The effect on the largest eigenvalue of degree-based weighted adjacency matrix of a graph perturbed by vertex contraction or edge subdivision*

Jing Gao, Xueliang Li, Ning Yang
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
gjing1270@163.com, lxl@nankai.edu.cn, yn@mail.nankai.edu.cn

Abstract

Let G be a connected graph. Denote by d_{i} the degree of a vertex v_{i} in G. Let $f(x, y)>0$ be a real symmetric function. Consider an edge-weighted graph in such a way that for each edge $v_{i} v_{j}$ of G, the weight of $v_{i} v_{j}$ is equal to the value $f\left(d_{i}, d_{j}\right)$. Therefore, we have a degree-based weighted adjacency matrix $A_{f}(G)$ of G, in which the (i, j)-entry is equal to $f\left(d_{i}, d_{j}\right)$ if $v_{i} v_{j}$ is an edge of G and is equal to zero otherwise. Let \mathbf{x} be the eigenvector corresponding to the largest eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ of the weighted adjacency matrix $A_{f}(G)$. In this paper, we firstly consider the unimodality of the eigenvector \mathbf{x} on an induced path of G. Secondly, if $f(x, y)$ is increasing in the variable x, then we investigate how the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ changes when G is perturbed by vertex contraction or edge subdivision. The aim of this paper is to unify the study of spectral properties for the degree-based weighted adjacency matrices of graphs.

Keywords: degree-based edge-weight; weighted adjacency matrix (eigenvalue, eigenvector); topological function-index; graph operation
AMS subject classification 2020: 05C50, 05C92, 05C09.

[^0]
1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. For notation and terminology not defined here, we refer to [2]. Let $G=(V(G), E(G))$ be a graph of order n with vertex set $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $E(G)$. If a pair of vertices v_{i} and v_{j} are adjacent, then we denote $v_{i} v_{j} \in E(G)$. For a vertex $v_{i} \in V(G)$, let $N_{G}\left(v_{i}\right)$ be the set of neighbours of v_{i} in G. The degree of the vertex v_{i}, denoted by d_{i}, is equal to $\left|N_{G}\left(v_{i}\right)\right|$. The closed neighborhood of v_{i} in G is the set $N_{G}\left[v_{i}\right]=N_{G}\left(v_{i}\right) \cup\left\{v_{i}\right\}$. If $d_{i}=1$, then the vertex v_{i} of G is said to be a pendant vertex. The distance between two vertices v_{i} and v_{j} in a graph G is the length of a shortest $v_{i} v_{j}$-path in G. If $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is a subgraph of G. Futhermore, if H is a subgraph of G and H contains all the edges $v_{i} v_{j} \in E(G)$ for any $v_{i}, v_{j} \in V(H)$, then H is an induced subgraph of G. We denote by $K_{1, n-1}$, P_{n} and C_{n}, respectively, the star, the path and the cycle of order n.

In chemical graph theory, graphical or topological indices are applied to represent chemical structures of molecular graphs and reflect molecular properties. The general form of degree-based topological indices is

$$
T I(G)=\sum_{v_{i} v_{j} \in E(G)} f\left(d_{i}, d_{j}\right),
$$

where the edge-weight function $f(x, y)$ is a real symmetric function with variables $x>0$ and $y>0$, and the value $f\left(d_{i}, d_{j}\right)$ is the edge-weight of the edge $v_{i} v_{j}$ of G. In fact, each index is obtained by summing up the edge-weights of all edges in a molecular graph with edge-weights defined by the function $f(x, y)$, and it maps a molecular graph into a single number. For a symmetric function $f(x, y)$, if the first partial derivative $f_{x}^{\prime}(x, y) \geq 0$, then $f(x, y)$ is said to be increasing in variable x. There are many important and well-studied indices collected by Gutman [4], as in Table 1. It is not difficult for us to find that the first fourteen edge-weight functions $f(x, y)$ in Table 1 are increasing in variable x. This means that increasing property is very important to studying topological indices.

In spectral graph theory, a matrix associated with graph G is a critical tool. In 2015, one of the authors Li in [8] proposed that if we use a matrix to represent the structure of a molecular graph with edge-weights separately on its edges, it would keep much more structural information than a topological index. Subsequently, matrices defined by topological indices from algebraic viewpoint were studied separately, including the first(second) Zagreb matrix [13], Nirmala matrix [6], Sombor matrix [5] and inverse sum indeg matrix [1].

In 2018, Das et al. first published in [3] the following definition of the weighted

Edge-weight function $\mathrm{f}(\mathrm{x}, \mathrm{y})$	The corresponding index
$x+y$	first Zagreb index
$x y$	second Zagreb index
$(x+y)^{2}$	first hyper-Zagreb index
$(x y)^{2}$	second hyper-Zagreb index
$\sqrt{x+y}$	reciprocal sum-connectivity index
$\sqrt{x y}$	reciprocal Randić index
$x+y+x y$	first Gourava index
$(x+y) x y$	second Gourava index
$(x+y+x y)^{2}$	first hyper-Gourava index
$((x+y) x y)^{2}$	second hyper-Gourava index
$\sqrt{(x+y) x y}$	product-connectivity Gourava index
$x^{2}+y^{2}$	forgotten index
$\sqrt{x^{2}+y^{2}}$	Sombor index
$x y /(x+y)$	inverse sum index
$x^{-2}+y^{-2}$	inverse degree
$x^{-3}+y^{-3}$	modified first Zagreb index
$1 / \sqrt{x y}$	Randić index
$1 / \sqrt{x+y}$	sum-connectivity index
$2 /(x+y)$	harmonic index
$1 / \sqrt{x+y+x y}$	sum-connectivity Gourava index
$\|x-y\|$	Albertson index
$(x-y)^{2}$	sigma index
$(x / y+y / x) / 2$	extended index
$\sqrt{(x+y-2) /(x y)}$	atom-bond-connectivity (ABC) index
$(x y /(x+y-2))^{3}$	augmented Zagreb index
$2 \sqrt{x y} /(x+y)$	geometric-arithmetic (GA) index
$(x+y) /(2 \sqrt{x y})$	arithmetic-geometric (AG) index

Table 1: Some well-studied chemical indices
adjacency matrix for a graph with degree-based edge-weights.
Definition 1.1 Let G be a graph of order n and $f(x, y)$ be a real symmetric function. The weighted adjacency matrix $A_{f}(G)$ is defined as

$$
\left(A_{f}(G)\right)_{i j}= \begin{cases}f\left(d_{i}, d_{j}\right), & v_{i} v_{j} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

We name the eigenvalues of the $n \times n$ matrix $A_{f}(G)$ as the weighted adjacency eigenvalues of a graph G with edge-weight function $f(x, y)$. Because $f(x, y)$ is a real symmetric function, then $A_{f}(G)$ is a real symmetric matrix, and therefore its eigenvalues are all real. Then the weighted adjacency eigenvalues can be ordered as

$$
\lambda_{1}\left(A_{f}(G)\right) \geq \lambda_{2}\left(A_{f}(G)\right) \geq \cdots \geq \lambda_{n}\left(A_{f}(G)\right),
$$

which are always arranged in a non-increasing order and repeated according to their multiplicity. $\lambda_{1}\left(A_{f}(G)\right)$ is the largest weighted adjacency eigenvalue. If we let $\mathbf{x}=$ $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be the eigenvector corresponding to $\lambda_{1}\left(A_{f}(G)\right)$, then $A_{f}(G) \mathbf{x}=$ $\lambda_{1}\left(A_{f}(G)\right) \mathbf{x}$. Moreover, the vector \mathbf{x} can be regarded as a function on $V(G)$. For any vertex v_{i}, the entry of \mathbf{x} corresponding to v_{i} is denoted by x_{i}.

