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Abstract

Given a family of graphs F , a graph G is F-saturated if G contains no member

of F as a subgraph, but G + e contains a member of F as a subgraph for each edge

e in the complement of G. The edge spectrum of F is the set of all possible sizes of

F-saturated graphs on n vertices. A G-subdivision is a graph derived from G by re-

placing each edge of G with a path of arbitrary length. Let C≥k denote the family of

Ck-subdivisions, where Ck is a cycle of length k with k ≥ 3. Determining the minimum

or maximum number of edges in n-vertex F-saturated graphs are two of the most im-

portant problems in the study of extremal graph theory. This is also a very important

optimization problem in graph theory. The study of this problem is closely related to

the development of other branches of mathematics, computer science, network, modern

information science and technology. In this paper, we determine the edge spectrum of

C≥k for each k ∈ {3, 4, 5, 6}.

Keywords: edge spectrum; extremal numbers; saturation numbers; cycle subdivisions

1 Introduction

All graphs considered in this paper are finite and simple. We follow [10] for undefined

notation and terminology. Let k be a positive integer and [k] = {1, 2, 3, ..., k}. Let G =

G(V (G), E(G)) be a graph, where V (G) is the vertex set of G and E(G) is the edge set of

G. We denote e(G) = |E(G)| and call it the size of G. Denote by G the complement of G.

Let Kk denote the complete graph on k vertices. A G-subdivision is a graph derived from

G by replacing each edge of G with a path of arbitrary length. Let C≥k denote the family
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of Ck-subdivisions, where Ck is a cycle of length k with k ≥ 3. Note that Ck ∈ C≥k and

C≥k is a family of cycles that each of them has length at least k. A maximal connected

subgraph of G that has no cut-vertex is called a block of G. For a graph H, the H-block of

G is a block of G isomorphic to H.

Given a family of graphs F , a graph G is F-saturated if G contains no member of F
as a subgraph, but G + e contains a member of F as a subgraph for each e ∈ E(G). Let

ex(n,F) = max{e(G) : G is F-saturated and |V (G)| = n} and sat(n,F) = min{e(G) :

G is F-saturated and |V (G)| = n}. We shall refer to ex(n,F) as the extremal number of F
and sat(n,F) as the saturation number of F . By the definitions above, if an F-saturated

graph of order n has m edges, then sat(n,F) ≤ m ≤ ex(n,F). It is natural to consider

the converse that whether there exists an F-saturated graph of order n and size m for any

integer m with sat(n,F) ≤ m ≤ ex(n,F). In order to study this problem, the concept of

the edge spectrum was introduced.

The edge spectrum of F , denoted by ES(n,F), is the set of all possible sizes of F-

saturated graphs on n vertices. That is, ES(n,F) = {e(G) : G is F-saturated and |V (G)| =
n}. When F = {F}, we simply write F -saturated for F-saturated and replace ES(n,F)

with ES(n, F ). For some special graph classes F , we may have ES(n,F) = {m : m is an

integer with sat(n,F) ≤ m ≤ ex(n,F)}. For instance, in 2018, Balister and Dogan [3]

proved that ES(n,K1,t) consists of all integers in the interval [sat(n,K1,t), ex(n,K1,t)],

where t is a positive integer with t ≤ n− 1. However, it fails in general. Some gaps of edge

spectrum have been found for graphs Kt [1, 2, 4], K4 − e [7], P5 and P6 [8], and so on. It

is natural to consider which graph has gapless edge spectrum and which graph has gaps in

its edge spectrum. In this paper, we consider the edge spectrum for C≥k.

Erdős and Gallai [5], and Woodall [11] provided the extremal number of C≥k for each

3 ≤ k ≤ n. They also provided an extremal graph consisting of ⌊n−1
k−2⌋ copies of Kk−1 and

one copy of Kt+1, where n− 1 ≡ t (mod (k− 2)), 0 ≤ t ≤ k− 3, and all copies share exactly

one vertex in common. That is ex(n, C≥k) = ⌊n−1
k−2⌋

(
k−1
2

)
+

(
t+1
2

)
. In this paper, we refer

the case k ∈ {3, 4, 5, 6}, so we present their results as follows.

Theorem 1.1 ([5, 11]) Let n be an integer.

(1) For n ≥ 3, ex(n, C≥3) = n− 1.

(2) For n ≥ 4, ex(n, C≥4) = ⌊3n−3
2 ⌋.

(3) For n ≥ 5, ex(n, C≥5) =

{
2n− 2, if n ≡ 1 (mod 3);

2n− 3, if n ≡ 0 (mod 3) or n ≡ 2 (mod 3).

(4) For n ≥ 6, ex(n, C≥6) =

{
⌊5n−5

2 ⌋, if n ≡ 1 (mod 4);

⌊5n−8
2 ⌋, if n ≡ 0 (mod 4), n ≡ 2 (mod 4) or n ≡ 3 (mod 4).

