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Abstract

In this paper, we give characterizations of graphs with line graphs or iterated line graphs that
have dominating cycles. The characterization of graphs with dominating cycles in its line graphs
and its i-iterated line graphs for i ≥ 2 are different: we may not unify them.

As an application, we give characterizations of graphs with iterated line graphs that have
dominating induced cycles. They are very different from the known results, although those
characterizations for dominating cycles have some similarities with results on hamiltonian iterated
line graphs of Harary and Nash-Williams (1965) and Xiong and Liu (2002).

Using these results, we also give some analysis on the complexity of determining the existence
of dominating cycles. It is NP-complete to decide whether a given graph has a dominating in-
duced cycle, even for a 2-iterated line graph.

Keyword: Iterated line graph; Dominating cycle; Dominating induced cycle.

1 Introduction

The graphs considered in this paper are finite undirected graphs without loops. For graph-theoretical
notation and terminology not defined here we refer the reader to [2].

Let G = (V (G), E(G)) be a graph. The line graph L(G) of G has E(G) as its vertex set, and two
vertices are adjacent in L(G) if and only if the corresponding edges are adjacent in G. The i-iterated
line graph Li(G) is defined recursively by L0(G) = G, L1(G) = L(G) and Li(G) = L(Li−1(G)), and
Li−1(G) is assumed to be nonempty.

A graph G is hamiltonian if G has a Hamilton cycle containing all vertices of G. Harary and
Nash-Williams[13] characterized those graphs G for which L(G) is hamiltonian. Xiong and Liu [28]
characterized the graphs whose i-iterated line graphs are hamiltonian for i ≥ 2.

A cycle C of a graph G is dominating if G − V (C) is edgeless. Inspired by the research on
Hamilton cycles, we consider similar problems about dominating cycles. It is natural to ask that for
any integer k, does there exist a characterization of those graphs G for which Lk(G) has dominating
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cycles? We will answer this question and give a characterization: Theorems 2 and 3. More results
on dominating cycles can be found in [7, 17, 25].

We need some more notation and terminology. For a graph G and a nonnegative integer k, we de-
note Vk(G) = {x ∈ V (G) : dG(x) = k}, where dG(x) is the degree of x in G. The distance dG(H1, H2)
between two subgraphs H1 and H2 of G is defined to be min{dG(v1, v2) : v1 ∈ V (H1), v2 ∈ V (H2)},
where dG(v1, v2) denotes the length of a shortest path between v1 and v2 in G. If dG(e,H) = 0 for
an edge e of G, we say that H dominates e. For a subgraph H of G, let E(H) denote the set of
edges of G that are incident with some vertices of H, that is, dominated by H. A subgraph H of G
is called dominating if it dominates all edges of G, that is, E(H) = E(G). For X ⊆ V (G), let G[X]
be the vertex-induced subgraph of G, and let G−X = G[V (G) \X]. For S ⊆ E(G), let G[S] be the
edge-induced subgraph of G, and let G− S = G[E(G) \ S].

A subgraph of G is called eulerian if it is connected and even. If an eulerian subgraph is nontrivial,
then it contains at least one cycle. An eulerian subgraph D of a graph G is called a Dλ-eulerian
subgraph if every component of G−V (D) has order less than λ. Moreover, if D is a cycle such that
every component of G− V (D) has order less than λ, we call it a Dλ-cycle of G. Some results about
Dλ-cycle refer to [26]. In particular, a D1-eulerian subgraph is a spanning eulerian subgraph, and a
D1-cycle is a Hamilton cycle. In connected graphs, a D2-eulerian subgraph is a dominating eulerian
subgraph, and a D2-cycle is a dominating cycle.

A graph is trivial if it has only one vertex, nontrivial otherwise. A branch in G is a nontrivial
path with internal vertices, if any, of degree two in G and neither endvertex of degree two in G.
We denote by B(G) the set of branches of G and B1(G) the subset of B(G) in which at least one
endvertex has degree one. For a subgraph H of G, BH(G) denotes the set of branches of G with all
edges in H.

In order to characterize the graphs G whose i-iterated line graphs are hamiltonian for i ≥ 2,
Xiong and Liu [28] defined EUk(G), where EUk(G)(k ≥ 2) is the set of those subgraphs H of a
graph G that satisfy the following conditions:

(I) H is an even graph,

(II) V0(H) ⊆
⋃∆(G)
i=3 Vi(G) ⊆ V (H),

(III) dG(H1, H −H1) ≤ k − 1 for every subgraph H1 of H,

(IV) |E(B)| ≤ k + 1 for every branch B ∈ B(G) \ BH(G),

(V) |E(B)| ≤ k for every branch B ∈ B1(G).