Up to now, there have been a few articles studying the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$. Let us list some known results. In 2021, Li and Wang [9] first attempted to study the extremal tree with the largest value of $\lambda_{1}\left(A_{f}(G)\right)$, which is a star or a double star when the symmetric real function $f(x, y)$ is increasing and convex in variable x, and with the smallest value of $\lambda_{1}\left(A_{f}(G)\right)$, which is a path when $f(x, y)$ is a symmetric polynomial with nonnegative coefficients and zero constant term. In 2022, Zheng et al. [14] added a restriction P^{*} to $f(x, y)$ and they confirmed that star is the unique tree with the largest value of $\lambda_{1}\left(A_{f}(G)\right)$ among all trees of order n. They also obtained the extremal unicyclic graphs with the largest and smallest value of $\lambda_{1}\left(A_{f}(G)\right)$, respectively. Recently, Li and Yang [12] gave some lower and upper bounds for $\lambda_{1}\left(A_{f}(G)\right)$ and characterized the corresponding extremal graphs. In 2022, Li and Yang [10, 11] got uniform interlacing inequalities for the weighted adjacency eigenvalues under some kinds of graph operations, including edge deletion, edge subdivision, vertex deletion and vertex contraction, and examples were given to show that the interlacing inequalities are the best possible for their type when $f(x, y)$ is increasing in variable x. Although, we can get some upper and lower bounds for $\lambda_{1}\left(A_{f}(G)\right)$ from the interlacing inequalities, but it cannot be reflected directly that how the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ changes when one graph is transformed to another graph. In this paper, we are interested in the impact on the
largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ under two graph perturbations. So we first give the definitions of graph operations.

Definition 1.2 (Vertex contraction) The contraction of a pair of vertices $u, v \in$ $V(G)$ produces a new graph $G_{\{u, v\}}$, where $V\left(G_{\{u, v\}}\right)=(V(G) \backslash\{u, v\}) \cup\{s\}$, s is a new vertex with $N_{G_{\{u, v\}}}(s)=\left(N_{G}(u) \cup N_{G}(v)\right) \backslash\{u, v\}$, and $E\left(G_{\{u, v\}}\right)=(E(G) \backslash(\{u z$: $\left.\left.\left.z \in N_{G}(u)\right\} \cup\left\{v z: z \in N_{G}(v)\right\}\right)\right) \cup\left\{s z: z \in N_{G_{\{u, v\}}}(s)\right\}$.

Definition 1.3 (Edge subdivision) The subdivision of an edge $e=v_{i} v_{j} \in E(G)$ produces a new graph G_{e}, where $V\left(G_{e}\right)=V(G) \cup\left\{v_{n}\right\}$, such that $v_{n} \notin V(G)$, and $E\left(G_{e}\right)=(E(G) \backslash e) \cup\left\{v_{i} v_{n}, v_{j} v_{n}\right\}$.

The structure of this paper is as follows. In Section 2, we present some known results that will be used in the subsequent sections. In Section 3, since the eigenvector \mathbf{x} corresponding to the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ plays an important role in the investigation of $\lambda_{1}\left(A_{f}(G)\right)$, we first study the property of \mathbf{x} on an induced path of G. Then, the effects on the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ perturbed by the vertex contraction and edge subdivision of G are described, respectively, when $f(x, y)>0$ is a real symmetric function and increasing in variable x.

2 Prelimininaries

At the very beginning, we state some fundamental results on matrix theory, which will be used in the sequel. Let $A=\left(a_{i j}\right)_{n \times m}$ and $B=\left(b_{i j}\right)_{n \times m}$ be two matrices. If $a_{i j} \leq b_{i j}$ for all i and j, then we say that $A \leq B$. If $A \leq B$ and $A \neq B$, then we say that $A<B$.

Lemma 2.1 [7] Let A, B be $n \times n$ nonnegative symmetric matrices. If $A \leq B$, then

$$
\lambda_{1}(A) \leq \lambda_{1}(B)
$$

Futhermore, if B is irreducible and $A<B$, then $\lambda_{1}(A)<\lambda_{1}(B)$.
The next result plays a very important role in the proof of our main results.
Lemma 2.2 [7$]$ Let A be an $n \times n$ nonnegative matrix and $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)^{T}$ be a positive vector. If $\alpha, \beta \geq 0$, such that $\alpha \mathbf{y} \leq A \mathbf{y} \leq \beta \mathbf{y}$, then

$$
\alpha \leq \lambda_{1}(A) \leq \beta
$$

If $\alpha \mathbf{y}<A \mathbf{y}$, then $\alpha<\lambda_{1}(A)$; if $A \mathbf{y}<\beta \mathbf{y}$, then $\lambda_{1}(A)<\beta$.

Finally we state the famous Perron-Frobenius Theorem.

Lemma 2.3 [2] Let A be an irreducible symmetric matrix with nonnegative entries. Then the largest eigenvalue $\lambda_{1}(A)$ of A is simple, with a corresponding eigenvector whose entries are all positive.

3 Main results

In this section, we first study the property of the eigenvector \mathbf{x} corresponding to the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$. For a connected graph G, if $f(x, y)>0$ is a real symmetric function, then $A_{f}(G)$ is an irreducible symmetric matrix with nonnegative entries. From Lemma 2.3, we have a positive eigenvector \mathbf{x} corresponding to the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$. The following result says the unimodality of \mathbf{x} on an induced path of G.

Theorem 3.1 For a connected graph G of order n and a real symmetric function $f(x, y)>0$, let $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be a positive eigenvector corresponding to the eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ and $P_{k}=v_{1} v_{2} \ldots v_{k}$ be an induced path of G such that $d_{i}=2$ for $1 \leq i \leq k$. If $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$, then the following statements hold.
(1) If $x_{1}=x_{k}$, then

$$
x_{1}>x_{2}>\cdots>x_{\left\lfloor\frac{k+1}{2}\right\rfloor}=x_{\left\lceil\frac{k+1}{2}\right\rceil}<\cdots<x_{k-1}<x_{k}
$$

and $x_{i}=x_{k+1-i}$ for $2 \leq i \leq k-1$.
(2) If $x_{1}<x_{k}$, then there is an integer $1 \leq j \leq\left\lfloor\frac{k+1}{2}\right\rfloor$ such that

$$
x_{1}>x_{2}>\cdots>x_{j}>x_{j+1}<\cdots<x_{k-1}<x_{k}
$$

or

$$
x_{1}>x_{2}>\cdots>x_{j} \leq x_{j+1}<\cdots<x_{k-1}<x_{k}
$$

Moreover, $x_{i}<x_{k+1-i}$ for $2 \leq i \leq\left\lceil\frac{k+1}{2}\right\rceil-1$.
Proof. Since \mathbf{x} is a positive eigenvector corresponding to $\lambda_{1}\left(A_{f}(G)\right)$, we have $x_{i} \geq 0$ for $0 \leq i \leq n-1$. Recall that $P_{k}=v_{1} v_{2} \ldots v_{k}$ is an induced path of G such that $d_{i}=2$ for $1 \leq i \leq k$. Hence, it is not difficult to get the following relation:

$$
\lambda_{1}\left(A_{f}(G)\right) x_{i}=f(2,2) x_{i-1}+f(2,2) x_{i+1}
$$

where $2 \leq i \leq k-1$. This means that

$$
\frac{\lambda_{1}\left(A_{f}(G)\right)}{f(2,2)} x_{i}=x_{i-1}+x_{i+1}
$$

where $2 \leq i \leq k-1$. Clearly, this is a recurrence relation and the characteristic equation is

$$
t^{2}-\frac{\lambda_{1}\left(A_{f}(G)\right)}{f(2,2)} t+1=0
$$

Since $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$, we can deduce that this characteristic equation has two unequal real roots t_{1} and t_{2}, such that $t_{1} t_{2}=1, t_{1}+t_{2}>2$. Without loss of generality, we assume that $t_{2}>1>t_{1}>0$. The solution of this linear homogeneous recurrence relation with constant coefficients is given by

$$
x_{i}=A t_{1}^{i}+B t_{2}^{i} .
$$

Let x_{1} and x_{k} be the initial conditions. We can determine constants A and B from the initial conditions:

$$
\left\{\begin{array}{l}
A t_{1}+B t_{2}=x_{1} \\
A t_{1}^{k}+B t_{2}^{k}=x_{k}
\end{array}\right.
$$

