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Abstract

Let G be a connected graph. Denote by di the degree of a vertex vi in G.

Let f(x, y) > 0 be a real symmetric function. Consider an edge-weighted graph

in such a way that for each edge vivj of G, the weight of vivj is equal to the

value f(di, dj). Therefore, we have a degree-based weighted adjacency matrix

Af (G) of G, in which the (i, j)-entry is equal to f(di, dj) if vivj is an edge

of G and is equal to zero otherwise. Let x be the eigenvector corresponding

to the largest eigenvalue λ1(Af (G)) of the weighted adjacency matrix Af (G).

In this paper, we firstly consider the unimodality of the eigenvector x on an

induced path of G. Secondly, if f(x, y) is increasing in the variable x, then we

investigate how the largest weighted adjacency eigenvalue λ1(Af (G)) changes

when G is perturbed by vertex contraction or edge subdivision. The aim of this

paper is to unify the study of spectral properties for the degree-based weighted

adjacency matrices of graphs.
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected.

For notation and terminology not defined here, we refer to [2]. Let G = (V (G), E(G))

be a graph of order n with vertex set V (G) = {v0, v1, . . . , vn−1} and edge set E(G).

If a pair of vertices vi and vj are adjacent, then we denote vivj ∈ E(G). For a vertex

vi ∈ V (G), let NG(vi) be the set of neighbours of vi in G. The degree of the vertex

vi, denoted by di, is equal to |NG(vi)|. The closed neighborhood of vi in G is the set

NG[vi] = NG(vi) ∪ {vi}. If di = 1, then the vertex vi of G is said to be a pendant

vertex. The distance between two vertices vi and vj in a graph G is the length of a

shortest vivj-path in G. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is a subgraph

of G. Futhermore, if H is a subgraph of G and H contains all the edges vivj ∈ E(G)

for any vi, vj ∈ V (H), then H is an induced subgraph of G. We denote by K1,n−1,

Pn and Cn, respectively, the star, the path and the cycle of order n.

In chemical graph theory, graphical or topological indices are applied to represent

chemical structures of molecular graphs and reflect molecular properties. The general

form of degree-based topological indices is

TI(G) =
∑

vivj∈E(G)

f(di, dj),

where the edge-weight function f(x, y) is a real symmetric function with variables

x > 0 and y > 0, and the value f(di, dj) is the edge-weight of the edge vivj of G.

In fact, each index is obtained by summing up the edge-weights of all edges in a

molecular graph with edge-weights defined by the function f(x, y), and it maps a

molecular graph into a single number. For a symmetric function f(x, y), if the first

partial derivative f
′
x(x, y) ≥ 0, then f(x, y) is said to be increasing in variable x.

There are many important and well-studied indices collected by Gutman [4], as in

Table 1. It is not difficult for us to find that the first fourteen edge-weight functions

f(x, y) in Table 1 are increasing in variable x. This means that increasing property

is very important to studying topological indices.

In spectral graph theory, a matrix associated with graph G is a critical tool. In

2015, one of the authors Li in [8] proposed that if we use a matrix to represent the

structure of a molecular graph with edge-weights separately on its edges, it would

keep much more structural information than a topological index. Subsequently, ma-

trices defined by topological indices from algebraic viewpoint were studied separately,

including the first(second) Zagreb matrix [13], Nirmala matrix [6], Sombor matrix [5]

and inverse sum indeg matrix [1].

In 2018, Das et al. first published in [3] the following definition of the weighted
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Edge-weight function f(x,y) The corresponding index

x+ y first Zagreb index

xy second Zagreb index

(x+ y)2 first hyper-Zagreb index

(xy)2 second hyper-Zagreb index
√
x+ y reciprocal sum-connectivity index
√
xy reciprocal Randić index

x+ y + xy first Gourava index

(x+ y)xy second Gourava index

(x+ y + xy)2 first hyper-Gourava index

((x+ y)xy)2 second hyper-Gourava index√
(x+ y)xy product-connectivity Gourava index

x2 + y2 forgotten index√
x2 + y2 Sombor index

xy/(x+ y) inverse sum index

x−2 + y−2 inverse degree

x−3 + y−3 modified first Zagreb index

1/
√
xy Randić index

1/
√
x+ y sum-connectivity index

2/(x+ y) harmonic index

1/
√
x+ y + xy sum-connectivity Gourava index

|x− y| Albertson index

(x− y)2 sigma index

(x/y + y/x)/2 extended index√
(x+ y − 2)/(xy) atom-bond-connectivity (ABC) index

(xy/(x+ y − 2))3 augmented Zagreb index

2
√
xy/(x+ y) geometric-arithmetic (GA) index

(x+ y)/(2
√
xy) arithmetic-geometric (AG) index

Table 1: Some well-studied chemical indices
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adjacency matrix for a graph with degree-based edge-weights.

Definition 1.1 Let G be a graph of order n and f(x, y) be a real symmetric function.

The weighted adjacency matrix Af (G) is defined as

(Af (G))ij =

f(di, dj), vivj ∈ E(G),

0, otherwise.

