On the saturation spectrum of families of cycle subdivisions

Rongling Lang ${ }^{1}$, Hui Lei ${ }^{2}$, Junxue Zhang ${ }^{3 *}$
${ }^{1}$ School of Electronic Information Engineering, Beihang University, Beijing 100191, China
${ }^{2}$ School of Statistics and Data Science, LPMC and KLMDASR
Nankai University, Tianjin 300071, China
${ }^{3}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
Email: ronglinglang@163.com; hlei@nankai.edu.cn; jxuezhang@163.com

Abstract

Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if G contains no member of \mathcal{F} as a subgraph, but $G+e$ contains a member of \mathcal{F} as a subgraph for each edge e in the complement of G. The edge spectrum of \mathcal{F} is the set of all possible sizes of \mathcal{F}-saturated graphs on n vertices. A G-subdivision is a graph derived from G by replacing each edge of G with a path of arbitrary length. Let $\mathcal{C}_{\geq k}$ denote the family of C_{k}-subdivisions, where C_{k} is a cycle of length k with $k \geq 3$. Determining the minimum or maximum number of edges in n-vertex \mathcal{F}-saturated graphs are two of the most important problems in the study of extremal graph theory. This is also a very important optimization problem in graph theory. The study of this problem is closely related to the development of other branches of mathematics, computer science, network, modern information science and technology. In this paper, we determine the edge spectrum of $\mathcal{C}_{\geq k}$ for each $k \in\{3,4,5,6\}$.

Keywords: edge spectrum; extremal numbers; saturation numbers; cycle subdivisions

1 Introduction

All graphs considered in this paper are finite and simple. We follow [10] for undefined notation and terminology. Let k be a positive integer and $[k]=\{1,2,3, \ldots, k\}$. Let $G=$ $G(V(G), E(G))$ be a graph, where $V(G)$ is the vertex set of G and $E(G)$ is the edge set of G. We denote $e(G)=|E(G)|$ and call it the size of G. Denote by \bar{G} the complement of G. Let K_{k} denote the complete graph on k vertices. A G-subdivision is a graph derived from G by replacing each edge of G with a path of arbitrary length. Let $\mathcal{C}_{\geq k}$ denote the family

[^0]of C_{k}-subdivisions, where C_{k} is a cycle of length k with $k \geq 3$. Note that $C_{k} \in \mathcal{C}_{\geq k}$ and $\mathcal{C}_{\geq k}$ is a family of cycles that each of them has length at least k. A maximal connected subgraph of G that has no cut-vertex is called a block of G. For a graph H, the H-block of G is a block of G isomorphic to H.

Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if G contains no member of \mathcal{F} as a subgraph, but $G+e$ contains a member of \mathcal{F} as a subgraph for each $e \in E(\bar{G})$. Let $e x(n, \mathcal{F})=\max \{e(G): G$ is \mathcal{F}-saturated and $|V(G)|=n\}$ and $\operatorname{sat}(n, \mathcal{F})=\min \{e(G):$ G is \mathcal{F}-saturated and $|V(G)|=n\}$. We shall refer to $\operatorname{ex}(n, \mathcal{F})$ as the extremal number of \mathcal{F} and $\operatorname{sat}(n, \mathcal{F})$ as the saturation number of \mathcal{F}. By the definitions above, if an \mathcal{F}-saturated graph of order n has m edges, then $\operatorname{sat}(n, \mathcal{F}) \leq m \leq e x(n, \mathcal{F})$. It is natural to consider the converse that whether there exists an \mathcal{F}-saturated graph of order n and size m for any integer m with $\operatorname{sat}(n, \mathcal{F}) \leq m \leq e x(n, \mathcal{F})$. In order to study this problem, the concept of the edge spectrum was introduced.

The edge spectrum of \mathcal{F}, denoted by $E S(n, \mathcal{F})$, is the set of all possible sizes of \mathcal{F} saturated graphs on n vertices. That is, $E S(n, \mathcal{F})=\{e(G): G$ is \mathcal{F}-saturated and $|V(G)|=$ $n\}$. When $\mathcal{F}=\{F\}$, we simply write F-saturated for \mathcal{F}-saturated and replace $E S(n, \mathcal{F})$ with $E S(n, F)$. For some special graph classes \mathcal{F}, we may have $E S(n, \mathcal{F})=\{m: m$ is an integer with $\operatorname{sat}(n, \mathcal{F}) \leq m \leq e x(n, \mathcal{F})\}$. For instance, in 2018, Balister and Dogan [3] proved that $E S\left(n, K_{1, t}\right)$ consists of all integers in the interval $\left[\operatorname{sat}\left(n, K_{1, t}\right), \operatorname{ex}\left(n, K_{1, t}\right)\right]$, where t is a positive integer with $t \leq n-1$. However, it fails in general. Some gaps of edge spectrum have been found for graphs K_{t} [1, 2, 4], $K_{4}-e[7], P_{5}$ and P_{6} [8], and so on. It is natural to consider which graph has gapless edge spectrum and which graph has gaps in its edge spectrum. In this paper, we consider the edge spectrum for $\mathcal{C}_{\geq k}$.

Erdős and Gallai [5], and Woodall [11] provided the extremal number of $\mathcal{C}_{\geq k}$ for each $3 \leq k \leq n$. They also provided an extremal graph consisting of $\left\lfloor\frac{n-1}{k-2}\right\rfloor$ copies of K_{k-1} and one copy of K_{t+1}, where $n-1 \equiv t(\bmod (k-2)), 0 \leq t \leq k-3$, and all copies share exactly one vertex in common. That is $e x\left(n, \mathcal{C}_{\geq k}\right)=\left\lfloor\frac{n-1}{k-2}\right\rfloor\binom{ k-1}{2}+\binom{t+1}{2}$. In this paper, we refer the case $k \in\{3,4,5,6\}$, so we present their results as follows.

Theorem 1.1 ([5, [11]) Let n be an integer.
(1) For $n \geq 3$, ex $\left(n, \mathcal{C}_{\geq 3}\right)=n-1$.
(2) For $n \geq 4$, ex $\left(n, \mathcal{C}_{\geq 4}\right)=\left\lfloor\frac{3 n-3}{2}\right\rfloor$.
(3) For $n \geq 5$, ex $\left(n, \mathcal{C}_{\geq 5}\right)= \begin{cases}2 n-2, & \text { if } n \equiv 1(\bmod 3) ; \\ 2 n-3, & \text { if } n \equiv 0(\bmod 3) \text { or } n \equiv 2(\bmod 3) \text {. }\end{cases}$
(4) For $n \geq 6$, ex $\left(n, \mathcal{C}_{\geq 6}\right)= \begin{cases}\left\lfloor\frac{5 n-5}{2}\right\rfloor, & \text { if } n \equiv 1(\bmod 4) ; \\ \left\lfloor\frac{5 n-8}{2}\right\rfloor, & \text { if } n \equiv 0(\bmod 4), n \equiv 2(\bmod 4) \text { or } n \equiv 3(\bmod 4) \text {. }\end{cases}$

It is trivial that $\operatorname{sat}\left(n, \mathcal{C}_{\geq 3}\right)=e x\left(n, \mathcal{C}_{\geq 3}\right)=n-1$. In [6], the authors provided the value $\operatorname{sat}\left(n, \mathcal{C}_{\geq i}\right)$ for each $i \in\{4,5\}$. Moreover, Ma, Hou, Hei, and Gao 9$]$ determined $\operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right)$.