It is trivial that sat(n, C≥3) = ex(n, C≥3) = n − 1. In [6], the authors provided the value

sat(n, C≥i) for each i ∈ {4, 5}. Moreover, Ma, Hou, Hei, and Gao [9] determined sat(n, C≥6).
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Theorem 1.2 ([6, 9]) Let n be an integer.

(1) For n ≥ 4, sat(n, C≥4) = n+ ⌊n−3
4 ⌋.

(2) For n ≥ 5, sat(n, C≥5) = ⌈10(n−1)
7 ⌉.

(3) For n ≥ 6, sat(n, C≥6) =



9, if n = 6;

11, if n = 7;

12, if n = 8;

13, if n = 9;

⌈3(n−1)
2 ⌉, if n ≥ 10.

Combining Theorems 1.1 and 1.2, we prove that there is no gap in ES(n, C≥r) for each

r ∈ {3, 4, 5} and there is a gap in ES(n, C≥6) when n ≡ 0 (mod 4) or n ≡ 1 (mod 4).

Theorem 1.3 Let m,n, r be three integers with n ≥ r. For each r ∈ {3, 4, 5} and each

m with sat(n, C≥r) ≤ m ≤ ex(n, C≥r), there is a C≥r-saturated graph on n vertices and m

edges.

Theorem 1.4 Let n and m be two integers with n ≥ 6 and sat(n, C≥6) ≤ m ≤ ex(n, C≥6).

There is a C≥6-saturated graph on n vertices and m edges if and only if

m /∈

{
{ex(n, C≥6)− 1}, if n ≡ 0 (mod 4);

{ex(n, C≥6)− 1, ex(n, C≥6)− 2}, if n ≡ 1 (mod 4).

The rest of the paper is organized as follows. In Section 2, we introduce some known

properties of C≥r-saturated graphs for each r ∈ {4, 5, 6}, which will be used to verify the

graphs we constructed are C≥r-saturated. In Section 3, we prove Theorems 1.3 and 1.4 by

giving a complete characterization for the edge spectrum of C≥r.

2 Structural properties of C≥r-saturated graphs for each r ∈
{4, 5, 6}

In [6], Ferrara, Jacobson, Milans, Tennenhouse, and Wenger characterized some properties

of C≥4-saturated graphs and C≥5-saturated graphs, respectively.

Proposition 2.1 ([6]) A connected graph G with at least two vertices is C≥4-saturated if

and only if every block of G is isomorphic to either K2 or K3, and no two K2-blocks of G

share a vertex.

The graph Bt = K2 ∨ Kt is called a book, which is obtained from K2 ∪ Kt by joining

each vertex of K2 to each vertex of Kt. Every vertex of Kt is called a page of the book Bt.
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Proposition 2.2 ([6]) A graph G is C≥5-saturated if and only if

(1) every block of G is isomorphic to either a complete graph of order at most 4 or a book

with at least three pages, and

(2) for any K2-block B of G and block B′ ̸= B with B ∩B′ ̸= ∅, either B′ is a K4-block or

B′ is a Bt-block with t ≥ 3 such that B ∩B′ is a page of B′.

Let r, s and t be three integers with r, s ≥ 2 and t ≥ 6. As shown in Figure 1(1), the

graph denoted by D(r, s) has r+s+3 vertices and each vertex in {v1, v2, ..., vr, u1, u2, ..., us}
has degree 2. As depicted in Figure 1(2), the graph denoted by H(t, 6, 2) has t vertices and

each vertex in {u1, u2, ..., ut−4} has degree 2. In both of D(r, s) and H(t, 6, 2), the white

vertices are called centers of them. Clearly, every C≥6-saturated graph of order at most 5

is a clique.

Figure 1: Two C≥6-saturated graphs D(r, s) and H(t, 6, 2).

To avoid using more definitions, we use the following proposition from [9], which is

stated slightly different, but can be derived from the original statement.

Proposition 2.3 ([9]) A graph G is C≥6-saturated if and only if

(1) G is connected and each block of G is isomorphic to one of {Kt : 1 ≤ t ≤ 5}∪ {D(r, s) :

s, r ≥ 2} ∪ {H(t, 6, 2) : t ≥ 6}, and
(2) no two K3-blocks of G share a vertex, and

(3) for any K2-block B of G and block B′ ̸= B with B ∩ B′ ̸= ∅, we have B′ ∼= K5,

B′ ∼= D(r, s) or B′ ∼= H(t, 6, 2) for integers r, s ≥ 2 and t ≥ 6 such that B ∩ B′ is not a

center of B′ when B′ ∼= D(r, s) or B′ ∼= H(t, 6, 2).

