
Constructing optimal designs for order-of-addition experiments using
a hybrid algorithm

Dongying Wanga, Sumin Wangb,∗

aSchool of Statistics, Jilin University of Finance and Economics, Changchun, Jilin 130117, China
bCenter for Combinatorics, LPMC & KLMDASR, Nankai University, Tianjin 300071, China

Abstract

For order-of-addition experiments, the response is affected by the addition order of the exper-

imental materials. Consequently, the main interest focuses on creating a predictive model and

an optimal design for optimizing the response. Van Nostrand (1995) proposed the pairwise-order

(PWO) model for detecting PWO effects. Under the PWO model, the full PWO design is optimal

under various criteria but is often unaffordable because of the large run size. In this paper, we

consider the D-, A- and M.S.-optimal fractional PWO designs. We first present some results on

information matrices. Then, a flexible and efficient algorithm is given for generating these optimal

PWO designs. Numerical simulation shows that the generated design has an appealing efficien-

cy in comparison with the full PWO design, though with only a small fraction of runs. Several

comparisons with existing designs illustrate that the generated designs achieve better efficiencies,

and the best PWO designs and some selected 100% efficient PWO designs generated by the new

algorithm are reported.

Keywords: Pairwise-order model, D-optimal, A-optimal, M.S.-optimal, particle swarm

optimization, Fedorov exchange algorithm.

2010 MSC: 62K15, 62K99

1. Introduction

In some specific experiments, such as a chemical experiment with a number of reactants that

are added into an apparatus sequentially rather than simultaneously, different orders of adding

the components involved in the system yield different responses. Therefore, researchers are more

interested in how the addition sequence of reactants affects the response. Experiments with this5

feature are referred to as order-of-addition (OofA) experiments and are widely applied to chemical-

related areas and food industries, as well as biochemistry and measurement processes. The earliest

research on OofA experiments can perhaps be traced back to the study of a lady tasting tea in

Fisher (1937). Another study appeared in Fuleki and Francis (1968) that evaluated an experiment

∗ Corresponding author
Email address: wangsm088@nankai.edu.cn (Sumin Wang)

Preprint submitted to Elsevier September 8, 2023

for extracting anthocyanins from cranberries. During the past decades, the approach of OofA10

experiments has been proposed in many practical studies; for example, see the references Jourdain

et al. (2009), Karim, Mccormick, and Kappagoda (2000), Olsen et al. (1994) and so on.

For the objective of optimizing and predicting the response, a statistical model and an optimal

design are created for the OofA experiment. The idea of pairwise-order (PWO) modeling and

designing the OofA experiment has been presented in Van Nostrand (1995). Recently, Voelkel15

(2019) proposed a number of design criteria. Voelkel (2019) provided theoretical results on the

full PWO design and construction of the optimal PWO design, which has the same correlation

structure as the full PWO design, namely, the same information matrix. A recent review on OofA

experiments and PWO models can be found in Lin and Peng (2019).

In fact, the PWO model is also a regression model. Then, a family of criteria can be applied20

to find optimal designs under the PWO model, such as D-, A- and M.S.-optimal designs. The

optimality proof indicates that a full PWO design with m! distinct permutations of components is

D-, A- and M.S.-optimal, but the run size is extremely large. Taking m = 10 as an example, there

are m! = 3628800 distinct permutations. Consequently, over three million runs of experiments

should be implemented, which is impractical. Therefore, fractions of full PWO designs with a25

smaller number of runs are preferable.

Recently, four kinds of fractional PWO designs have been studied. Peng, Mukerjee, and Lin

(2019) introduced a method for constructing optimal PWO designs. This method limits the run

size to m!/r! (2 ≤ r ≤ m/2), which is also too many for experimenters to afford. For instance,

if m = 10, the method needs at least 30240 runs to be implemented. Yang, Sun, and Xu (2021)30

and Zhao, Lin, and Liu (2022) provided construction methods based on an orthogonal array, the

resulting designs are component orthogonal arrays (COAs) and OofA orthogonal arrays (OofA-

OAs), in which the run size is also inflexible. Zhao, Lin and Liu (2021) provided a minimal-point

design with m(m − 1)/2 + 1 runs. The run size is small, but the efficiency is relatively low.

However, theoretical constructions of these fractional PWO designs are highly dependent on run35

size. Winker, Chen, and Lin (2020) applied the threshold accepting algorithm to construct the

optimal designs (D-efficiency for application) based on the pairwise-order (PWO) model and the

tapered PWO model, the designs obtained by threshold accepting algorithm for 4 ≤ m ≤ 30 with

n = m(m−1)/2+1,m(m−1)+1, 3m(m−1)/2+1, respectively, are provided for practical uses. The

present paper also provides a computer algorithm to construct the PWO design with a flexible run40

size, and D-, A-, and M.S.-optimal PWO designs can be constructed using the proposed algorithm.

When compared with the full PWO designs, the constructed designs possess high efficiencies.

This paper is organized as follows. We first introduce the PWO model in Section 2. Section

3 gives a review of Fedorov’s exchange algorithm for constructing the D-optimal designs. Then,

this algorithm is modified and extended for constructing A- and M.S.-optimal designs. Some45

theoretical results on the information matrix and algorithm are also provided in Section 3. In

2

Section 4, based on the exchange algorithm and particle swarm optimization (PSO) algorithm,

a novel hybrid algorithm is proposed to achieve D-, A- and M.S.-optimal PWO designs. Some

numerical results are given in Section 5. Finally, concluding remarks are provided in Section 6.