Theorem 1.2 ([6, 9]) Let n be an integer.
(1) For $n \geq 4$, $\operatorname{sat}\left(n, \mathcal{C}_{\geq 4}\right)=n+\left\lfloor\frac{n-3}{4}\right\rfloor$.
(2) For $n \geq 5$, $\operatorname{sat}\left(n, \mathcal{C}_{\geq 5}\right)=\left\lceil\frac{10(n-1)}{7}\right\rceil$.
(3) For $n \geq 6, \operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right)= \begin{cases}9, & \text { if } n=6 ; \\ 11, & \text { if } n=7 ; \\ 12, & \text { if } n=8 ; \\ 13, & \text { if } n=9 ; \\ \left\lceil\frac{3(n-1)}{2}\right\rceil, & \text { if } n \geq 10 .\end{cases}$

Combining Theorems 1.1 and 1.2 , we prove that there is no gap in $E S\left(n, \mathcal{C}_{\geq r}\right)$ for each $r \in\{3,4,5\}$ and there is a gap in $E S\left(n, \mathcal{C}_{\geq 6}\right)$ when $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$.

Theorem 1.3 Let m, n, r be three integers with $n \geq r$. For each $r \in\{3,4,5\}$ and each m with $\operatorname{sat}\left(n, \mathcal{C}_{\geq r}\right) \leq m \leq e x\left(n, \mathcal{C}_{\geq r}\right)$, there is a $\mathcal{C}_{\geq r}$-saturated graph on n vertices and m edges.

Theorem 1.4 Let n and m be two integers with $n \geq 6$ and $\operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right) \leq m \leq \operatorname{ex}\left(n, \mathcal{C}_{\geq 6}\right)$. There is a $\mathcal{C}_{\geq 6}$-saturated graph on n vertices and m edges if and only if

$$
m \notin \begin{cases}\left\{e x\left(n, \mathcal{C}_{\geq 6}\right)-1\right\}, & \text { if } n \equiv 0(\bmod 4) \\ \left\{\operatorname{ex}\left(n, \mathcal{C}_{\geq 6}\right)-1, e x\left(n, \mathcal{C}_{\geq 6}\right)-2\right\}, & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

The rest of the paper is organized as follows. In Section 2, we introduce some known properties of $\mathcal{C}_{\geq r}$-saturated graphs for each $r \in\{4,5,6\}$, which will be used to verify the graphs we constructed are $\mathcal{C}_{\geq r}$-saturated. In Section 3, we prove Theorems 1.3 and 1.4 by giving a complete characterization for the edge spectrum of $\mathcal{C}_{\geq r}$.

2 Structural properties of $\mathcal{C}_{\geq r}$-saturated graphs for each $r \in$ $\{4,5,6\}$

In [6], Ferrara, Jacobson, Milans, Tennenhouse, and Wenger characterized some properties of $\mathcal{C}_{\geq 4}$-saturated graphs and $\mathcal{C}_{\geq 5}$-saturated graphs, respectively.

Proposition 2.1 ([6]) A connected graph G with at least two vertices is $\mathcal{C}_{\geq 4}$-saturated if and only if every block of G is isomorphic to either K_{2} or K_{3}, and no two K_{2}-blocks of G share a vertex.

The graph $B_{t}=K_{2} \vee \bar{K}_{t}$ is called a book, which is obtained from $K_{2} \cup \bar{K}_{t}$ by joining each vertex of K_{2} to each vertex of \bar{K}_{t}. Every vertex of \bar{K}_{t} is called a page of the book B_{t}.

Proposition 2.2 ([6]) A graph G is $\mathcal{C}_{\geq 5}$-saturated if and only if
(1) every block of G is isomorphic to either a complete graph of order at most 4 or a book with at least three pages, and
(2) for any K_{2}-block B of G and block $B^{\prime} \neq B$ with $B \cap B^{\prime} \neq \emptyset$, either B^{\prime} is a K_{4}-block or B^{\prime} is a B_{t}-block with $t \geq 3$ such that $B \cap B^{\prime}$ is a page of B^{\prime}.

Let r, s and t be three integers with $r, s \geq 2$ and $t \geq 6$. As shown in Figure 1(1), the graph denoted by $D(r, s)$ has $r+s+3$ vertices and each vertex in $\left\{v_{1}, v_{2}, \ldots, v_{r}, u_{1}, u_{2}, \ldots, u_{s}\right\}$ has degree 2. As depicted in Figure $1(2)$, the graph denoted by $H(t, 6,2)$ has t vertices and each vertex in $\left\{u_{1}, u_{2}, \ldots, u_{t-4}\right\}$ has degree 2 . In both of $D(r, s)$ and $H(t, 6,2)$, the white vertices are called centers of them. Clearly, every $\mathcal{C}_{\geq 6}$-saturated graph of order at most 5 is a clique.

(1) $D(r, s)$ with $r, s \geq 2$.

(2) $H(t, 6,2)$ with $t \geq 6$.

Figure 1: Two $\mathcal{C}_{\geq 6}$-saturated graphs $D(r, s)$ and $H(t, 6,2)$.
To avoid using more definitions, we use the following proposition from 9], which is stated slightly different, but can be derived from the original statement.

Proposition 2.3 ([9]) A graph G is $\mathcal{C}_{\geq 6}$-saturated if and only if
(1) G is connected and each block of G is isomorphic to one of $\left\{K_{t}: 1 \leq t \leq 5\right\} \cup\{D(r, s)$: $s, r \geq 2\} \cup\{H(t, 6,2): t \geq 6\}$, and
(2) no two K_{3}-blocks of G share a vertex, and
(3) for any K_{2}-block B of G and block $B^{\prime} \neq B$ with $B \cap B^{\prime} \neq \emptyset$, we have $B^{\prime} \cong K_{5}$, $B^{\prime} \cong D(r, s)$ or $B^{\prime} \cong H(t, 6,2)$ for integers $r, s \geq 2$ and $t \geq 6$ such that $B \cap B^{\prime}$ is not a center of B^{\prime} when $B^{\prime} \cong D(r, s)$ or $B^{\prime} \cong H(t, 6,2)$.

3 Proofs of Theorems 1.3 and 1.4

For any graph, we choose one vertex of it as its root vertex. Denote by $G \cdot H$ the graph obtained from two disjoint graphs G and H by identifying the root vertex of G and the root
vertex of H, where the identifying vertex is the root vertex of the graph $G \cdot H$. That is, $|V(G \cdot H)|=|V(G)|+|V(H)|-1$ and $E(G \cdot H)=E(G) \cup E(H)$. Let $\prod^{0} G=K_{1}, \stackrel{1}{\prod} G=G$ and $\prod^{k} G=\left(\prod^{k-1} G\right) \cdot G$ for an integer k with $k \geq 2$.

Figure 2: A $\mathcal{C}_{\geq 4}$-saturated graph G.