We name the eigenvalues of the n×n matrix Af (G) as the weighted adjacency eigen-

values of a graph G with edge-weight function f(x, y). Because f(x, y) is a real

symmetric function, then Af (G) is a real symmetric matrix, and therefore its eigen-

values are all real. Then the weighted adjacency eigenvalues can be ordered as

λ1(Af (G)) ≥ λ2(Af (G)) ≥ · · · ≥ λn(Af (G)),

which are always arranged in a non-increasing order and repeated according to their

multiplicity. λ1(Af (G)) is the largest weighted adjacency eigenvalue. If we let x =

(x0, x1, ..., xn−1)
T be the eigenvector corresponding to λ1(Af (G)), then Af (G)x =

λ1(Af (G))x. Moreover, the vector x can be regarded as a function on V (G). For any

vertex vi, the entry of x corresponding to vi is denoted by xi.

Up to now, there have been a few articles studying the largest weighted adjacency

eigenvalue λ1(Af (G)). Let us list some known results. In 2021, Li and Wang [9] first

attempted to study the extremal tree with the largest value of λ1(Af (G)), which is a

star or a double star when the symmetric real function f(x, y) is increasing and convex

in variable x, and with the smallest value of λ1(Af (G)), which is a path when f(x, y)

is a symmetric polynomial with nonnegative coefficients and zero constant term. In

2022, Zheng et al. [14] added a restriction P ∗ to f(x, y) and they confirmed that

star is the unique tree with the largest value of λ1(Af (G)) among all trees of order

n. They also obtained the extremal unicyclic graphs with the largest and smallest

value of λ1(Af (G)), respectively. Recently, Li and Yang [12] gave some lower and

upper bounds for λ1(Af (G)) and characterized the corresponding extremal graphs.

In 2022, Li and Yang [10, 11] got uniform interlacing inequalities for the weighted

adjacency eigenvalues under some kinds of graph operations, including edge deletion,

edge subdivision, vertex deletion and vertex contraction, and examples were given to

show that the interlacing inequalities are the best possible for their type when f(x, y)

is increasing in variable x. Although, we can get some upper and lower bounds for

λ1(Af (G)) from the interlacing inequalities, but it cannot be reflected directly that

how the largest weighted adjacency eigenvalue λ1(Af (G)) changes when one graph is

transformed to another graph. In this paper, we are interested in the impact on the
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largest weighted adjacency eigenvalue λ1(Af (G)) under two graph perturbations. So

we first give the definitions of graph operations.

Definition 1.2 (Vertex contraction) The contraction of a pair of vertices u, v ∈
V (G) produces a new graph G{u,v}, where V (G{u,v}) = (V (G) \ {u, v}) ∪ {s}, s is a

new vertex with NG{u,v}(s) = (NG(u) ∪NG(v))\{u, v}, and E(G{u,v}) = (E(G)\({uz :

z ∈ NG(u)} ∪ {vz : z ∈ NG(v)})) ∪ {sz : z ∈ NG{u,v}(s)}.

Definition 1.3 (Edge subdivision) The subdivision of an edge e = vivj ∈ E(G)

produces a new graph Ge, where V (Ge) = V (G) ∪ {vn}, such that vn /∈ V (G), and

E(Ge) = (E(G) \ e) ∪ {vivn, vjvn}.

The structure of this paper is as follows. In Section 2, we present some known

results that will be used in the subsequent sections. In Section 3, since the eigen-

vector x corresponding to the largest weighted adjacency eigenvalue λ1(Af (G)) plays

an important role in the investigation of λ1(Af (G)), we first study the property of x

on an induced path of G. Then, the effects on the largest weighted adjacency eigen-

value λ1(Af (G)) perturbed by the vertex contraction and edge subdivision of G are

described, respectively, when f(x, y) > 0 is a real symmetric function and increasing

in variable x.

2 Prelimininaries

At the very beginning, we state some fundamental results on matrix theory, which

will be used in the sequel. Let A = (aij)n×m and B = (bij)n×m be two matrices. If

aij ≤ bij for all i and j, then we say that A ≤ B. If A ≤ B and A 6= B, then we say

that A < B.

Lemma 2.1 [7] Let A, B be n×n nonnegative symmetric matrices. If A ≤ B, then

λ1(A) ≤ λ1(B).

Futhermore, if B is irreducible and A < B, then λ1(A) < λ1(B).

The next result plays a very important role in the proof of our main results.

Lemma 2.2 [7] Let A be an n × n nonnegative matrix and y = (y0, y1, . . . , yn−1)
T

be a positive vector. If α, β ≥ 0, such that αy ≤ Ay ≤ βy, then

α ≤ λ1(A) ≤ β.

If αy < Ay, then α < λ1(A); if Ay < βy, then λ1(A) < β.
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Finally we state the famous Perron–Frobenius Theorem.

Lemma 2.3 [2] Let A be an irreducible symmetric matrix with nonnegative entries.

Then the largest eigenvalue λ1(A) of A is simple, with a corresponding eigenvector

whose entries are all positive.

3 Main results

In this section, we first study the property of the eigenvector x corresponding

to the largest weighted adjacency eigenvalue λ1(Af (G)). For a connected graph G,

if f(x, y) > 0 is a real symmetric function, then Af (G) is an irreducible symmetric

matrix with nonnegative entries. From Lemma 2.3, we have a positive eigenvector x

corresponding to the largest weighted adjacency eigenvalue λ1(Af (G)). The following

result says the unimodality of x on an induced path of G.

