1)(zN)
5: Update M′(x|{xi, yi}

m−1
i=1 , {z j}

N
j=1)

6: xm = arg minx∈Z\{xi}
m−1
i=1

M′(x|{xi, yi}
m−1
i=1 , {z j}

N
j=1)

7: ym = f (xm)
8: end for

of SKL points.

5.1 Simulation from Complex Probability Densities
When density is complex and expensive to evaluate, Algorithm 1 may be a time-
consuming implementation, and we will not be able to find the KL points efficiently
by directly minimizing the Kullback-Leibler divergence. Hence, we adopt Algo-
rithm 2 to generate the SKL points of the expensive density. Here, we choose a
Gaussian process model (or kriging) to estimate the expensive density. Because the
approximated density should be nonnegative, we fit the following stationary Gaus-
sian process model (or ordinary kriging) after taking a logarithmic transformation of
the density (which can be unnormalized ):

log f (·) ∼ GP(µ, σ2R(·)),

where the correlation function is defined as cor(log f (xi), log f (x j)) = R(xi − x j).
If we generate an initial set of n0-points using a maximin Latin hypercube design
Dn0 = {x1, . . . , xn0 } and obtain the outputs y(n0) = (y1, . . . , yn0 )′, where yi = f (xi), then
the meta-model is given by (Sacks et al., 1989)

f̂ (n0)(x) = exp{µ̂(n0) + r(n0)(x)
′

R−1
(n0)(y

(n0)−µ̂(n0)1n0 )}, (9)

where r(n0)(x) is a vector of length n0 with the i-th element R(x − xi), R(n0) is an
n0 × n0 correlation matrix with the i j-th element R(xi − x j), 1n0 is a vector of 1′s,
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and µ̂(n0) = (1′n0
R−1

(n0)1n0 )−11′n0
R−1

(n0)y
(n0). For the correlation function, we choose the

popular Gaussian correlation function given by

R(t) = exp{−
d∑

i=1

θit2
i }.

Finally, conducting Algorithm 2, we can obtain the SKL points of the density
function f .

For example, consider the two-dimensional probability density with banana-
shaped contours given by equation (1). We generate n=50 points; the first n0 = 20
points are a maximin Latin hypercube design, and the remaining 30 points are gener-
ated using the SKL points in Algorithm 2 marked as ∗’s in Figure 4. For comparison,
via the same initial points, we also generate 30 points using the SMED marked as ∗’s
in Figure 4. Clearly, the SKL points are a better set of representative points than those
of the SMED in this case. In addition, we find that the SMED is sensitive to different
initial points and that the SKL points are robust to different initial points and produce
better representative points.

SKL points

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
SMED points

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4 Comparison of SKL points and SMED points with the same initial points, which are shown as •’s
.

5.2 Exploration and Optimization of Complex Black-Box
Functions

Global optimization is an important but difficult problem. Many algorithms, such as
simulated annealing and genetic algorithms, can be used to search for global optima.
However, these algorithms require numerous evaluations of the function, which can
become costly if the objective function is complex and expensive to evaluate. By
a closer look at Algorithm 2, we can see that this algorithm can generate the SKL
points for any nonnegative function (can be regarded as a non-standard density) with
high-density and ensure them spread out well. Hence, suppose that the complex
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black-box function is nonnegative, i.e. f (x) ≥ 0, then we can treat any nonnegative
complex black-box function as a non-standard density, and then applying Algorithm
2 to obtain its SKL points. These SKL points may contain more points with large
function values.

Instead of tuning the SKL points for the purpose of global optimization, we focus
on a slightly different objective which is not only to find a global optimum, but also
to find several good points that can serve as alternatives to the global optimum (
SKL points have a greater probability of choosing to a value around the maximum).
This situation arises quite often in multi-objective optimization (Miettinen, 2012).
Obviously, SKL points may offer a good solution to this problem. Without loss of
generality, let the optimization problem be to maximize f in some bounded region
X. Similar to Section 5.1, we again choose a Gaussian process model to estimate any
nonnegative complex black-box function. In other words, based on an initial space-
filling point set containing n0 points, we still choose f̂ (n0) as in (9) to estimate f .
Applying Algorithm 2, we can obtain the SKL points of f .