Proof of Theorem 1.3. Theorem 1.3 holds naturally if $r=3$, since $e x\left(n, \mathcal{C}_{\geq 3}\right)=$ $\operatorname{sat}\left(n, \mathcal{C}_{\geq 3}\right)=n-1$. So we may assume $r \geq 4$. The rest proof is split into two cases: $r=4$ and $r=5$.

Case 1: $r=4$.
As shown in Figure 2 , the graph G has $4 t+4$ vertices, each vertex in $\left\{u_{1}, u_{2}, \ldots, u_{t}, v_{2}, v_{3}, \ldots, v_{2 t+2}\right\}$ has degree 3 , each vertex in $\left\{v_{1}, w_{1}, w_{2}, \ldots, w_{t}\right\}$ has degree 1 , and each vertex in $\left\{u_{t+1}, v_{2 t+3}\right\}$ has degree 2. By Proposition 2.1, the graph G is a $\mathcal{C}_{\geq 4}$-saturated graph. For each integer $n \geq 4$, let

$$
G_{n}^{0}= \begin{cases}G, & \text { if } n=4 t+4 ; \\ G-\left\{v_{1}\right\}, & \text { if } n=4 t+3 ; \\ G-\left\{v_{2 t+3}, u_{t+1}\right\}, & \text { if } n=4 t+2 ; \\ G-\left\{v_{2 t+2}, v_{2 t+3}, u_{t+1}\right\}, & \text { if } n=4 t+1\end{cases}
$$

Clearly, we have

$$
e\left(G_{n}^{0}\right)= \begin{cases}5 t+4=n+\left\lfloor\frac{n-3}{4}\right\rfloor, & \text { if } n=4 t+4 ; \\ 5 t+3=n+\left\lfloor\frac{n-3}{4}\right\rfloor, & \text { if } n=4 t+3 ; \\ 5 t+1=n+\left\lfloor\frac{n-3}{4}\right\rfloor, & \text { if } n=4 t+2 ; \\ 5 t=n+\left\lfloor\frac{n-3}{4}\right\rfloor, & \text { if } n=4 t+1 .\end{cases}
$$

By Theorem 1.2(1), $e\left(G_{n}^{0}\right)=\operatorname{sat}\left(n, \mathcal{C}_{\geq 4}\right)$. Let i be an integer. For each $1 \leq i \leq t$, let

$$
G_{n}^{i}= \begin{cases}\left(E\left(G_{n}^{i-1}\right) \backslash\left\{u_{i} w_{i}\right\}\right) \cup\left\{v_{2 i-1} w_{i}, v_{2 i} w_{i}\right\}, & \text { if } n=4 t+1 ; \\ \left(E\left(G_{n}^{i-1}\right) \backslash\left\{u_{i} w_{i}\right\}\right) \cup\left\{v_{2 i+1} w_{i}, v_{2 i+2} w_{i}\right\}, & \text { if } n \in\{4 t+2,4 t+3,4 t+4\} .\end{cases}
$$

For each $0 \leq j \leq t$, each block of G_{n}^{j} is isomorphic to either K_{2} or K_{3} and there are no two K_{2}-blocks of G_{n}^{j} sharing a vertex. By Proposition 2.1, the graph G_{n}^{j} is $\mathcal{C}_{\geq 4}$-saturated.

Clearly, $e\left(G_{n}^{i}\right)=e\left(G_{n}^{i-1}\right)+1$ for $1 \leq i \leq t$ and

$$
e\left(G_{n}^{t}\right)=e\left(G_{n}^{0}\right)+t= \begin{cases}6 t+4=\left\lfloor\frac{3 n-3}{2}\right\rfloor, & \text { if } n=4 t+4 \\ 6 t+3=\left\lfloor\frac{3 n-3}{2}\right\rfloor, & \text { if } n=4 t+3 \\ 6 t+1=\left\lfloor\frac{3 n-3}{2}\right\rfloor, & \text { if } n=4 t+2 \\ 6 t=\left\lfloor\frac{3 n-3}{2}\right\rfloor, & \text { if } n=4 t+1\end{cases}
$$

Then we have $e\left(G_{n}^{t}\right)=e x\left(n, \mathcal{C}_{\geq 4}\right)$ by Theorem 1.1 (2). Hence there is a $\mathcal{C}_{\geq 4}$-saturated graph on $n \geq 4$ vertices and m edges for each integer m with $\operatorname{sat}\left(n, \mathcal{C}_{\geq 4}\right) \leq m \leq e x\left(n, \mathcal{C}_{\geq 4}\right)$.

Case 2: $r=5$.

By Theorems 1.1 and 1.2 , we have $\operatorname{sat}\left(5, \mathcal{C}_{\geq 5}\right)=6, e x\left(5, \mathcal{C}_{\geq 5}\right)=7, \quad \operatorname{sat}\left(6, \mathcal{C}_{\geq 5}\right)=8$ and $e x\left(6, \mathcal{C}_{\geq 5}\right)=9$, which implies that Theorem 1.3 holds for $5 \leq n \leq 6$. Thus we may assume $n \geq 7$. Inspired by the constructions of Ferrara et al. [6], we construct the graph H_{i} and H_{i} has exactly one root vertex v for each $i \in\{0,1,2,3,4,5,6\}$. For each graph in Figure 3, we denote the vertex v as the root vertex. Let $H_{2}=H_{0} \cdot K_{3}, H_{3}=H_{1} \cdot K_{3}$, $H_{4}=H_{2} \cdot K_{3}=H_{0} \cdot \prod^{2} K_{3}, H_{5}=H_{1} \cdot \prod^{2} K_{3}$, and $H_{6}=M_{0} \cdot H_{1}$. We obtain $\left|V\left(H_{i}\right)\right|=7+i$ and $e\left(H_{i}\right)=9+\left\lfloor\frac{3 i}{2}\right\rfloor$ for each $i \in\{0,1,2,3,4,5,6\}$.

Let

$$
G_{n}^{0}= \begin{cases}H_{0} \cdot \prod^{t-1} H_{1}, & \text { if } n=7 t ; \\ \prod_{1}^{t} H_{1}, & \text { if } n=7 t+1 ; \\ H_{2} \cdot \prod_{t-1}^{t-1} H_{1}, & \text { if } n=7 t+2 ; \\ H_{3} \cdot \prod_{1-1} H_{1}, & \text { if } n=7 t+3 ; \\ H_{4} \cdot \prod_{t-1} H_{1}, & \text { if } n=7 t+4 ; \\ H_{5} \cdot \prod_{t-1} H_{1}, & \text { if } n=7 t+5 ; \\ H_{6} \cdot \prod^{t-1} H_{1}, & \text { if } n=7 t+6\end{cases}
$$

Then

$$
e\left(G_{n}^{0}\right)= \begin{cases}10 t-1=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t ; \\ 10 t=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t+1 ; \\ 10 t+2=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t+2 ; \\ 10 t+3=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t+3 ; \\ 10 t+5=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t+4 ; \\ 10 t+6=\left\lceil\frac{1(n-1)}{7}\right\rceil, & \text { if } n=7 t+5 ; \\ 10 t+8=\left\lceil\frac{10(n-1)}{7}\right\rceil, & \text { if } n=7 t+6 .\end{cases}
$$

