
Extremal P8-free/P9-free planar graphs

Yongxin Lan1, Yongtang Shi2
1School of Science

Hebei University of Technology, Tianjin, 300401, China
2Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, P.R. China
Email: yxlan@hebut.edu.cn; shi@nankai.edu.cn

November 23, 2020

Abstract

An H-free graph is a graph containing no the given graph H as a subgraph. It is well-known
that the Turán number ex(n,H) is the maximum number of edges in an H-free graph on n
vertices. Based on this definition, we define exP (n,H) to restrict the graph classes to planar
graphs, that is, exP (n,H) = max{|E(G)| : G ∈ G}, where G is a family of all H-free planar
graphs on n vertices. Obviously, we have exP (n,H) = 3n − 6 if the graph H is not a planar
graph. The study is initiated by Dowden [J. Graph Theory 83 (2016) 213–230]. And Dowden
obtained some results when H is considered as C4 or C5. In this paper, we determine the values
of exP (n, Pk) with k ∈ {8, 9}, where Pk is a path with k vertices.

AMS Classification: 05C10; 05C35.
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1 Introduction

Only simple graphs are considered in this paper. Let k be a positive integer. If a cycle has k

vertices, then we call it Ck. Similarly, we say Pk is a path with k vertices. For convenient, let

[k] := {1, 2, . . . , k}. Let G be a graph with vertex set V (G) and edge set E(G). For any vertex

x ∈ V (G), let NG(x) denote the neighbours of x in G and dG(x) denote the degree of x in G. The

minimum degree of the graph G is δ(G), that is, δ(G) = min{dG(x) : x ∈ V (G)}. Given a vertex set

S, we use G[S] to denote the subgraph of G induced on S and use G\S to denote the subgraph of

G induced on V (G)\S. For two vertex sets S, S′ ⊆ V (G), the set consisting of all vertices belong to

S′ but not S is denoted by S′\S or S′−S. In particular, if S = {s}, then we simply write S′\s and

replace G\S with G\s. We say that S is complete to (resp. anti-complete to) S′ if for each a ∈ S
and each b ∈ S′, there is an edge ab ∈ E(G) (resp. ab /∈ E(G)). And we simply say a is complete to

(resp. anti-complete to) S′ if S = {a}. For two vertex disjoint graphs G and H, the join G+H is

the graph having vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{xy |x ∈ V (G), y ∈ V (H)};
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and the union G ∪H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H). For a

positive integer t, we use tH to denote disjoint union of t copies of a graph H. If G is isomorphism

to H, then we write G = H. A graph H is a spanning subgraph of a graph G if H is a subgraph

of G with V (H) = V (G). Given a graph H, let χ(H) denote the chromatic number of H.

Given a family of graphs H, we call a graph is H-free if it contains no graph in H as a subgraph.

If H = {H}, then we simply say the graph is H-free. In 1941, Turán showed that the graph with

more than the edges of the Turán graph Tn,r(balanced complete r-partite graph) must contain a

Kr+1 as a subgraph. This theorem is the well-known Turán theorem. Later, Erdős-Stone showed

that, for any graph H, an H-free graph on n vertices has at most (1+o(1))(χ(H)−2
χ(H)−1)n2 edges. Turán

problems are one of the oldest questions in extremal combinatoric. Some special classes of host

graphs are investigated. When the host graphs are hypergraphs, this problems draw the attention

of many researchers, see [3, 2, 8]). We refer to [7] for a survey on Turán-type problems.

In 2015, Dowden [1] introduced the Turán-type problem with planar graphs as host graphs.

Given a family of planar graph H, the planar Turán number of H, denoted by exP (n,H), is the

maximum number of edges in an H-free planar graph on n vertices. If H = {H}, then exP (n,H)

can be simply written as exP (n,H). When H is a special class of graphs, such as complete graphs

and cycle graphs, the corresponding planar Turán number have been determined by Dowden. The

following are some of his results. Note that each bound is tight.

Theorem 1.1 ([1]) Let n be a positive integer.

(a) exP (n,K3) = 2n− 4 for all n ≥ 3;

(b) exP (n,K4) = 3n− 6 for all n ≥ 3;

(c) exP (n,C4) ≤ 15(n− 2)/7 for all n ≥ 4;

(d) exP (n,C5) ≤ (12n− 33)/5 for all n ≥ 11.