For illustration, we consider Franke’s two-dimensional function (Fasshauer,
2007)

f (x) =
3
4

exp{−
1
4

(9x1 − 2)2 −
1
4

(9x2 − 2)2} +
3
4

exp{−
1
49

(9x1 + 1)2 −
1
10

(9x2 + 1)2}

+
1
2

exp{−
1
4

(9x1 − 7)2 −
1
4

(9x2 − 3)2} −
1
5

exp{−(9x1 − 4)2 − (9x2 − 2)2} + 0.5.

The initial space-filling point set is also a maximin Latin hypercube design with
n0 = 20 points. Applying Algorithm 2, we can obtain 20 SKL points on the left of
Figure 5, where the new points are numbered 21-40. The global optimum of f is
x∗ = (0.21, 0.17), which is denoted as ∗ in Figure 5. The approximate global optimum
finding by SKL points is the 25th points xSKL = (0.209, 0.192).

For comparison, we also generate points by SMED via the same 20 initial points.
The next 20 SMED points are shown on the right side of Figure 5 numbered 21-40.
The approximate global optimum of f finding by SMED is xSMED = (0.155, 0.130)
in the 24th point. From Figure 5, we can see that: 1) the approximate global optimum
finding by SKL points is more close to the true global optimum than SMED points;
2) SKL points can provide more alternative points around the true global optimum
than SMED points.

Given that the choice of the initial design may affect both the SKL points and
SMED in finding the global optimum, we utilize 50 randomly generated Latin hyper-
cube designs as the initial design to compare the performance of SKL points and
SMED in terms of finding the global optimum. The boxplots in Figure 6 show the
Euclidean distance of the optimum found by the SKL points and SMED points from
the true global optimum x∗ with both methods repeated 50 times. As expected, the
SKL points show better performance in finding the global optimum.
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Fig. 5 Comparison of SKL points and SMED points: the +’s represent the initial point set, and the next
points appear in order sequentially.
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Fig. 6 Boxplots for the Euclidean distance of the optimum found by the SKL points and SMED points
with both methods repeated 50 times.

6 Conclusion
This article proposed a new sampling method by minimizing the Kullback-Leibler
divergence, which causes the sample points to be concentrated in regions with high
densities and sufficiently spreads the points away from each other. The proposed KL
points are based on ideas from information theory, which is used to measure the dis-
tance between two distributions. We derived some theoretical results to show that
the limiting distribution of KL points converge to the target distribution. The simula-
tions show that the KL points are a better set of representative points of F when n is
small. Moreover, to address complex functions, we developed a sequential algorithm
for adaptive implementation of KL points, called SKL points, in Section 5. Com-
pared with the existing methods, the SKL points may perform better in simulation
and optimization.
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The MC method is flexible and easy to implement in practice as long as the
distribution is fairly inexpensive to evaluate. The clear advantage of KL points over
MC is that the distribution information provided by KL points is roughly the same
as that provided by MC with multiple sample sizes of KL points. This advantage is
important in the small-data application for the expensive distributions in Bayesian
problems and expensive computer simulations when the dimension is not very large.

While this paper establishes some interesting results for KL points, there are
still many exciting avenues for future research. First, the advantage of KL points
generated via the kernel density estimate is not apparent for high-dimensional dis-
tributions. At this point, we suggest generating KL points based on estimating
the density via the nearest neighbour distance (Wang et al., 2006), i.e., by using
f Neib
n (x) = 1

nV1(d)ρd
1(xi)