Theorem 1. Let G be a connected graph with at least three edges. Then the following holds.

(1) (Harary and Nash-Williams [13]) L(G) is hamiltonian if and only if G has a D2-eulerian
subgraph.

(2) (Xiong and Liu [28]) For i ≥ 2, Li(G) is hamiltonian if and only if EUi(G) 6= ∅.

We start with a characterization of those graphs with a line graph that has a dominating cycle.

Theorem 2. Let G be a connected simple graph that is not a path. Then L(G) has a dominating
cycle if and only if G has a D3-eulerian subgraph.
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By modifying conditions (IV) and (V) of EUk(G), we introduce EDUk(G), where EDUk(G)(k ≥
2) is the set of those subgraphs H of a graph G that satisfy (I),(II),(III) and the following conditions:

(IV∗) |E(B)| ≤ k + 2 for every branch B ∈ B(G) \ BH(G),

(V∗) |E(B)| ≤ k + 1 for every branch B ∈ B1(G).

Theorem 3. Let G be a connected graph with at least three edges and i ≥ 2. Then Li(G) has a
dominating cycle if and only if EDUi(G) 6= ∅.

Chartrand [3] was one of the first to study properties of iterated line graphs. And in [4] he
introduced the hamiltonian index of a graph G, denoted h(G), which is the least nonnegative integer
k such that Lk(G) is hamiltonian, see also [18]. More generally, we have the following definition[19].

P(G) =

{
min{k : Lk(G) has property P} if at least one such integer k exists,
∞ otherwise.

By the definition of P(G), the dominating cycle index of a graph G, denoted dc(G), is the least
nonnegative integer k such that Lk(G) has a dominating cycle. By the relation of dominating cycle
and Hamilton cycle, for a connected graph G that is not a path, dc(G) exists and it has a natural
bound, h(G)− 1 ≤ dc(G) ≤ h(G).

Besides hamiltonicity, many cycle properties of iterated line graphs have been studied, including
k-orderability[16], k-ordered hamiltonicity[14], pancyclicity[22], Hamilton-connectivity[6], existence
of 2-factors[10] and existence of even factors[27]. Some other properties on iterated line graphs were
also considered. The connectivity of iterated line graphs was discussed in [5, 15, 23]. Planarity and
outerplanarity refer to [12] and [20].

Proofs of Theorem 2 and 3 are presented in Section 2. Section 3 is a further research on domi-
nating induced cycles of iterated line graphs. Section 4 is devoted to the analysis of the complexity
of the problem to determine these subgraphs. The last section is devoted to the concluding remarks.

2 Characterization of graphs with iterated line graphs that have
dominating cycles

Lemma 4. Let G be a connected graph and C be a cycle of L(G). Then there exists an eulerian
subgraph H of G such that E(H) ⊆ V (C) ⊆ E(H).

Proof. Let C = e1e2 . . . eme1 be a cycle of L(G) with m ≥ 3, where ei ∈ E(G). We construct
a subgraph H of G induced by the set of the remaining edges of {e1, e2, . . . , em} by deleting the
si + ti− 1 edges ei−ti+1, . . . , ei+si−1 as many as possible such that those edges ei−ti , . . . , ei, . . . , ei+si
have the same common endvertex with si + ti − 1 ≥ 1 for any possible i, where the subscript takes
modules by m. The above resulting graph H is possible an edgeless graph, then the edge set of
e1, e2, . . . , em induces a star of G and we let H be the center vertex of the star. By our construct, H
is a connected graph in which every vertex has even degree. Hence H is an eulerian subgraph. Since
H is a subgraph of G induced by subset of edges e1, . . . , em, it holds that E(H) ⊆ V (C) ⊆ E(H).
This completes the proof. 2
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Proof of Theorem 2. Suppose that C is a dominating cycle of L(G). Then by Lemma 4, there
exists an eulerian subgraph H of G such that E(H) ⊆ V (C) ⊆ E(H). We claim that H is a D3-
eulerian subgraph of G. Otherwise suppose H1 is a connected component of G − V (H) of order
at least three, then |E(H1)| ≥ 2 and there exist two adjacent edges in H1, say e1 and e2. Since
e1, e2 /∈ E(H), dL(G)(e1e2, V (C)) = min{dL(G)(e1, V (C)), dL(G)(e2, V (C))} ≥ 1, contradicting that
C is dominating.