This implies that

$$
A=\frac{x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}}{t_{2}^{k}-t_{1}^{k-2}}, \quad B=\frac{x_{k}-x_{1} t_{1}^{k-1}}{t_{2}^{k}-t_{1}^{k-2}} .
$$

Because $t_{2}>1>t_{1}>0$ and $k \geq 2$, it follows that $t_{2}^{k}-t_{1}^{k-2}>0$. We then have

$$
x_{i}=\frac{1}{t_{2}^{k}-t_{1}^{k-2}}\left(\left(x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}\right) t_{1}^{i}+\left(x_{k}-x_{1} t_{1}^{k-1}\right) t_{2}^{i}\right)
$$

for $1 \leq i \leq k$.
(1) Since $x_{1}=x_{k}$, we have

$$
\begin{aligned}
x_{i} & =\frac{x_{1}}{t_{2}^{k}-t_{1}^{k-2}}\left(\left(t_{2}^{k+1}-t_{2}^{2}\right) t_{1}^{i}+\left(1-t_{1}^{k-1}\right) t_{2}^{i}\right) \\
& =\frac{x_{1}}{t_{2}^{k}-t_{1}^{k-2}}\left(t_{2}^{k+1-i}-t_{1}^{i-2}+t_{2}^{i}-t_{1}^{k-1-i}\right)
\end{aligned}
$$

Furthermore, we can get

$$
x_{k+1-i}=\frac{x_{1}}{t_{2}^{k}-t_{1}^{k-2}}\left(t_{2}^{i}-t_{1}^{k-1-i}+t_{2}^{k+1-i}-t_{1}^{i-2}\right)
$$

Hence for $1 \leq i \leq k$, we have $x_{i}=x_{k+1-i}$. Now we let

$$
\begin{aligned}
f(i) & =t_{2}^{k+1-i}-t_{1}^{i-2}+t_{2}^{i}-t_{1}^{k-1-i} \\
& =t_{2}^{k+1-i}-\frac{1}{t_{2}^{i-2}}+t_{2}^{i}-\frac{1}{t_{2}^{k-1-i}} \\
& =\frac{t_{2}^{k-3+i}+t_{2}^{2 k-2-i}-t_{2}^{k-1-i}-t_{2}^{i-2}}{t_{2}^{k-3}} .
\end{aligned}
$$

Since $t_{2}^{k}-t_{1}^{k-2}>0$ and $x_{1}>0$, it follows that the monotonicity of $f(i)$ is the same as the monotonicity of x_{i}. Suppose that

$$
g(i)=t_{2}^{k-3+i}+t_{2}^{2 k-2-i}-t_{2}^{k-1-i}-t_{2}^{i-2} .
$$

Because $t_{2}^{k-3}>0$, the monotonicity of $g(i)$ is the same as the monotonicity of $f(i)$.
We now consider the monotonicity of $g(i)$. By the first derivative of $g(i)$, it follows that

$$
\begin{aligned}
g^{\prime}(i) & =t_{2}^{k-3+i} \ln t_{2}-t_{2}^{2 k-2-i} \ln t_{2}+t_{2}^{k-1-i} \ln t_{2}-t_{2}^{i-2} \ln t_{2} \\
& =t_{2}^{k-1}\left(t_{2}^{i-2}-t_{2}^{k-1-i}\right) \ln t_{2}+\left(t_{2}^{k-1-i}-t_{2}^{i-2}\right) \ln t_{2} \\
& =\left(t_{2}^{k-1}-1\right)\left(t_{2}^{i-2}-t_{2}^{k-1-i}\right) \ln t_{2} .
\end{aligned}
$$

Recalling that $t_{2}>1$, it follows that $t_{2}^{k-1}-1>0$ and $\ln t_{2}>0$. If $i-2>k-1-i$, that is, $i>\frac{k+1}{2}$, then we have $t_{2}^{i-2}>t_{2}^{k-1-i}$, hence $g^{\prime}(i)>0$. This means that x_{i} is monotonically increasing for $i>\frac{k+1}{2}$. If $i-2<k-1-i$, that is, $i<\frac{k+1}{2}$, then we obtain $t_{2}^{i-2}<t_{2}^{k-1-i}$, hence $g^{\prime}(i)<0$. This means that x_{i} is monotonically decreasing for $i<\frac{k+1}{2}$. Thus we conclude that $x_{1}>x_{2}>\cdots>x_{\left\lfloor\frac{k+1}{2}\right\rfloor}=x_{\left\lceil\frac{k+1}{2}\right\rceil}<\cdots<x_{k-1}<$ x_{k}. The proof of (1) is complete.
(2) We assume that $x_{1}<x_{k}$. Otherwise, we can relabel the vertices on P_{k}. Note that

$$
x_{i}=\frac{1}{t_{2}^{k}-t_{1}^{k-2}}\left(\left(x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}\right) t_{1}^{i}+\left(x_{k}-x_{1} t_{1}^{k-1}\right) t_{2}^{i}\right)
$$

For $2 \leq i \leq\left\lceil\frac{k+1}{2}\right\rceil-1$, we have

$$
\begin{aligned}
& x_{k+1-i}-x_{i} \\
& =\frac{1}{t_{2}^{k}-t_{1}^{k-2}}\left(\left(x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}\right) t_{1}^{k+1-i}+\left(x_{k}-x_{1} t_{1}^{k-1}\right) t_{2}^{k+1-i}-\left(\left(x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}\right) t_{1}^{i}+\left(x_{k}-x_{1} t_{1}^{k-1}\right) t_{2}^{i}\right)\right) \\
& =\frac{1}{t_{2}^{k}-t_{1}^{k-2}}\left(x_{1} t_{2}^{i}-x_{k} t_{1}^{k-i-1}+x_{k} t_{2}^{k+1-i}-x_{1} t_{1}^{i-2}-\left(x_{1} t_{2}^{k+1-i}-x_{k} t_{1}^{i-2}+x_{k} t_{2}^{i}-x_{1} t_{1}^{k-1-i}\right)\right) \\
& =\frac{1}{t_{2}^{k}-t_{1}^{k-2}}\left(x_{k}-x_{1}\right)\left(t_{2}^{k+1-i}-t_{2}^{i}+t_{1}^{i-2}-t_{1}^{k-i-1}\right)
\end{aligned}
$$

Since $2 \leq i \leq\left\lceil\frac{k+1}{2}\right\rceil-1$, it follows that $t_{2}^{k+1-i}>t_{2}^{i}$ and $t_{1}^{i-2}>t_{1}^{k-i-1}$. Recalling that $x_{k}>x_{1}$, we obtain $x_{k-i+1}>x_{i}$ for $2 \leq i \leq\left\lceil\frac{k+1}{2}\right\rceil-1$.