I(x ∈ S (xi, ρ1(xi))) instead of fn(x) = 1
nhd

n

∑n
i=1 K( x−xi

hn
), where

V1(d) = πd/2

Γ( d
2 +1)

denotes the volume of the unit ball in Rd, ρ1(xi) = min j,i ‖xi − xi‖2,
and S (xi, ρ1(xi)) denotes the ball with centre xi and radius ρ1(xi). In this case, an
unbiased estimator of the Kullback-Leibler divergence between f Neib

n and f is

D( f Neib
n ‖ f ) = −

d
n

n∑
i=1

log ρ1(xi) +
1
n

n∑
i=1

log f (xi) + log V1(d) + log n + γ

 ,
where γ is the Euler constant. The KL points obtained by minimizing D( f Neib

n ‖ f ) are
referred to as KL-Neib points, which may enjoy smaller errors for high-dimensional
numerical integration (see Figure 7). However, these new methods of obtaining KL
points can be costly in terms of time; an efficient algorithm for obtaining KL-Neib
points in high dimensions will be one direction for future work. Next, motivated by
Hickernell (1998), the KL points in high dimensions should provide a good represen-
tation of not only the full distribution F but also of marginal distributions of F. Such
a projective property is enjoyed by most QMC point sets (Dick et al., 2013). It would
also be interesting to incorporate this within the KL point framework.
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Appendix A Appendix: Proofs
This appendix material provides proofs of Theorem 1-Theorem 3. Define f ∗n as the
kernel density estimator on {x∗j}

n
j=1, where {x∗j}

n
j=1

i.i.d.
∼ f (x). The proof of Theorem 1

relies on Lemma 1 below, which indicates that the expectation of D( f ∗n ‖ f ) converges
to 0 as n→ ∞.
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Fig. 7 The absolute errors of numerical integration for g(x) = exp(−
∑d

l=1 αl(xl − µl)2) under a truncated
N(0, I) on [−5, 5]d (a), and g(x) = exp(−x2

1 − x2 − x3) sin(x6 x10) under a truncated N(0, σ2R) on [−5, 5]d

(b), where αl = 20/d, µl = 0, and σ = 1, Ri j = 0.5i-j for i, j = 1, · · · , d.

Lemma 1 Suppose probability density function f satisfies conditions (A1)-(A2) and that
{x∗j}

n
j=1

i.i.d.
∼ f . f ∗n is the kernel density estimator on {x∗j}

n
j=1, and the kernel function K and the

bandwidth hn satisfy (K1)–(K5). Then,

lim
n→∞

E[D( f ∗n ‖ f )] = 0.

Proof: For simplicity, we take d = 1 for example, the proof for d > 1 is similar.
Let {x∗j}

n
j=1

i.i.d.
∼ f , f ∗n (x) = 1

nhn

∑n
i=1 K( x−x∗i

hn
) be the kernel density estimator based on

{x∗j}
n
j=1, and kernel function K and the bandwidth hn satisfy (K1)- (K5).
Since f satisfies (A1)-(A2), then f is continuous over X. And note that f is a

density function then we know that there exists constant fmax such f ≤ fmax < ∞
holds. The variance of f ∗n (x) satisfies:

var ( f ∗n (x)) = var

 1
nhn

n∑
i=1

K
(

x − x∗i
hn

)
≤

1
nh2

n
E

[
K2

(
x − x∗1

hn

)]
=

1
nh2

n

∫
X

K2
(

z − x
hn

)
f (z)dz

=
1

nhn

∫
X

K2(t) f (thn + x)dt

≤
fmax

nhn

∫
X

K2(t)dt =
C1

nhn
, (A1)

where C1 = fmax‖K‖22, ‖K‖22=
∫
X

K2(t)dt.



Springer Nature 2021 LATEX template

Deterministic Sampling Based on Kullback-Leibler Divergence and its Applications 19

The bias of f ∗n (x) have the following results.

E[ f ∗n (x)] − f (x) =
1

nhn

n∑
i=1

E
[
K

(
x − x∗i

hn

)]
− f (x)

=
1
hn

∫
X

K
(

z − x
hn

)
f (z)dz − f (x)

=

∫
X

K(t) f (thn + x)dt − f (x)

=

∫
X

K(t)[ f (thn + x) − f (x)]dt.