It seems quite non-trivial to determine exP (n,Ck) for all k ≥ 6. In [5], together with Song,

the authors proved that exP (n,C6) ≤ 18(n − 2)/7 for all n ≥ 6, where this bound is not tight.

Furthermore, several sufficient conditions on H which yield exP (n,H) = 3n − 6 for all n ≥ |H|
were obtained in [6]. This partially answers a question of Dowden [1]. In [4], we study the case of

short paths and determine the planar Turán number of paths Pk with k ∈ {6, 7, 10, 11}.
In this paper, we consider the planar Turán number exP (n,H) for some special classes H. And

we promote the idea of determining the maximum number of edges in a Pk-free planar graph on

n ≥ 3 vertices when k ∈ {8, 9}.
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2 Main Results

We need to introduce more notation. For a positive integer t, let εt be the remainder of t when

divided by 2, and let Mt = bt/2cK2 ∪ εtK1. Let Tt denote the family of all planar triangulations

on t vertices and let T ∗t ⊆ Tt be the family of planar triangulations with a hamiltonian cycle. For

integer k ≥ 9, let Fk−5,n be the family of graphs obtained from T ∪Mn−k+5 by joining every vertex

of Mn−k+5 to the two adjacent vertices of one fixed hamiltonian cycle of T , where T ∈ T ∗k−5. One

can easily see that every graph in Fk−5,n is Pk-free and contains a path on k−1 vertices. Finally, a

graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

If xy is an edge in a graph G, we denote by G/xy the graph obtained from G by contracting the

edge xy into a single vertex and deleting all resulting parallel edges and loops.

It is worth noting that if P is a longest path with ends u, v in a graph G, then NG(u) ⊆ V (P )

and NG(v) ⊆ V (P ). We shall make use of the following Lemma 2.1. The proof of Lemma 2.1(a, b,

d) is straightforward and is omitted here. The proof of Lemma 2.1(c) can be obtained by applying

the key idea in the proof of the classical result of Dirac.

Lemma 2.1 Let G be a connected graph and let P be a longest path in G with vertices v1, v2, . . . , v`

in order, where ` = |P | and |G| > ` ≥ 3. Then

(a) G[V (P )] has no spanning cycle. In particular, v1v` /∈ E(G), and if v1vs ∈ E(G) for some

s ∈ {2, . . . , `− 1}, then vs−1v` /∈ E(G). Similarly, if v`vs ∈ E(G) for some s ∈ {2, . . . , `− 1},
then v1vs+1 /∈ E(G).

(b) vs−1vt+1 /∈ E(G) if v1vs ∈ E(G) and v`vt ∈ E(G), where s, t ∈ [`] with 2 ≤ s ≤ t ≤ ` − 1.

Similarly, vt−1 is anti-complete to {vs−1, vs+1} if v1vs ∈ E(G) and v`vt ∈ E(G), where s, t ∈ [`]

with 4 ≤ t+ 2 ≤ s ≤ `− 1.

(c) 2δ(G) ≤ dG(v1) + dG(v`) ≤ `− 1.

(d) v` (resp. v1) is not adjacent to any two consecutive vertices in {v2, v3, . . . , v`−1} if v1v`−1 ∈ E(G)

(resp. v`v2 ∈ E(G)).

We first study the the maximum number of edges possible in a P8-free planar graph on n ≥ 3

vertices. Clearly, exP (n, P8) = 3n− 6 when n ∈ {3, 4, . . . , 7}.

Theorem 2.2 Let n ≥ 3 be an integer. Let G be a P8-free planar graph on n vertices. Then

e(G) ≤ 15n/7, with equality exactly when n = 7t for some positive integer t and G = T1 ∪ · · · ∪ Tt,
where Ti ∈ T7 for all i ∈ [t].

Proof. Let G,n be given as in the statement. We shall prove that e(G) ≤ 15n/7 by induction on

n. Since any graph on at most 7 vertices is P8-free and |G| ≥ 3, we see that e(G) ≤ 3n−6 ≤ 15n/7,
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with equality when n = 7 and G ∈ T7. So we may assume that n ≥ 8. Let x ∈ V (G) be a vertex

with dG(x) = δ(G). Then G − x is a P8-free planar graph on n − 1 vertices. By the induction

hypothesis, e(G− x) ≤ 15(n− 1)/7 and so e(G) = e(G− x) + dG(x) < 15n/7 when dG(x) ≤ 2. So

we may assume that dG(x) ≥ 3. Assume next that G is disconnected. Let H be a component of G.