By Theorem $1.2(2), e\left(G_{n}^{0}\right)=\operatorname{sat}\left(n, \mathcal{C}_{\geq 5}\right)$.
Let i be an integer with $i \geq 1$. We try to construct the graph G_{n}^{1} based on G_{n}^{0}. By the structure of G_{n}^{0}, there is a pair of adjacent vertices u and w such that $d_{G_{n}^{0}}(w)=1$

Figure 3: Some $\mathcal{C}_{\geq 5}$-saturated graphs.
and $d_{G_{n}^{0}}(u)=3$, say $N_{G_{n}^{0}}(u)=\left\{u_{1}, u_{2}, w\right\}$. We call such pair as a (1,3)-pair. Let $G_{n}^{1}=$ $\left(G_{n}^{0} \backslash\{w u\}\right) \cup\left\{w u_{1}, w u_{2}\right\}$. Observe that there are two (1,3)-pairs in H_{i} for each $i \in\{0,2,4\}$, three (1,3)-pairs in H_{j} for each $j \in\{1,3,5\}$, and four (1,3)-pairs in H_{6}. Then G_{n}^{0} has $3 t-t_{0}$ such vertex pairs, where

$$
t_{0}= \begin{cases}1, & \text { if } n \in\{7 t, 7 t+2,7 t+4\} \\ 0, & \text { if } n \in\{7 t+1,7 t+3,7 t+5\} \\ -1, & \text { if } n=7 t+6\end{cases}
$$

Applying this method, we construct the graph G_{n}^{i} iteratively for each integer $1 \leq i \leq 3 t-t_{0}$ as follows. Choose a pair of adjacent vertices u and w with $d_{G_{n}^{i-1}}(w)=1, N_{G_{n}^{i-1}}(w)=\{u\}$ and $d_{G_{n}^{i-1}}(u)=3$. Denote $N_{G_{n}^{i-1}}(u)=\left\{u_{1}, u_{2}, w\right\}$. Let $G_{n}^{i}=\left(G_{n}^{i-1} \backslash\{w u\}\right) \cup\left\{w u_{1}, w u_{2}\right\}$. We have $e\left(G_{n}^{i}\right)=e\left(G_{n}^{i-1}\right)+1$. Let k and ℓ be two integers. Clearly, for each $1 \leq i \leq 3 t-t_{0}$, each block of G_{n}^{i} is isomorphic to either K_{ℓ} with $2 \leq \ell \leq 3$ or a book B_{k} with $k \geq 3$. For any K_{2}-block B of G_{n}^{i} and block $B^{\prime} \neq B$ with $B \cap B^{\prime} \neq \emptyset, B^{\prime}$ is a B_{k}-block with $k \geq 3$ and $B \cap B^{\prime}$ is a page of B^{\prime}. Proposition 2.2 implies that G_{n}^{i} is $\mathcal{C}_{\geq 5}$-saturated. For K_{k} with $k \in\{2,3,4\}$, choose one vertex of K_{k} as the root vertex, and for the book B_{j} where j is an
integer and $j \geq 3$, choose one vertex of B_{j} that is not a page as the root vertex. We have

$$
G_{n}^{3 t-t_{0}}= \begin{cases}\left(\prod_{1}^{t-1} B_{6}\right) \cdot B_{5}, & \text { if } n=7 t ; \\ \prod_{t}^{t} B_{6}, & \text { if } n=7 t+1 ; \\ \left(\prod_{t}^{t} B_{6}\right) \cdot B_{5} \cdot K_{3}, & \text { if } n=7 t+2 \\ \left(\prod_{t-1} B_{6}\right) \cdot K_{3}, & \text { if } n=7 t+3 ; \\ \left(\prod_{t}^{t-1} B_{6}\right) \cdot B_{5} \cdot \prod^{2} K_{3}, & \text { if } n=7 t+4 ; \\ \left(\prod_{t}^{t} B_{6}\right) \cdot \prod_{1}^{2} K_{3}, & \text { if } n=7 t+5 ; \\ \left(\prod^{t} B_{6}\right) \cdot B_{4}, & \text { if } n=7 t+6\end{cases}
$$

Set

$$
H_{n}^{0}= \begin{cases}\left(\prod_{t-1}^{t-1} B_{5}\right) \cdot B_{t+4}, & \text { if } n=7 t \\ \left(\prod_{t-1} B_{5}\right) \cdot B_{t+5}, & \text { if } n=7 t+1 \\ \left(\prod_{t-1}^{t-1} B_{5}\right) \cdot B_{t+4} \cdot K_{3}, & \text { if } n=7 t+2 \\ \left(\prod_{5}\right) \cdot B_{t+5} \cdot K_{3}, & \text { if } n=7 t+3 \\ \left(\prod_{t-1} B_{5}\right) \cdot B_{t+4} \cdot \prod_{2}^{2} K_{3}, & \text { if } n=7 t+4 \\ \left(\prod_{t}^{t} B_{5}\right) \cdot B_{t+5} \cdot \prod_{1} K_{3}, & \text { if } n=7 t+5 \\ \left(\prod^{t} B_{5}\right) \cdot B_{t+4}, & \text { if } n=7 t+6\end{cases}
$$

We see $e\left(H_{n}^{0}\right)=e\left(G_{n}^{3 t-t_{0}}\right)$. Let i be an integer with $0 \leq i \leq t-1$. Let

$$
H_{n}^{i}= \begin{cases}\left(\prod_{t-1-i}^{t-1-i} B_{5}\right) \cdot B_{t+4} \cdot \prod_{2 i}^{2 i} K_{4}, & \text { if } n=7 t ; \\ \left(\prod^{t-1} B_{5}\right) \cdot B_{t+5} \cdot \prod_{4} K_{4}, & \text { if } n=7 t+1 ; \\ \left(\prod_{t-1-i} B_{5}\right) \cdot B_{t+4} \cdot K_{3} \cdot \prod_{2 i}^{2 i} K_{4}, & \text { if } n=7 t+2 \\ \left(\prod_{t-i} B_{5}\right) \cdot B_{t+5} \cdot K_{3} \cdot \prod_{4} K_{4}, & \text { if } n=7 t+3 \\ \left(\prod_{t-1-i} B_{5}\right) \cdot B_{t+4} \cdot\left(\prod_{2}^{2} K_{3}\right) \cdot \prod_{2 i}^{2 i} K_{4}, & \text { if } n=7 t+4 ; \\ \left(\prod_{t-1-i} B_{5}\right) \cdot B_{t+5} \cdot\left(\prod_{3} K_{3}\right) \cdot \prod_{4} K_{4}, & \text { if } n=7 t+5 ; \\ \left(\prod^{t i} B_{5}\right) \cdot B_{t+4} \cdot \prod_{1}^{2 i} K_{4}, & \text { if } n=7 t+6\end{cases}
$$

and

$$
H_{n}^{t}= \begin{cases}H_{n}^{t-1}, & \text { if } n=7 t ; \\ H_{n}^{t-1}, & \text { if } n=7 t+1 ; \\ B_{t+6} \cdot \prod_{2(t-1)}^{2(t-1)} K_{4}, & \text { if } n=7 t+2 ; \\ B_{t+7} \cdot \prod_{M_{4},} K_{4}, & \text { if } n=7 t+3 ; \\ B_{t+6} \cdot K_{3} \cdot \prod_{2(t-1)} K_{4}, & \text { if } n=7 t+4 ; \\ B_{t+7} \cdot K_{3} \cdot \prod^{2(t-1)} K_{4}, & \text { if } n=7 t+5 ; \\ B_{t+4} \cdot \prod^{2 t} K_{4}, & \text { if } n=7 t+6 .\end{cases}
$$