Conversely, suppose first that G is a cycle. Then L(G) is a cycle and the assertion clearly holds.
Suppose then that G is not a cycle. Then ∆(G) ≥ 3 since G is simple other than a path. We may
assume that H is a D3-eulerian subgraph of G. Then H contains a vertex of degree at least three
in G, and there exists a cycle C in L(G) such that V (C) = E(H). Since all connected components
of G− V (H) have at most one edge, for each edge ef ∈ E(L(G)), at least one of vertices e and f is
in E(H), thus C is a dominating cycle of L(G). 2

Our main result, Theorem 3, is a direct consequence of Theorems 5 and 6. One easily derives
Theorem 3 by induction, which can be considered as an analogue of Theorem 1(2) on dominating
cycles of iterated line graphs.

Theorem 5. Let G be a connected graph and k ≥ 1 be an integer. Then EDUk(L(G)) 6= ∅ if and
only if EDUk+1(G) 6= ∅.

Theorem 6. Let G be a connected graph with at least three edges. Then L2(G) has a dominating
cycle if and only if EDU2(G) 6= ∅.

We start our proof with some auxiliary results.

Lemma 7. (Xiong and Liu [28]) Let B = u1u2 . . . us(s ≥ 3) be a path of G and let ei = uiui+1.
Then B is a branch of G if and only if B′ = e1e2 . . . es−1 is a branch of L(G).

Lemma 8. (Xiong and Liu [28]) Let G be a connected graph of order at least three. Then H is a
nontrivial eulerian subgraph of the line graph L(G) if and only if there exists a subgraph D of G
such that

(1) D is an even graph,

(2) V0(D) ⊆
⋃∆(G)
i=3 Vi(G),

(3) G[V (D)] is connected, i.e., dG(D1, D −D1) ≤ 1 for any subgraph D1 of D,

(4) E(D) ⊆ V (H) ⊆ E(D).

Proof of Theorem 5. Suppose that EDUk+1(G) 6= ∅, and choose an H ∈ EDUk+1(G) with a
minimum number of components H1, . . . ,Ht. For each Hi, we can find a cycle Ci of L(G) that spans
E(Hi). Let H ′ =

⋃t
i=1Ci. We will show that H ′ ∈ EDUk(L(G)).

Since dG(Hi, Hj) ≥ 1, we claim that any Ci and Cj are edge-disjoint. Otherwise there would
exist two components Hi, Hj and edges e1, e2 in E(Hi) ∩ E(Hj) with the same set of endvertices.
And H + {e1, e2} is a subgraph of G in EDUk+1(G) that contains fewer components than H, a
contradiction. Hence H ′ is a union of edge-disjoint cycles, satisfying (I).
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By the definition of H,
⋃∆(G)
i=3 Vi(G) ⊆ V (H). As H ′ =

⋃t
i=1E(Hi), we have

⋃∆(L(G))
i=3 Vi(L(G)) ⊆

V (H ′) and there are no isolated vertices in H ′. Hence H ′ satisfies (II).
Take an arbitrary T ⊆ {1, . . . , t}. Let P = xu1 . . . usy be a shortest path from

⋃
i∈T Hi to

H −
⋃
i∈T Hi with x ∈

⋃
i∈T Hi and y ∈ H −

⋃
i∈T Hi. By the choice of H, it follows that s =

dG(
⋃
i∈T Hi, H −

⋃
i∈T Hi) − 1 ≤ (k + 1) − 1 − 1 = k − 1. Then L(P ) is a path from

⋃
i∈T Ci to

H−
⋃
i∈T Ci with length s ≤ k−1, which implies that (III) holds. By Lemma 7, we can immediately

see that H ′ satisfies (IV∗) and (V∗) since H satisfies (IV∗) and (V∗).
Conversely, suppose that EDUk(L(G)) 6= ∅. Let H be a subgraph of L(G) in EDUk(L(G)) with

a minimum number of isolated vertices. We claim that H actually has no isolated vertices. By the
definition of H, any isolated vertex e of H has degree at least three in L(G). Since L(G) is claw-free,
the vertex e lies on some triangle in L(G), say ee1e2.

Construct a subgraph H0 as follows.

H0 =

{
H + {ee1, ee2, e1e2} if e1e2 /∈ E(H),
H + {ee1, ee2} − {e1e2} if e1e2 ∈ E(H).

Clearly H0 is in EDUk(L(G)) and it has fewer isolated vertices than H, verifying the claim.
Let H1, . . . ,Ht be the components of H, each of which is a nontrivial eulerian subgraph of L(G).

Thus, by Lemma 8, for each Hi there exists a subgraph Di of G satisfying the four given conditions.

Set D = (
⋃t
i=1Di) ∪ (

⋃∆(G)
i=3 Vi(G)).