Theorem 3.1 For a connected graph G of order n and a real symmetric function

f(x, y) > 0, let x = (x0, x1, . . . , xn−1)
T be a positive eigenvector corresponding to the

eigenvalue λ1(Af (G)) and Pk = v1v2 . . . vk be an induced path of G such that di = 2

for 1 ≤ i ≤ k. If λ1(Af (G)) > 2f(2, 2), then the following statements hold.

(1) If x1 = xk, then

x1 > x2 > · · · > xb k+1
2
c = xd k+1

2
e < · · · < xk−1 < xk

and xi = xk+1−i for 2 ≤ i ≤ k − 1.

(2) If x1 < xk, then there is an integer 1 ≤ j ≤ bk+1
2
c such that

x1 > x2 > · · · > xj > xj+1 < · · · < xk−1 < xk

or

x1 > x2 > · · · > xj ≤ xj+1 < · · · < xk−1 < xk.

Moreover, xi < xk+1−i for 2 ≤ i ≤ dk+1
2
e − 1.

Proof. Since x is a positive eigenvector corresponding to λ1(Af (G)), we have xi ≥ 0

for 0 ≤ i ≤ n − 1. Recall that Pk = v1v2 . . . vk is an induced path of G such that

di = 2 for 1 ≤ i ≤ k. Hence, it is not difficult to get the following relation:

λ1(Af (G))xi = f(2, 2)xi−1 + f(2, 2)xi+1,
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where 2 ≤ i ≤ k − 1. This means that

λ1(Af (G))

f(2, 2)
xi = xi−1 + xi+1,

where 2 ≤ i ≤ k − 1. Clearly, this is a recurrence relation and the characteristic

equation is

t2 − λ1(Af (G))

f(2, 2)
t+ 1 = 0.

Since λ1(Af (G)) > 2f(2, 2), we can deduce that this characteristic equation has two

unequal real roots t1 and t2, such that t1t2 = 1, t1+t2 > 2. Without loss of generality,

we assume that t2 > 1 > t1 > 0. The solution of this linear homogeneous recurrence

relation with constant coefficients is given by

xi = Ati1 +Bti2.

Let x1 and xk be the initial conditions. We can determine constants A and B from

the initial conditions: At1 +Bt2 = x1,

Atk1 +Btk2 = xk.

This implies that

A =
x1t

k+1
2 − xkt22
tk2 − tk−21

, B =
xk − x1tk−11

tk2 − tk−21

.

Because t2 > 1 > t1 > 0 and k ≥ 2, it follows that tk2 − tk−21 > 0. We then have

xi =
1

tk2 − tk−21

((x1t
k+1
2 − xkt22)ti1 + (xk − x1tk−11 )ti2)

for 1 ≤ i ≤ k.

(1) Since x1 = xk, we have

xi =
x1

tk2 − tk−21

((tk+1
2 − t22)ti1 + (1− tk−11 )ti2)

=
x1

tk2 − tk−21

(tk+1−i
2 − ti−21 + ti2 − tk−1−i1 ).

Furthermore, we can get

xk+1−i =
x1

tk2 − tk−21

(ti2 − tk−1−i1 + tk+1−i
2 − ti−21 ).
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Hence for 1 ≤ i ≤ k, we have xi = xk+1−i. Now we let

f(i) = tk+1−i
2 − ti−21 + ti2 − tk−1−i1

= tk+1−i
2 − 1

ti−22

+ ti2 −
1

tk−1−i2

=
tk−3+i2 + t2k−2−i2 − tk−1−i2 − ti−22

tk−32

.

Since tk2 − tk−21 > 0 and x1 > 0, it follows that the monotonicity of f(i) is the same

as the monotonicity of xi. Suppose that

g(i) = tk−3+i2 + t2k−2−i2 − tk−1−i2 − ti−22 .

Because tk−32 > 0, the monotonicity of g(i) is the same as the monotonicity of f(i).

We now consider the monotonicity of g(i). By the first derivative of g(i), it follows

that

g′(i) = tk−3+i2 ln t2 − t2k−2−i2 ln t2 + tk−1−i2 ln t2 − ti−22 ln t2

= tk−12 (ti−22 − tk−1−i2 ) ln t2 + (tk−1−i2 − ti−22 ) ln t2

= (tk−12 − 1)(ti−22 − tk−1−i2 ) ln t2.

Recalling that t2 > 1, it follows that tk−12 − 1 > 0 and ln t2 > 0. If i− 2 > k − 1− i,
that is, i > k+1

2
, then we have ti−22 > tk−1−i2 , hence g′(i) > 0. This means that xi is

monotonically increasing for i > k+1
2

. If i − 2 < k − 1 − i, that is, i < k+1
2

, then we

obtain ti−22 < tk−1−i2 , hence g′(i) < 0. This means that xi is monotonically decreasing

for i < k+1
2

. Thus we conclude that x1 > x2 > · · · > xb k+1
2
c = xd k+1

2
e < · · · < xk−1 <

xk. The proof of (1) is complete.

(2) We assume that x1 < xk. Otherwise, we can relabel the vertices on Pk. Note

that

xi =
1

tk2 − tk−21

((x1t
k+1
2 − xkt22)ti1 + (xk − x1tk−11 )ti2).