Then |H| ≥ 4 and |G\V (H)| ≥ 4 because δ(G) ≥ 3. By the induction hypothesis, e(H) ≤ 15|H|/7
and e(G\V (H)) ≤ 15|G\V (H)|/7. Hence, e(G) = e(H)+e(G\V (H)) ≤ 15|H|/7+15|G\V (H)|/7 ≤
15n/7, with equality when both H and G\V (H) are disjoint union of planar triangulations on 7

vertices. Hence, when G is disconnected, e(G) ≤ 15n/7, with equality when n = 7t for some integer

t ≥ 2 and G = T1 ∪ · · · ∪ Tt, where for all i ∈ [t], Ti ∈ T7, as desired. So we may assume that G

is connected. Let P be a longest path in G with vertices v1, v2, . . . , v` in order. Since G is P8-free,

we see that ` ≤ 7. By Lemma 2.1(c), 6 ≤ 2δ(G) ≤ dG(v1) + dG(v`) ≤ 7− 1 = 6, which implies that

` = 7, δ(G) = 3 and dG(v1) = dG(v7) = 3. We say that a vertex of degree 3 in G is good if it is an

end of a path on 7 vertices. Since |G| ≥ 8, we see that

(∗) the ends of every path in G on 7 vertices must be non-adjacent good vertices.

Let NG(v1) = {v2, vi, vj} with 3 ≤ i < j ≤ 6 and NG(v7) = {vi′ , vj′ , v6} with 2 ≤ i′ < j′ ≤ 5.

We next show that either j = i + 1 or j′ = i′ + 1. Suppose that j ≥ i + 2 and j′ ≥ i′ + 2. By

Lemma 2.1(a), j = i + 2 and j′ = i′ + 2. Then i ∈ {3, 4} because v1v7 /∈ E(G). If i = 3, then

by Lemma 2.1(a), i′ = i = 3 and j′ = j = 5. By (∗), all of v2, v4, v6 must be good vertices with

all their neighbors on P . Then either v2v4 ∈ E(G) or v4v6 ∈ E(G), contrary to Lemma 2.1(b).

Thus i = 4. Then NG(v1) = {v2, v4, v6}. By Lemma 2.1(a), NG(v7) = {v2, v4, v6}. By (∗), both

v3 and v5 are good vertices with all their neighbors on P . By Lemma 2.1(b), v3v5 /∈ E(G). Thus

v3v6 ∈ E(G) and v2v5 ∈ E(G). But then {v1, v3, v7} is complete to {v2, v4, v6} in G, a contra-

diction. This proves that either j = i + 1 or j′ = i′ + 1. We may assume that j = i + 1. By

Lemma 2.1(d), v2v7 /∈ E(G). By Lemma 2.1(a), NG(v1) = {v2, v3, v4} and NG(v7) = {v4, v5, v6}.
One can easily check that all of v1, v2, v3 are good vertices in G. By the induction hypothesis,

e(G\{v1, v2, v3}) ≤ 15(n− 3)/7 = 15n/7− 45/7. Hence, e(G) = e(G\{v1, v2, v3}) + 6 < 15n/7.

We are ready to prove a result on the maximum number of edges possible in a P9-free planar

graph on n ≥ 3 vertices.

Theorem 2.3 Let n ≥ 3 be an integer. Let G be a P9-free planar graph on n vertices. Then

e(G) ≤ max{9n4 ,
5n
2 − 4}, with equality exactly when G ∈ T8 or when G = T1 ∪ T2 with T1, T2 ∈ T8

or when n ≥ 16 is even and G ∈ F4,n.