We now show that D is in EDUk+1(G). Since each Hi is vertex disjoint with other components
of H and E(Di) ⊆ V (Hi) for all i, each Di is edge-disjoint with other components of D. Hence D
is an even subgraph, satisfying (I). Each Di also satisfies (2), hence dG(x) ≥ 3 for every x ∈ V (D)
with dD(x) = 0, and thus (II) holds.

Take an arbitrary T ⊆ {1, . . . , t}. By the choice of H, it follows that dL(G)(
⋃
i∈T Hi, H −⋃

i∈T Hi) ≤ k − 1. Let P = e1e2 . . . es be a shortest path with s ≤ k from
⋃
i∈T Hi to H −

⋃
i∈T Hi

with e1 ∈ V (
⋃
i∈T Hi) ⊂ E(

⋃
i∈T Di) and e2 ∈ V (H −

⋃
i∈T Hi) ⊂ E(D −

⋃
i∈T Di). Since ej

and ej+1 are two adjacent edges in G for each j ∈ {1, . . . , s − 1}, it follows that the subgraph
of G induced by edge set {e1, e2, . . . , es} is a path between

⋃
i∈T Di and H −

⋃
i∈T Di. Hence

dG(
⋃
i∈T Di, H −

⋃
i∈T Di) = s ≤ k. Together with dG(x, V (D)− {x}) ≤ k for every isolated vertex

x in D, D satisfies (III).
As H satisfies (IV∗) and (V∗), Lemma 7 yields that D satisfies (IV∗) and (V∗). 2

Proof of Theorem 6. Suppose that EDU2(G) 6= ∅. We choose an H ∈ EDU2(G) with a minimum
number of components H1, H2, . . . ,Ht.

By the definition of H, |E(Hi)| ≥ 3 holds for each Hi(1 ≤ i ≤ t). Hence we can find a cycle Ci
of L(G) with length at least 3 such that V (Ci) = |E(Hi)|. Let C =

⋃t
i=1Ci.

We claim that C1, C2, . . . , Ct are edge-disjoint. Otherwise there would exist two components
Hi, Hj and edges e1, e2 in E(Hi) ∩ E(Hj) with the same set of endvertices. And H + {e1, e2} is a
subgraph of G in EDU2(G) that contains fewer components than H, a contradiction. Hence C is
an even subgraph of L(G).

Furthermore, since dG(H1, H − H1) ≤ 1, C is connected. Hence C is an eulerian subgraph of
L(G). By Lemma 7, any branch in B(L(G)) \BH(L(G)) has length at most three and any branch
in B1(L(G)) has length at most two. Then any component of G − V (C) is of order at most two.
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Therefore C is a D3-eulerian subgraph of L(G), which implies that L2(G) has a dominating cycle
by Theorem 2.

Conversely, suppose that L2(G) has a dominating cycle. By Theorem 2, L(G) has a D3-eulerian
subgraph C since L(G) is simple. Then by Lemma 8, G has an even subgraph H corresponding to

C satisfying (1) to (4). Let H ′ = H ∪ (
⋃∆(G)
i=3 Vi(G)). We will prove that H ′ ∈ EDU2(G).

We claim that for any x ∈
⋃∆(G)
i=3 Vi(G), dG(x,H) ≤ 1. Otherwise the edges adjacent to x form

a clique of L(G). Such clique is contained in a component of L(G) − V (C) of order at least three,
a contradiction. Together with property (3) of H, dG(H ′1, H

′ − H ′1) ≤ 1 holds for every subgraph
H ′1 ∈ H ′. Hence H ′ satisfies (III).

Since C is a D3-eulerian subgraph of L(G), any component of L(G)− V (C) is of order at most
two. Then any branch in B(L(G))\BC(L(G)) has length at most three and any branch in B1(L(G))
has length at most two. By Lemma 7, any branch in B(G) \BH′(L(G)) has length at most four
and any branch in B1(G) has length at most three. Hence H ′ satisfies (IV∗) and (V∗). 2

3 Characterization of graphs with iterated line graphs that have
dominating induced cycles

Berge’s Strong Perfect Graph Conjecture is a longstanding conjecture in graph theory that relates
to induced cycles of graphs, which states that a graph is perfect if and only if it contains no odd
cycle of length at least five, or its complement, as an induced subgraph. Some forty years after Berge
proposed this conjecture, it was proved by Chudnovsky et al.[8]. In this section, we will investigate
the existence of dominating induced cycles of graphs.

We first introduce some special graphs used in this section. Let G1 be the set of those simple
connected graphs G with ∆(G) = 3 such that there exists a cycle C of G with ∆(G − E(C)) = 1,
that is, the deletion of edges in E(C) would result in a graph with maximum degree 1, and E(G)
can be partitioned into an edge set of a cycle and a matching.