2. Model specification50

Now, we introduce the Van Nostrand PWO model. Suppose there are m components denoted

as 1, . . . ,m. Any treatment in the OofA experiment corresponds to a permutation of 1, . . . ,m,

denoted as α, and the first-order PWO model can be expressed as

τ(α) = β0 +
∑

1≤j<k≤m

zjk(α)βjk,

where each zjk(α) is a PWO indicator between j and k,

zjk(α) =

 1 if j precedes k in α,

−1 if k precedes j in α.
(1)

For an n-point PWO design, let Y be the n-dimensional response vector, Z be the design matrix

with
(
m
2

)
columns corresponding to PWO indicators z12, z13, . . . , z(m−1)m, and β = (β12, β13, . . . ,

β(m−1)m)′, where ′ denotes the transpose. Then, the first-order PWO model can be written as

Y = 1β0 + Zβ + ε, (2)

or55

Y = Xβ̃ + ε, (3)

where X = (1 Z)n×p with p =
(
m
2

)
+ 1 is the model matrix, and β̃ = (β0,β

′)′ represents the

parameter of interest. Mee (2020) extended the PWO model to the high-order case. Here, we only

consider a first-order PWO model. The proposed algorithms also apply to a higher-order PWO

model.

Furthermore, we refer to M̃ = X ′X/n as the information matrix of an n-point PWO design.60

Under the PWO model (3), the variance-covariance matrix of the least squares estimator of β is

proportional to M̃ . Hence, it is desirable to maximize the matrix M̃ under some criteria. The

popular criteria include the D-criterion det(M̃)1/p, the A-criterion tr(M̃−1), the M.S.-criterion

tr(M̃2) (see the reference Atwood 1969). Note that tr(M̃−1) is interpreted as +∞ for singular X ′X.

Let Xf be the full PWO design and the corresponding information matrix be M̃f = X ′fXf/n. For65

clarity, we take m = 3 as an example to illustrate the characteristics of the full PWO design under

D-, A- and M.S.-criteria. The levels of PWO factors in the full PWO design with 3 components

are as follows.

3

Table 1. Full PWO design with 3 components

Run Order-of-Addition z12, z13, z23

1 1 2 3 1, 1, 1

2 1 3 2 1, 1,−1

3 2 1 3 −1, 1, 1

4 2 3 1 −1,−1, 1

5 3 1 2 1,−1,−1

6 3 2 1 −1,−1,−1

From this, we obtain70

Xf =



1 1 1 1

1 1 1 −1

1 −1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 −1 −1


, M̃f =


1 0 0 0

0 1 1/3 −1/3

0 1/3 1 1/3

0 −1/3 1/3 1

 ,

and det(M̃f) = 16/27, tr(M̃−1f) = 11/2 and tr(M̃2
f) = 14/3.

3. Exchange algorithms for constructing D-, A-, and M.S.-optimal designs

Theoretical constructions on optimal designs are always complicated; hence, computer algo-

rithms are applied for constructing approximate and exact optimal designs in the literature. Ex-

change algorithm is one of the popular computer algorithms for constructing optimal designs for75

the cases with the design points being selected from a finite design space. Fedorov (1972) first pro-

posed an exchange algorithm for generating D-optimal designs. This algorithm chooses n points

to include in the design from a finite set of possible points called candidate points, and it starts

with nonsingular n-point designs and then adds and deletes one observation in order to achieve

increases in the determinant. After that some improved implementations are proposed based upon80

Fedorov’s exchange algorithm, such as the Kiefer round-off algorithm, the Mitchell algorithm, the

Wan Schalkwyk algorithm, the combined Fedorov, the Wynn-Mitchell algorithm and so on; see

the references Mitchell (1992), Nguyen and Miller (1992).

3.1. The single-point exchange procedure

Consider an n-point design D = {αi}ni=1 under model (3), with a corresponding model ma-85

trix X = (x1, . . . , xn)′. If M̃ = X ′X/n, then the D-, A- and M.S.-criteria maximize det(M̃)1/p,

−tr(M̃−1) and−tr(M̃2) respectively, which are equivalent to maximizing φ(D) = det(M),−tr(M−1)

and −tr(M2) respectively, where M = X ′X =
∑n
i=1 xix

′
i.

4

Inspired by Fedorov’s exchange algorithm, we develop a new exchange algorithm for generating

D-, A- and M.S.-optimal designs simultaneously. This algorithm is realized by multiple iterations90

of the single-point exchange procedure which works as follows.

Single-point exchange procedure:

Let X be the model matrix of the original design and M = X ′X,

(1) Find a vector x among the vectors of the complementary design such that u(x) is maximum

and add x to the current n-point design;95

(2) Find a vector xi among the n+ 1 vectors of the current n+ 1-point design such that v(xi) is

minimum and remove xi.

When use the single-point exchange procedure for generating the D-, A- and M.S.-optimal

designs, the objective functions are denoted as u∗(x) and v∗(xi) with ∗ = D,A,M.S. and defined

as bellow:100

uD(x) = x′M−1x, vD(xi) = x′iM
−1
x xi; (4)

uA(x) =
x′M−2x

1 + x′M−1x
, vA(x) =

x′iM
−2
x xi

1− x′iM
−1
x xi

; (5)

uM.S.(x) = −x′Mx, vM.S.(xi) = −x′iMxxi; (6)

where M =
∑n
i=1 xix

′
i is the moment matrix of the current design and M is updated to Mx =

M + xx′ when a candidate point from the complementary design is added to the current design.

Here, the complementary design consists of all candidate points from the design space except for105

the n points of the current design.