3 Proofs of Theorems 1.3 and 1.4

For any graph, we choose one vertex of it as its root vertex. Denote by G · H the graph

obtained from two disjoint graphs G and H by identifying the root vertex of G and the root
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vertex of H, where the identifying vertex is the root vertex of the graph G · H. That is,

|V (G ·H)| = |V (G)|+ |V (H)| − 1 and E(G ·H) = E(G)∪E(H). Let
0∏
G = K1,

1∏
G = G

and
k∏
G = (

k−1∏
G) ·G for an integer k with k ≥ 2.

Figure 2: A C≥4-saturated graph G.

Proof of Theorem 1.3. Theorem 1.3 holds naturally if r = 3, since ex(n, C≥3) =

sat(n, C≥3) = n − 1. So we may assume r ≥ 4. The rest proof is split into two cases:

r = 4 and r = 5.

Case 1: r = 4.

As shown in Figure 2, the graphG has 4t+4 vertices, each vertex in {u1, u2, ..., ut, v2, v3, ..., v2t+2}
has degree 3, each vertex in {v1, w1, w2, ..., wt} has degree 1, and each vertex in {ut+1, v2t+3}
has degree 2. By Proposition 2.1, the graph G is a C≥4-saturated graph. For each integer

n ≥ 4, let

G0
n =


G, if n = 4t+ 4;

G− {v1}, if n = 4t+ 3;

G− {v2t+3, ut+1}, if n = 4t+ 2;

G− {v2t+2, v2t+3, ut+1}, if n = 4t+ 1.

Clearly, we have

e(G0
n) =


5t+ 4 = n+ ⌊n−3

4 ⌋, if n = 4t+ 4;

5t+ 3 = n+ ⌊n−3
4 ⌋, if n = 4t+ 3;

5t+ 1 = n+ ⌊n−3
4 ⌋, if n = 4t+ 2;

5t = n+ ⌊n−3
4 ⌋, if n = 4t+ 1.

By Theorem 1.2(1), e(G0
n) = sat(n, C≥4). Let i be an integer. For each 1 ≤ i ≤ t, let

Gi
n =

{
(E(Gi−1

n ) \ {uiwi}) ∪ {v2i−1wi, v2iwi}, if n = 4t+ 1;

(E(Gi−1
n ) \ {uiwi}) ∪ {v2i+1wi, v2i+2wi}, if n ∈ {4t+ 2, 4t+ 3, 4t+ 4}.

For each 0 ≤ j ≤ t, each block of Gj
n is isomorphic to either K2 or K3 and there are no

two K2-blocks of G
j
n sharing a vertex. By Proposition 2.1, the graph Gj

n is C≥4-saturated.
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Clearly, e(Gi
n) = e(Gi−1

n ) + 1 for 1 ≤ i ≤ t and

e(Gt
n) = e(G0

n) + t =


6t+ 4 = ⌊3n−3

2 ⌋, if n = 4t+ 4;

6t+ 3 = ⌊3n−3
2 ⌋, if n = 4t+ 3;

6t+ 1 = ⌊3n−3
2 ⌋, if n = 4t+ 2;

6t = ⌊3n−3
2 ⌋, if n = 4t+ 1.

Then we have e(Gt
n) = ex(n, C≥4) by Theorem 1.1(2). Hence there is a C≥4-saturated graph

on n ≥ 4 vertices and m edges for each integer m with sat(n, C≥4) ≤ m ≤ ex(n, C≥4).

Case 2: r = 5.

By Theorems 1.1 and 1.2, we have sat(5, C≥5) = 6, ex(5, C≥5) = 7, sat(6, C≥5) = 8 and

ex(6, C≥5) = 9, which implies that Theorem 1.3 holds for 5 ≤ n ≤ 6. Thus we may assume

n ≥ 7. Inspired by the constructions of Ferrara et al. [6], we construct the graph Hi

and Hi has exactly one root vertex v for each i ∈ {0, 1, 2, 3, 4, 5, 6}. For each graph in

Figure 3, we denote the vertex v as the root vertex. Let H2 = H0 · K3, H3 = H1 · K3,

H4 = H2 ·K3 = H0 ·
2∏
K3, H5 = H1 ·

2∏
K3, and H6 = M0 ·H1. We obtain |V (Hi)| = 7+ i

and e(Hi) = 9 + ⌊3i2 ⌋ for each i ∈ {0, 1, 2, 3, 4, 5, 6}.
Let

G0
n =



H0 ·
t−1∏

H1, if n = 7t;
t∏
H1, if n = 7t+ 1;

H2 ·
t−1∏

H1, if n = 7t+ 2;

H3 ·
t−1∏

H1, if n = 7t+ 3;

H4 ·
t−1∏

H1, if n = 7t+ 4;

H5 ·
t−1∏

H1, if n = 7t+ 5;

H6 ·
t−1∏

H1, if n = 7t+ 6.