Let G2 be the set of those simple connected graphs G with ∆(G) = 3 such that there exists a
cycle C of G containing all vertices of degree three in G and satisfying the following conditions:

(i) each branch in B1(G) is of length at most two,

(ii) each branch in B(G) \ B1(G) with edges in C is of length at least two,

(iii) each branch in B(G) \ B1(G) with edges not in C is of length exactly two.

Let Ti,j,k be a tree obtained from three disjoint paths of length i, j, k ≥ 1 by identifying one
endvertex of each of them. Ti,j,k has three branches of length i, j, k. Let Z1 = L(T1,1,2), Z2 =
L(T1,1,3), B1,1 = L(T1,2,2) and N1,1,1 = L(T2,2,2). We use Zi,j to denote the graph obtained from
a triangle by identifying a vertex of the triangle with each endvertex of two path of length i and

j. Let K
(i)
1,4 be the graph obtained from K1,4 by subdividing i edges of K1,4 once for 1 ≤ i ≤ 4,

where subdividing an edge e is replacing it by the path of length two. Some of the graphs and their
iterated line graphs are shown in Table 1, where one dominating induced cycle of a graph is marked
with thick lines if such cycle exists.

Since the line graph of a cycle is still a cycle, in the discussions of dominating induced cycles of
iterated line graph problems, we assume that graphs under considerations are connected other than
a cycle.
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Theorem 9. Let G be a connected simple graph other than a cycle. Then

(1) L(G) has a dominating induced cycle if and only if G ∈ G1 ∪{Z1,1, Z1,2,K1,4,K
(1)
1,4 ,K

(2)
1,4 ,K

(3)
1,4 ,

K1,3, T1,1,2, T1,2,2, T2,2,2, Z2};
(2) L2(G) has a dominating induced cycle if and only ifG ∈ G2∪{K1,3, T1,1,2, T1,1,3, T1,2,2, T2,2,2,K1,4};
(3) L3(G) has a dominating induced cycle if and only if G ∈ {K1,3, T1,1,2, T1,1,3};
(4) for i ≥ 4, Li(G) has a dominating induced cycle if and only if G = K1,3.

Corollary 10. Let G be a connected simple graph with at least eight edges other than a cycle.
Then

(1) if L(G) has a dominating induced cycle, then G ∈ G1;

(2) if L2(G) has a dominating induced cycle, then G ∈ G2;

(3) for i ≥ 3, Li(G) has no dominating induced cycle.

Lemma 11. Let G be a connected simple graph with ∆(G) ≥ 4. Then L(G) has a dominating

induced cycle if and only if G ∈ {Z1,1, Z1,2,K1,4,K
(1)
1,4 ,K

(2)
1,4 ,K

(3)
1,4}.

Proof. It is not difficult to verify the sufficient part. The line graphs of graphs Z1,1, Z1,2,K1,4,K
(1)
1,4 ,

K
(2)
1,4 ,K

(3)
1,4 have dominating induced cycles.

We now present the necessity. Let G be a connected simple graph of maximum degree at least
four whose line graph has a dominating induced cycle. We claim that ∆(G) = 4. Otherwise
suppose u is a vertex of degree at least five and let e1, . . . , e5 be five edges of G incident to u. Then
L(G)[{e1, . . . , e5}] is a complete graph of order five. However, any induced cycle of L(G) cannot
dominate all edges of K5, a contradiction.

Let v be a vertex of degree four of G. We have the following observation.

Claim 1. G− v has no P3 as subgraph.

Proof. Suppose to the contrary that u1e1u2e2u3 is a P3 of G − v. Let e3, . . . , e6 be four edges
of G incident to v. Then L(G)[{e3, . . . , e6}] is a complete graph of order four. Suppose C is a
dominating induced cycle of L(G). Then C contains exactly three vertices of L(G)[{e3, . . . , e6}] and
it is a dominating triangle. However, the edge e1e2 of L(G) cannot be dominated by such triangle,
a contradiction. 2

We further claim that |V4(G)| = 1, that is, v is the unique vertex of degree four of G. Suppose
otherwise that v1 and v2 are two distinct vertices of degree four in G. Then by Claim 1, G− v1 has
a subgraph P3 with internal vertex v2, a contradiction. By similar reasoning, we have |V3(G)| = 0.
Next we divide the proof into two cases according to whether G is a tree or not.