(A2)

In term of f satisfies ∀ x, y ∈ X, | f (x) − f (y)| ≤ L|x − y|. Hence, we obtain

|E[ f ∗n (x)] − f (x)| ≤
∫
X

K(t)|Lthn|dt

= Lhn

∫
X

|t|K(t)dt

≤ Lhn

{∫
X

t2K(t)dt
}1/2

= C2hn,

(A3)

where C2 = L
{∫
X

t2K(t)dt
}1/2

.
The Kullback-Leibler divergence between f and f ∗n is

D( f ∗n ‖ f ) =

∫
X

f ∗n (x) log
f ∗n (x)
f (x)

dx.

By the inequality log x ≤ (x − 1), the expectation of D( f ∗n ‖ f ) satisfies:

E[D( f ∗n ‖ f )] = E
[∫
X

f ∗n (x) log
f ∗n (x)
f (x)

dx
]

≤ E
[∫
X

f ∗n (x)
(

f ∗n (x)
f (x)

− 1
)

dx
]

= E
[∫
X

f ∗n (x)
f ∗n (x)
f (x)

dx
]
− 1

=

∫
X

E
[

f ∗n (x)
f ∗n (x)
f (x)

]
dx − 1

=

∫
X

E[ f ∗n (x)]2 − f 2(x)
f (x)

dx

≤

∫
X

|E[ f ∗n (x)]2 − f 2(x)|
f (x)

dx. (A4)
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The penultimate “=” sign holds following from Fubini theorem.
According to (A1) and (A3), we can obtain

|E[ f ∗n (x)]2 − f 2(x)| =
∣∣∣E[ f ∗n (x) − f (x) + f (x)]2 − f 2(x)

∣∣∣
=

∣∣∣E[ f ∗n (x) − f (x)]2 + 2 f (x)E[ f ∗n (x) − f (x)]
∣∣∣

≤ E[ f ∗n (x) − f (x)]2 + 2 f (x)
∣∣∣E[ f ∗n (x)] − f (x)

∣∣∣
= E

{
f ∗n (x) − E[ f ∗n (x)] + E( f ∗n (x)) − f (x)

}2
+ 2 f (x)

∣∣∣E[ f ∗n (x)] − f (x)
∣∣∣

= var ( f ∗n (x)) +
∣∣∣E[ f ∗n (x)] − f (x)

∣∣∣2 + 2 f (x)
∣∣∣E[ f ∗n (x)] − f (x)

∣∣∣
≤ var ( f ∗n (x)) + C2

2h2
n + 2 f (x)

∣∣∣E[ f ∗n (x)] − f (x)
∣∣∣

≤
C1

nhn
+ C2

2h2
n + 2C2hn f (x) ∆

= Gn(x). (A5)

Obviously, Gn(x)
f (x) is monotonically decreasing in n, and limn→∞

Gn(x)
f (x) = 0. So, ∀n,

Gn(x)
f (x) ≤

G1(x)
f (x) . Due to

∫
X

G1(x)
f (x) dx < ∞, then, by the Lebesgue’s convergence theorem

(Billingsley , 2008), we obtain

lim
n→∞

∫
X

Gn(x)
f (x)

dx =

∫
X

lim
n→∞

Gn(x)
f (x)

dx = 0. (A6)

Note that ∫
X

|E[ f ∗n (x)2] − f 2(x)|
f (x)

dx ≤
∫
X

Gn(x)
f (x)

dx

and we have

lim
n→∞

∫
X

|E[ f ∗n (x)2] − f 2(x)|
f (x)

dx = 0. (A7)

Then the conclusion limn→∞ E[D( f ∗n ‖ f )] = 0 is established.
To prove Theorem 1 and Theorem 2, we also need the following lemma.

Lemma 2 Let f and g be two density functions supported on X ⊆ Rd , then

(a)

V( f , g) def
= sup

A∈B

∣∣∣∣∣∫
A

( f (x) − g(x))dx
∣∣∣∣∣ =

1
2

∫
X

| f (x) − g(x)|dx,

where B is the Borel σ-algebra of X.

(b)
2V2( f , g) ≤ D(g‖ f ).