Now let us consider a function

$$
\begin{aligned}
h(i) & =\left(x_{1} t_{2}^{k+1}-x_{k} t_{2}^{2}\right) t_{1}^{i}+\left(x_{k}-x_{1} t_{1}^{k-1}\right) t_{2}^{i} \\
& =x_{1} t_{2}^{k+1-i}-x_{k} t_{2}^{2-i}+x_{k} t_{2}^{i}-x_{1} t_{2}^{i-k+1} .
\end{aligned}
$$

Because $t_{2}^{k}-t_{1}^{k-2}>0$, it follows that the monotonicity of $h(i)$ is the same as the monotonicity of x_{i}. By the first derivative of $h(i)$, we obtain

$$
\begin{aligned}
h^{\prime}(i) & =-x_{1} t_{2}^{k+1-i} \ln t_{2}+x_{k} t_{2}^{2-i} \ln t_{2}+x_{k} t_{2}^{i} \ln t_{2}-x_{1} t_{2}^{i-k+1} \ln t_{2} \\
& =\left(x_{k}\left(t_{2}^{i}+t_{2}^{2-i}\right)-x_{1}\left(t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\right) \ln t_{2} .
\end{aligned}
$$

Then we consider the following two cases.
Case 1. $i>k+1-i$, that is, $i \geq\left\lfloor\frac{k+1}{2}\right\rfloor+1$.
We consider the function $l(i)=t_{2}^{i}+t_{2}^{2-i}$. Since $l^{\prime}(i)=t_{2}^{i}\left(1-t_{2}^{2(1-i)}\right) \ln t_{2}$, the function $l(i)$ is monotonically increasing for $i>1$. This means that $t_{2}^{i}+t_{2}^{2-i}>$ $t_{2}^{k+1-i}+t_{2}^{i-k+1}$. Because $x_{k}>x_{1}$, it follows that $h^{\prime}(i)>0$ for $i \geq\left\lfloor\frac{k+1}{2}\right\rfloor+1$. Hence, x_{i} is monotonically increasing for $i \geq\left\lfloor\frac{k+1}{2}\right\rfloor+1$. We then have $x_{\left\lfloor\frac{k+1}{2}\right\rfloor+1}<\cdots<x_{k-1}<x_{k}$.

Case 2. $i \leq k+1-i$, that is, $i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$.
Now we consider the function

$$
w(i)=\frac{t_{2}^{k+1-i}+t_{2}^{i-k+1}}{t_{2}^{i}+t_{2}^{2-i}}
$$

By the first derivative of $w(i)$, we have

$$
\begin{aligned}
w^{\prime}(i) & =\frac{\left(\left(-t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\left(t_{2}^{i}+t_{2}^{2-i}\right)-\left(t_{2}^{i}-t_{2}^{2-i}\right)\left(t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\right) \ln t_{2}}{\left(t_{2}^{i}+t_{2}^{2-i}\right)^{2}} \\
& =\frac{2\left(t_{2}^{3-k}-t_{2}^{k+1}\right) \ln t_{2}}{\left(t_{2}^{i}+t_{2}^{2-i}\right)^{2}} .
\end{aligned}
$$

It is clear that $w^{\prime}(i)<0$ with $k>1$. There are two possibilities.
Subcase 2.1. $\frac{x_{k}}{x_{1}}>w(i)$ for $1 \leq i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$.
Since $w(i)$ is monotonically decreasing, we have

$$
h^{\prime}(i)=\left(x_{k}\left(t_{2}^{i}+t_{2}^{2-i}\right)-x_{1}\left(t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\right) \ln t_{2}>0
$$

for $1 \leq i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. This means that x_{i} is monotonically increasing for $1 \leq i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. Together with Case 1, it follows that $x_{1}<x_{2}<\cdots<x_{k}$.

Subcase 2.2. There exits an integer $1 \leq i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$ such that $\frac{x_{k}}{x_{1}} \leq w(i)$.

Since $w(i)$ is monotonically decreasing, there is only an integer $1 \leq j \leq\left\lfloor\frac{k+1}{2}\right\rfloor$ such that $w(j) \geq \frac{x_{k}}{x_{1}}$ and $w(j+1)<\frac{x_{k}}{x_{1}}$. Thus we can say that

$$
h^{\prime}(i)=\left(x_{k}\left(t_{2}^{i}+t_{2}^{2-i}\right)-x_{1}\left(t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\right) \ln t_{2} \leq 0
$$

for $1 \leq i \leq j$. This means that x_{i} is monotonically decreasing for $1 \leq i \leq j$. Furthermore,

$$
h^{\prime}(i)=\left(x_{k}\left(t_{2}^{i}+t_{2}^{2-i}\right)-x_{1}\left(t_{2}^{k+1-i}+t_{2}^{i-k+1}\right)\right) \ln t_{2}>0
$$

for $j+1 \leq i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. This means that x_{i} is monotonically increasing for $j+1 \leq$ $i \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. Together with Case 1, we can conclude that $x_{1}>x_{2}>\cdots>x_{j}>x_{j+1}<$ $\cdots<x_{k-1}<x_{k}$ or $x_{1}>x_{2}>\cdots>x_{j} \leq x_{j+1}<\cdots<x_{k-1}<x_{k}$. This proof is thus complete.

In fact, there are many graphs satisfying $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$. Here we give a result as follows.

Theorem 3.2 Let $G \neq C_{n}$ be a connected graph of order n. Assume that $f(x, y)>0$ is a real symmetric function and increasing in variable x. If G contains a cycle, then $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$.

Proof. Without loss of generality, we suppose that G has an induced cycle $C_{k+1}=$ $v_{0} v_{1} \ldots v_{k} v_{0}$. Let B be a $(k+1) \times(k+1)$ matrix, which is obtained by choosing the rows and columns associated with $v_{0}, v_{1}, \ldots, v_{k}$ from $A_{f}(G)$. Since $f(x, y)>0$ is an increasing function in variable x, it is clear that $B \geq A_{f}\left(C_{k+1}\right)$. From Lemma 2.1, we have $\lambda_{1}(B) \geq \lambda_{1}\left(A_{f}\left(C_{k+1}\right)\right)=2 f(2,2)$.

Adding $n-k-1$ zero rows and zero columns to B, we have an $n \times n$ matrix C. Clearly, $\lambda_{1}(B)=\lambda_{1}(C)$. Because $G \neq C_{n}$ and $f(x, y)>0$, it follows that $A_{f}(G)>C$. Recalling that G is a connected graph, by using Lemma 2.1 again we have $\lambda_{1}\left(A_{f}(G)\right)>\lambda_{1}(C)=\lambda_{1}(B)$. Hence, $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$. The required result is obtained.

In fact, for a subgraph H of a connected graph G, if $G \neq H$, using a similar argument in Theorem 3.2, then we can prove that $\lambda_{1}\left(A_{f}(G)\right)>\lambda_{1}\left(A_{f}(H)\right)$. Next, when $f(x, y)>0$ is a real symmetric function and increasing in variable x, we consider the effect on the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ by vertex contraction.

Theorem 3.3 Let G be a connected graph of order n and $H=G_{\{u, v\}}$, where u and v are two distinct vertices of G such that the distance between u and v is at least 3.