Theorem 3.1. For D-, A-, and M.S.-criteria which maximize φ(D) = det(M),−tr(M−1) and

−tr(M2) respectively, the design generated by the single-point procedure with u(x) and v(xi) defined

as equations (4)-(6) leads to no decrease in φ(D).

The proof of this theorem uses some matrix theories, and we present it in the appendix. This110

result implies that exchange algorithm will return local D-, A- and M.S.-optimal designs over

multiple iterations of the single-point exchange procedure.

3.2. The technique for avoiding the singularity of the matrix for the exchange algorithm

For generating optimal design using a computer search algorithm, the solution is often trapped

into the local optimal design. Thus random exchange method is always used to avoid this drawback.115

For constructing D-, A- and M.S.-optimal designs using a computer search algorithm, a random

selected initial design possibly corresponds to a singular moment matrix, especially for the case

5

Figure 1: Distributions of the reciprocal condition numbers of matrix M for all PWO designs with
m = 4, n = 7 and 105 randomly selected PWO designs with m = 5, n = 11.

with a rather small number of n, and computation problem then arises. Taking the case with

n =
(
m
2

)
+1(m = 4, 5) as an example. Among all

(
m!
n

)
options of n-point design, a large proportion

of them correspond to a badly conditioned matrix M . As shown in Figure 1, all the reciprocal120

condition numbers are near 0, and the reciprocal condition number below 10−12 is counted in the

first bin of each histogram with a probability exceeding 50%.

A random selected initial design will return a computationally singular matrix M with a large

probability. For this reason, we address the issue of avoiding singularities of M and Mx in the

single-point exchange algorithm. Two types of techniques are provided regarding this issue. The125

first technique is to start with a nonsingular design instead of starting with a randomly selected

design.

Remark 3.2. If the initial design has nonsingular moment matrix, then by Mx = |M |(1+x′M−1x)

and Mx − xix′i = |Mx|(1 − x′iM−1x xi), where x′iM
−1
x xi ≤ x′M−1x x = x′M−1x

1+x′M−1x < 1, both Mx and

Mx − xix′i are nonsingular matrices during each iteration of the single-point exchange algorithm130

which is performed recursively.

This technique is practical since a nonsingular initial design with n points can be obtained by

appending n−
(
m
2

)
− 1 randomly selected distinct points to the minimal-point design provided in

Zhao, Lin, and Liu (2021). However, in the hybrid algorithm, the design is updated via both the

single-point exchange procedure and some random exchange procedure.135

The second technique is inspired by the DETMAX algorithm in Mitchell (2000), a specified

nonsingular matrix multiplied by a very small positive parameter θ is added to matrix M or Mx.

Taking M as an example, we do not consider M−1 directly, but instead attempt to calculate

(M + θ(X ′fXf/Nf))−1, where Nf is the number of candidate points, and Xf is the model matrix

of the full design composed of all Nf candidate points. Then, one technique that we can use to140

avoid the singularity of the matrix is as follows.

Remark 3.3. To avoid singularity, x′(M+θ(X ′fXf/Nf))−1x and x′i(Mx+θ(X ′fXf/Nf))−1xi are

maximized and minimized in the single-point exchange algorithm with u(x) and v(xi) being defined

6

as equations (4) and (5). The degree of error involved in considering these alternative matrices is

less than θ.145

To appreciate the degree of error involved in considering the alternative matrix, one can make

the following calculations. Let

f(θ) = x′(M + θ(X ′fXf/Nf))−1x.

Then, extend f(θ) in a Taylor series about θ = 0 to obtain the linear approximation:

f(θ) ∼= f(0) + θ

(
df(θ)

dθ

)∣∣∣∣
θ=0

= x′M−1x− θ
(
x′(M + θ(X ′fXf/Nf))−1(X ′fXf)/Nf (M + θ(X ′fXf/Nf))−1x

)∣∣
θ=0

= x′M−1x− θx′M−1X ′fXfM
−1x/Nf .

For small θ, the error in considering x′(M + θ(X ′fXf/Nf))−1x instead of x′M−1x is nearly

θx′M−1X ′fXfM
−1x/Nf . In the proposed algorithm, the value of θ is set at 0.005, which is found150

to be quite satisfactory in simulations. This choice based on run size of the full PWO is sufficiently

large such that x′M−1X ′fXfM
−1x/Nf < 1, and the error will be less than 0.5%.

Note that in this paper, we adopt the technique described in Remark 3.3 to avoid the singularity

of the matrix.

3.3. The performance of the exchange algorithm155

Now we discuss the performance of the exchange algorithm. The single-point exchange proce-

dure is performed recursively, and the D-, A- and M.S.-efficiencies of the generated designs are

calculated. For brevity, the cases with m = 4, 5, 6, 7 components are considered and the run sizes

are fixed at n = m(m− 1). The following Figure 2 shows that the efficiencies are deeply increased

in former iterations but then stabilized at slows on one value as the number of iterations increased.160

Therefore, the exchange algorithm yields locally optimal designs that approximate a global optimal

design in a reasonable number of iterations.

To illustrate the performance of the exchange algorithm for constructing D-, A- and M.S.-

optimal designs, 1000 designs are generated by the exchange algorithm with respective to each

pair of the objective functions defined in equations (4)-(6). The initial designs are randomly165

selected. We list the minimum, average and maximum efficiencies of the generated designs in

Table 2. Obviously, the generated designs are largely depended on the initial designs, most of

them are locally optimal designs and some of them even have lower efficiencies than 80%, see the

numbers in a bold font. Thus, in the next section, we proposed a more robust hybrid algorithm

which combines the exchange algorithm and the particle swarm algorithm to produce approximate170

optimal designs with higher efficiency than the designs generated by exchange algorithm.