This Lemma can be obtained by Scheffé’s theorem (refer to Tsybakov, 2009,
p.84) and Pinsker’s inequality (refer to Tsybakov, 2009, p.88), respectively.
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Proof of Theorem 1. Define the sequence of random variables {x∗j}
∞
j=1

i.i.d.
∼ f ,

and let f ∗n denote the kernel density estimator on {x∗j}
n
j=1. According the Lemma 1,

limn→∞ E[D( f ∗n ‖ f )] = 0.
Consider now the kernel density estimator f KL

n on the KL points {ξi}
n
i=1. By the

definition of KL points,
D( f KL

n ‖ f ) ≤ E[D( f ∗n ‖ f )],
so limn→∞ D( f KL

n ‖ f ) = 0.
Using Pinsker’s inequality in Lemma 2 (b),

1
2

(∫
X

| f KL
n (x) − f (x)|dx

)2

≤ D( f KL
n ‖ f ),

then conclusion limn→∞
∫
X
| f KL

n (x) − f (x)|dx = 0 follows.

Proof of Theorem 2. Due to f KL
n is the kernel density estimator on KL points

{ξi}
n
i=1 and satisfies (K1)- (K5), then

sup
A∈B

∣∣∣∣∣∫
A
[ f KL

n (x) − f (x)]dx
∣∣∣∣∣ =

1
2

∫
X

| f KL
n (x) − f (x)|dx (A8)

based on Lemma 2 (a). Combing Theorem 1 and (A8), we have

lim
n→∞

sup
A∈B

∣∣∣∣∣∫
A
[ f KL

n (x) − f (x)]dx
∣∣∣∣∣ = 0. (A9)

Set A = (−∞, x] ∈ B, we have

lim
n→∞

sup
x
|Fn(x) − F(x)| = 0.

where Fn is the cumulative distribution function of density function f KL
n , and F is the

cumulative distribution function of f .

Two lemmas will be needed for the proof of Theorem 3.

Lemma 3 Suppose kernel K satisfys (K1)-(K5). Then,

(a) ∀ ε > 0, there exist M > 0, such that
∫

[−M,M]d K(t)dt ≥ 1 − ε.

(b) For the above M > 0, ∃ y0, such that ϕ(x, y0) ≥ 1/3, where

ϕ(x, y) =

∫
∏d

i=1[xi−yi,xi+yi]
K(t)dt,

x = (x1, · · · , xd) ∈ [−M,M]d and y = (y1, · · · , yd).

Proof: (a) follows from is a density function.
(b) Note that, limy→+∞ ϕ(x, y) ≥ 1/2 for any x = (x1, · · · , xd) ∈ [−M,M]d, then

conclusion follows.
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Lemma 4 Let {ξi}ni=1 be the KL points of f . Then

lim
n→∞

sup
x∈X

Nx
n

= 0,

where

Nx =

n∑
i=1

I
(

x − ξi
hn

∈ [−M,M]d
)
,

hn is the bandwidth used to generate KL points and M is defined in Lemma 3.

Proof: For simplicity, we take d = 1 for example. Due to ∀ δ > 0, limn→∞
δ
hn

=

+∞, so ∃ n0, such that when n > n0, δ
hn
≥ y0 holds, where y0 satisfies I(|x| ≤

M)ϕ(x, y0) ≥ 1/3 defined in Lemma 3.
We use reduction to absurdity to prove this result. If Lemma 4 doesn’t hold, then

∃ x∗, for ∀ N > n0, ∃ nk > N, such that Nx∗

nk
≥ c0, which means

∑nk
i=1 I(| x

∗−ξi
hnk
| ≤ M)

nk
≥ c0,

where c0 is a positive constant.
Then, we have

Fnk (x∗ + δ) − Fnk (x∗ − δ) =
1
nk

nk∑
i=1

∫ x∗+δ

x∗−δ

1
hnk

K
(

t − ξi

hnk

)
dt

=
1
nk

nk∑
i=1

∫ x∗−ξi
hnk

+ δ
hnk

x∗−ξi
hnk
− δ

hnk

K(z)dz

≥
1
nk

nk∑
i=1

I
(∣∣∣∣∣∣ x∗ − ξi

hnk

∣∣∣∣∣∣ ≤ M
) ∫ x∗−ξi

hnk
+y0

x∗−ξi
hnk
−y0

K(z)dz

≥

∑nk
i=1 I(| x

∗−ξi
hnk
| ≤ M)

3nk

≥
c0

3
,

where Fnk is the cumulative distribution function correspond the kernel density esti-
mator fnk , which used to generated KL points. The penultimate “≥” holds by Lemma
3. This contradicts to Fnk is a continuous distribution. We conclude the proof.