Assume that $f(x, y)>0$ is a real symmetric function and increasing in variable x. Then

$$
\lambda_{1}\left(A_{f}(G)\right)<\lambda_{1}\left(A_{f}(H)\right)
$$

Proof. Since the distance between u and v is at least 3, we have $u v \notin E(G)$ and $N_{G}(u) \cap N_{G}(v)=\emptyset$. Without loss of generality, we suppose that $N_{G}(u)=$ $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$, where $p, q \geq 1$. Contracting the two vertices u and v, we obtain a new vertex s. For the weighted adjacency ma$\operatorname{trix} A_{f}(H)$, we have a positive eigenvector \mathbf{x} corresponding to $\lambda_{1}\left(A_{f}(H)\right)$. That is, $A_{f}(H) \mathbf{x}=\lambda_{1}\left(A_{f}(H)\right) \mathbf{x}$. Let n-dimensional vector \mathbf{y} be an assignment of G satisfying

$$
\left\{\begin{array}{l}
y_{u}=y_{v}=x_{s}, \\
y_{w}=x_{w},
\end{array} \quad w \in V(G) \backslash\{u, v\}, ~ \$\right.
$$

where x_{z} and y_{z} are the entries of \mathbf{x} and \mathbf{y} corresponding to vertex z, respectively. Obviously, the vector \mathbf{y} is positive. Next we prove $A_{f}(G) \mathbf{y}<\lambda_{1}\left(A_{f}(H)\right) \mathbf{y}$.

First, we compare the entry $\left(A_{f}(G) \mathbf{y}\right)_{u}$ to $\lambda_{1}\left(A_{f}(H)\right) y_{u}$. We have

$$
\begin{aligned}
\left(A_{f}(G) \mathbf{y}\right)_{u} & =\sum_{i=1}^{p} f\left(p, d_{u_{i}}\right) y_{u_{i}}=\sum_{i=1}^{p} f\left(p, d_{u_{i}}\right) x_{u_{i}} \\
& \leq \sum_{i=1}^{p} f\left(p+q, d_{u_{i}}\right) x_{u_{i}} \\
& <\sum_{i=1}^{p} f\left(p+q, d_{u_{i}}\right) x_{u_{i}}+\sum_{i=1}^{q} f\left(p+q, d_{v_{i}}\right) x_{v_{i}} \\
& =\lambda_{1}\left(A_{f}(H)\right) x_{s}=\lambda_{1}\left(A_{f}(H)\right) y_{u} .
\end{aligned}
$$

Since $f\left(p+q, d_{v_{i}}\right)>0$ and $x_{v_{i}}>0$, it follows that $\sum_{i=1}^{q} f\left(p+q, d_{v_{i}}\right) x_{v_{i}}>0$. Thus, the above inequality is strict. Similarly, we have

$$
\begin{aligned}
\left(A_{f}(G) \mathbf{y}\right)_{v} & =\sum_{i=1}^{q} f\left(q, d_{v_{i}}\right) y_{v_{i}}=\sum_{i=1}^{q} f\left(q, d_{v_{i}}\right) x_{v_{i}} \\
& \leq \sum_{i=1}^{q} f\left(p+q, d_{v_{i}}\right) x_{v_{i}} \\
& <\sum_{i=1}^{q} f\left(p+q, d_{v_{i}}\right) x_{v_{i}}+\sum_{i=1}^{p} f\left(p+q, d_{u_{i}}\right) x_{u_{i}} \\
& =\lambda_{1}\left(A_{f}(H)\right) x_{s}=\lambda_{1}\left(A_{f}(H)\right) y_{v} .
\end{aligned}
$$

Because $\sum_{i=1}^{p} f\left(p+q, d_{u_{i}}\right) x_{u_{i}}>0$, this inequality is also strict. For any vertex $w \in$ $V(G) \backslash(N[u] \cup N[v])$, we have

$$
\begin{aligned}
\left(A_{f}(G) \mathbf{y}\right)_{w} & =\sum_{z \in N_{G}(w)} f\left(d_{w}, d_{z}\right) y_{z}=\sum_{z \in N_{H}(w)} f\left(d_{w}, d_{z}\right) x_{z} \\
& =\lambda_{1}\left(A_{f}(H)\right) x_{w}=\lambda_{1}\left(A_{f}(H)\right) y_{w} .
\end{aligned}
$$

Moreover, for a vertex $u_{i}, 1 \leq i \leq p$, we have

$$
\begin{aligned}
\left(A_{f}(G) \mathbf{y}\right)_{u_{i}} & =\sum_{z \in N_{G}\left(u_{i}\right) \backslash u} f\left(d_{u_{i}}, d_{z}\right) y_{z}+f\left(d_{u_{i}}, p\right) y_{u} \\
& \leq \sum_{z \in N_{H}\left(u_{i}\right) \backslash s} f\left(d_{u_{i}}, d_{z}\right) x_{z}+f\left(d_{u_{i}}, p+q\right) x_{s} \\
& =\lambda_{1}\left(A_{f}(H)\right) x_{u_{i}}=\lambda_{1}\left(A_{f}(H)\right) y_{u_{i}} .
\end{aligned}
$$

For a vertex $v_{i}, 1 \leq i \leq q$, we have

$$
\begin{aligned}
\left(A_{f}(G) \mathbf{y}\right)_{v_{i}} & =\sum_{z \in N_{G}\left(v_{i}\right) \backslash v} f\left(d_{v_{i}}, d_{z}\right) y_{z}+f\left(d_{v_{i}}, q\right) y_{v} \\
& \leq \sum_{z \in N_{H}\left(v_{i}\right) \backslash s} f\left(d_{v_{i}}, d_{z}\right) x_{z}+f\left(d_{v_{i}}, p+q\right) x_{s} \\
& =\lambda_{1}\left(A_{f}(H)\right) x_{v_{i}}=\lambda_{1}\left(A_{f}(H)\right) y_{v_{i}} .
\end{aligned}
$$

Thus, $A_{f}(G) \mathbf{y}<\lambda_{1}\left(A_{f}(H)\right) \mathbf{y}$. From Lemma 2.2, we can conclude that $\lambda_{1}\left(A_{f}(G)\right)<$ $\lambda_{1}\left(A_{f}(H)\right)$. This completes the proof.

Figure 1: Graphs G_{1} and G_{2}.

Remark 1. In Theorem 3.3, the condition "the distance between u and v is at least 3 " is reasonable. Here are some examples to illustrate the situation. First, we consider that the distance between u and v is 1 . Suppose that a connected graph G contains a pendent vertex v. Contracting the vertex v and its neighbour, we can get a graph H. Since H is an induced subgraph of G and $f(x, y)>0$ is increasing in variable x, it
follows that $\lambda_{1}\left(A_{f}(G)\right)>\lambda_{1}\left(A_{f}(H)\right)$. In addition, if $G=G_{1}$ (see Figure 1), contract$\operatorname{ing} v_{1}$ and v_{7}, then we can get a graph G_{2} (see Figure 1). Set $f(x, y)=\sqrt{\lg (x y)}$, by calculation it is not difficult to get that $1.5845 \approx \lambda_{1}\left(A_{f}\left(G_{1}\right)\right)>\lambda_{1}\left(A_{f}\left(G_{2}\right)\right) \approx 1.5806$. Second, we consider that the distance between u and v is 2 . If $G=K_{1, n-1}$, contracting two pendant vertices, then we have $H=K_{1, n-2}$. Because $f(x, y)>0$ is increasing in variable x, it suffices to prove that $f(1, n-1) \sqrt{n-1}=\lambda_{1}\left(A_{f}\left(K_{1, n-1}\right)\right)>$ $\lambda_{1}\left(A_{f}\left(K_{1, n-2}\right)\right)=f(1, n-2) \sqrt{n-2}$. Moreover, if $G=G_{1}$ (see Figure 1), contracting v_{1} and v_{2}, then we can obtain $K_{1,5}$. When $f(x, y)=(x y)^{3}$, a short calculation reveals that $307.8474 \approx \lambda_{1}\left(A_{f}\left(G_{1}\right)\right)>\lambda_{1}\left(A_{f}\left(K_{1,5}\right)\right) \approx 279.5085$.