7

Figure 2: D-, A- and M.S.-efficiencies of PWO designs generated initial design, and each graph
contains four lines corresponding to PWO designs with m = 4, 5, 6, 7 components and n = m(m−1)
runs, respectively.

Table 2. Efficiencies of 1000 designs generated by the exchange algorithm

D-efficiency A-efficiency M.S.-efficiency

m Runs Min Ave Max Min Ave Max Min Ave Max

4 12 97.4% 99.8% 100% 32.1% 65.3% 92.4% 76.3% 97.7% 100%

5 20 94.2% 96.0% 97.0% 19.5% 51.7% 73.9% 74.4% 96.5% 98.2%

6 30 93.8% 95.8% 97.1% 19.1% 48.0% 69.5% 95.2% 96.8% 98.1%

7 42 93.7% 95.3% 96.7% 33.4% 47.7% 63.4% 95.9% 97.1% 98.0%

4. Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm

combining the exchange algorithm and PSO algorithm

Before introducing the new algorithm, we add some details of the PSO algorithm. PSO is a175

population-based stochastic algorithm for optimization. Each population member is described as

a particle that moves around a search space testing new criterion values. All particles survive from

the beginning of a trial until the end, and their interactions result in iterative improvement of the

quality of the problem solutions over time. The most common type of implementation defines the

particles’ behavior as adjusting toward each of its personal best position(local-best) and global-best180

position so that its trajectory shifts to new regions of the search space and the particles gradually

cluster around the optima. For applications to find optimal experimental designs, a particularly

challenging task is to redefine the particle designs’ movement toward its personal local-best design

and global-best design. A review of some recent applications of PSO and its variants to tackle

various types of efficient experimental design is Chen, Chen, and Wang (2022). Since finding185

optimal PWO designs for OofA experiment is to solve a discrete optimization problem, we utilize

a update procedure for the particle designs that is similar to the modified PSO algorithms in Chen

et al. (2014) and Phoa et al. (2016). Each particle design relates to its personal local-best design

which is derived by exchange procedures starting from itself. During each iteration, the current

particle design is adjusted toward its personal local-best design as well as the global-best design190

by exchanging points with each other.

8

Now, we introduce a new hybrid algorithm called Ex-PSO algorithm, which combining the

single-point exchange algorithm and PSO algorithm for generating D-, A-, and M.S.-optimal

designs. The single-point exchange algorithm is used for generating the local-best design with

respect to each particle design. The PSO algorithm ensure the particle designs gradually cluster195

around the optimal PWO design. To avoid singularity, the technique proposed in Remark 3.3 is

used; hence, a parameter θ with a small value is involved in this algorithm.

Since the Ex-PSO algorithm involves a set of parameters denoted as s, tex, tpso, θ, c1, c2, we

also refer to it as Ex-PSO(m,n; s, tex, tpso, θ, c1, c2) for generating optimal PWO design with m

components and n runs. For clarity, we create a programming chart to illustrate the steps of200

Ex-PSO(m,n; s, tex, tpso, θ, c1, c2). Further, we explain the optimization process and the uses of

these parameters as follows. Denote Lks and G as the local-best designs and the global-best design

respectively. These designs are updated during each iteration of the Ex-PSO algorithm. Each

local-best design Lk is derived from the current particle design Dk via a fixed number of iterations

of the single-point exchange procedure, denoted as tex. In addition, the global-best design G is205

the optimal local-best design that maximizes φ(Lk). And the number of iterations of the PSO

algorithm is denoted as tpso. Meanwhile, two parameters are used to control the PSO behavior of

the Ex-PSO algorithm: c1 and c2, which account for the velocities at which each current design

drifts toward the corresponding local-best and global-best design. More specifically, during each

iteration of the PSO algorithm, we randomly exchange c1 points from the difference set Dk \ Lk210

with c1 points from Lk \Dk and then randomly exchange c2 points from the difference set Dk \ G

with c2 points from G \Dk. This procedure corresponds to the “Update Dk by PSO” box in the

programming chart.

Finally, we note that the Ex-PSO algorithm is implemented in MATLAB running on Intel(R)

Core(TM) i7-8550U GHz with 8 GB Memory. Take the case of m = 6, n = 16 for example, it takes215

30.42 seconds for running Ex-PSO(6, 16; 10, 20, 100, 0.005, 1, 1).

5. Numerical simulations

In this section, we illustrate the performances of the obtained designs constructed by the Ex-

PSO algorithm. For brevity, the generated designs are denoted as Ex-PSO-D, Ex-PSO-A and

Ex-PSO-M.S. designs that respectively correspond to the objective functions (4)-(6) which are220

considered in the exchange algorithm. Numerical simulations show that these designs are powerful

for fitting PWO models in terms of the D-, A- and M.S.-efficiencies. The efficiencies are derived

from comparison with the full PWO design, since the information matrix of the full PWO design

has been proven to be universally optimal. Therefore, we have the D-, A- and M.S.-efficiencies

that calculate det(M̃)1/p

det(M̃f)1/p
,
tr(M̃−1

f)

tr(M̃−1)
and

tr(M̃2
f)

tr(M̃2)
respectively, where M̃ and M̃f are the information225

matrices of the obtained design and full PWO design respectively, and p is the number of the

columns of the model matrix X.

9

Ex-PSO Algorithm: Ex-PSO(m,n; s, tex, tpso, θ, c1, c2)

Start

Randomly initialize Dk, k = 1, . . . , s

Calculate φ(Dk), k = 1, . . . , s

Initial Lk ← Dk, k = 1, . . . , s and G ← argmax1≤k≤sφ(Lk)

Update Dk by PSO

Update each Dk by single-point exchange procedure

Enough iterations?

