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Abstract

An orientation D of G is proper if for every xy ∈ E(G), we have d−D(x) 6= d−D(y). An
orientation D is a p-orientation if the maximum in-degree of a vertex in D is at most p. The
minimum integer p such that G has a proper p-orientation is called the proper orientation
number pon(G) of G (introduced by Ahadi and Dehghan in 2013). We introduce a proper
biorientation of G, where an edge xy of G can be replaced by either arc xy or arc yx or both
arcs xy and yx. Similarly to pon(G), we can define the proper biorientation number pbon(G)
of G using biorientations instead of orientations. Clearly, pbon(G) ≤ pon(G) for every graph
G. We compare pbon(G) with pon(G) for various classes of graphs. We show that for trees T,
the tight bound pon(T ) ≤ 4 extends to the tight bound pbon(T ) ≤ 4 and for cacti G, the tight
bound pon(G) ≤ 7 extends to the tight bound pbon(G) ≤ 7. We also prove that there is an
infinite number of trees T for which pbon(T ) < pon(T ).

Let (H,w) be a weighted digraph with a weight function w : A(H) → Z+. The in-weight
w−

H(v) of a vertex v of H is the sum of the weights of arcs towards v. A semi-proper p-
orientation (D,w) of an undirected graph G is an orientation D of G together with a weight
function w : A(D) → Z+, such that the in-weight of any adjacent vertices are distinct and
w−

D(v) ≤ p for every v ∈ V (D). The semi-proper orientation number spon(G) of a graph G
(introduced by Dehghan and Havet in 2021) is the minimum p such that G has a semi-proper
p-orientation (D,w) of G. We prove that spon(G) ≤ pbon(G) and characterize graphs G for
which spon(G) = pbon(G).
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1 Introduction

In this paper we introduce a new graph parameter, the proper biorientation number, and show
some of its basic properties. The introduction of this parameter was motivated by a recent paper
by Dehghan and Havet [9] on semi-proper orientations of graphs. To define these notions, we
need some basic notation. For a digraph D and vertex x ∈ V (D), the in-neighborhood of x is
N−D (x) = {y ∈ V (D) : yx ∈ A(D)} and the in-degree of x is d−D(x) = |N−D (x)|. We will often omit
the subscript D when D is clear from the context.

An orientation D of G is proper if for every xy ∈ E(G), we have d−D(x) 6= d−D(y). An orientation
D is a p-orientation if the maximum in-degree of a vertex in D is at most p. The minimum integer
p such that G has a proper p-orientation is called the proper orientation number pon(G) of G. This
graph parameter was introduced by Ahadi and Dehghan [1]. They observed that this parameter is
well-defined for any graph G since one can always obtain a proper ∆(G)-orientation, by sorting all
vertices by degree and orienting all edges forward. (Here ∆(G) is the maximum degree of G). The
parameter has been widely investigated, see e.g. [1, 2, 3, 4, 5, 8, 12, 13].

Let (H,w) be a weighted digraph with a weight function w : A(H)→ Z+. The in-weight w−H(v)
of a vertex v of H is the sum of the weights of arcs towards v. A semi-proper p-orientation (D,w)
of an undirected graph G is an orientation D of G together with a weight function w : A(D)→ Z+,
such that the in-weight of any adjacent vertices are distinct and w−D(v) ≤ p for every v ∈ V (D).
The semi-proper orientation number spon(G) of a graph G is the minimum p such that G has a
semi-proper p-orientation (D,w) of G. This parameter was introduced by Dehghan and Havet [9]
and studied also in [10, 11]. It was proved in [9] that for every graph G there is a semi-proper
spon(G)-orientation in which the weight of each edge in G is 1 or 2. This shows that there is an
equivalent definition of a semi-proper orientation, where we can only replace an edge xy of G either
by one arc with end-vertices x and y or by two arcs between x and y, both directed either from x
to y or from y to x.