If G is a tree, then it has four branches since |V4(G)| = 1 and |V3(G)| = 0. Having a dominating
cycle is obviously a necessary condition for a graph to have a dominating induced cycle. By Theorem

2, each branch of G is of length at most two. Since L(K
(4)
1,4 ) has no dominating induced cycle. We

have G ∈ {K1,4,K
(1)
1,4 ,K

(2)
1,4 ,K

(3)
1,4}.
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G L(G) L2(G) L3(G) Li(G)(i ≥ 4)

K1,3

T1,1,2 ×

T1,1,3 × ×

T1,2,2 × ×

T2,2,2 × ×

K1,4 × ×

K
(1)
1,4 × × ×

K
(2)
1,4 × × ×

K
(3)
1,4 × × ×

K
(4)
1,4 × × × ×

Z1 × ×

Z2 × ×

Z1,1 × × ×

Z1,2 × × ×

Z2,2 × × × ×

Table 1: The existence of dominating induced cycles of some iterated line graphs.
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If G is not a tree, then v is a cut vertex of G since other vertices are of degree at most two.
Moreover, since G− v has no P3 as subgraph, we have c(G) = 3. It is not difficult to verify that G
has a unique triangle. Together with Theorem 2, only graphs Z1,1, Z1,2, Z2,2 satisfy these conditions.
Since L(Z2,2) has no dominating induced cycle, we have G ∈ {Z1,1, Z1,2}. 2

Lemma 12. Let G be a connected simple graph with ∆(G) = 3. Then L(G) has a dominating
induced cycle if and only if G ∈ G1 ∪ {K1,3, T1,1,2, T1,2,2, T2,2,2, Z2}.

Proof. It is not difficult to verify the sufficient part. Suppose C = u1e1u2 . . . uieiu1 is a cycle of a
graph G in G1 such that ∆(G−E(C)) = 1. Then L(C) = e1e2 . . . eie1 is a dominating induced cycle
of L(G) since L(G) − L(C) is edgeless. And the line graphs of graphs K1,3, T1,1,2, T1,2,2, T2,2,2, Z2

have dominating induced cycles.
We now present the necessity. By Theorem 2, L(G) has a dominating cycle, which implies that

G has a D3-eulerian subgraph. Since ∆(G) = 3, such D3-eulerian subgraph is actually a D3-cycle
or a D3-vertex.

Suppose first that C is a longest D3-cycle of G. Then branches of G with both endvertices on
C are of length at most three and branches of G with exactly one endvertex on C are of length at
most two.

Let C ′ be a dominating induced cycle of L(G). If |V (C)| ≥ 4, then E(C) ⊂ V (C ′). Actually
we have V (C ′) = E(C), otherwise C ′ has a chord with endvertices in E(C), a contradiction. And
note that consecutive edges not on C will result in an edge not dominated by C ′ in L(G). Hence
branches of G with edges not on C are of length one. That is, G ∈ G1. If |V (C)| = 3, then
G ∈ {Z1, B1,1, N1,1,1} or G = Z2, where {Z1, B1,1, N1,1,1} ⊂ G1.

Suppose then that G has no D3-cycle but it has a D3-vertex. Then G is a tree and the D3-
vertex is the unique vertex of degree three in G. Hence G ∈ {K1,3, T1,1,2, T1,2,2, T2,2,2}. Therefore
G ∈ G1 ∪ {K1,3, T1,1,2, T1,2,2, T2,2,2, Z2}. 2

One easily derives from Lemma 11 the following corollary, which is useful in the proof of Theo-
rem 9.

Corollary 13. Let G be a connected simple graph.

(1) If G is a line graph with ∆(G) ≥ 4, then L(G) has no dominating induced cycle.

(2) If d(x) + d(y) ≥ 6 holds for some xy ∈ E(G), then L2(G) has no dominating induced cycle.

(3) If G is a graph with ∆(G) ≥ 4 other than K1,4, then L2(G) has no dominating induced cycle.

Proof of Theorem 9.
Since the i-iterated line graph of a path is still a path or empty, we suppose that G is neither a

path nor a cycle.
(1) Using Lemmas 11 and 12, one easily derives (1) of Theorem 9.
(2) It is not difficult to verify the sufficient part. Suppose C is a cycle of a graph G in G2

containing all vertices of degree three and satisfying conditions(i), (ii) and (iii). Then there exists a
cycle C ′ of L(G) having E(C) as its vertex set, V (C ′) = E(C). Since each branch in B(G) \ B1(G)
with edges in C is of length at least two, we have ∆(L(G)) = 3 and C ′ contains all vertices of
degree three of L(G). Since G satisfies conditions (i) and (iii), C ′ is actually a cycle such that

9



∆(L(G) − E(C ′)) = 1, that is, L(G) ∈ G1. By (1) of Theorem 9, L2(G) has a dominating induced
cycle. And the 2-iterated line graphs of graphs K1,3, T1,1,2, T1,1,3, T1,2,2, T2,2,2,K1,4 are depicted in
Table 1. They all have dominating induced cycles.