Calculate φ(Dk), k = 1, . . . , s

φ(Dk) > φ(Lk)?

φ(Lk) > φ(G)?

Update Lk by Dk

Enough iterations?

Update G by Lk

Return G

Stop

N

Y

Y

N

Y

N

N

Y

Clearly, the number of PSO particles (s), the maximum iteration counts of single-point exchange230

algorithm and PSO algorithm (tex, tpso) and the numbers of pairs of exchanging points with which

each particle design drifts toward the local-best and global-best design (c1, c2), control the opti-

mization process of Ex-PSO algorithm. It seems reasonable that these parameters should be larger

for larger problems. In our test of searching for optimal PWO designs with m = 4, 5, 6, 7 compo-

nents, we recommend that these parameters to set at s = 10, tex = 20, tpso = 100, c1 = c2 = 1.235

Furthermore, we recommend to set the maximum iteration counts of exchange algorithm and PSO

at tex = 20 and tpso = 100 respectively, which achieves high computational efficiency. Further,

to demonstrate the performance of such a set of parameters, we randomly run the algorithm

Ex-PSO(m,n; 10, 20, 100, 0.005, 1, 1) for one hundred times for generating the Ex-PSO-A designs,

because the exchange algorithm seems inefficient under A-optimal criterion, as shown in Table 2.240

10

Figure 3: Boxplot of the A-efficiencies for the Ex-PSO-A designs with m = 4, 5, 6, 7 components
and n = m(m− 1) generated by one hundred runs of Ex-PSO(m,n; 10, 20, 100, 0.005, 1, 1).

Therefore, one hundred Ex-PSO-A designs with m = 4, 5, 6, 7 components and n = m(m− 1) runs

are generated, and Figure 3 highlights that all Ex-PSO-A designs reach at least 93% of the efficien-

cy of the full PWO design. For the cases with large m, the settings on maximum iterations, tex

and tpso may not be enough, but the Ex-PSO algorithm still returns approximate optimal PWO

designs; see Tables 4-6 in the following part.245

To illustrate the advantages of the obtained designs for fitting PWO model, we compare the

Ex-PSO-D designs for 4 components and 12 runs with the optimal PWO design in Peng, Mukerjee,

and Lin (2019).

Example 5.1. The following is a Ex-PSO-D design with 4 components and 12 runs generated by

Ex-PSO(4, 12; 10, 20, 100, 0.005, 1, 1).250

Table 3. An Ex-PSO-D design with 4 components and 12 runs

Run Order-of-Addition z12, z13, z14, z23, z24, z34

1 1 4 2 3 1, 1, 1, 1,−1,−1

2 1 2 4 3 1, 1, 1, 1, 1,−1

3 1 3 2 4 1, 1, 1,−1, 1, 1

4 2 1 3 4 −1, 1, 1, 1, 1, 1

5 2 4 3 1 −1,−1,−1, 1, 1,−1

6 2 3 4 1 −1,−1,−1, 1, 1, 1

7 3 1 4 2 1,−1, 1,−1,−1, 1

8 3 2 1 4 −1,−1, 1,−1, 1, 1

9 3 4 1 2 1,−1,−1,−1,−1, 1

10 4 1 3 2 1, 1,−1,−1,−1,−1

11 4 2 1 3 −1, 1,−1, 1,−1,−1

12 4 3 2 1 −1,−1,−1,−1,−1,−1

11

Figure 4: Relative efficiencies of Ex-PSO designs with 7 ≤ n ≤ 23 compared with the full PWO
design for the OofA experiment with 4 components.

The information matrix of this design under the first-order PWO model is

M̃ =



1 0 0 0 0 0 0

0 1 1/3 1/3 −1/3 −1/3 0

0 1/3 1 1/3 1/3 0 −1/3

0 1/3 1/3 1 0 1/3 1/3

0 −1/3 1/3 0 1 1/3 −1/3

0 −1/3 0 1/3 1/3 1 1/3

0 0 −1/3 1/3 −1/3 1/3 1


.

If rows are rearranged, this design is the same as the optimal PWO design with 4!/2! runs con-

structed by Peng, Mukerjee, and Lin (2019). This design also features projective properties (Voelkel

and Gallagher 2019). All 4 subsets of three components correspond to two-times-replicated three-255

component designs.

Furthermore, for the OofA experiment with 4 components, we generated optimal PWO designs

with 7 to 23 runs using the Ex-PSO algorithm. Figure 4 shows the efficiencies of these designs.

Clearly, all the obtained designs with n ≥ 12 reach at least 95% efficiency of the full PWO design,

though with less than one fifth of the runs. Especially for the cases with n = 12, the design attains260

the same efficiency as the full PWO design.

Furthermore, we compare four types of fractional PWO designs, which are COA, and the

corresponding designs obtained by the threshold accepting algorithm (Winker, Chen, and Lin

2020), the Federov’s exchange algorithm (which iteratively optimizes a delta function of the xi and

x where xi is in the design and x is not, see reference to section 3.3 in Fedorov 1972) and the Ex-PSO265

algorithm, denoted as Dcoa, Dta, Dex and Dex−pso respectively. Dta is the best result obtained over

repeated runs of threshold accepting algorithm with up to 10000000 iterations, Dex is generated

by the optFederov function (implemented in the R library AlgDesign) with nRepeats = 5, and

Dex−pso is the best result obtained over five repeated runs of the Ex-PSO algorithm with tex = 20

and tpso = 100. The optimal PWO design constructed in Peng, Mukerjee, and Lin (2019) which270

12

serves as a benchmark for evaluating fractional PWO designs is also listed here and denoted as

Dpeng. In addition, the new hybrid algorithm needs exhaustive search over the design space during

the single-point exchange procedure, and it can be computational expensive if m is large. Hence,

we only report designs with n = m(m− 1)/2 + 1,m(m− 1),m!/r!(r = bm/2c) where 4 ≤ m ≤ 7.