Dehghan’s theorem and the equivalent definition of a semi-proper orientation above lead us to
the following natural extension of a proper orientation. Let G be a graph. A biorientation of G is
a digraph D obtained from G by replacing every edge xy by arc xy either arc yx, or two mutually
opposite arcs xy, yx [7]. An arc xy of D is called single if there is no arc yx. Thus, a biorientation D
is an orientation if all arcs of D are single. One can define a proper biorientation and p-biorientation
in absolutely the same way as a proper orientation and a p-orientation. The minimum integer p
such that G has a proper p-biorientation is called the proper biorientation number pbon(G) of G.
Note that for any graph G, pbon(G) ≤ pon(G).

In Section 2, we compare pbon(G) with pon(G) for various classes of graphs. In Subsection 2.1,
we compare pbon(T ) with pon(T ) for trees T. Araújo et al. [4] proved that for every tree T , we
have pon(T ) ≤ 4 and this bound is tight. It follows from pbon(G) ≤ pon(G) that pbon(T ) ≤ 4.
We prove that the last bound is also tight. The fact that for trees the tight upper bound on proper
orientation number coincides with that on proper biorientation number does not mean that the
two numbers are equal on trees. We show that there is a tree T ∗ such that pbon(T ∗) = 3 and
pon(T ∗) = 4. We extend this result by showing that there is an infinite number of trees for which
the two numbers are not equal.

Araujo et al. [5] proved that pon(G) ≤ 7 for every cactus G and the bound is tight. In
Subsection 2.2 we prove that the bound remains tight for proper biorientation number on cacti
as well. It is natural to ask when pbon(G) = pon(G). While we are unable to give a complete
answer, in Subsection 2.3 we show that pbon(G) = pon(G) for every graph with pon(G) ≤ 3. The
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Figure 1: R3

previously discussed result on T ∗ shows that we cannot replace 3 by 4 in the last inequality.
In Section 3, we prove that spon(G) ≤ pbon(G) for every graph G. Thus, for every graph G,

spon(G) ≤ pbon(G) ≤ pon(G). (1)

We also characterize when spon(G) = pbon(G) for a graph G.
We conclude the paper by discussing a number of open problems.

2 pbon(G) vs pon(G)

The following simple observation will be useful in some proofs below.

Observation 1. Let D be a proper biorientation of G and let xy and yx be two mutually opposite
arcs. If d−(y) = 1, then we can always obtain a new proper biorientation such that d−(y) = 0 by
removing the arc xy.

We will use the notion of an x-pendant subgraph. Let H be an induced proper subgraph of
G and let x ∈ V (H). The subgraph H is x-pendant if there is no edges between V (H) − {x} and
V (G)− V (H).

2.1 pbon(G) vs pon(G) for trees

Theorem 1. [4] If T is a tree, then pon(T ) ≤ 4, and this bound is tight.

Araujo et al. [4] proved that for the tree R3 in Fig. 1, pon(R3) = 3. In R3, x is called its root.

Lemma 1. [4] Let G be a graph with an x-pendant subgraph R3. In any proper 3-orientation D of
G, for every z ∈ NG−R3(x) we have xz ∈ A(D).

Theorem 2. If T is a tree, then pbon(T ) ≤ 4, and this bound is tight.

This theorem follows from the assertion that pon(T ) ≤ 4 for every tree [4] and that pbon(T3) = 4
for the tree T3 obtained from two copies of R3 with roots x and x′ by adding the edge xx′. Araujo
et al. [4] showed that pon(T3) = 4. We will show a slightly stronger result.

Lemma 2. pbon(T3) = 4.
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Proof. We prove this lemma by contradiction. Suppose that there is a proper 3-biorientation D
of T3 and D has the minimum possible number of arcs among such biorientations. By Lemma 1,
D has at least one non-single arc and, by Observation 1, all non-single arcs have endpoints with
in-degree 3 and 2, respectively. Assume first that xx′, x′x ∈ A(D) are the only non-single arcs.
Then modify D by deleting xx′ and adding a new vertex x′′ and two new arcs xx′′ and x′′x′. Note
that the new digraph is a proper 3-orientation of the undirected underlying graph. However, this
contradicts Lemma 1. So we may assume one of the copies of R3 has a non-single arc.

Without loss of generality, we assume that the copy of R3 with root x contains a non-single arc
yz. Since d−(y), d−(z) ∈ {2, 3} and by symmetry, it suffices to consider the following cases.