For 2 ≤ i ≤ dk+1
2
e − 1, we have

xk+1−i − xi

=
1

tk2 − tk−21

(
(x1t

k+1
2 − xkt22)tk+1−i

1 + (xk − x1tk−11 )tk+1−i
2 − ((x1t

k+1
2 − xkt22)ti1 + (xk − x1tk−11 )ti2)

)
=

1

tk2 − tk−21

(
x1t

i
2 − xktk−i−11 + xkt

k+1−i
2 − x1ti−21 − (x1t

k+1−i
2 − xkti−21 + xkt

i
2 − x1tk−1−i1 )

)
=

1

tk2 − tk−21

(xk − x1)(tk+1−i
2 − ti2 + ti−21 − tk−i−11 ).
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Since 2 ≤ i ≤ dk+1
2
e − 1, it follows that tk+1−i

2 > ti2 and ti−21 > tk−i−11 . Recalling that

xk > x1, we obtain xk−i+1 > xi for 2 ≤ i ≤ dk+1
2
e − 1.

Now let us consider a function

h(i) = (x1t
k+1
2 − xkt22)ti1 + (xk − x1tk−11 )ti2

= x1t
k+1−i
2 − xkt2−i2 + xkt

i
2 − x1ti−k+1

2 .

Because tk2 − tk−21 > 0, it follows that the monotonicity of h(i) is the same as the

monotonicity of xi. By the first derivative of h(i), we obtain

h′(i) = −x1tk+1−i
2 ln t2 + xkt

2−i
2 ln t2 + xkt

i
2 ln t2 − x1ti−k+1

2 ln t2

= (xk(t
i
2 + t2−i2 )− x1(tk+1−i

2 + ti−k+1
2 )) ln t2.

Then we consider the following two cases.

Case 1. i > k + 1− i, that is, i ≥ bk+1
2
c+ 1.

We consider the function l(i) = ti2 + t2−i2 . Since l′(i) = ti2(1 − t
2(1−i)
2 ) ln t2, the

function l(i) is monotonically increasing for i > 1. This means that ti2 + t2−i2 >

tk+1−i
2 +ti−k+1

2 . Because xk > x1, it follows that h′(i) > 0 for i ≥ bk+1
2
c+1. Hence, xi is

monotonically increasing for i ≥ bk+1
2
c+1. We then have xb k+1

2
c+1 < · · · < xk−1 < xk.

Case 2. i ≤ k + 1− i, that is, i ≤ bk+1
2
c.

Now we consider the function

w(i) =
tk+1−i
2 + ti−k+1

2

ti2 + t2−i2

.

By the first derivative of w(i), we have

w′(i) =
((−tk+1−i

2 + ti−k+1
2 )(ti2 + t2−i2 )− (ti2 − t2−i2 )(tk+1−i

2 + ti−k+1
2 )) ln t2

(ti2 + t2−i2 )2

=
2(t3−k2 − tk+1

2 ) ln t2

(ti2 + t2−i2 )2
.

It is clear that w′(i) < 0 with k > 1. There are two possibilities.

Subcase 2.1. xk
x1
> w(i) for 1 ≤ i ≤ bk+1

2
c.

Since w(i) is monotonically decreasing, we have

h′(i) = (xk(t
i
2 + t2−i2 )− x1(tk+1−i

2 + ti−k+1
2 )) ln t2 > 0

for 1 ≤ i ≤ bk+1
2
c. This means that xi is monotonically increasing for 1 ≤ i ≤ bk+1

2
c.

Together with Case 1, it follows that x1 < x2 < · · · < xk.

Subcase 2.2. There exits an integer 1 ≤ i ≤ bk+1
2
c such that xk

x1
≤ w(i).
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Since w(i) is monotonically decreasing, there is only an integer 1 ≤ j ≤ bk+1
2
c

such that w(j) ≥ xk
x1

and w(j + 1) < xk
x1

. Thus we can say that

h′(i) = (xk(t
i
2 + t2−i2 )− x1(tk+1−i

2 + ti−k+1
2 )) ln t2 ≤ 0

for 1 ≤ i ≤ j. This means that xi is monotonically decreasing for 1 ≤ i ≤ j.

Furthermore,

h′(i) = (xk(t
i
2 + t2−i2 )− x1(tk+1−i

2 + ti−k+1
2 )) ln t2 > 0

for j + 1 ≤ i ≤ bk+1
2
c. This means that xi is monotonically increasing for j + 1 ≤

i ≤ bk+1
2
c. Together with Case 1, we can conclude that x1 > x2 > · · · > xj > xj+1 <

· · · < xk−1 < xk or x1 > x2 > · · · > xj ≤ xj+1 < · · · < xk−1 < xk. This proof is thus

complete. �

In fact, there are many graphs satisfying λ1(Af (G)) > 2f(2, 2). Here we give a

result as follows.

Theorem 3.2 Let G 6= Cn be a connected graph of order n. Assume that f(x, y) > 0

is a real symmetric function and increasing in variable x. If G contains a cycle, then

λ1(Af (G)) > 2f(2, 2).

Proof. Without loss of generality, we suppose that G has an induced cycle Ck+1 =

v0v1 . . . vkv0 . Let B be a (k+ 1)× (k+ 1) matrix, which is obtained by choosing the

rows and columns associated with v0, v1, . . . , vk from Af (G). Since f(x, y) > 0 is an

increasing function in variable x, it is clear that B ≥ Af (Ck+1). From Lemma 2.1,

we have λ1(B) ≥ λ1(Af (Ck+1)) = 2f(2, 2).