Finally, we establish the relation between the largest weighted adjacency eigenvalue $\lambda_{1}\left(A_{f}(G)\right)$ and $\lambda_{1}\left(A_{f}\left(G_{e}\right)\right)$, where $f(x, y)>0$ is a real symmetric function and increasing in variable x. Now we introduce the definition of an internal path of a graph G in the first place.

Definition 3.4 Let G be a connected graph of order n. The walk $v_{0} v_{1} \ldots v_{k+1}$ is an internal path of G if one of the following holds:
(i) $k \geq 2$, the vertices $v_{0}, v_{1}, \ldots, v_{k}$ are distinct, $v_{k+1}=v_{0}, v_{i} v_{i+1} \in E(G)$ where $0 \leq i \leq k, d_{0} \geq 3$ and $d_{i}=2$ where $1 \leq i \leq k ;$
(ii) $k \geq 0$, the vertices $v_{0}, v_{1}, \ldots, v_{k+1}$ are distinct, $v_{i} v_{i+1} \in E(G)$ where $0 \leq i \leq k$, $d_{0} \geq 3, d_{k+1} \geq 3$ and $d_{i}=2$ where $1 \leq i \leq k$.

Theorem 3.5 Let G be a connected graph of order n and $H=G_{e}$. Assume that $f(x, y)>0$ is a real symmetric function and increasing in variable x. Let $\mathbf{x}=$ $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}^{T}$ be a positive eigenvector corresponding to $\lambda_{1}\left(A_{f}(G)\right)$ and $P_{k+2}=$ $v_{0} v_{1} \ldots v_{k+1}$ be an internal path of G such that $x_{0} \leq x_{k+1}$. Then the following statements hold.
(1) If $G \neq C_{n}$ and e does not belong to an internal path of G, then

$$
\lambda_{1}\left(A_{f}(H)\right)>\lambda_{1}\left(A_{f}(G)\right) .
$$

(2) If for any vertex $v_{i} \in N_{G}\left(v_{0}\right), d_{i} \geq 2$ and e belongs to an internal path of G, then

$$
\lambda_{1}\left(A_{f}(H)\right)<\lambda_{1}\left(A_{f}(G)\right) .
$$

Proof. (1) If $G \neq C_{n}$ and e does not belong to an internal path of G, then we can get G by deleting a pendent vertex v from H. This means that H has a proper subgraph $H^{\prime}=H \backslash v$ isomorphic to G. Now deleting the row and column associated with v from
$A_{f}(H)$, we get a matrix B. Then, adding a zero row and a zero column to B, we have an $(n+1) \times(n+1)$ matrix C. It is not difficult to verify that $\lambda_{1}(B)=\lambda_{1}(C)$. The matrix $A_{f}(H)-C$ has two same nonnegative nonzero entries $f(2,1)$ in symmetric place, and all other entries of $A_{f}(H)-C$ are zero. Since G is connected, $A_{f}(H)$ is irreducible. Now using Lemma 2.1, we have $\lambda_{1}\left(A_{f}(H)\right)>\lambda_{1}(C)=\lambda_{1}(B)$.

Note that the matrix $B-A_{f}(G)$ has two same nonnegative entries $f(2,2)-f(2,1)$ in symmetric place, and all other entries of $B-A_{f}(G)$ are zero. Since $f(x, y)>0$ is an increasing function in variable x, we have $B \geq A_{f}(G)$. Using Lemma 2.1 again, we get $\lambda_{1}(B) \geq \lambda_{1}\left(A_{f}(G)\right)$. Until now, we can obtain $\lambda_{1}\left(A_{f}(H)\right)>\lambda_{1}\left(A_{f}(G)\right)$.
(2) For convenience, we suppose that v_{n} is the addition vertex which appears in subdividing edge e. Next, we prove the result by discussing the type of the internal path with the edge e.

Case 1. e belongs to an internal path $P_{k+2}=v_{0} v_{1} \ldots v_{k+1}$ of type (i).
Let x_{i} be the entry of \mathbf{x} corresponding to the vertex v_{i} of G where $i=0,1, \ldots, k$. Since $v_{0}=v_{k+1}$ and $v_{1} v_{2} \ldots v_{k}$ is an induced path of G, by Theorem 3.1 we have $x_{i}=x_{k+1-i}$ for $1 \leq i \leq k$. Next we consider the following two cases.

Case 1.1. k is even.
We have $x_{\frac{k}{2}}=x_{\frac{k}{2}+1}$. Without loss of generality, we take $e=v_{\frac{k}{2}} v_{\frac{k}{2}+1}$. Let \mathbf{y} be an ($n+1$)-dimensional vector obtained from \mathbf{x} by inserting the addition entry $y_{n}=x_{\frac{k}{2}}=x_{\frac{k}{2}+1}$. That is,

$$
\left\{\begin{array}{l}
y_{n}=x_{\frac{k}{2}}, \\
y_{i}=x_{i}, \quad v_{i} \in V(G) .
\end{array}\right.
$$

Hence, the vector \mathbf{y} is positive. Then we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{n} & =f(2,2) x_{\frac{k}{2}}+f(2,2) x_{\frac{k}{2}+1} \\
& =2 f(2,2) x_{\frac{k}{2}} \\
& <\lambda_{1}\left(A_{f}(G)\right) x_{\frac{k}{2}}=\lambda_{1}\left(A_{f}(G)\right) y_{n}
\end{aligned}
$$

Since e belongs to an internal path of type $(i), G$ has a cycle as an induced subgraph. From Theorem 3.2, we know that the above inequality is strict. For any vertex $v_{i} \neq v_{n}$, we can easily obtain $\left(A_{f}(H) \mathbf{y}\right)_{i}=\lambda_{1}\left(A_{f}(G)\right) y_{i}$.

Hence, $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. Using Lemma 2.2, we get $\lambda_{1}\left(A_{f}(H)\right)<\lambda_{1}\left(A_{f}(G)\right)$.
Case 1.2. k is odd.
We have $x_{\frac{k-1}{2}}=x_{\frac{k+3}{2}}$. It is not difficult to see that

$$
\lambda_{1}\left(A_{f}(G)\right) x_{\frac{k+1}{2}}=f(2,2) x_{\frac{k-1}{2}}+f(2,2) x_{\frac{k+3}{2}}=2 f(2,2) x_{\frac{k-1}{2}} .
$$

Since $\lambda_{1}\left(A_{f}(G)\right)>2 f(2,2)$, we obtain $x_{\frac{k+1}{2}}<x_{\frac{k-1}{2}}$. Without loss of generality, we take $e=v_{\frac{k-1}{2}} v_{\frac{k+1}{2}}$. Let vector \mathbf{y} be obtained from \mathbf{x} by inserting the addition entry $y_{n}=x_{\frac{k+1}{2}}$. That is,

$$
\left\{\begin{array}{l}
y_{n}=x_{\frac{k+1}{2}}, \\
y_{i}=x_{i},
\end{array} \quad v_{i} \in V(G)\right.
$$