Then

e(G0
n) =



10t− 1 = ⌈10(n−1)
7 ⌉, if n = 7t;

10t = ⌈10(n−1)
7 ⌉, if n = 7t+ 1;

10t+ 2 = ⌈10(n−1)
7 ⌉, if n = 7t+ 2;

10t+ 3 = ⌈10(n−1)
7 ⌉, if n = 7t+ 3;

10t+ 5 = ⌈10(n−1)
7 ⌉, if n = 7t+ 4;

10t+ 6 = ⌈10(n−1)
7 ⌉, if n = 7t+ 5;

10t+ 8 = ⌈10(n−1)
7 ⌉, if n = 7t+ 6.

By Theorem 1.2(2), e(G0
n) = sat(n, C≥5).

Let i be an integer with i ≥ 1. We try to construct the graph G1
n based on G0

n. By

the structure of G0
n, there is a pair of adjacent vertices u and w such that dG0

n
(w) = 1
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Figure 3: Some C≥5-saturated graphs.

and dG0
n
(u) = 3, say NG0

n
(u) = {u1, u2, w}. We call such pair as a (1, 3)-pair. Let G1

n =

(G0
n\{wu})∪{wu1, wu2}. Observe that there are two (1, 3)-pairs in Hi for each i ∈ {0, 2, 4},

three (1, 3)-pairs in Hj for each j ∈ {1, 3, 5}, and four (1, 3)-pairs in H6. Then G0
n has 3t−t0

such vertex pairs, where

t0 =


1, if n ∈ {7t, 7t+ 2, 7t+ 4};
0, if n ∈ {7t+ 1, 7t+ 3, 7t+ 5};
−1, if n = 7t+ 6.

Applying this method, we construct the graph Gi
n iteratively for each integer 1 ≤ i ≤ 3t− t0

as follows. Choose a pair of adjacent vertices u and w with dGi−1
n

(w) = 1, NGi−1
n

(w) = {u}
and dGi−1

n
(u) = 3. Denote NGi−1

n
(u) = {u1, u2, w}. Let Gi

n = (Gi−1
n \ {wu}) ∪ {wu1, wu2}.

We have e(Gi
n) = e(Gi−1

n )+1. Let k and ℓ be two integers. Clearly, for each 1 ≤ i ≤ 3t− t0,

each block of Gi
n is isomorphic to either Kℓ with 2 ≤ ℓ ≤ 3 or a book Bk with k ≥ 3. For

any K2-block B of Gi
n and block B′ ̸= B with B ∩ B′ ̸= ∅, B′ is a Bk-block with k ≥ 3

and B ∩B′ is a page of B′. Proposition 2.2 implies that Gi
n is C≥5-saturated. For Kk with

k ∈ {2, 3, 4}, choose one vertex of Kk as the root vertex, and for the book Bj where j is an
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integer and j ≥ 3, choose one vertex of Bj that is not a page as the root vertex. We have

G3t−t0
n =



(
t−1∏

B6) ·B5, if n = 7t;
t∏
B6, if n = 7t+ 1;

(
t−1∏

B6) ·B5 ·K3, if n = 7t+ 2;

(
t∏
B6) ·K3, if n = 7t+ 3;

(
t−1∏

B6) ·B5 ·
2∏
K3, if n = 7t+ 4;

(
t∏
B6) ·

2∏
K3, if n = 7t+ 5;

(
t∏
B6) ·B4, if n = 7t+ 6.

Set

H0
n =



(
t−1∏

B5) ·Bt+4, if n = 7t;

(
t−1∏

B5) ·Bt+5, if n = 7t+ 1;

(
t−1∏

B5) ·Bt+4 ·K3, if n = 7t+ 2;

(
t−1∏

B5) ·Bt+5 ·K3, if n = 7t+ 3;

(
t−1∏

B5) ·Bt+4 ·
2∏
K3, if n = 7t+ 4;

(
t−1∏

B5) ·Bt+5 ·
2∏
K3, if n = 7t+ 5;

(
t∏
B5) ·Bt+4, if n = 7t+ 6.

We see e(H0
n) = e(G3t−t0

n ). Let i be an integer with 0 ≤ i ≤ t− 1. Let

H i
n =



(
t−1−i∏

B5) ·Bt+4 ·
2i∏
K4, if n = 7t;

(
t−1−i∏

B5) ·Bt+5 ·
2i∏
K4, if n = 7t+ 1;

(
t−1−i∏

B5) ·Bt+4 ·K3 ·
2i∏
K4, if n = 7t+ 2;

(
t−1−i∏

B5) ·Bt+5 ·K3 ·
2i∏
K4, if n = 7t+ 3;

(
t−1−i∏

B5) ·Bt+4 · (
2∏
K3) ·

2i∏
K4, if n = 7t+ 4;