Since every block of H_{n}^{i} is isomorphic to either K_{ℓ} with $\ell \in\{3,4\}$ or B_{k}, where k is an integer and $k \geq 3$, Proposition 2.2 implies that H_{n}^{i} is $\mathcal{C}_{\geq 5}$-saturated for each $0 \leq i \leq t$. We may see $e\left(H_{n}^{i}\right)=e\left(H_{n}^{i-1}\right)+1$ for each $1 \leq i \leq t-1$ and

$$
e\left(H_{n}^{t}\right)= \begin{cases}e\left(H_{n}^{t-1}\right), & \text { if } n \in\{7 t, 7 t+1\} ; \\ e\left(H_{n}^{t-1}\right)+1, & \text { if } n \in\{7 t+2,7 t+3,7 t+4,7 t+5,7 t+6\}\end{cases}
$$

In addition,

$$
e\left(H_{n}^{t}\right)= \begin{cases}14 t-3=2 n-3, & \text { if } n=7 t \\ 14 t-1=2 n-3, & \text { if } n=7 t+1 \\ 14 t+1=2 n-3, & \text { if } n=7 t+2 \\ 14 t+3=2 n-3, & \text { if } n=7 t+3 \\ 14 t+4=2 n-4, & \text { if } n=7 t+4 \\ 14 t+6=2 n-4, & \text { if } n=7 t+5 \\ 14 t+9=2 n-3, & \text { if } n=7 t+6\end{cases}
$$

Let $F_{n}^{1}=\left({ }^{2(t-1)} K_{4}\right) \cdot B_{t+8}$ when $n=7 t+4, F_{n}^{1}=\left({ }^{2(t-1)} K_{4}\right) \cdot B_{t+9}$ when $n=7 t+5$ and $F_{n}^{1}=H_{n}^{t}$ when $n \in\{7 t, 7 t+1,7 t+2,7 t+5,7 t+6\}$. Then $e\left(F_{n}^{1}\right)=2 n-3$ for all $n \geq 7$ and

$$
F_{n}^{1}= \begin{cases}B_{t+4} \cdot \prod_{\prod_{2}}^{2(t-1)} K_{4}, & \text { if } n=7 t ; \\ B_{t+5} \cdot \prod_{2(t-1)} K_{4}, & \text { if } n=7 t+1 \\ B_{t+6} \cdot \prod_{2(t-1)}^{2} K_{4}, & \text { if } n=7 t+2 \\ B_{t+7} \cdot \prod_{2(t-1)}^{2} K_{4}, & \text { if } n=7 t+3 ; \\ B_{t+8} \cdot \prod_{2(t-1)} K_{4}, & \text { if } n=7 t+4 \\ B_{t+9} \cdot \prod_{1}^{2(t)} K_{4}, & \text { if } n=7 t+5 \\ B_{t+4} \cdot \prod_{1}^{2 t} K_{4}, & \text { if } n=7 t+6\end{cases}
$$

When $t \equiv 0(\bmod 3)$, let

When $t \equiv 1(\bmod 3)$, let

$$
F_{n}^{2}= \begin{cases}\prod_{2 t+\left\lfloor\frac{t}{3}\right\rfloor} K_{4}, & \text { if } n=7 t \\ \prod_{2 t+\left\lfloor\frac{t}{3}\right\rfloor+1} K_{4}, & \text { if } n=7 t+3 \\ \prod^{2 t+\left\lfloor\frac{t}{3}\right\rfloor+2} K_{4}, & \text { if } n=7 t+6 \\ F_{n}^{1}, & \text { if } n \in\{7 t+1,7 t+2,7 t+4,7 t+5\}\end{cases}
$$

When $t \equiv 2(\bmod 3)$, let

$$
F_{n}^{2}= \begin{cases}\prod_{2 t+\left\lfloor\frac{t}{3}\right\rfloor+1} K_{4}, & \text { if } n=7 t+2 ; \\ \prod^{2 t+\left\lfloor\frac{t}{3}\right\rfloor+2} K_{4}, & \text { if } n=7 t+5 ; \\ F_{n}^{1}, & \text { if } n \in\{7 t, 7 t+1,7 t+3,7 t+4,7 t+6\} .\end{cases}
$$

For all cases above, we have $e\left(F_{n}^{2}\right)-e\left(F_{n}^{1}\right) \leq 1$. When $t \equiv 0(\bmod 3)$,

$$
e\left(F_{n}^{2}\right)= \begin{cases}2 n-2, & \text { if } n \equiv 1(\bmod 3) \\ 2 n-3, & \text { if } n \equiv 0(\bmod 3) \text { or } n \equiv 2(\bmod 3)\end{cases}
$$

When $t \equiv 1(\bmod 3)$,

$$
e\left(F_{n}^{2}\right)= \begin{cases}2 n-2, & \text { if } n \equiv 1(\bmod 3) \\ 2 n-3, & \text { if } n \equiv 0(\bmod 3) \text { or } n \equiv 2(\bmod 3)\end{cases}
$$

When $t \equiv 2(\bmod 3)$,

$$
e\left(F_{n}^{2}\right)= \begin{cases}2 n-2, & \text { if } n \equiv 1(\bmod 3) \\ 2 n-3, & \text { if } n \equiv 0(\bmod 3) \text { or } n \equiv 2(\bmod 3)\end{cases}
$$

In all cases, $e\left(F_{n}^{2}\right)=e x\left(n, \mathcal{C}_{\geq 5}\right)$ by Theorem 1.1(3). Therefore, given an integer n with $n \geq 5$, for any integer m with $\operatorname{sat}\left(n, \mathcal{C}_{\geq 5}\right) \leq m \leq e x\left(n, \mathcal{C}_{\geq 5}\right)$, we have constructed a $\mathcal{C}_{\geq 5^{-}}$ saturated graph on n vertices and m edges.

Proof of Theorem 1.4. Firstly, let us construct a series of $\mathcal{C} \geq 6$-saturated graphs.

Figure 4: Some $\mathcal{C}_{\geq 6}$-saturated graphs.