Proof. Let G,n be given as in the statement. Note that max{9n4 ,
5n
2 − 4} = 5n

2 − 4 when n ≥ 16

and max{9n4 ,
5n
2 − 4} = 9n

4 when n ≤ 16. We shall prove the statement by induction on n. Since
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any graph on at most 8 vertices is P9-free and |G| ≥ 3, we see that e(G) ≤ 3n − 6 ≤ 9n
4 , with

equality when n = 8 and G ∈ T8. So we may assume that n ≥ 9. Let x ∈ V (G) be a vertex with

dG(x) = δ(G). Then G−x is a P9-free planar graph on n−1 vertices. By the induction hypothesis,

e(G − x) ≤ max{94 (n − 1), 52 (n − 1) − 4} and so e(G) = e(G − x) + dG(x) < max{9n4 ,
5n
2 − 4}

when dG(x) ≤ 2. So we may assume that dG(x) ≥ 3. Assume next that G is disconnected. Let

H be a component of G. Then |H| ≥ 4 and |G\V (H)| ≥ 4 because δ(G) ≥ 3. By the induction

hypothesis, e(H) ≤ max{94 |H|,
5
2 |H| − 4} and e(G\V (H)) ≤ max{94 |G\V (H)|, 52 |G\V (H)| − 4}.

Hence, e(G) = e(H) + e(G\V (H)) ≤ max{94 |H|,
5
2 |H| − 4} + max{94 |G\V (H)|, 52 |G\V (H)| −

4} ≤ max{9n4 ,
5n
2 − 4}, with equality when both H and G\V (H) are planar triangulations on 8

vertices. Hence, when G is disconnected, e(G) ≤ max{9n4 ,
5n
2 − 4}, with equality when n = 16

and G = T1 ∪ T2, where T1, T2 ∈ T8. So we may assume that G is connected. Let P be a longest

path in G with vertices v1, v2, . . . , v` in order. We may assume that dG(v1) ≤ dG(v`). Since G

is P9-free, ` ≤ 8. By Lemma 2.1(c), 6 ≤ 2δ(G) ≤ dG(v1) + dG(v`) ≤ ` − 1 ≤ 7, which implies

that δ(G) = 3. Then ` ∈ {7, 8}. Assume that ` = 7. Then G is P8-free. By Theorem 2.2,

e(G) ≤ 15n
7 < 9n

4 ≤ max{9n4 ,
5n
2 − 4}, as desired. So we may assume that ` = 8. Then dG(v1) = 3

and dG(v8) ∈ {3, 4}. A vertex of degree 3 in G is good if it is an end of a path on 8 vertices. Since

|G| ≥ 9, by Lemma 2.1(a), the ends of every path in G on 8 vertices must be non-adjacent and one

of them is good.

Let NG(v1) = {v2, vi, vj} with 3 ≤ i < j ≤ 7. We first consider the case when dG(v8) = 4.

Let NG(v8) = {vi′ , vj′ , v`′ , v7} with 2 ≤ i′ < j′ < `′ ≤ 6. Since dG(v8) = 4, by Lemma 2.1(d),

v1v7 /∈ E(G). We next show that j = i + 1. Suppose that j ≥ i + 2. If j ≥ i + 3, then by

Lemma 2.1(a, d), i = i′ = 3, j′ = 4, j = `′ = 6. Since G[V (P )] has a path on 8 vertices with ends

v2, v8 (resp. v5, v8), we see that both v2 and v5 must be good vertices with all their neighbors on P .

By Lemma 2.1(b), v5 is anti-complete to {v2, v3, v7} in G. But then dG(v5) = 2, a contradiction.

Thus j = i + 2. Then i ∈ {3, 4} because v1v7 /∈ E(G). If i = 3, then NG(v8) = {v3, v5, v6, v7}
by Lemma 2.1(a). Then G[V (P )] has a path on 8 vertices with ends v2, v8 (resp. v4, v8). Thus

both v2 and v4 must be good vertices with all their neighbors on P . By Lemma 2.1(b), v4 is anti-

complete to {v2, v6, v7} in G. But then dG(v4) = 2, a contradiction. Thus i = 4. By Lemma 2.1(a),

NG(v8) = {v2, v4, v6, v7}. Then G[V (P )] has a path on 8 vertices with ends v3, v8 (resp. v5, v8).