Nevertheless, given the tremendous growth in computational resources available, it is feasible to275

conduct the Ex-PSO algorithm for constructing designs with m > 7.

Tables 4-6 exhibit the values of det(M̃)1/p, tr(M̃−1), tr(M̃2), and D-, A- and M.S.-efficiency

(in parentheses) for the corresponding designs. Note that the larger the value of det(M̃)1/p is, the

better, while smaller values of tr(M̃−1) and tr(M̃2) are better. For any number of components,

Dmp is not unique and the corresponding tr(M̃−1) or tr(M̃2) is by no means a fixed value. Hence,280

Dmp is not listed in Tables 5 and 6. From the tables, we can find that Dex−pso reach a higher

efficiency than the other types of designs under the PWO model in most cases. Further, we report

the best PWO designs with n = m(m− 1)/2 + 1,m(m− 1) and 4 ≤ m ≤ 7 under the D-, A- and

M.S.-optimal criteria in the supplementary material.

Table 4. Comparison of det(M̃)1/p and D-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 0.6966(89.6%) 0.6966(89.6%) 0.6966(89.6%)

12 0.7773(100%) 0.7064(90.9%) 0.7773(100%) 0.7773(100%) 0.7773(100%)

5 11 - - 0.6379(90.3%) 0.6211(87.9%) 0.6379(90.3%)

20 - 0.6354(89.9%) 0.6855(97.0%) 0.6840(96.8%) 0.6855(97.0%)

60 0.7067(100%) - 0.7067(100%) 0.7061(99.9%) 0.7067(100%)

6 16 - - 0.5778(88.1%) 0.5612(85.6%) 0.6002(91.5%)

30 - 0.5710(87.1%) 0.6344(96.7%) 0.6372(97.2%) 0.6381(97.3%)

120 0.6558(100%) - 0.6552(99.9%) 0.6555(99.95%) 0.6558(100%)

7 22 - - 0.5016(81.2%) 0.5325(86.2%) 0.5409(87.6%)

42 - 0.5800(93.9%) 0.5958(96.4%) 0.5996(97.0%) 0.5998(97.1%)

840 0.6178(100%) - 0.6178(100%) 0.6177(99.99%) 0.6178(100%)

285

13

Table 5. Comparison of tr(M̃−1) and A-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 17.5000(67.4%) - 14.8750(79.3%)

12 11.8000(100%) 14.5000(81.4%) 11.8000(100%) 11.8000(100%) 11.8000(100%)

5 11 - - 28.2898(74.2%) - 26.4773(79.3%)

20 - 26.0000(80.8%) 22.4550(93.5%) 22.3910(93.8%) 22.3311(94.0%)

60 21.0000(100%) - 21.0337(99.8%) 21.0000(100%) 21.0000(100%)

6 16 - - 46.0558(72.0%) - 40.8428(81.2%)

30 - 45.3736(73.0%) 35.3203(93.8%) 35.0989(94.4%) 35.0144(94.7%)

120 33.1429(100%) - 33.2443(99.7%) 33.2023(99.8%) 33.1721(99.9%)

7 22 - - 76.4729(63.1%) - 72.4088(66.6%)

42 - 57.1177(84.5%) 51.6845(93.4%) 51.0578(94.5%) 51.5024(93.7%)

840 48.2500(100%) - 48.2583(99.98%) 48.2738(99.95%) 48.2555(99.99%)

Note: Dex with n = m(m− 1)/2 + 1 is omitted because it reports an error of “singular design”

when running the optFederov function from the AlgDesign package in R.

Table 6. Comparison of tr(M̃2) and M.S.-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex−pso

4 7 - - 10.4694(92.3%) 10.4694(92.3%)

12 9.6667(100%) 10.3333(93.6%) 9.6667(100%) 9.6667(100%)

5 11 - - 18.5207(95.4%) 18.5207(95.4%)

20 - 19.0000(93.0%) 18.0400(97.9%) 18.0000(98.2%)

60 17.6667(100%) - 17.6667 (100%) 17.6667(100%)

6 16 - - 31.0000(94.6%) 30.9688(94.7%)

30 - 31.3333(93.6%) 29.8756(98.2%) 29.8311(98.3%)

120 29.3333(100%) - 29.3556(99.92%) 29.3733(99.89%)

7 22 - - 47.5702(95.3%) 47.7686(94.9%)

42 - 45.8095(99.0%) 45.9048 (98.8%) 46.1905(98.1%)

840 45.3333(100%) - 45.3349(99.99%) 45.3368(99.99%)

We conclude this section with some numerical results on constructions of fractional PWO

designs which have the same correlation structure as the full PWO design. Since these designs

are 100% efficient under diverse design criteria including the D-, A-, M.S.-optimal criteria, we call290

them fully efficient PWO designs. Using the Ex-PSO algorithm, we find the following results.

Remark 5.2. Removing p(< m) components from a fully efficient PWO design with m components

will result in a fully efficient PWO design with m− p components.