Claim 1 Let n and m be two integers such that $n \geq 6$, $\operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right) \leq m \leq e x\left(n, \mathcal{C}_{\geq 6}\right)$ and

$$
m \notin\left\{\begin{array}{cl}
\left\{e x\left(n, \mathcal{C}_{\geq 6}\right)-1\right\}, & \text { if } n \equiv 0(\bmod 4) ; \\
\left\{e x\left(n, \mathcal{C}_{\geq 6}\right)-2, e x\left(n, \mathcal{C}_{\geq 6}\right)-1\right\}, & \text { if } n \equiv 1(\bmod 4) .
\end{array}\right.
$$

Then there exists a $\mathcal{C}_{\geq 6}$-saturated graph on n vertices with size m.
Proof. Firstly, we consider the case $6 \leq n \leq 9$. For K_{t} with $2 \leq t \leq 5$, choose one vertex of K_{t} as the root vertex. When $n=6$, let $G_{1}=K_{4} \cdot K_{3}, G_{2}=H(6,6,2)$ and $G_{3}=K_{5} \cdot K_{2}$. When $n=7$, let $G_{1}=D(2,2), G_{2}=K_{4} \cdot K_{4}$ and $G_{3}=K_{5} \cdot K_{3}$. Clearly, for both cases, G_{i} is $\mathcal{C}_{\geq 6}$-saturated for each $i \in[3]$. By Theorem 1.2 (3),

$$
e\left(G_{1}\right)=\operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right)=\left\{\begin{array}{cl}
9, & \text { if } n=6 ; \\
11, & \text { if } n=7
\end{array}\right.
$$

By Theorem 1.1(4),

$$
e\left(G_{3}\right)=e\left(G_{2}\right)+1=e\left(G_{1}\right)+2=\left\lfloor\frac{5 n-8}{2}\right\rfloor=e x\left(n, \mathcal{C}_{\geq 6}\right) .
$$

When $n=8$, let G_{1} be the graph shown in Figure $4(1)$. We have $e\left(G_{1}\right)=12=\operatorname{sat}\left(8, \mathcal{C}_{\geq 6}\right)$.

Let $G_{2}=D(2,3), G_{3}=H(8,6,2)$ and $G_{4}=K_{5} \cdot K_{4}$. Then

$$
e\left(G_{3}\right)=e\left(G_{2}\right)+1=e\left(G_{1}\right)+2=14=e x\left(n, \mathcal{C}_{\geq 6}\right)-2
$$

and $e\left(G_{4}\right)=16=\left\lfloor\frac{5 n-8}{2}\right\rfloor=e x\left(n, \mathcal{C}_{\geq 6}\right)$ by Theorem 1.1(4). When $n=9$, the graphs G_{1}, G_{2} and G_{5} are shown in Figure 4(2), Figure 4(3) and Figure 4(4), respectively. Let $G_{3}=D(4,2), G_{4}=H(9,6,2)$ and $G_{6}=K_{5} \cdot K_{5}$. We obtain $e\left(G_{1}\right)=13=\operatorname{sat}\left(9, \mathcal{C}_{\geq 6}\right)$, $e\left(G_{i+1}\right)=e\left(G_{i}\right)+1$ for each $i \in[4], e\left(G_{5}\right)=17=e x\left(n, \mathcal{C}_{\geq 6}\right)-3$ and $e\left(G_{6}\right)=20=$ $\left\lfloor\frac{5 n-5}{2}\right\rfloor=e x\left(n, \mathcal{C}_{\geq 6}\right)$. So Claim 1 holds for $6 \leq n \leq 9$.

$D(a, 2,1)$.

Figure 5: A $\mathcal{C}_{\geq 6}$-saturated graph $D(a, 2,1)$.
Next we consider the case $n \geq 10$. The graphs shown in Figure 4(5) and Figure 4 (6) are constructed by Ma et al. [9]. These graphs are $\mathcal{C}_{\geq 6}$-saturated and satisfy $e\left(G_{n}^{0}\right)=$ $\operatorname{sat}\left(n, \mathcal{C}_{\geq 6}\right)$. Let i be an integer with $1 \leq i \leq \frac{n-3}{2}$ and $G_{n}^{i}=\left\{G_{n}^{i-1} \backslash w_{i} u_{i}\right\} \cup\left\{w_{i} v_{1}, w_{i} v_{2}\right\}$. So $e\left(G_{n}^{i}\right)=e\left(G_{n}^{i-1}\right)+1$. For each $1 \leq i \leq \frac{n-3}{2}$, each block of G_{n}^{i} is isomorphic to K_{2} or $D(r, s)$ with $r, s \geq 2$, and for any K_{2}-block of G_{n}^{i} and block B^{\prime} with $B \cap B^{\prime} \neq \emptyset, B^{\prime}$ is isomorphic to $D(r, s)$ and $B \cap B^{\prime}$ is not a center of B^{\prime}. By Proposition 2.3, G_{n}^{i} is $\mathcal{C}_{\geq 6}$-saturated. Let v_{1} be the root vertex of G_{n}^{i} for each $1 \leq i \leq \frac{n-3}{2}$ and choose one vertex of K_{5} as the root vertex. We see $G_{n}^{\left\lfloor\frac{n-3}{2}\right\rfloor}=D(n-5,2)$. Let $H_{n}^{0}=G_{n}^{\left\lfloor\frac{n-3}{2}\right\rfloor}$. When i is odd and $1 \leq i \leq 2\left\lfloor\frac{n-7}{4}\right\rfloor$, let $H_{n}^{i}=\left[\left(\left(H_{n}^{i-1}-\left\{u_{i}, u_{i+1}, w_{i}, w_{i+1}\right\}\right) \backslash\left\{w_{i+2} v_{1}, w_{i+2} v_{2}\right\}\right) \cup\left\{w_{i+2} w_{i+3}\right\}\right] \cdot K_{5}$. When i is even and $1 \leq i \leq 2\left\lfloor\frac{n-7}{4}\right\rfloor$, let $H_{n}^{i}=\left(H_{n}^{i-1} \backslash\left\{w_{i+1} w_{i+2}\right\}\right) \cup\left\{w_{i+1} v_{1}, w_{i+1} v_{2}\right\}$. That is

$$
H_{n}^{i}= \begin{cases}D(n-2 i-8,2,1) \cdot \prod^{\frac{i+1}{2}} K_{5}, & \text { if } i \equiv 1(\bmod 2) ; \\ D(n-2 i-5,2) \cdot \prod^{\frac{i}{2}} K_{5}, & \text { if } i \equiv 0(\bmod 2)\end{cases}
$$

The graph $D(a, 2,1)$ is defined in Figure 5 for some integer a on $a+6$ vertices, where each vertex in $\left\{u_{1}, u_{2}, \ldots, u_{a+2}\right\}$ has degree 2. By Proposition 2.3, H_{n}^{i} is $\mathcal{C}_{\geq 6}$-saturated for each $1 \leq i \leq 2\left\lfloor\frac{n-7}{4}\right\rfloor$. We see $e\left(H_{n}^{i}\right)=e\left(H_{n}^{i-1}\right)+1$. Let r, s be two integers with $r, s \geq 2$. Let
one of the centers of $D(r, s)$ be the root vertex of it. Set