Case 1: cx is a non-single arc. Then delete arc xc and replace any arc(s) between c and h by arc
ch. The new proper 3-biorientation has fewer arcs than D, a contradiction.

Case 2: `g is a non-single arc. Then delete `g and replace any arc(s) between g and m by arc gm.
The new proper 3-biorientation has fewer arcs than D, a contradiction.

Case 3: x` is a non-single arc. Then replace all arcs incident to ` by a (single) arc pointing away
from d, replace any arc between g and m by mg, and replace any arc between n and p by pn. The
new proper 3-biorientation has fewer arcs than D, a contradiction.

It is natural to ask if there exists a tree T such that pbon(T ) < pon(T ), and below we give a
positive answer to this question. Let us construct a graph T ∗ from the tree T1 depicted in Figure 2
as follows. Let us identify each leaf vertex of T1 with the root of a copy of R3 such that the other
vertices of the copies are not identified with any vertex of T1.

Theorem 3. We have pon(T ∗) = 4 and pbon(T ∗) = 3.

We prove this theorem by showing the following three lemmas.

Lemma 3. There is a proper 3-orientation D of R3 such that d−D(x) = 0.

Proof. We use the labelling of vertices of R3 in Fig. 1. Orient from x all edges incident with x.
Orient all edges not incident with x but incident with b or c towards b or c. Orient the subtree of
R3 induced by {`, q, g,m, n, p} using the following arcs: `q, g`,mg, nd, pn. Finally, orient similarly
the subtrees with roots at e and f. It is not hard to verify that we have obtained a required
orientation.
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Lemma 4. pon(T ∗) = 4.

Proof. By Theorem 1, it suffices to prove that the pon(T ∗) ≥ 4. Suppose that there is a proper 3-
orientation D of T ∗, then by Lemma 1 for every leaf u of T1 and its neighbor v, we have uv ∈ A(D).
Observe that there is an arc from a′ to at least one vertex of each set {b′, f ′, g′} and {c′, h′, i′}
respectively, say b′ and c′, since d−(a′) ≤ 3. Now we have d−(b′) = 2 and d−(c′) = 3, so d−(a′) = 1
and a′l′ ∈ A(D). Then no matter how l′e′ is oriented in D we have either d−(a′) = d−(l′) = 1 or
d−(l′) = d−(e′) = 2 which contradicts the assumptions that D is a proper orientation. Thus, we
conclude that pon(T ∗) = 4.

Lemma 5. pbon(T ∗) = 3.

Proof. In Fig. 2, orient from a′ all un-oriented edges incident with a′ and replace edge e′l′ by two
mutually opposite arcs. Use a proper 3-orientation for every copy of R3 such that the root has
in-degree zero (it is possible by Lemma 3). This proves that T ∗ has a proper 3-biorientation. Now
we can show that pbon(T ∗) = 3 using Observation 1 (as in the proof of Lemma 2).

Theorem 4. There is an infinite number of trees Tn with pbon(Tn) < pon(Tn).

Proof. For every n ≥ 0, we construct a tree T ∗n from T ∗ by adding n paths of length 2 which share
only vertex a′ with each other and T ∗ such that a′ is not a central vertex of the paths. Consider the
proper 3-biorientation of T ∗ described in the proof of Lemma 5. Note that d−(a′) = 1. Orient all
edges of the n paths towards the central vertices. Observe that the biorientation of T ∗n is a proper
3-biorientation. As in Lemma 5, we can see that pbon(T ∗n) = 3. From the proof of Lemma 4, it
follows that pon(Tn) = 4.

2.2 pbon(G) vs pon(G) for cacti G

A graph G is a cactus if G is connected and every two cycles of G have at most one vertex in
common. Araujo et al. [5] prove the following bound for cacti.

Theorem 5. [5] If G is a cactus, then pon(G) ≤ 7 and this bound is tight.

To prove the tightness of the bound in Theorem 5, Araujo et al. [5] constructed a graph G1 such
that pon(G1) = 7. Let us describe G1. Let F be a graph which is the union of sixteen triangles:

(i) K with vertex set {v1, v2, v3};
(ii) Kj

i with vertex set {vi, yji , z
j
i } for i ∈ {1, 2, 3} and j ∈ {1, . . . , 5}.
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Let G1 be the graph obtained from F by adding a copy of A (see Fig. 3) and five copies of B
(see Fig. 3) at every vertex v ∈ F , identifying the vertex a of both A and B with each vertex of F .
We will use a proof similar to that in [5] to show that pbon(G1) = 7. We first prove two lemmas.