We now present the necessity.

Suppose L2(G) has a dominating induced cycle. Note that graphs Z1,1, Z1,2,K1,4,K
(1)
1,4 ,K

(2)
1,4 ,K

(3)
1,4 ,

K1,3, T1,1,2, T1,2,2, T2,2,2 are not line graphs. Then by (1) of Theorem 9, L(G) ∈ G1 or L(G) = Z2.
Hence G = T1,1,3 or G is a graph whose line graph is in G1.

Note that graphs in G1 have dominating cycles, then L(G) has dominating cycles. By Theorem 2,
G has a D3-eulerian subgraph. Suppose that G is not K1,4. Then by (3) of Corollary 13, ∆(G) = 3.
The D3-eulerian subgraphs of G are actually D3-cycles or D3-vertices. Note also that by (2) of
Corollary 13, vertices of degree three of G are pairwise nonadjacent.

Suppose first that G has a D3-cycle. We choose a longest D3-cycle of G, denoted C0. We claim
that C0 contains all vertices of degree three of G. Otherwise suppose v is a vertex of degree three
not on C0, then v is at distance at least two to C0, contradicting that C0 is D3-dominating.

Since C0 is D3-dominating, each branch in B1(G) is of length at most two, satisfying condition(i).
Since vertices of degree three of G are pairwise nonadjacent, each branch in B(G)\B1(G) with edges
in C is of length at least two, satisfying condition(ii).

Each branch in B(G) \ B1(G) with edges not in C0 is of length at least two and at most three.
However, C0 is a longest D3-cycle of G, which implies that the length of branch in B(G) \ B1(G)
cannot be three, otherwise L(G) is not in G1, a contradiction. Hence G satisfies condition(iii).
Therefore G ∈ G2.

Suppose then that G has no D3-cycle but a D3-vertex. Then this D3-vertex is the unique vertex
of degree greater than two of G. Together with ∆(G) = 3, we have G ∈ {K1,3, T1,1,2, T1,2,2, T2,2,2}.
Therefore G ∈ G2 ∪ {K1,3, T1,1,2, T1,1,3, T1,2,2, T2,2,2,K1,4}.

(3) Suppose that G is a star. Then G = K1,3 since L3(K1,4) has no dominating induced cycles.
Suppose that G is not a star. Then the maximum degree of Li(G) is nondecreasing with respect to
i, that is, ∆(Li+1(G)) ≥ ∆(Li(G)). Hence by (1) of Corollary 13, ∆(G) = 3.

Suppose that G is a tree. Then it has a unique vertex of degree three, and hence it has three
branches. Since any vertices of degree three in L(G) cannot be adjacent, at least two branches of G
is of length one. Hence G = T1,1,2 or G = T1,1,3. Suppose that G is not a tree, then there exists a
triangle that has two adjacent vertices of degree three in L(G). By (2) of Corollary 13, L3(G) has
no dominating induced cycle. Therefore G ∈ {K1,3, T1,1,2, T1,1,3}.

(4) G has a vertex of degree at least 3. Suppose that G is not K1,3. Then Li−2(G) contains a
triangle with two adjacent vertices of degree at least three. Hence by (2) of Corollary 13, Li(G) has
no dominating induced cycle for i ≥ 4. 2

4 Analysis of the complexity for the existence of dominating (in-
duced) cycles in iterated line graphs

It was showed in [21] that the problem to decide whether the hamiltonian index of a given graph
is less than or equal to a given constant is NP-complete, while it has a polynomial time algorithm
to determine a graph has a 2-factor and an even factor in iterated line graphs [27]. However, both
Theorem 3 and the result in [21] may imply that it is NP-complete to determine whether a iterated
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line graph has a dominating cycle. In [29], it was showed that it is also NP-hard to determine the
length of a longest induced cycle in line graphs.

Theorem 9(3)(4) implies that there is a polynomial time algorithm to determine whether Li(G)(i ≥
3) has a dominating induced cycle. Now we consider those line graphs and 2-iterated line graphs.

Theorem 14. Let H be a cubic graph and H∗ be the graph obtained from H by subdividing each
edge of H once. Then L2(H∗) has a dominating induced cycle if and only if H is hamiltonian.

Proof. Suppose that H is hamiltonian. Then H∗ has a dominating cycle containing all vertices of
degree three in H∗, say C. Moreover, all branches of H∗ with edges not in C are of length exactly
two, and these branches are pairwise at distance at least two, satisfying conditions (i)(ii)(iii) of
graphs in G2. Hence H∗ ∈ G2. By Theorem 9(2), L2(H∗) has a dominating induced cycle.