Let one of the centers in $H(t, 6,2)$ be the root vertex for each integer $t \geq 6$ and one vertex of K_{5} be the root vertex. Denote by K_{5}^{+}the graph obtained from identifying a vertex of K_{5} and a vertex of K_{2}, that is $e\left(K_{5}^{+}\right)=11$ and $\left|V\left(K_{5}^{+}\right)\right|=6$. Let one vertex of K_{5}^{+}of degree 4 be the root vertex. When $n \equiv 3(\bmod 4)$, let $F_{n}^{1}=\left(\prod_{\left\lfloor\frac{n-7}{4}\right\rfloor}^{\prod_{5}} K_{5}\right) \cdot H(7,6,2)$ and $F_{n}^{2}=\left(\prod^{\left\lfloor\frac{n-3}{4}\right\rfloor} K_{5}\right) \cdot K_{3}$. In [11], Woodall proved that the graph $\left(\prod^{\left\lfloor\frac{n-1}{4}\right\rfloor} K_{5}\right) \cdot K_{n-4\left\lfloor\frac{n-1}{4}\right\rfloor}$ is $\mathcal{C}_{\geq 6}$-saturated and has $e x\left(n, \mathcal{C}_{\geq 6}\right)$ edges. It follows that $e\left(F_{n}^{2}\right)=e x\left(n, \mathcal{C}_{\geq 6}\right)$ and

$$
e\left(F_{n}^{0}\right)+2=e\left(F_{n}^{1}\right)+1=e\left(F_{n}^{2}\right)=e x\left(n, \mathcal{C}_{\geq 6}\right) .
$$

When $n \equiv 2(\bmod 4)$, let

$$
\begin{gathered}
F_{n}^{1}=\left(\prod^{\left\lfloor\frac{n-11}{4}\right\rfloor} K_{5}\right) \cdot \prod^{2} K_{5}^{+} \cdot K_{4}, F_{n}^{2}=\left(\prod^{\left\lfloor\frac{n-3}{4}\right\rfloor} K_{5}\right) \cdot K_{4} \cdot K_{3}, \\
F_{n}^{3}=\left(\prod^{\left\lfloor\frac{n-3}{4}\right\rfloor} K_{5}\right) \cdot H(6,6,2) \text {, and } F_{n}^{4}=\left(\prod^{\left\lfloor\frac{n+1}{4}\right\rfloor} K_{5}\right) \cdot K_{2}=\left(\prod^{\left\lfloor\frac{n-1}{4}\right\rfloor} K_{5}\right) \cdot K_{2} .
\end{gathered}
$$

We have $e\left(F_{n}^{i}\right)=e\left(F_{n}^{i-1}\right)+1$ for each $i \in[4]$ and $e\left(F_{n}^{4}\right)=e x\left(n, \mathcal{C}_{\geq 6}\right)$.
When $n \equiv 0(\bmod 4)$, let $F_{n}^{1}=H(8,6,2) \cdot \prod^{\left\lfloor\frac{n-7}{4}\right\rfloor} K_{5}$, and $F_{n}^{2}=K_{4} \cdot \prod^{\left\lfloor\frac{n-3}{4}\right\rfloor} K_{5}$, we see

$$
e\left(F_{n}^{1}\right)=e\left(F_{n}^{0}\right)+1=e\left(F_{n}^{2}\right)-2=e x\left(n, \mathcal{C}_{\geq 6}\right)-2 .
$$

When $n \equiv 1(\bmod 4)$, let

$$
F_{n}^{1}=\left(\prod^{\left\lfloor\frac{n-7}{4}\right\rfloor} K_{5}\right) \cdot H(9,6,2), F_{n}^{2}=\left(\prod^{\left\lfloor\frac{n-7}{4}\right\rfloor} K_{5}\right) \cdot K_{5}^{+} \cdot K_{4}, \text { and } F_{n}^{3}=\prod^{\left\lfloor\frac{n+1}{4}\right\rfloor} K_{5} .
$$

We see $e\left(F_{n}^{2}\right)=e\left(F_{n}^{1}\right)+1=e\left(F_{n}^{3}\right)-3=e x\left(n, \mathcal{C}_{\geq 6}\right)-3$. By Proposition 2.3, we can verify that F_{n}^{i} is $\mathcal{C}_{\geq 6}$-saturated for each $i \in[4]$.

Next we prove that above necessary condition for the existence of $\mathcal{C}_{\geq 6}$-saturated graphs of order n and size m is also sufficient.

Claim 2 When $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$, there is no $\mathcal{C}_{\geq 6}$-saturated graph G with n vertices such that $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-1$ and when $n \equiv 1(\bmod 4)$, there is no $\mathcal{C}_{\geq 6}$-saturated graph G with n vertices such that $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-2$.

Proof. By contradiction, suppose G is $\mathcal{C}_{\geq 6}$-saturated and

$$
e(G) \in\left\{\begin{array}{cl}
\left\{e x\left(n, \mathcal{C}_{\geq 6}\right)-1\right\}, & \text { if } n \equiv 0(\bmod 4) ; \\
\left\{e x\left(n, \mathcal{C}_{\geq 6}\right)-2, e x\left(n, \mathcal{C}_{\geq 6}\right)-1\right\}, & \text { if } n \equiv 1(\bmod 4) .
\end{array}\right.
$$

Firstly, we conclude that G has at least two blocks. Otherwise, suppose G has only one block, by Proposition 2.3 and $n \geq 6$, then $G=D(r, s)$ where $r, s \geq 2$ and $r+s+3=n$, or $G=H(n, 6,2)$. When $G=H(n, 6,2)$, we have $e(G)=2 n-2$, and when $G=D(r, s)$, we have $e(G)=2 n-3$. If $n \equiv 1(\bmod 4)$ and $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-2$, by Theorem 1.1(4), then $e(G)=\left\lfloor\frac{5 n-5}{2}\right\rfloor-2$ and $\left\lfloor\frac{5 n-5}{2}\right\rfloor-2 \notin\{2 n-2,2 n-3\}$ for $n \geq 6$. Thus we may assume that $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-1$. If $G=H(n, 6,2)$, then $e(G)=2 n-2$, but for $n \geq 6$,

$$
2 n-2 \notin \begin{cases}\left\{\left\lfloor\frac{5 n-8}{2}\right\rfloor-1\right\}, & \text { if } n \equiv 0(\bmod 4) ; \\ \left\{\left\lfloor\frac{5 n-5}{2}\right\rfloor-1\right\}, & \text { if } n \equiv 1(\bmod 4) .\end{cases}
$$

This implies $G=D(r, s)$. But for $n \geq 6$,

$$
2 n-3 \notin \begin{cases}\left\{\left\lfloor\frac{5 n-8}{2}\right\rfloor-1\right\}, & \text { if } n \equiv 0(\bmod 4) ; \\ \left\{\left\lfloor\frac{5 n-5}{2}\right\rfloor-1\right\}, & \text { if } n \equiv 1(\bmod 4),\end{cases}
$$