Adding n − k − 1 zero rows and zero columns to B, we have an n × n matrix

C. Clearly, λ1(B) = λ1(C). Because G 6= Cn and f(x, y) > 0, it follows that

Af (G) > C. Recalling that G is a connected graph, by using Lemma 2.1 again we

have λ1(Af (G)) > λ1(C) = λ1(B). Hence, λ1(Af (G)) > 2f(2, 2). The required result

is obtained. �

In fact, for a subgraph H of a connected graph G, if G 6= H, using a similar argu-

ment in Theorem 3.2, then we can prove that λ1(Af (G)) > λ1(Af (H)). Next, when

f(x, y) > 0 is a real symmetric function and increasing in variable x, we consider the

effect on the largest weighted adjacency eigenvalue λ1(Af (G)) by vertex contraction.

Theorem 3.3 Let G be a connected graph of order n and H = G{u,v}, where u and

v are two distinct vertices of G such that the distance between u and v is at least 3.
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Assume that f(x, y) > 0 is a real symmetric function and increasing in variable x.

Then

λ1(Af (G)) < λ1(Af (H)).

Proof. Since the distance between u and v is at least 3, we have uv /∈ E(G)

and NG(u) ∩ NG(v) = ∅. Without loss of generality, we suppose that NG(u) =

{u1, u2, . . . , up} and NG(v) = {v1, v2, . . . , vq}, where p, q ≥ 1. Contracting the t-

wo vertices u and v, we obtain a new vertex s. For the weighted adjacency ma-

trix Af (H), we have a positive eigenvector x corresponding to λ1(Af (H)). That is,

Af (H)x = λ1(Af (H))x. Let n-dimensional vector y be an assignment of G satisfyingyu = yv = xs,

yw = xw, w ∈ V (G) \ {u, v},

where xz and yz are the entries of x and y corresponding to vertex z, respectively.

Obviously, the vector y is positive. Next we prove Af (G)y < λ1(Af (H))y.

First, we compare the entry (Af (G)y)u to λ1(Af (H))yu. We have

(Af (G)y)u =

p∑
i=1

f(p, dui)yui =

p∑
i=1

f(p, dui)xui

≤
p∑
i=1

f(p+ q, dui)xui

<

p∑
i=1

f(p+ q, dui)xui +

q∑
i=1

f(p+ q, dvi)xvi

= λ1(Af (H))xs = λ1(Af (H))yu.

Since f(p+ q, dvi) > 0 and xvi > 0, it follows that
q∑
i=1

f(p+ q, dvi)xvi > 0. Thus, the

above inequality is strict. Similarly, we have

(Af (G)y)v =

q∑
i=1

f(q, dvi)yvi =

q∑
i=1

f(q, dvi)xvi

≤
q∑
i=1

f(p+ q, dvi)xvi

<

q∑
i=1

f(p+ q, dvi)xvi +

p∑
i=1

f(p+ q, dui)xui

= λ1(Af (H))xs = λ1(Af (H))yv.
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Because
p∑
i=1

f(p + q, dui)xui > 0, this inequality is also strict. For any vertex w ∈

V (G) \ (N [u] ∪N [v]), we have

(Af (G)y)w =
∑

z∈NG(w)

f(dw, dz)yz =
∑

z∈NH(w)

f(dw, dz)xz

= λ1(Af (H))xw = λ1(Af (H))yw.

Moreover, for a vertex ui, 1 ≤ i ≤ p, we have

(Af (G)y)ui =
∑

z∈NG(ui)\u

f(dui , dz)yz + f(dui , p)yu

≤
∑

z∈NH(ui)\s

f(dui , dz)xz + f(dui , p+ q)xs

= λ1(Af (H))xui = λ1(Af (H))yui .

For a vertex vi, 1 ≤ i ≤ q, we have

(Af (G)y)vi =
∑

z∈NG(vi)\v

f(dvi , dz)yz + f(dvi , q)yv

≤
∑

z∈NH(vi)\s

f(dvi , dz)xz + f(dvi , p+ q)xs

= λ1(Af (H))xvi = λ1(Af (H))yvi .

Thus, Af (G)y < λ1(Af (H))y. From Lemma 2.2, we can conclude that λ1(Af (G)) <

λ1(Af (H)). This completes the proof. �
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v1 v2
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v4

v5
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v1 v2

v3

v4

v5

v6
G2

Figure 1: Graphs G1 and G2.

Remark 1. In Theorem 3.3, the condition “the distance between u and v is at least

3” is reasonable. Here are some examples to illustrate the situation. First, we consid-

er that the distance between u and v is 1. Suppose that a connected graph G contains

a pendent vertex v. Contracting the vertex v and its neighbour, we can get a graph

H. Since H is an induced subgraph of G and f(x, y) > 0 is increasing in variable x, it

12



follows that λ1(Af (G)) > λ1(Af (H)). In addition, if G = G1(see Figure 1), contract-

ing v1 and v7, then we can get a graph G2(see Figure 1). Set f(x, y) =
√

lg(xy), by

calculation it is not difficult to get that 1.5845 ≈ λ1(Af (G1)) > λ1(Af (G2)) ≈ 1.5806.