(
t−1−i∏

B5) ·Bt+5 · (
2∏
K3) ·

2i∏
K4, if n = 7t+ 5;

(
t−i∏

B5) ·Bt+4 ·
2i∏
K4, if n = 7t+ 6,
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and

Ht
n =



Ht−1
n , if n = 7t;

Ht−1
n , if n = 7t+ 1;

Bt+6 ·
2(t−1)∏

K4, if n = 7t+ 2;

Bt+7 ·
2(t−1)∏

K4, if n = 7t+ 3;

Bt+6 ·K3 ·
2(t−1)∏

K4, if n = 7t+ 4;

Bt+7 ·K3 ·
2(t−1)∏

K4, if n = 7t+ 5;

Bt+4 ·
2t∏
K4, if n = 7t+ 6.

Since every block of H i
n is isomorphic to either Kℓ with ℓ ∈ {3, 4} or Bk, where k is an

integer and k ≥ 3, Proposition 2.2 implies that H i
n is C≥5-saturated for each 0 ≤ i ≤ t. We

may see e(H i
n) = e(H i−1

n ) + 1 for each 1 ≤ i ≤ t− 1 and

e(Ht
n) =

{
e(Ht−1

n ), if n ∈ {7t, 7t+ 1};
e(Ht−1

n ) + 1, if n ∈ {7t+ 2, 7t+ 3, 7t+ 4, 7t+ 5, 7t+ 6}.

In addition,

e(Ht
n) =



14t− 3 = 2n− 3, if n = 7t;

14t− 1 = 2n− 3, if n = 7t+ 1;

14t+ 1 = 2n− 3, if n = 7t+ 2;

14t+ 3 = 2n− 3, if n = 7t+ 3;

14t+ 4 = 2n− 4, if n = 7t+ 4;

14t+ 6 = 2n− 4, if n = 7t+ 5;

14t+ 9 = 2n− 3, if n = 7t+ 6.

Let F 1
n = (

2(t−1)∏
K4) · Bt+8 when n = 7t + 4, F 1

n = (
2(t−1)∏

K4) · Bt+9 when n = 7t + 5 and

F 1
n = Ht

n when n ∈ {7t, 7t+1, 7t+2, 7t+5, 7t+6}. Then e(F 1
n) = 2n− 3 for all n ≥ 7 and

F 1
n =



Bt+4 ·
2(t−1)∏

K4, if n = 7t;

Bt+5 ·
2(t−1)∏

K4, if n = 7t+ 1;

Bt+6 ·
2(t−1)∏

K4, if n = 7t+ 2;

Bt+7 ·
2(t−1)∏

K4, if n = 7t+ 3;

Bt+8 ·
2(t−1)∏

K4, if n = 7t+ 4;

Bt+9 ·
2(t−1)∏

K4, if n = 7t+ 5;

Bt+4 ·
2t∏
K4, if n = 7t+ 6.
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When t ≡ 0 (mod 3), let

F 2
n =


2t+⌊ t

3
⌋∏
K4, if n = 7t+ 1;

2t+⌊ t
3
⌋+1∏

K4, if n = 7t+ 4;

F 1
n , if n ∈ {7t, 7t+ 2, 7t+ 3, 7t+ 5, 7t+ 6}.

When t ≡ 1 (mod 3), let

F 2
n =



2t+⌊ t
3
⌋∏
K4, if n = 7t;

2t+⌊ t
3
⌋+1∏

K4, if n = 7t+ 3;
2t+⌊ t

3
⌋+2∏

K4, if n = 7t+ 6;

F 1
n , if n ∈ {7t+ 1, 7t+ 2, 7t+ 4, 7t+ 5}.

When t ≡ 2 (mod 3), let

F 2
n =


2t+⌊ t

3
⌋+1∏

K4, if n = 7t+ 2;
2t+⌊ t

3
⌋+2∏

K4, if n = 7t+ 5;

F 1
n , if n ∈ {7t, 7t+ 1, 7t+ 3, 7t+ 4, 7t+ 6}.

For all cases above, we have e(F 2
n)− e(F 1

n) ≤ 1. When t ≡ 0 (mod 3),

e(F 2
n) =

{
2n− 2, if n ≡ 1 (mod 3);

2n− 3, if n ≡ 0 (mod 3) or n ≡ 2 (mod 3).

When t ≡ 1 (mod 3),

e(F 2
n) =

{
2n− 2, if n ≡ 1 (mod 3);

2n− 3, if n ≡ 0 (mod 3) or n ≡ 2 (mod 3).

When t ≡ 2 (mod 3),

e(F 2
n) =

{
2n− 2, if n ≡ 1 (mod 3);

2n− 3, if n ≡ 0 (mod 3) or n ≡ 2 (mod 3).