Hence, vector $A_{f}(H) \mathbf{y}$ differs from $\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$ only in the $\frac{k+1}{2}$-th and n-th entries. Comparing the two corresponding entries in $A_{f}(H) \mathbf{y}$ and $\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$, respectively, we get

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{\frac{k+1}{2}} & =f(2,2) y_{n}+f(2,2) x_{\frac{k+3}{2}} \\
& =f(2,2) x_{\frac{k+1}{2}}+f(2,2) x_{\frac{k+3}{2}} \\
& <f(2,2) x_{\frac{k-1}{2}}+f(2,2) x_{\frac{k+3}{2}} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{\frac{k+1}{2}}=\lambda_{1}\left(A_{f}(G)\right) y_{\frac{k+1}{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{n} & =f(2,2) x_{\frac{k-1}{2}}+f(2,2) x_{\frac{k+1}{2}} \\
& <f(2,2) x_{\frac{k-1}{2}}+f(2,2) x_{\frac{k-1}{2}} \\
& =f(2,2) x_{\frac{k-1}{2}}+f(2,2) x_{\frac{k+3}{2}} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{\frac{k+1}{2}}=\lambda_{1}\left(A_{f}(G)\right) y_{n}
\end{aligned}
$$

It follows that $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. From Lemma 2.2, we get $\lambda_{1}\left(A_{f}(H)\right)<$ $\lambda_{1}\left(A_{f}(G)\right)$.

Case 2. e belongs to an internal path $P_{k+2}=v_{0} v_{1} \ldots v_{k+1}$ of type (ii).
Let x_{i} be the entry of \mathbf{x} corresponding to the vertex v_{i} of G where $i=0,1, \ldots, k+1$. Let t be the smallest index such that $x_{t}=\min \left\{x_{0}, x_{1}, \ldots, x_{k+1}\right\}$. Because $x_{0} \leq x_{k+1}$, we have $0 \leq t<k+1$. Without loss of generality, we take $e=v_{t} v_{t+1}$. Here we still discuss by distinguishing two cases.

Case 2.1. $t>0$.
Since $v_{1} v_{2} \ldots v_{k}$ is an induced path, by Theorem 3.1, it follows that $0<t \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. Furthermore, we have $x_{i}>x_{t}$ for $0 \leq i<t$, and $x_{t} \leq x_{t+1}<x_{i}$ for $t+1<i \leq k+1$. Let \mathbf{y} be obtained from \mathbf{x} by inserting the addition entry $y_{n}=x_{t}$. That is,

$$
\left\{\begin{array}{l}
y_{n}=x_{t}, \\
y_{i}=x_{i}, \quad v_{i} \in V(G) .
\end{array}\right.
$$

We can deduce that $A_{f}(H) \mathbf{y}$ differs from $\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$ only in the t-th and n-th entries. It is not difficult to get that

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{t} & =f\left(2, d_{t-1}\right) x_{t-1}+f(2,2) y_{n} \\
& =f\left(2, d_{t-1}\right) x_{t-1}+f(2,2) x_{t} \\
& \leq f\left(2, d_{t-1}\right) x_{t-1}+f\left(2, d_{t+1}\right) x_{t+1} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{t}=\lambda_{1}\left(A_{f}(G)\right) y_{t}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{n} & =f(2,2) x_{t}+f\left(2, d_{t+1}\right) x_{t+1} \\
& <f\left(2, d_{t-1}\right) x_{t-1}+f\left(2, d_{t+1}\right) x_{t+1} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{t}=\lambda_{1}\left(A_{f}(G)\right) y_{n} .
\end{aligned}
$$

Thus, $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. Using Lemma 2.2, we have $\lambda_{1}\left(A_{f}(H)\right)<\lambda_{1}\left(A_{f}(G)\right)$.
Case 2.2. $t=0$.
We take $e=v_{0} v_{1}$. According to the choice of t, it follows that $x_{0} \leq x_{i}$ for $1 \leq i \leq k+1$. For convenience, let S be the set of neighbours of v_{0} other than v_{1} in G, and $s=\sum_{v_{j} \in S} f\left(d_{0}, d_{j}\right) x_{j}$, and let R be the set of neighbours of v_{1} other than v_{0} in G, and $r=\sum_{v_{j} \in R} f\left(d_{1}, d_{j}\right) x_{j}$.

Subcase 2.2.1. $f\left(d_{0}, 2\right) x_{0}+f\left(d_{1}, 2\right) x_{1}<\lambda_{1}\left(A_{f}(G)\right) x_{0}$.
Let \mathbf{y} be obtained from \mathbf{x} by inserting the addition entry $y_{n}=x_{0}$, that is,

$$
\left\{\begin{array}{l}
y_{n}=x_{0}, \\
y_{i}=x_{i}, \quad v_{i} \in V(G) .
\end{array}\right.
$$

It is easy to show that vector $A_{f}(H) \mathbf{y}$ differs from $\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$ in at most three entries: 0 -th, 1 -th and n-th. For the vertex v_{0}, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{0} & =f\left(d_{0}, 2\right) y_{n}+\sum_{v_{j} \in S} f\left(d_{0}, d_{j}\right) x_{j} \\
& =f\left(d_{0}, 2\right) x_{0}+s \\
& \leq f\left(d_{0}, d_{1}\right) x_{1}+s \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{0}=\lambda_{1}\left(A_{f}(G)\right) y_{0}
\end{aligned}
$$

For the vertex v_{1}, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{1} & =f\left(d_{1}, 2\right) y_{n}+\sum_{v_{j} \in R} f\left(d_{1}, d_{j}\right) x_{j} \\
& =f\left(d_{1}, 2\right) x_{0}+r \\
& \leq f\left(d_{1}, d_{0}\right) x_{0}+r \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{1}=\lambda_{1}\left(A_{f}(G)\right) y_{1} .
\end{aligned}
$$

For the vertex v_{n}, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{n} & =f\left(d_{0}, 2\right) x_{0}+f\left(d_{1}, 2\right) x_{1} \\
& <\lambda_{1}\left(A_{f}(G)\right) x_{0}=\lambda_{1}\left(A_{f}(G)\right) y_{n}
\end{aligned}
$$

It follows that $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. From Lemma 2.2, we get $\lambda_{1}\left(A_{f}(H)\right)<$ $\lambda_{1}\left(A_{f}(G)\right)$.

Subcase 2.2.2. $f\left(d_{0}, 2\right) x_{0}+f\left(d_{1}, 2\right) x_{1} \geq \lambda_{1}\left(A_{f}(G)\right) x_{0}$.
Since $\lambda_{1}\left(A_{f}(G)\right) x_{0}=s+f\left(d_{0}, d_{1}\right) x_{1}$, we obtain $s \leq f\left(d_{0}, 2\right) x_{0}+f\left(d_{1}, 2\right) x_{1}-$ $f\left(d_{0}, d_{1}\right) x_{1}$. Recall that $f(x, y)>0$ is an increasing function. Then, $f\left(d_{1}, 2\right)-$ $f\left(d_{0}, d_{1}\right) \leq 0$ and $f\left(d_{0}, 2\right)>0$. Because each entry of \mathbf{x} is positive, we can get $0<s=\sum_{v_{j} \in S} f\left(d_{0}, d_{j}\right) x_{j} \leq f\left(d_{0}, 2\right) x_{0}$. Hence, $\frac{s}{f\left(d_{0}, 2\right)} \leq x_{0}$. Now let vector \mathbf{y} be an assignment of the vertices of G satisfying that

$$
\left\{\begin{array}{l}
y_{0}=\frac{\lambda_{1}\left(A_{f}(G)\right) x_{0}-f\left(d_{0}, d_{1}\right) x_{1}}{f\left(d_{0}, 2\right)}, \\
y_{n}=x_{0}, \\
y_{i}=x_{i},
\end{array} v_{i} \in V(G) \backslash\left\{v_{0}\right\} .\right.
$$