Second, we consider that the distance between u and v is 2. If G = K1,n−1, contract-

ing two pendant vertices, then we have H = K1,n−2. Because f(x, y) > 0 is increas-

ing in variable x, it suffices to prove that f(1, n − 1)
√
n− 1 = λ1(Af (K1,n−1)) >

λ1(Af (K1,n−2)) = f(1, n− 2)
√
n− 2. Moreover, if G = G1(see Figure 1), contracting

v1 and v2, then we can obtain K1,5. When f(x, y) = (xy)3, a short calculation reveals

that 307.8474 ≈ λ1(Af (G1)) > λ1(Af (K1,5)) ≈ 279.5085.

Finally, we establish the relation between the largest weighted adjacency eigen-

value λ1(Af (G)) and λ1(Af (Ge)), where f(x, y) > 0 is a real symmetric function and

increasing in variable x. Now we introduce the definition of an internal path of a

graph G in the first place.

Definition 3.4 Let G be a connected graph of order n. The walk v0v1 . . . vk+1 is an

internal path of G if one of the following holds:

(i) k ≥ 2, the vertices v0, v1, . . . , vk are distinct, vk+1 = v0, vivi+1 ∈ E(G) where

0 ≤ i ≤ k, d0 ≥ 3 and di = 2 where 1 ≤ i ≤ k;

(ii) k ≥ 0, the vertices v0, v1, . . . , vk+1 are distinct, vivi+1 ∈ E(G) where 0 ≤ i ≤ k,

d0 ≥ 3, dk+1 ≥ 3 and di = 2 where 1 ≤ i ≤ k.

Theorem 3.5 Let G be a connected graph of order n and H = Ge. Assume that

f(x, y) > 0 is a real symmetric function and increasing in variable x. Let x =

{x0, x1, . . . , xn−1}T be a positive eigenvector corresponding to λ1(Af (G)) and Pk+2 =

v0v1 . . . vk+1 be an internal path of G such that x0 ≤ xk+1. Then the following state-

ments hold.

(1) If G 6= Cn and e does not belong to an internal path of G, then

λ1(Af (H)) > λ1(Af (G)).

(2) If for any vertex vi ∈ NG(v0), di ≥ 2 and e belongs to an internal path of G, then

λ1(Af (H)) < λ1(Af (G)).

Proof. (1) If G 6= Cn and e does not belong to an internal path of G, then we can get

G by deleting a pendent vertex v from H. This means that H has a proper subgraph

H ′ = H\v isomorphic to G. Now deleting the row and column associated with v from

13



Af (H), we get a matrix B. Then, adding a zero row and a zero column to B, we have

an (n + 1)× (n + 1) matrix C. It is not difficult to verify that λ1(B) = λ1(C). The

matrix Af (H) − C has two same nonnegative nonzero entries f(2, 1) in symmetric

place, and all other entries of Af (H) − C are zero. Since G is connected, Af (H) is

irreducible. Now using Lemma 2.1, we have λ1(Af (H)) > λ1(C) = λ1(B).

Note that the matrix B−Af (G) has two same nonnegative entries f(2, 2)−f(2, 1)

in symmetric place, and all other entries of B −Af (G) are zero. Since f(x, y) > 0 is

an increasing function in variable x, we have B ≥ Af (G). Using Lemma 2.1 again,

we get λ1(B) ≥ λ1(Af (G)). Until now, we can obtain λ1(Af (H)) > λ1(Af (G)).

(2) For convenience, we suppose that vn is the addition vertex which appears in

subdividing edge e. Next, we prove the result by discussing the type of the internal

path with the edge e.

Case 1. e belongs to an internal path Pk+2 = v0v1 . . . vk+1 of type (i).

Let xi be the entry of x corresponding to the vertex vi of G where i = 0, 1, . . . , k.

Since v0 = vk+1 and v1v2 . . . vk is an induced path of G, by Theorem 3.1 we have

xi = xk+1−i for 1 ≤ i ≤ k. Next we consider the following two cases.

Case 1.1. k is even.

We have x k
2

= x k
2
+1. Without loss of generality, we take e = v k

2
v k

2
+1. Let y

be an (n + 1)-dimensional vector obtained from x by inserting the addition entry

yn = x k
2

= x k
2
+1. That is, yn = x k

2
,

yi = xi, vi ∈ V (G).

Hence, the vector y is positive. Then we have

(Af (H)y)n = f(2, 2)x k
2

+ f(2, 2)x k
2
+1

= 2f(2, 2)x k
2

< λ1(Af (G))x k
2

= λ1(Af (G))yn.

Since e belongs to an internal path of type (i), G has a cycle as an induced subgraph.

From Theorem 3.2, we know that the above inequality is strict. For any vertex

vi 6= vn, we can easily obtain (Af (H)y)i = λ1(Af (G))yi.

Hence, Af (H)y < λ1(Af (G))y. Using Lemma 2.2, we get λ1(Af (H)) < λ1(Af (G)).

Case 1.2. k is odd.

We have x k−1
2

= x k+3
2

. It is not difficult to see that

λ1(Af (G))x k+1
2

= f(2, 2)x k−1
2

+ f(2, 2)x k+3
2

= 2f(2, 2)x k−1
2
.