Suppose that L2(H∗) has a dominating induced cycle. By Theorem 9(2), H∗ ∈ G2 since graphs
K1,3, T1,1,2, T1,1,3, T1,2,2, T2,2,2,K1,4 are not cubic. By the definition of G2, H∗ has a cycle containing
all vertices of degree three in H∗. Then H also has a cycle containing all vertices of degree three in
H, that is, H is hamiltonian. 2

Note that G2 contains those graphs by subdividing each edge of a hamiltonian cubic graph once.
It was showed in [11] that it is NP-complete to decide whether a given cubic graph is hamiltonian.
Therefore, by Theorem 14, we have the following result.

Theorem 15. It is NP-complete to decide whether a given graph, particularly, a 2-iterated line
graph, has a dominating induced cycle.

Observe that 2-iterated line graphs are a subclass of line graphs. Then it is NP-complete to
decide whether a given line graph has a dominating induced cycle.

5 Concluding remarks

(1) Comparing Theorem 3 with Theorem 2, it turns out that the characterizations are different.
One might think that there may be a unified characterization for Theorem 2 in terms of
branches. However, Fig. 1 shows that for each eulerian subgraph H of G0 containing V3(G0),
there exists a long branch in B(G0) \ BH(G0). But L(G0) is hamiltonian. Therefore Theorem
2 is not a special case of Theorem 3.

Figure 1: The graph G0

(2) Comparing Theorem 1(1) with Theorem 2, they can be unified as Corollary 16. However,
Corollary 16 cannot be directly extended to i ≥ 3, as shown by the graph obtained from a
long cycle of length n− i and a complete graph of order i by adding an edge between them.
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Corollary 16. Let G be a connected simple graph that is not a path. Then L(G) has a
Di-cycle if and only if G has a Di+1-eulerian subgraph for i = 1, 2.

Comparing Theorem 1(2) with Theorem 3, it turns out that the existence of Hamilton cy-
cles and dominating cycles of iterated line graphs depend on the existence of EUk(G) and
EDUk(G), respectively.

(3) Note that the property “every longest cycle of a graph G is dominating ” is stronger than“G
has a dominating cycle”. However, the former characterizations of Theorems 2 and 3 that
guarantee Li(G) to have a dominating cycle cannot force any longest cycle of Li(G) to be a
dominating cycle.

We look at a family of examples:

Let F be a graph of vertex set V (F ) = {u1, u2, v1, v2, w1, w2} with edge set E(F ) = {uivi, uiwi,
viwi : i = 1 or 2} ∪ {u1u2, v1v2, w1w2}.
For any nonegative integer i ≥ 0, let Fi be a graph derived from F by subdividing edges
u1u2, v1v2, u1w1, v1w1 i times, and subdividing edges u1v1, u2v2, w1w2 i+ 1 times, and subdi-
viding edges u2w2, v2w2 i+2 times. Then Fi has branches b(u1, u2), b(v1, v2), b(u1, w1), b(v1, w1)
of length i + 1, b(u1, v1), b(u2, v2), b(w1, w2) of length i + 2, and b(u2, w2), b(v2, w2) of length
i+ 3.

The length of a longest cycle of a graph G is called its circumference, denoted c(G). Note
that u1b(u1, v1)v1b(v1, v2)v2b(v2, u2)u2b(u2, w2)w2b(w2, w1)w1b(w1, u1)u1 is a longest cycle of
F0 of length 11, and u1b(u1, w1)w1b(w1, v1)v1b(v1, v2)v2b(v2, w2)w2(w2, u2)u2b(u2, u1)u1 is a
dominating cycle of length 10. Therefore F0 is a graph of order 13 with c(F0) = 13− 2 = 11,
while all dominating cycles of F0 are of length 13 − 3 = 10. F1 is a graph of order 22, L(F1)
is of order 25 with c(L(F1)) = 22, while all dominating cycles of F1 are of length 21. F2 is a
graph of order 31, L(F2) is of order 34, and L2(F2) is of order 43 with c(L2(F1)) = 41, while
all dominating cycles of L2(F2) are of length 40.

Fi is a graph of order 9i + 13 with c(Li(Fi)) = n(Li(Fi)) − 2, while all dominating cycles of
Li(Fi) are of length n(Li(Fi))−3. Therefore, the i-iterated line graph of Li(Fi) has dominating
cycles while its longest cycles are not dominating.
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Figure 2: The graph Fi

(4) As we discussed in Section 2 of this paper, it would be interesting to consider the following
question: Does there exist a characterization of those graphs G such that each longest cycle
of Li(G) is dominating for any i ≥ 1?
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