14

Table 7. Selected fully efficient PWO designs for m = 4, 5, 6, 7

m = 4 m = 5 m = 6 m = 7
runs 1-12 runs 13-24 runs 1-12 runs 13-24

1 2 4 3 1 2 3 5 4 1 2 5 4 6 3 4 2 1 3 6 5 1 2 3 7 4 6 5 4 5 2 6 7 1 3
1 3 4 2 1 4 3 5 2 1 2 5 4 6 3 4 2 5 3 6 1 1 5 6 3 2 7 4 4 6 3 7 1 2 5
1 3 2 4 1 5 3 2 4 1 3 4 2 5 6 4 6 3 2 5 1 1 6 5 7 4 2 3 4 7 1 3 6 5 2
2 1 4 3 2 4 3 1 5 1 3 6 2 5 4 5 1 2 4 3 6 1 7 4 3 2 5 6 5 2 4 3 6 1 7
2 3 1 4 2 5 1 4 3 1 4 6 5 2 3 5 4 3 2 1 6 2 5 4 1 7 6 3 6 1 2 4 5 7 3
2 3 4 1 3 1 4 2 5 2 3 4 5 1 6 5 2 1 6 3 4 2 7 6 3 1 5 4 6 4 2 1 3 7 5
3 1 4 2 3 2 4 5 1 2 6 1 5 3 4 5 3 6 2 1 4 3 2 1 6 4 7 5 6 5 1 3 4 7 2
3 2 4 1 3 5 4 2 1 2 6 4 3 1 5 5 6 4 1 2 3 3 2 6 5 7 4 1 6 7 2 3 4 5 1
4 1 2 3 4 2 1 5 3 3 1 2 6 4 5 6 2 1 4 3 5 3 4 1 5 7 2 6 7 4 6 5 3 2 1
4 2 1 3 4 5 1 2 3 3 1 5 6 4 2 6 2 5 3 4 1 3 5 1 4 6 2 7 7 2 1 5 3 4 6
4 3 1 2 5 2 3 1 4 3 5 2 4 6 1 6 3 5 1 4 2 3 5 7 6 2 1 4 7 5 1 2 6 4 3
4 3 2 1 5 4 3 1 2 4 1 5 6 3 2 6 4 5 1 3 2 4 2 5 3 7 1 6 7 5 3 6 4 1 2

Remark 5.3. The fully efficient PWO designs exist for the cases (i) m = 4, 5, n = 12k(k ≥ 1);

(ii) m = 6, n = 24k(k ≥ 1); and (iii) m = 7, n = 24.295

For saving space, some selected fully efficient PWO designs with minimized runs for m =

4, 5, 6, 7 are exhibited in Table 7, other fully efficient PWO designs and the MATLAB codes for

the Ex-PSO algorithm are available upon request.

6. Concluding Remarks

For the OofA experiments, the study of the optimal fraction of the PWO design has received300

considerable attention in the literature. The fractional PWO design with the same correlation

structure as the full PWO design is optimal under diverse design criteria but exists only for

some fixed run sizes, such as m!/r!(2 ≤ r ≤ m) runs. Theoretical constructions on optimal

PWO designs are also heavily constrained by the run size. In this paper, we present a flexible

and effective searching algorithm, the Ex-PSO algorithm. Even though the candidate fractional305

PWO designs are extremely massive, this algorithm generates high efficient designs with only one

hundred iterations. Moreover, it’s an interesting but difficult problem to obtain more general

theoretical results which cover Remark 4 as special cases. While Remark 3 gives a fresh insight

into constructions of the fully efficient PWO design with m components basing on the fully efficient

PWO design with m− 1 components. To that effect, more theoretical results on the fully efficient310

PWO designs for general m will be studied in our future work.

It is worth noting that the Ex-PSO designs are possibly to an optimal PWO designs given the

tremendous growth in computational resources available, thus it provides instructions for exploring

theoretical results on optimal PWO designs. In addition, the Ex-PSO algorithm applies not only to

PWO design but also to any type of design with finite candidate points. Therefore, this algorithm315

has many potential applications, such as constructing optimal designs for an alternative model of

the OofA experiment or other kinds of experiments, and there are still many issues for further

15

study.

Acknowledgements

The authors thank the editor and two referees for their valuable comments and suggestion-320

s. This work was supported by the National Natural Science Foundation of China (grant nos.

11971098, 12101258 and 12131001), National Key Research and Development Program of Chi-

na (No. 2020YFA0714102) and Education Department Science and Technology Project of Jilin

Province under Grant JJKH20220152KJ.

References325

[1] Atwood C. L. 1969. “Optimal and efficient designs of experiments.” The Annals of Mathe-

matical Statistics 40 (5): 1570-1602. doi:10.1214/aoms/1177697374.

[2] Chen P. Y., Chen R. B., and Wang W. K. 2022. Particle swarm optimization for searching

efficient experimental designs: A review. Wiley Interdisciplinary Reviews: Computational

Statistics.330

[3] Chen R. B., Hsu Y. W., Hung Y., and Wang W. C. 2014. “Discrete particle swarm optimiza-

tion for constructing uniform design on irregular regions.” Computational Statistics & Data

Analysis 72: 282-297. doi:10.1016/j.csda.2013.10.015.

[4] Eberhart R. C., and Kennedy J. 2002. “A new optimizer using particle swarm theory,”

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human335

Science, 39-43. doi:10.1109/MHS.1995.494215.

[5] Fedorov V. V. 1972. Theory of optimal experiments. Translated and edited by Studden, W.

J. and Klimko E. M. New York.

[6] Fisher R. A. 1937 The Design of Experiments. London: Edinburgh.

[7] Fuleki T., Francis F. J. 1968. “Quantitative methods for anthocyanins.” Journal of Food340

Science 33: 266-274.

[8] Jourdain L. S., Schmitt C., Leser M. E., Murray B. S., and Dickinson E. 2009. “Mixed layers

of sodium caseinate+dextran sulfate: influence of order of addition to oil-water interface.”