Lemma 6. Let G be a graph which contains A as an a-pendant subgraph (V (G) 6= V (A)). For
every proper biorientation D of G, we have d−D(a) /∈ {1, 2}.

Proof. We prove this lemma by contradiction. Assume that G has a proper biorientation such
that d−(a) ∈ {1, 2}. Since A has three triangles, one of them must be oriented as A1 (see Fig.
3). Then if bc is replaced by a single arc then either d−(b) = 1 and d−(c) = 2 or d−(b) = 2 and
d−(c) = 1, a contradiction for both cases. If bc is replaced by a pair of mutually opposite arcs, then
d−(b) = d−(c) = 2, a contradiction.

Lemma 7. Let G be a graph which contains B as an a-pendant subgraph (V (G) 6= V (B)). Let D
be a proper biorientation of G such that ab and ac are single arcs in D. Then d−D(b) /∈ {1, 2} and
d−D(c) /∈ {1, 2} implying that d−D(b), d−D(c) ∈ {3, 4}.

Proof. We prove this lemma by contradiction. Suppose that d−(b) = 1 or d−(b) = 2. If d−(b) = 1,
then bd and be are single arcs in D and no matter how we replace edge de by a single arc or two
mutually opposite arcs, we arrive at a contradiction. If d−(b) = 2, then without loss of generality
d−(d) = 1 and d−(e) = 0 since d−(d) ≤ 2 and d−(e) ≤ 2. Hence eb, ed and db are single arcs of D
implying that d−(b) ≥ 3, a contradiction. Therefore, d−(b) /∈ {1, 2}. Similarly, we can prove that
d−(c) /∈ {1, 2}. By the restrictions on d−(b) and d−(c) and the fact that d−(a) = 0, we conclude
that d−D(b), d−D(c) ∈ {3, 4}.

Theorem 6. We have pbon(G1) ≥ 7.

Proof. We prove this theorem by contradiction. Suppose that there is a proper 6-biorientation D
of G1. If there is a vertex u of F with d−D(u) ∈ {3, 4}, then in the proper 6-biorientation of one
of the five copies of B corresponding to u we have two single arcs directed from u = a (as B in
Fig. 3). However, this contradicts Lemma 7. Then by Lemma 6, d−(u) ∈ {0, 5, 6} for all vertices
u ∈ V (F ).

Since K is a triangle and D is a proper 6-biorientation, without loss of generality, we may
assume that d−(v1) = 5 and d−(v2) = 0. Then v2v1 is a single arc in D. Since each Kj

1 (j ∈
{1, . . . , 5}) is a triangle, each of them has a vertex of in-degree zero. This implies that d−(v1) = 6,
a contradiction.

By Theorems 5 and 6 and inequality (1), we obtain the following:

Theorem 7. If G is a cactus, then pbon(G) ≤ 7, and this bound is tight.

2.3 pbon(G) vs pon(G) for arbitrary graph G

Theorem 8. Let G be a graph, if pon(G) ≤ 3, then pbon(G) =pon(G).

Proof. We prove this theorem by contradiction. Suppose that there is a graph G with pon(G) ≤
3, but pbon(G) < pon(G). If pbon(G) = 1, then the corresponding biorientation must be an
orientation, so pon(G) = 1, a contradiction. If pbon(G) = 2, then there is a proper 2-biorientation
D of G and all mutually opposite arcs xy, yx of D satisfy d−(x) = 2 and d−(y) = 1. By Observation
1, we can delete xy to obtain a proper 2-biorientation and therefore a proper 2-orientation which
contradicts our assumption.
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3 spon(G) vs pbon(G) for arbitrary graphs G

In this section, we will first prove that spon(G) ≤ pbon(G) for every graph G and then obtain a
characterization of graphs G for which spon(G) = pbon(G).