14



Since λ1(Af (G)) > 2f(2, 2), we obtain x k+1
2
< x k−1

2
. Without loss of generality, we

take e = v k−1
2
v k+1

2
. Let vector y be obtained from x by inserting the addition entry

yn = x k+1
2

. That is, yn = x k+1
2
,

yi = xi, vi ∈ V (G).

Hence, vector Af (H)y differs from λ1(Af (G))y only in the k+1
2

-th and n-th entries.

Comparing the two corresponding entries in Af (H)y and λ1(Af (G))y, respectively,

we get

(Af (H)y) k+1
2

= f(2, 2)yn + f(2, 2)x k+3
2

= f(2, 2)x k+1
2

+ f(2, 2)x k+3
2

< f(2, 2)x k−1
2

+ f(2, 2)x k+3
2

= λ1(Af (G))x k+1
2

= λ1(Af (G))y k+1
2
,

and

(Af (H)y)n = f(2, 2)x k−1
2

+ f(2, 2)x k+1
2

< f(2, 2)x k−1
2

+ f(2, 2)x k−1
2

= f(2, 2)x k−1
2

+ f(2, 2)x k+3
2

= λ1(Af (G))x k+1
2

= λ1(Af (G))yn.

It follows that Af (H)y < λ1(Af (G))y. From Lemma 2.2, we get λ1(Af (H)) <

λ1(Af (G)).

Case 2. e belongs to an internal path Pk+2 = v0v1 . . . vk+1 of type (ii).

Let xi be the entry of x corresponding to the vertex vi ofG where i = 0, 1, . . . , k+1.

Let t be the smallest index such that xt = min{x0, x1, . . . , xk+1}. Because x0 ≤ xk+1,

we have 0 ≤ t < k + 1. Without loss of generality, we take e = vtvt+1. Here we still

discuss by distinguishing two cases.

Case 2.1. t > 0.

Since v1v2 . . . vk is an induced path, by Theorem 3.1, it follows that 0 < t ≤ bk+1
2
c.

Furthermore, we have xi > xt for 0 ≤ i < t, and xt ≤ xt+1 < xi for t+ 1 < i ≤ k + 1.

Let y be obtained from x by inserting the addition entry yn = xt. That is,yn = xt,

yi = xi, vi ∈ V (G).
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We can deduce that Af (H)y differs from λ1(Af (G))y only in the t-th and n-th entries.

It is not difficult to get that

(Af (H)y)t = f(2, dt−1)xt−1 + f(2, 2)yn

= f(2, dt−1)xt−1 + f(2, 2)xt

≤ f(2, dt−1)xt−1 + f(2, dt+1)xt+1

= λ1(Af (G))xt = λ1(Af (G))yt,

and

(Af (H)y)n = f(2, 2)xt + f(2, dt+1)xt+1

< f(2, dt−1)xt−1 + f(2, dt+1)xt+1

= λ1(Af (G))xt = λ1(Af (G))yn.

Thus, Af (H)y < λ1(Af (G))y. Using Lemma 2.2, we have λ1(Af (H)) < λ1(Af (G)).

Case 2.2. t = 0.

We take e = v0v1. According to the choice of t, it follows that x0 ≤ xi for

1 ≤ i ≤ k + 1. For convenience, let S be the set of neighbours of v0 other than v1 in

G, and s =
∑
vj∈S

f(d0, dj)xj, and let R be the set of neighbours of v1 other than v0 in

G, and r =
∑
vj∈R

f(d1, dj)xj.

Subcase 2.2.1. f(d0, 2)x0 + f(d1, 2)x1 < λ1(Af (G))x0.

Let y be obtained from x by inserting the addition entry yn = x0, that is,yn = x0,

yi = xi, vi ∈ V (G).

It is easy to show that vector Af (H)y differs from λ1(Af (G))y in at most three

entries: 0-th, 1-th and n-th. For the vertex v0, we have

(Af (H)y)0 = f(d0, 2)yn +
∑
vj∈S

f(d0, dj)xj

= f(d0, 2)x0 + s

≤ f(d0, d1)x1 + s

= λ1(Af (G))x0 = λ1(Af (G))y0.
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For the vertex v1, we have

(Af (H)y)1 = f(d1, 2)yn +
∑
vj∈R

f(d1, dj)xj

= f(d1, 2)x0 + r

≤ f(d1, d0)x0 + r

= λ1(Af (G))x1 = λ1(Af (G))y1.

For the vertex vn, we have

(Af (H)y)n = f(d0, 2)x0 + f(d1, 2)x1

< λ1(Af (G))x0 = λ1(Af (G))yn.

It follows that Af (H)y < λ1(Af (G))y. From Lemma 2.2, we get λ1(Af (H)) <

λ1(Af (G)).

Subcase 2.2.2. f(d0, 2)x0 + f(d1, 2)x1 ≥ λ1(Af (G))x0.

Since λ1(Af (G))x0 = s + f(d0, d1)x1, we obtain s ≤ f(d0, 2)x0 + f(d1, 2)x1 −
f(d0, d1)x1. Recall that f(x, y) > 0 is an increasing function. Then, f(d1, 2) −
f(d0, d1) ≤ 0 and f(d0, 2) > 0. Because each entry of x is positive, we can get

0 < s =
∑
vj∈S

f(d0, dj)xj ≤ f(d0, 2)x0. Hence, s
f(d0,2)

≤ x0. Now let vector y be an

assignment of the vertices of G satisfying that
y0 =

λ1(Af (G))x0−f(d0,d1)x1
f(d0,2)

,

yn = x0,

yi = xi, vi ∈ V (G) \ {v0}.