Since $s=\lambda_{1}\left(A_{f}(G)\right) x_{0}-f\left(d_{0}, d_{1}\right) x_{1}$, we have $y_{0}=\frac{s}{f\left(d_{0}, 2\right)}$, and then $0<y_{0} \leq x_{0}$. In addition, \mathbf{x} is a positive vector, and hence \mathbf{y} is also a positive vector. Next we prove that the $(n+1)$-dimensional vector \mathbf{y} satisfies $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. The vector $A_{f}(H) \mathbf{y}$ differs from $\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$ in at most the following entries. For the vertex v_{0},
we establish that

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{0} & =f\left(d_{0}, 2\right) y_{n}+\sum_{v_{j} \in S} f\left(d_{0}, d_{j}\right) x_{j} \\
& =f\left(d_{0}, 2\right) x_{0}+s \\
& \leq 2 f\left(d_{0}, 2\right) x_{0} \\
& \leq\left(d_{0}-1\right) f\left(d_{0}, 2\right) x_{0} \\
& =\sum_{v_{j} \in S} f\left(d_{0}, 2\right) x_{0} \\
& \leq \sum_{v_{j} \in S} f\left(d_{0}, d_{j}\right) x_{0} \\
& \leq \sum_{v_{j} \in S} \frac{f\left(d_{0}, d_{j}\right)}{f\left(d_{0}, 2\right)} \cdot f\left(d_{0}, d_{j}\right) x_{0} \\
& <\sum_{v_{j} \in S} \frac{f\left(d_{0}, d_{j}\right)}{f\left(d_{0}, 2\right)} \cdot \lambda_{1}\left(A_{f}(G)\right) x_{j} \\
& =\frac{\lambda_{1}\left(A_{f}(G)\right)}{f\left(d_{0}, 2\right)} \cdot s=\lambda_{1}\left(A_{f}(G)\right) y_{0}
\end{aligned}
$$

Because the degrees of the neighbours of v_{0} are at least 2 and $f(x, y)>0$ is increasing, we get $f\left(d_{0}, 2\right) \leq f\left(d_{0}, d_{j}\right)$. It follows that the third and fourth inequalities hold. If $v_{j} \in S$, we have

$$
f\left(d_{0}, d_{j}\right) x_{0}<\sum_{v_{k} \in N_{G}\left(v_{j}\right) \backslash v_{0}} f\left(d_{k}, d_{j}\right) x_{k}+f\left(d_{0}, d_{j}\right) x_{0}=\lambda_{1}\left(A_{f}(G)\right) x_{j}
$$

Hence, the last inequality is strict. For the vertex v_{1}, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{1} & =f\left(d_{1}, 2\right) y_{n}+\sum_{v_{j} \in R} f\left(d_{1}, d_{j}\right) x_{j} \\
& =f\left(d_{1}, 2\right) x_{0}+r \\
& \leq f\left(d_{1}, d_{0}\right) x_{0}+r \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{1}=\lambda_{1}\left(A_{f}(G)\right) y_{1} .
\end{aligned}
$$

For the vertex $v_{j} \in S$, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{j} & =\sum_{v_{k} \in N_{H}\left(v_{j}\right) \backslash v_{0}} f\left(d_{k}, d_{j}\right) x_{k}+f\left(d_{j}, d_{0}\right) y_{0} \\
& \leq \sum_{v_{k} \in N_{G}\left(v_{j}\right) \backslash v_{0}} f\left(d_{k}, d_{j}\right) x_{k}+f\left(d_{j}, d_{0}\right) x_{0} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{j}=\lambda_{1}\left(A_{f}(G)\right) y_{j} .
\end{aligned}
$$

For the vertex v_{n}, we have

$$
\begin{aligned}
\left(A_{f}(H) \mathbf{y}\right)_{n} & =f\left(d_{0}, 2\right) y_{0}+f\left(d_{1}, 2\right) y_{1} \\
& =s+f\left(d_{1}, 2\right) x_{1} \\
& \leq s+f\left(d_{1}, d_{0}\right) x_{1} \\
& =\lambda_{1}\left(A_{f}(G)\right) x_{0}=\lambda_{1}\left(A_{f}(G)\right) y_{n}
\end{aligned}
$$

Thus, $A_{f}(H) \mathbf{y}<\lambda_{1}\left(A_{f}(G)\right) \mathbf{y}$. By Lemma 2.2, it follows that $\lambda_{1}\left(A_{f}(H)\right)<$ $\lambda_{1}\left(A_{f}(G)\right)$. The proof is now complete.

Remark 2. In Theorem 3.5 (2), the condition "for any vertex $v_{i} \in N_{G}\left(v_{0}\right), d_{i} \geq 2$ " is necessary. Otherwise, there are graphs G and H which do not satisfy $\lambda_{1}\left(A_{f}(H)\right)<$ $\lambda_{1}\left(A_{f}(G)\right)$. For example, set $f(x, y)=\sqrt{\lg (x y)}$, considering $G=G_{2}$ and $H=G_{1}$ in Figure 1, then we can have $1.5845 \approx \lambda_{1}\left(A_{f}\left(G_{1}\right)\right)>\lambda_{1}\left(A_{f}\left(G_{2}\right)\right) \approx 1.5806$.

References

[1] A. Bharali, A. Mahanta, I.J. Gogoi, A. Doley, Inverse sum indeg index and ISI matrix of graphs, J. Discrete Math. Sci. Cryptogr. 23(2020) 1315-1333.
[2] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, New York, 2010.
[3] K. Das, I. Gutman, I. Milovanović, E. Milovanović, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl. 554(2018) 185-204.
[4] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86(2021) 11-16.
[5] I. Gutman, Spectrum and energy of the Sombor matrix, Mil. Tech. Cour. 69(2021) 551-561.
[6] I. Gutman, V.R. Kulli, Nirmala energy, Open. J. Discrete Appl. Math. 4(2021) 11-16.
[7] R.A. Horn, C.R. Johnson, Matrix Analysis, Universitext, New York, 2013.
[8] X. Li, Indices, polynomials and matrices - a unified viewpoint, Invited talk at the 8th Slovinian Conf. Graph Theory, Kranjska Gora, June 21-27, 2015.
[9] X. Li, Z. Wang, Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices, Linear Algebra Appl. 620(2021) 61-75.
[10] X. Li, N. Yang, Some interlacing results on weighted adjacency matrices of graphs with degree-based edge-weights, Discrete Appl. Math. 333(2023) 110-120.
[11] X. Li, N. Yang, Unified approach for spectral properties of weighted adjacency matrices for graphs with degree-based edge-weights, submitted 2022.
[12] X. Li, N. Yang, Spectral properties and energy of weighted adjacency matrix for graphs with a degree-based edge-weight function, submitted 2023.
[13] N.J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 79(2018) 371-386.
[14] R. Zheng, X. Guan, X. Jin, Extremal trees and unicyclic graphs with respect to spectral radius of weighted adjacency matrices with property P*, J. Appl. Math. Comput. (2023), https://doi.org/10.1007/s12190-023-01846-y.

[^0]: *Supported by NSFC No. 12131013 and 12161141006.