In all cases, e(F 2
n) = ex(n, C≥5) by Theorem 1.1(3). Therefore, given an integer n with

n ≥ 5, for any integer m with sat(n, C≥5) ≤ m ≤ ex(n, C≥5), we have constructed a C≥5-

saturated graph on n vertices and m edges.

Proof of Theorem 1.4. Firstly, let us construct a series of C≥6-saturated graphs.
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Figure 4: Some C≥6-saturated graphs.

Claim 1 Let n and m be two integers such that n ≥ 6, sat(n, C≥6) ≤ m ≤ ex(n, C≥6) and

m /∈

{
{ex(n, C≥6)− 1}, if n ≡ 0 (mod 4);

{ex(n, C≥6)− 2, ex(n, C≥6)− 1}, if n ≡ 1 (mod 4).

Then there exists a C≥6-saturated graph on n vertices with size m.

Proof. Firstly, we consider the case 6 ≤ n ≤ 9. For Kt with 2 ≤ t ≤ 5, choose one vertex

of Kt as the root vertex. When n = 6, let G1 = K4 ·K3, G2 = H(6, 6, 2) and G3 = K5 ·K2.

When n = 7, let G1 = D(2, 2), G2 = K4 ·K4 and G3 = K5 ·K3. Clearly, for both cases, Gi

is C≥6-saturated for each i ∈ [3]. By Theorem 1.2(3),

e(G1) = sat(n, C≥6) =

{
9, if n = 6;

11, if n = 7.

By Theorem 1.1(4),

e(G3) = e(G2) + 1 = e(G1) + 2 =

⌊
5n− 8

2

⌋
= ex(n, C≥6).

When n = 8, let G1 be the graph shown in Figure 4(1). We have e(G1) = 12 = sat(8, C≥6).
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Let G2 = D(2, 3), G3 = H(8, 6, 2) and G4 = K5 ·K4. Then

e(G3) = e(G2) + 1 = e(G1) + 2 = 14 = ex(n, C≥6)− 2

and e(G4) = 16 = ⌊5n−8
2 ⌋ = ex(n, C≥6) by Theorem 1.1(4). When n = 9, the graphs

G1, G2 and G5 are shown in Figure 4(2), Figure 4(3) and Figure 4(4), respectively. Let

G3 = D(4, 2), G4 = H(9, 6, 2) and G6 = K5 · K5. We obtain e(G1) = 13 = sat(9, C≥6),

e(Gi+1) = e(Gi) + 1 for each i ∈ [4], e(G5) = 17 = ex(n, C≥6) − 3 and e(G6) = 20 =

⌊5n−5
2 ⌋ = ex(n, C≥6). So Claim 1 holds for 6 ≤ n ≤ 9.

Figure 5: A C≥6-saturated graph D(a, 2, 1).

Next we consider the case n ≥ 10. The graphs shown in Figure 4(5) and Figure 4(6)

are constructed by Ma et al. [9]. These graphs are C≥6-saturated and satisfy e(G0
n) =

sat(n, C≥6). Let i be an integer with 1 ≤ i ≤ n−3
2 and Gi

n = {Gi−1
n \wiui}∪{wiv1, wiv2}. So

e(Gi
n) = e(Gi−1

n )+1. For each 1 ≤ i ≤ n−3
2 , each block of Gi

n is isomorphic to K2 or D(r, s)

with r, s ≥ 2, and for any K2-block of Gi
n and block B′ with B∩B′ ̸= ∅, B′ is isomorphic to

D(r, s) and B∩B′ is not a center of B′. By Proposition 2.3, Gi
n is C≥6-saturated. Let v1 be

the root vertex of Gi
n for each 1 ≤ i ≤ n−3

2 and choose one vertex of K5 as the root vertex.

We see G
⌊n−3

2
⌋

n = D(n − 5, 2). Let H0
n = G

⌊n−3
2

⌋
n . When i is odd and 1 ≤ i ≤ 2⌊n−7

4 ⌋, let
H i

n = [((H i−1
n −{ui, ui+1, wi, wi+1}) \ {wi+2v1, wi+2v2})∪ {wi+2wi+3}] ·K5. When i is even

and 1 ≤ i ≤ 2⌊n−7
4 ⌋, let H i

n = (H i−1
n \ {wi+1wi+2}) ∪ {wi+1v1, wi+1v2}. That is

H i
n =


D(n− 2i− 8, 2, 1) ·

i+1
2∏
K5, if i ≡ 1 (mod 2);

D(n− 2i− 5, 2) ·
i
2∏
K5, if i ≡ 0 (mod 2).