a contradiction to the assumption of G. Therefore G has at least two blocks. By Proposition 2.3. each block B of G satisfies $B \cong D(r, s)$ or $B \cong H(t, 6,2)$ or $B \cong K_{k}$ where $r, s \geq 2$, $t \geq 6$ and $2 \leq k \leq 5$. We contract a block B of G to a vertex and denote the resulting graph by $G_{1}=G / B$. We first consider the case $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-1$ with $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$. If $n \equiv 0(\bmod 4)$, then $e(G)=\left\lfloor\frac{5 n-8}{2}\right\rfloor-1=\frac{5 n-10}{2}$ and $e\left(G_{1}\right)=$ $e(G)-e(B) \leq e x\left(n-|B|+1, \mathcal{C}_{\geq 6}\right)$, which follows that $e(B) \geq \begin{cases}\frac{5 n-10}{2}-\left\lfloor\frac{5(n-|B|+1)-5}{2}\right\rfloor=\frac{5 n-10}{2}-\frac{5 n-5|B|}{2}=\frac{5|B|-10}{2}, & |B| \equiv 0(\bmod 4) ; \\ \frac{5 n-10}{2}-\left\lfloor\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5 n-10}{2}-\frac{5(n-|B|+1)-9}{2}=\frac{5|B|-6}{2}, & |B| \equiv 2(\bmod 4) ; \\ \frac{5 n-10}{2}-\left\lfloor\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5 n-10}{2}-\frac{5(n-|B|+1)-8}{2}=\frac{5|B|-7}{2}, & |B| \equiv 1 \text { or } 3(\bmod 4) .\end{cases}$
Thus we have $B \not \not K_{k}$ for any $k \in\{2,3\}, B \not \equiv D(r, s)$ for any $r, s \geq 2$, and $B \not \not 二 H(t, 6,2)$ for any $t \geq 6$. Therefore every block of G is isomorphic to K_{4} or K_{5}. We may assume that $G=\left(\prod^{x} K_{4}\right) \cdot\left(\prod^{y} K_{5}\right)$ with $n=3 x+4 y+1$ and $e(G)=6 x+10 y=\frac{5 n-10}{2}$, yielding $3 x=5$, which contradicts the fact that x is an integer. Therefore, there is no $\mathcal{C}_{\geq 6}$-saturated graph G with $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-1$ when $n \equiv 0(\bmod 4)$. If $n \equiv 1(\bmod 4)$, then $e(G)=\frac{5 n-7}{2}$ and $e\left(G_{1}\right)=e(G)-e(B) \leq e x\left(n-|B|+1, \mathcal{C}_{\geq 6}\right)$, which follows that
$e(B) \geq \begin{cases}\frac{5 n-7}{2}-\left\lfloor\frac{5(n-|B|+1)-5}{2}\right\rfloor=\frac{5 n-7}{2}-\frac{5(n-|B|+1)-5}{2}=\frac{5|B|-7}{2}, & |B| \equiv 1(\bmod 4) ; \\ \left.\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5(n-|B|+1)-9}{2}=\frac{5|B|-3}{2}, & |B| \equiv 3(\bmod 4) ; \\ \frac{5 n-7}{2}-\left\lfloor\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5 n-7}{2}-\frac{5(n-|B|+1)-8}{2}=\frac{5|B|-4}{2}, & |B| \equiv 0 \operatorname{or} 2(\bmod 4) .\end{cases}$

We have $B \not \not K_{k}$ for any $2 \leq k \leq 4, B \nsupseteq D(r, s)$ for any $r, s \geq 2$ and $B \nsupseteq H(t, 6,2)$ for any $t \geq 6$. Therefore every block of G is isomorphic to K_{5}, impling that $G=\prod^{x} K_{5}$ with $n=4 x+1$ and $e(G)=10 x \neq \frac{5 n-7}{2}$, a contradiction.

Next we consider the case $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-2=\left\lfloor\frac{5 n-5}{2}\right\rfloor-2=\frac{5 n-9}{2}$ with $n \equiv 1(\bmod 4)$. In this case $e\left(G_{1}\right)=\frac{5 n-9}{2}-e(B) \leq e x\left(n-|B|+1, \mathcal{C}_{\geq 6}\right)$, yielding
$e(B) \geq \begin{cases}\frac{5 n-9}{2}-\left\lfloor\frac{5(n-|B|+1)-5}{2}\right\rfloor=\frac{5 n-9}{2}-\frac{5(n-|B|+1)-5}{2}=\frac{5|B|-9}{2}, & |B| \equiv 1(\bmod 4) ; \\ \left.\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5(n-|B|+1)-9}{2}=\frac{5|B|-5}{2}, & |B| \equiv 3(\bmod 4) ; \\ \frac{5 n-9}{2}-\left\lfloor\frac{5(n-|B|+1)-8}{2}\right\rfloor=\frac{5 n-9}{2}-\frac{5(n-|B|+1)-8}{2}=\frac{5|B|-6}{2}, & |B| \equiv 0 \operatorname{or} 2(\bmod 4) .\end{cases}$
Thus, we have that B is not isomorphic to any one of $\left\{K_{2}, K_{3}, K_{4}, D(r, s), H(t, 6,2)\right\}$ where $r, s \geq 2$ and $t \geq 6$. That is $G=\prod^{x} K_{5}$ with $n=4 x+1$ and $e(G)=10 x \neq \frac{5 n-9}{2}$, a contradiction. Therefore, there is no $\mathcal{C}_{\geq 6}$-saturated graph with $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-1$ when $n \equiv 0$ or $1(\bmod 4)$, or $e(G)=e x\left(n, \mathcal{C}_{\geq 6}\right)-2$ when $n \equiv 1(\bmod 4)$.

This completes the proof of Theorem 1.4 .

Acknowledgments.

Hui Lei was partially supported by the National Natural Science Foundation of China (No. 12001296) and the Natural Science Foundation of Tianjin (No. 21JCQNJC00060). Junxue Zhang was partially supported by the National Natural Science Foundation of China (Nos. 12111540249 and 12161141006), the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00090 and 20JCZDJC00840).

References

[1] K. Amin, J. Faudree, R. Gould, The edge spectrum of K_{4}-saturated graphs, J. Combin. Math. Combin. Compute., 81(2012), 233-242.
[2] K. Amin, J. Faudree, R. Gould, E. Sidorowicz, On the non- $(p-1)$-partite K_{p}-free graphs, Discuss. Math. Graph Theory, 33(2013), 9-23.
[3] P. Balister, A. Dogan. On the edge spectrum of saturated graphs for paths and stars, J. Graph Theory, 89(4)(2018), 364-385.
[4] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh, F. Harary, Size in maximal trianglefree graphs and minimal graphs of diameter 2, Discrete Math., 138(1995), 93-99.
[5] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math Acad Sci Hungar, 10(1959), 337-356.
[6] M. Ferrara, M. Jacobson, K. G. Milans, C. Tennenhouse, P. S. Wenger, Saturation numbers for families of graph subdivisions, J. Graph Theory, 71(4)(2012), 416-434.
[7] J. Gao, X. Hou, Y. Ma, The edge spectrum of K_{4}^{-}-saturated graphs, Graphs Combin., $34(2018), 1723-1727$.
[8] R. J. Gould, W. Tang, E. Wei, C. Zhang, The edge spectrum of the saturation number for small paths, Discrete Math., 312 (2012), 2682-2689.
[9] Y. Ma, X. Hou, D. Hei, J. Gao, Minimizing the number of edges in $\mathcal{C}_{\geq r}$-saturated graphs. Discrete Math., 344(2021): Paper No. 112565.
[10] D. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.
[11] D. R. Woodall, Maximal circuits of graphs, I, Acta Math Acda Sci Hungar, 28(1976), 77-80.

[^0]: *Corresponding author