Thus both v3 and v5 must be good vertices with all their neighbors on P . By Lemma 2.1(b),

v5 is anti-complete to {v3, v7} in G. Thus v5v2 ∈ E(G). But then {v1, v5, v8} is complete to

{v2, v4, v6} and so G contains K3,3 as a subgraph, contrary to the fact that G is planar. This

proves that j = i + 1. By Lemma 2.1(d), v2v8 /∈ E(G). Since dG(v8) = 4, by Lemma 2.1(a),

NG(v1) = {v2, v3, v4} and so NG(v8) = {v4, v5, v6, v7}. Then all of v1, v2, v3 must be good vertices

in G. By the induction hypothesis, e(G\{v1, v2, v3}) ≤ max{9(n−3)4 , 5(n−3)2 − 4}. Hence, e(G) =

e(G\{v1, v2, v3}) + 6 < max{9n4 ,
5n
2 − 4}, as desired. So we may assume that dG(v8) = 3 and we
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may further assume that

(∗) the ends of every path in G on 8 vertices are non-adjacent good vertices.

Let NG(v8) = {vi′ , vj′ , v7} with 2 ≤ i′ < j′ ≤ 6. We next show that j ≤ i+3. Suppose j ≥ i+4.

Since v1v8 /∈ E(G), we have j = i+4. Then i = 3 and j = 7. By Lemma 2.1(a,d), i′ = 3 and j′ = 5.

Then G[V (P )] has a path on 8 vertices with one end in {v2, v4, v6}, by (∗), all of v2, v4, v6 are good

vertices with all their neighbors on P . By Lemma 2.1(b), {v2, v4, v6} is an independent set in G.

Since G is connected and |G| > |P |, let w ∈ V (G)\V (P ) be such that w is adjacent to some vertex

on P in G. Since all of v1, v2, v4, v6, v8 are good vertices with all their neighbors on P , we see that

w can only be adjacent to v3, v5 or v7 on P . Note that G[{v1, v2 . . . , v7}] has a spanning cycle. It

follows that dG(w) = 3 and w is complete to {v3, v5, v7} in G. Since G is K3,3-free, v6v3 /∈ E(G),

else {v6, v8, w} is complete to {v3, v5, v7} in G. But then dG(v6) = 2, a contradiction. This proves

that j ≤ i+ 3. By symmetry, j′ ≤ i′ + 3.

Assume next that j = i + 3. Then i ∈ {3, 4}. We next show that i = 3. Suppose i = 4. Then

j = 7. By Lemma 2.1(a, d), i′ = 2 and j′ ∈ {4, 5}. If j′ = 4, then by (∗), all of v3, v5, v6 are good

vertices with all their neighbors on P , because G[V (P )] has a path on 8 vertices with one end in

{v3, v5, v6}. By Lemma 2.1(b), v3 is anti-complete to {v5, v6} in G. Thus v3v7 ∈ E(G). But then

{v1, v3, v8} is complete to {v2, v4, v7} and so G contains K3,3 as a subgraph, contrary to the fact

that G is planar. Thus j′ = 5. By Lemma 2.1(b), v6 is anti-complete to {v3, v4} in G. By (∗),
both v3 and v6 are good vertices with all their neighbors on P . Thus v6v2 ∈ E(G). But then G has

a spanning cycle on 8 vertices v2, v6, v5, v8, v7, v1, v4, v3 in order, contrary to Lemma 2.1(a). This

proves that i = 3 and so j = 6. By Lemma 2.1(a), i′ ∈ {3, 4} and j′ ∈ {4, 6}. We next show that

(i′, j′) = (3, 6). Suppose (i′, j′) 6= (3, 6). If i′ = 4, then j′ = 6. By (∗), all of v2, v5, v7 are good

vertices with all their neighbors on P . By Lemma 2.1(b), v5 is anti-complete to {v2, v3, v7} in G.

But then dG(v5) = 2, a contradiction. Thus i′ = 3 and so j′ = 4 because (i′, j′) 6= (3, 6). Then

dG(v3) ≥ 4. But then G has a path on 8 vertices with vertices v3, v2, v1, v6, v7, v8, v4, v5 in order,

contrary to (∗). This proves that (i′, j′) = (3, 6). By (∗), all of v2, v4, v5, v7 are good vertices with

all their neighbors on P . By Lemma 2.1(b), v4 is anti-complete to {v2, v7} in G. Thus v4v6 ∈ E(G).