The graph D(a, 2, 1) is defined in Figure 5 for some integer a on a+ 6 vertices, where each

vertex in {u1, u2, . . . , ua+2} has degree 2. By Proposition 2.3, H i
n is C≥6-saturated for each

1 ≤ i ≤ 2⌊n−7
4 ⌋. We see e(H i

n) = e(H i−1
n ) + 1. Let r, s be two integers with r, s ≥ 2. Let

12



one of the centers of D(r, s) be the root vertex of it. Set

F 0
n = H

2⌊n−7
4

⌋
n =



D(3, 2) ·
⌊n−7

4
⌋∏
K5, if n ≡ 0 (mod 4);

D(4, 2) ·
⌊n−7

4
⌋∏
K5, if n ≡ 1 (mod 4);

D(5, 2) ·
⌊n−7

4
⌋∏
K5, if n ≡ 2 (mod 4);

D(2, 2) ·
⌊n−7

4
⌋∏
K5, if n ≡ 3 (mod 4).

Let one of the centers in H(t, 6, 2) be the root vertex for each integer t ≥ 6 and one vertex

of K5 be the root vertex. Denote by K+
5 the graph obtained from identifying a vertex of

K5 and a vertex of K2, that is e(K+
5 ) = 11 and |V (K+

5 )| = 6. Let one vertex of K+
5 of

degree 4 be the root vertex. When n ≡ 3 (mod 4), let F 1
n = (

⌊n−7
4

⌋∏
K5) · H(7, 6, 2) and

F 2
n = (

⌊n−3
4

⌋∏
K5) · K3. In [11], Woodall proved that the graph (

⌊n−1
4

⌋∏
K5) · Kn−4⌊n−1

4
⌋ is

C≥6-saturated and has ex(n, C≥6) edges. It follows that e(F
2
n) = ex(n, C≥6) and

e(F 0
n) + 2 = e(F 1

n) + 1 = e(F 2
n) = ex(n, C≥6).

When n ≡ 2 (mod 4), let

F 1
n = (

⌊n−11
4

⌋∏
K5) ·

2∏
K+

5 ·K4, F 2
n = (

⌊n−3
4

⌋∏
K5) ·K4 ·K3,

F 3
n = (

⌊n−3
4

⌋∏
K5) ·H(6, 6, 2), and F 4

n = (

⌊n+1
4

⌋∏
K5) ·K2 = (

⌊n−1
4

⌋∏
K5) ·K2.

We have e(F i
n) = e(F i−1

n ) + 1 for each i ∈ [4] and e(F 4
n) = ex(n, C≥6).

When n ≡ 0 (mod 4), let F 1
n = H(8, 6, 2) ·

⌊n−7
4

⌋∏
K5, and F 2

n = K4 ·
⌊n−3

4
⌋∏
K5, we see

e(F 1
n) = e(F 0

n) + 1 = e(F 2
n)− 2 = ex(n, C≥6)− 2.

When n ≡ 1 (mod 4), let

F 1
n = (

⌊n−7
4

⌋∏
K5) ·H(9, 6, 2), F 2

n = (

⌊n−7
4

⌋∏
K5) ·K+

5 ·K4, and F 3
n =

⌊n+1
4

⌋∏
K5.

We see e(F 2
n) = e(F 1

n) + 1 = e(F 3
n)− 3 = ex(n, C≥6)− 3. By Proposition 2.3, we can verify

that F i
n is C≥6-saturated for each i ∈ [4].

Next we prove that above necessary condition for the existence of C≥6-saturated graphs

of order n and size m is also sufficient.
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Claim 2 When n ≡ 0 (mod 4) or n ≡ 1 (mod 4), there is no C≥6-saturated graph G with n

vertices such that e(G) = ex(n, C≥6)− 1 and when n ≡ 1 (mod 4), there is no C≥6-saturated

graph G with n vertices such that e(G) = ex(n, C≥6)− 2.

Proof. By contradiction, suppose G is C≥6-saturated and

e(G) ∈

{
{ex(n, C≥6)− 1}, if n ≡ 0 (mod 4);

{ex(n, C≥6)− 2, ex(n, C≥6)− 1}, if n ≡ 1 (mod 4).

Firstly, we conclude that G has at least two blocks. Otherwise, suppose G has only one

block, by Proposition 2.3 and n ≥ 6, then G = D(r, s) where r, s ≥ 2 and r + s+ 3 = n, or

G = H(n, 6, 2). When G = H(n, 6, 2), we have e(G) = 2n − 2, and when G = D(r, s), we

have e(G) = 2n− 3. If n ≡ 1 (mod 4) and e(G) = ex(n, C≥6)− 2, by Theorem 1.1(4), then

e(G) = ⌊5n−5
2 ⌋ − 2 and ⌊5n−5

2 ⌋ − 2 /∈ {2n− 2, 2n− 3} for n ≥ 6. Thus we may assume that

e(G) = ex(n, C≥6)− 1. If G = H(n, 6, 2), then e(G) = 2n− 2, but for n ≥ 6,

2n− 2 /∈

{
{⌊5n−8

2 ⌋ − 1}, if n ≡ 0 (mod 4);

{⌊5n−5
2 ⌋ − 1}, if n ≡ 1 (mod 4).