Since s = λ1(Af (G))x0 − f(d0, d1)x1, we have y0 = s
f(d0,2)

, and then 0 < y0 ≤ x0. In

addition, x is a positive vector, and hence y is also a positive vector. Next we prove

that the (n + 1)-dimensional vector y satisfies Af (H)y < λ1(Af (G))y. The vector

Af (H)y differs from λ1(Af (G))y in at most the following entries. For the vertex v0,
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we establish that

(Af (H)y)0 = f(d0, 2)yn +
∑
vj∈S

f(d0, dj)xj

= f(d0, 2)x0 + s

≤ 2f(d0, 2)x0

≤ (d0 − 1)f(d0, 2)x0

=
∑
vj∈S

f(d0, 2)x0

≤
∑
vj∈S

f(d0, dj)x0

≤
∑
vj∈S

f(d0, dj)

f(d0, 2)
· f(d0, dj)x0

<
∑
vj∈S

f(d0, dj)

f(d0, 2)
· λ1(Af (G))xj

=
λ1(Af (G))

f(d0, 2)
· s = λ1(Af (G))y0.

Because the degrees of the neighbours of v0 are at least 2 and f(x, y) > 0 is increasing,

we get f(d0, 2) ≤ f(d0, dj). It follows that the third and fourth inequalities hold. If

vj ∈ S, we have

f(d0, dj)x0 <
∑

vk∈NG(vj)\v0

f(dk, dj)xk + f(d0, dj)x0 = λ1(Af (G))xj.

Hence, the last inequality is strict. For the vertex v1, we have

(Af (H)y)1 = f(d1, 2)yn +
∑
vj∈R

f(d1, dj)xj

= f(d1, 2)x0 + r

≤ f(d1, d0)x0 + r

= λ1(Af (G))x1 = λ1(Af (G))y1.

For the vertex vj ∈ S, we have

(Af (H)y)j =
∑

vk∈NH(vj)\v0

f(dk, dj)xk + f(dj, d0)y0

≤
∑

vk∈NG(vj)\v0

f(dk, dj)xk + f(dj, d0)x0

= λ1(Af (G))xj = λ1(Af (G))yj.
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For the vertex vn, we have

(Af (H)y)n = f(d0, 2)y0 + f(d1, 2)y1

= s+ f(d1, 2)x1

≤ s+ f(d1, d0)x1

= λ1(Af (G))x0 = λ1(Af (G))yn.

Thus, Af (H)y < λ1(Af (G))y. By Lemma 2.2, it follows that λ1(Af (H)) <

λ1(Af (G)). The proof is now complete. �

Remark 2. In Theorem 3.5 (2), the condition “for any vertex vi ∈ NG(v0), di ≥ 2”

is necessary. Otherwise, there are graphs G and H which do not satisfy λ1(Af (H)) <

λ1(Af (G)). For example, set f(x, y) =
√

lg(xy), considering G = G2 and H = G1 in

Figure 1, then we can have 1.5845 ≈ λ1(Af (G1)) > λ1(Af (G2)) ≈ 1.5806.
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energies of graphs, Linear Algebra Appl. 554(2018) 185–204.

[4] I. Gutman, Geometric approach to degree-based topological indices: Sombor in-

dices, MATCH Commun. Math. Comput. Chem. 86(2021) 11–16.

[5] I. Gutman, Spectrum and energy of the Sombor matrix, Mil. Tech. Cour. 69(2021)

551–561.

[6] I. Gutman, V.R. Kulli, Nirmala energy, Open. J. Discrete Appl. Math. 4(2021)

11–16.

[7] R.A. Horn, C.R. Johnson, Matrix Analysis, Universitext, New York, 2013.

[8] X. Li, Indices, polynomials and matrices – a unified viewpoint, Invited talk at the

8th Slovinian Conf. Graph Theory, Kranjska Gora, June 21–27, 2015.

19



[9] X. Li, Z. Wang, Trees with extremal spectral radius of weighted adjacency matri-

ces among trees weighted by degree-based indices, Linear Algebra Appl. 620(2021)

61–75.

[10] X. Li, N. Yang, Some interlacing results on weighted adjacency matrices of graphs

with degree-based edge-weights, Discrete Appl. Math. 333(2023) 110–120.

[11] X. Li, N. Yang, Unified approach for spectral properties of weighted adjacency

matrices for graphs with degree-based edge-weights, submitted 2022.

[12] X. Li, N. Yang, Spectral properties and energy of weighted adjacency matrix for

graphs with a degree-based edge-weight function, submitted 2023.

[13] N.J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index

of graphs, MATCH Commun. Math. Comput. Chem. 79(2018) 371–386.

[14] R. Zheng, X. Guan, X. Jin, Extremal trees and unicyclic graphs with respect to

spectral radius of weighted adjacency matrices with property P∗, J. Appl. Math.

Comput. (2023), https://doi.org/10.1007/s12190-023-01846-y.

20