Theorem 9. For every graph G, spon(G) ≤ pbon(G). Moreover, for every proper pbon(G)-
biorientation D of G, there is a semi-proper orientation D′ of G such that the in-weight of every
vertex x in D′ is no more than its in-degree of x in D.

Proof. Let D be a proper pbon(G)-biorientation of G. A vertex v ∈ V (G) is called of the first
type if there are arcs into v but they are all non-single, and of the second type, otherwise. Let v
be a vertex of the first type. Then delete all (non-single) arcs into v. Note that in the new D, the
in-degree of v equals zero and the in-degree of each of its neightbors in G is positive and has not
changed. Thus, D remains a proper biorientation of G and the in-degree of every vertex has not
increased. Note that v is now a vertex of the second type. If the new D has a vertex of the first
type, continue as above.

Now we may assume that all vertices of D are of the second type. We will perform the following
procedure. For every vertex u incident with 2pu(> 0) non-single arcs in D (we count pairs of arcs
of the form uv, vu), delete every non-single arc into u and set the weight of some single arc into u
to pu + 1. Set the weight of every non-weighted arc to 1. Note that when the procedure ends we
get a semi-proper orientation D′ of G in which the in-weight of every vertex is no more than its
in-degree in the initial proper pbon(G)-biorientation of G. Thus, we are done.

Theorem 10. For a graph G and integer k, we have spon(G) = pbon(G) = k if and only if
spon(G) = k and there is a semi-proper k-orientation such that the in-weight of each vertex is no
more than its degree.

Proof. If spon(G) = pbon(G) = k, then clearly there is a proper k-biorientation of G. By Theorem
9, we can obtain a semi-proper k-orientation of G from a proper k-biorientation of G such that
the in-weight of each vertex in the semi-proper orientation is no more than its in-degree in the
biorientation. We are done.

Conversely, assume that spon(G) = k and there is a semi-proper k-orientation D′ of G such
that the in-weight of each vertex in D′ is no more than its degree in G. Then we can obtain a
proper k-biorientation D of G in the following way. Since the in-weight of each vertex in D′ is no
more than its degree in G, for every vertex v of G add some arcs opposite to existing single arcs
to make the number of arcs into each vertex equal to its in-weight. Now we can set the weight of
every edge to 1 to obtain a proper k-biorientation. Since k = spon(G) ≤ pbon(G), we conclude
that pbon(G) = k.

There is an infinite number of graphs G with spon(G) < pbon(G). Indeed, Dehghan and Havet
[9] observed that for every tree T , spon(T ) ≤ 2 due to the following semi-proper 2-orientation.
Choose a vertex v of T and for an edge xy of T call x the v-closer vertex of xy if the path from v
to y includes x. Orient every edge xy from its v-closer vertex to the other vertex and assign weight
1 (2, respectively) to every edge xy with v-closer vertex x such that the distance from v to y is
odd (even, respectively). However, the trees Tn constructed in the proof of Theorem 4 are of the
proper biorientation number 3.

7



4 Open Problems

We have provided only a sufficient condition for pbon(G) = pon(G). It would be interesting to
establish a full characterization. All graphs G which we studied satisfy pon(G)− pbon(G) ≤ 1. Is
this true in general? If not, is there a constant c such that pon(G)− pbon(G) ≤ c for every graph
G?

There is a large number of open problems on the proper orientation number of graphs listed
in [1, 2, 3, 4, 5]. It would be interesting to investigate biorientation analogs of these problems.
The most studied proper orientation number problems are the following two posed in [5, 6]: Is
there a constant c such that for every outerplanar (planar, respectively) graph G, pon(G) ≤ c.
Recently, Chen et al. [8] proved that pon(G) ≤ 14 for every planar graph G and pon(G) ≤ 10
if G is outerplanar, which solved the above questions. Planar graph with pon(G) = 10 has been
constructed by Araujo et al. [5], but no example with pon(G) > 10 is known. For outerplanar
graphs, there is a lower bound pon(G) ≥ 7 [5]. It would be interesting to see whether the upper
bounds 14 and 10 are tight for the proper orientation number and proper biorientation number for
planar graphs and outerplanar graphs, respectively, and if it is not the case then what are the tight
upper bounds?
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