This implies G = D(r, s). But for n ≥ 6,

2n− 3 /∈

{
{⌊5n−8

2 ⌋ − 1}, if n ≡ 0 (mod 4);

{⌊5n−5
2 ⌋ − 1}, if n ≡ 1 (mod 4),

a contradiction to the assumption of G. Therefore G has at least two blocks. By Proposition

2.3, each block B of G satisfies B ∼= D(r, s) or B ∼= H(t, 6, 2) or B ∼= Kk where r, s ≥ 2,

t ≥ 6 and 2 ≤ k ≤ 5. We contract a block B of G to a vertex and denote the resulting

graph by G1 = G⧸B. We first consider the case e(G) = ex(n, C≥6)− 1 with n ≡ 0 (mod 4)

or n ≡ 1 (mod 4). If n ≡ 0 (mod 4), then e(G) = ⌊5n−8
2 ⌋ − 1 = 5n−10

2 and e(G1) =

e(G)− e(B) ≤ ex(n− |B|+ 1, C≥6), which follows that

e(B) ≥


5n−10

2 − ⌊5(n−|B|+1)−5
2 ⌋ = 5n−10

2 − 5n−5|B|
2 = 5|B|−10

2 , |B| ≡ 0 (mod 4);
5n−10

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−10

2 − 5(n−|B|+1)−9
2 = 5|B|−6

2 , |B| ≡ 2 (mod 4);
5n−10

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−10

2 − 5(n−|B|+1)−8
2 = 5|B|−7

2 , |B| ≡ 1 or 3 (mod 4).

Thus we have B ≇ Kk for any k ∈ {2, 3}, B ≇ D(r, s) for any r, s ≥ 2, and B ≇ H(t, 6, 2)

for any t ≥ 6. Therefore every block of G is isomorphic to K4 or K5. We may assume that

G = (
x∏
K4) · (

y∏
K5) with n = 3x+ 4y + 1 and e(G) = 6x+ 10y = 5n−10

2 , yielding 3x = 5,

which contradicts the fact that x is an integer. Therefore, there is no C≥6-saturated graph

G with e(G) = ex(n, C≥6) − 1 when n ≡ 0 (mod 4). If n ≡ 1 (mod 4), then e(G) = 5n−7
2

and e(G1) = e(G)− e(B) ≤ ex(n− |B|+ 1, C≥6), which follows that

e(B) ≥


5n−7

2 − ⌊5(n−|B|+1)−5
2 ⌋ = 5n−7

2 − 5(n−|B|+1)−5
2 = 5|B|−7

2 , |B| ≡ 1 (mod 4);
5n−7

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−7

2 − 5(n−|B|+1)−9
2 = 5|B|−3

2 , |B| ≡ 3 (mod 4);
5n−7

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−7

2 − 5(n−|B|+1)−8
2 = 5|B|−4

2 , |B| ≡ 0 or 2 (mod 4).
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We have B ≇ Kk for any 2 ≤ k ≤ 4, B ≇ D(r, s) for any r, s ≥ 2 and B ≇ H(t, 6, 2) for

any t ≥ 6. Therefore every block of G is isomorphic to K5, impling that G =
x∏
K5 with

n = 4x+ 1 and e(G) = 10x ̸= 5n−7
2 , a contradiction.

Next we consider the case e(G) = ex(n, C≥6)−2 = ⌊5n−5
2 ⌋−2 = 5n−9

2 with n ≡ 1 (mod 4).

In this case e(G1) =
5n−9

2 − e(B) ≤ ex(n− |B|+ 1, C≥6), yielding

e(B) ≥


5n−9

2 − ⌊5(n−|B|+1)−5
2 ⌋ = 5n−9

2 − 5(n−|B|+1)−5
2 = 5|B|−9

2 , |B| ≡ 1 (mod 4);
5n−9

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−9

2 − 5(n−|B|+1)−9
2 = 5|B|−5

2 , |B| ≡ 3 (mod 4);
5n−9

2 − ⌊5(n−|B|+1)−8
2 ⌋ = 5n−9

2 − 5(n−|B|+1)−8
2 = 5|B|−6

2 , |B| ≡ 0 or 2 (mod 4).

Thus, we have that B is not isomorphic to any one of {K2,K3,K4, D(r, s), H(t, 6, 2)} where

r, s ≥ 2 and t ≥ 6. That is G =
x∏
K5 with n = 4x + 1 and e(G) = 10x ̸= 5n−9

2 , a

contradiction. Therefore, there is no C≥6-saturated graph with e(G) = ex(n, C≥6)− 1 when

n ≡ 0 or 1 (mod 4), or e(G) = ex(n, C≥6)− 2 when n ≡ 1 (mod 4).

This completes the proof of Theorem 1.4.
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