By symmetry, v5v3 ∈ E(G). By Lemma 2.1(b), v2v7 /∈ E(G). Thus v2v6 ∈ E(G). By symmetry,

v7v3 ∈ E(G). Since G is connected and |G| > |P |, let w ∈ V (G)\V (P ) be such that w is adjacent to

some vertex on P in G. Since all of v1, v2, v4, v5, v7, v8 are good vertices with all their neighbors on

P , we see that w can only be adjacent to v3 or v6 on P . Note that G[{v1, v2 . . . , v6}] has a spanning

cycle. Since δ(G) ≥ 3 and G is P9-free, it follows that for any w ∈ V (G)\V (P ), dG(w) = 3, w is

complete to {v3, v6} in G, and every component of G\V (P ) is isomorphic to K2. This is possible

when n ≥ 10 is even. It follows that G[{v3, v4, v5, v6}] = K4 when v3v6 ∈ E(G), {v3, v6} is complete

to V (G)\{v3, v4, v5, v6} in G, and G\{v3, v4, v5, v6} = n−4
2 K2. Hence, when (i, j) = (i′, j′) = (3, 6)

and n ≥ 10 is even, e(G) ≤ 5n
2 − 4, with equality when v3v6 ∈ E(G), {v3, v6} is complete to
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V (G)\{v3, v4, v5, v6} in G and G\{v3, v4, v5, v6} = n−4
2 K2, that is, when G ∈ F4,n.

So we may assume that j ≤ i+ 2. By symmetry, j′ ≤ i′+ 2. We next show that either j = i+ 1

or j′ = i′+1. Suppose j = i+2 and j′ = i′+2. Then i ∈ {3, 4, 5} and j′ ∈ {4, 5, 6}. If i = 3, then by

Lemma 2.1(a), i′ = 3 and so j = j′ = 5. By (∗), all of v2, v4, v6 must be good vertices with all their

neighbors on P . By Lemma 2.1(b), v4v2, v4v6, v6v2 /∈ E(G). Thus v4v7, v6v3 ∈ E(G). But then

{v4, v6, v8} is complete to {v3, v5, v7}, a contradiction. Thus i 6= 3. By symmetry, j′ 6= 6. If i = 4,

then i′ = 2 because j′ 6= 6. By (∗), both v3 and v5 must be good vertices with all their neighbors on

P . By Lemma 2.1(b), v3v5 /∈ E(G). Hence, either v3v6 ∈ E(G) or v3v7 ∈ E(G). But then G[V (P )]

containsK3,3 as a minor, because {v1, v3, v8} is complete to {v2, v4, w} inG/v6v7, where w is the new

vertex in G/v6v7, a contradiction. Thus i 6= 4. By symmetry, j′ 6= 5. Thus i = 5, but then j′ = 4

because j′ /∈ {5, 6, 7}, contrary to Lemma 2.1(a). This proves that either j = i+1 or j′ = i′+1. We

may assume that j = i+ 1. Note that j′ ≤ i′ + 2. By Lemma 2.1(d), v2v8 /∈ E(G). We next show

that i ∈ {3, 4}. Suppose i ∈ {5, 6}. By Lemma 2.1(a), v8 is anti-complete to {vi−1, vi} in G. If

i = 5, then i′ = 3 and j′ = 6 because v2v8 /∈ E(G), contrary to the fact that j′ ≤ i′+2. If i = 6, then

v1v7 ∈ E(G), i′ = 3 and j′ = 4 because v2v8 /∈ E(G), contrary to Lemma 2.1(d). Hence i ∈ {3, 4}.
Assume first that i = 3. Then NG(v1) = {v2, v3, v4}. One can easily check that all of v1, v2, v3 must

be good vertices in G. By the induction hypothesis, e(G\{v1, v2, v3}) ≤ max{94 (n−3), 52 (n−3)−4}.
Hence e(G) = e(G\{v1, v2, v3}) + 6 < max{9n4 ,

5n
2 − 4}, as desired. It remains to consider the case

i = 4. Since j′ ≤ i′ + 2, by Lemma 2.1(a), NG(v8) = {v5, v6, v7} and so all of v6, v7, v8 must be

good vertices in G. By symmetry, e(G) = e(G\{v6, v7, v8}) + 6 < max{9n4 ,
5n
2 − 4}.

This completes the proof of Theorem 2.3.
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