Proof of Theorem 3. Let F
KL

n denote the standard empirical distribution of KL
ponits {ξi}

n
i=1, Fn denote the cumulative distribution function of f KL

n . We first prove
that

lim
n→∞

sup
x
|Fn(x) − F

KL

n (x)| = 0.
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For simplicity, we take d = 1, ∀ x ∈ X,

|Fn(x) − F
KL

n (x)| =
1
n

n∑
i=1

∣∣∣∣∣∣
∫ x

−∞

1
hn

K
(

t − ξi

hn

)
dt − I(ξi ≤ x)

∣∣∣∣∣∣
=

1
n

n∑
i=1

∣∣∣∣∣∣∣
∫ x−ξi

hn

−∞

K(z)dz − I(ξi ≤ x)

∣∣∣∣∣∣∣ .
If ξi ≤ x, then x−ξi

hn
≥ 0, and∣∣∣∣∣∣∣

∫ x−ξi
hn

−∞

K(z)dz − I(ξi ≤ x)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ x−ξi

hn

−∞

K(z)dz − 1

∣∣∣∣∣∣∣
=

∫ +∞

x−ξi
hn

K(z)dz

≤ I
(
0 ≤

x − ξi

hn
≤ M

) ∫ M

x−ξi
hn

K(z)dz +
ε

2
,

where M and ε are defined as in Lemma 3, i.e. ∀ ε > 0, there exist M > 0, such that∫ M
−M K(t)dt ≥ 1 − ε, and

∫ −M
−∞

K(t)dt =
∫ +∞

M K(t)dt < ε
2 .

If ξi > x, then x−ξi
hn

< 0, and∣∣∣∣∣∣∣
∫ x−ξi

hn

−∞

K(z)dz − I(ξi ≤ x)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ x−ξi

hn

−∞

K(z)dz − 0

∣∣∣∣∣∣∣
≤ I

(
−M ≤

x − ξi

hn
< 0

) ∫ x−ξi
hn

−M
K(z)dz +

ε

2
.

In summary, for ∀ x ∈ X the absolute error between Fn(x) and F
KL

n (x) is

0 ≤ |Fn(x) − F
KL

n (x)| ≤
1
n

n∑
i=1

I
(∣∣∣∣∣ x − ξi

hn

∣∣∣∣∣ ≤ M
) ∫ M

|
x−ξi
hn
|

K(z)dz +
ε

2

≤
1

2n

n∑
i=1

I
(∣∣∣∣∣ x − ξi

hn

∣∣∣∣∣ ≤ M
)

+
ε

2
. (A10)

In term of Lemma 4,

lim
n→∞

sup
x

1
n

n∑
i=1

I
(∣∣∣∣∣ x − ξi

hn

∣∣∣∣∣ ≤ M
)

= 0.
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Hence, ∀ ε > 0, there exist N, such that when n ≥ N, for ∀ x ∈ X, we have

0 ≤ |Fn(x) − F
KL

n (x)| ≤
ε

2
+
ε

2
= ε.

Consequently, we obtain limn→∞ supx|Fn(x) − F
KL

n (x)| = 0. The proof for d > 1 is
similar, hence

lim
n→∞

sup
x
|Fn(x) − F

KL

n (x)| = 0. (A11)

Due to

sup
x
|F

KL

n (x) − F(x)| ≤ sup
x
|F

KL

n (x) − Fn(x)| + sup
x
|Fn(x) − F(x)|,

and combing with Theorem 2, we have

lim
n→∞

sup
x
|F

KL

n (x) − F(x)| = 0.
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