Langmuir 25: 10026-10037. doi:10.1021/la900919w.

[9] Karim M., Mccormick K., and Kappagoda C. T. 2000. “Effects of cocoa extract-345

s on endothelium-dependent relaxation.” The Journal of Nutrition 130: 2105S-2108S.

doi:10.1093/jn/130.8.2105S.

16

[10] Lin D. K. J., and Peng J. Y. 2019. Order-of-addition Experiments: A review and some new

thoughts, Quality Engineering 31: 49-59. doi:10.1080/08982112.2018.1548021.

[11] Mak S., and Joseph V. J. 2018. “Minimax and minimax projection designs us-350

ing clustering.” Journal of Computational and Graphical Statistics 27: 166-178.

doi:10.1080/10618600.2017.1302881.

[12] Mee R. W. 2020. “Order-of-Addition Modeling.” Statistica Sinica 30 (3): 1543-1559.

doi:stable/26968940.

[13] Mitchell T. J. 2000. “An Algorithm for the construction of ‘D-Optimal’ experimental design-355

s.” Technometrics 42 (2): 48-54. doi:10.1080/00401706.1974.10489175.

[14] Nguyen N. K., and Miller A. J. 1992. “A review of some exchange algorithms for construct-

ing discrete D-optimal designs.” Computational Statistics & Data Analysis 14: 489-498.

doi:10.1016/0167-9473(92)90064-M.

[15] Olsen G. J., Matsuda H., Hagstrom R., and Overbeek R. 1994. “Fastdnaml: a tool for360

construction of phylogenetic trees of dna sequences using maximum likelihood.” Computer

Applications in the Biosciences: CABIOS 10: 41-48. doi:10.1093/bioinformatics/10.1.41.

[16] Peng J. Y., Mukerjee R., and Lin D. K. J. 2019. “Design of order-of-addition experiments.”

Biometrika 106 (3): 683-694. doi:10.1093/BIOMET/ASZ025.

[17] Phoa F. K. H., Chen R. B., Wang W. C., and Wong W. 2016. “Optimizing two-level365

supersaturated designs using swarm intelligence techniques.” Technometrics 58: 43-49.

doi:10.1080/00401706.2014.981346.

[18] Van Nostrand R. C. 1995. Design of experiments where the order-of-addition is important.

ASA Proceedings of the Section on Physical and Engineering Sciences, Alexandria, Virginia,

155-160.370

[19] Voelkel J. G. 2019. “The Design of order-of-addition experiments.” Journal of Quality Tech-

nology 51 (3): 230-241. doi:10.1080/00224065.2019.1569958.

[20] Voelkel J. G., and Gallagher K. P. 2019. “The design and analysis of order-of-

addition experiments: An introduction and case study.” Quality Engineering 31(4): 1-12.

doi:10.1080/08982112.2019.1578374.375

[21] Winker P., Chen J. B., and Lin D. K. J. 2020. “The construction of optimal design for order-

of-addition experiment via threshold accepting.” Chap 6 in: Contemporary Experimental

Design, Multi-variate Analysis and Data Mining. Switzerland: Cham.

17

[22] Yang J. F., Sun F. S., and Xu H. Q. 2021. “A component-position model, anal-

ysis and design for order-of-addition experiments.” Technometrics 63 (2): 212-224.380

doi:10.1080/00401706.2020.1764394.

[23] Zhao Y. N., Lin D. K. J., and Liu M. Q. 2021. “Designs for order of addition experiments.”

Journal of Applied Statistics 48 (8), 1475-1495. doi:10.1080/02664763.2020.1801607.

[24] Zhao Y. N., Lin D. K. J., and Liu M. Q. 2022. “Optimal designs for order-of-addition exper-

iments.” Computational Statistics & Data Analysis 165. doi:10.1016/j.csda.2021.107320.385

Appendix A. The proof of Theorem 3.1

To prove Theorem 3.1, the following two lemmas are useful.

Lemma A.1. For a nonsingular matrix M ,

(1) M + xx′ is nonsingular, and (M + xx′)−1 = M−1 −wuu′, where w = 1/(1 + x′M−1x), u =

M−1x;390

(2) if Mx − xix′i is nonsingular, then x′iM
−1xi 6= 1 and (Mx − xix′i)−1 = M−1x + wiuiu

′
i, where

wi = 1/(1− x′iM−1xi), ui = M−1x xi.

The proof of this lemma is straightforward according to matrix theory and is thus omitted.

Lemma A.2. Let M be a nonsingular matrix and Mx = M + xx′; we have x′M−1x x = x′M−1x
1+x′M−1x

and x′M−2x x = x′M−2x
(1+x′M−1x)2 .395

Proof. According to Lemma A.1, we have

x′M−1x x = x′M−1x− wx′uu′x

= x′M−1x− (x′M−1x)2

1 + x′M−1x

=
x′M−1x

1 + x′M−1x
,

and

x′M−2x x = x′(M−1 − wuu′)2x

= x′M−2x− 2wx′M−1uu′x+ w2x′(uu′)2x

= x′M−2x− 2x′M−2xx′M−1x

1 + x′M−1x
+
x′(M−1xx′M−1)2x

(1 + x′M−1x)2

= x′M−2x[1− 2x′M−1x

1 + x′M−1x
+

(x′M−1x)2

(1 + x′M−1x)2
]

=
x′M−2x

(1 + x′M−1x)2
.

18

Proof of Theorem 3.1400

Since Fedorov’s exchange algorithm has proved this result for the case with φ(D) = det(M),

uD(x) and vD(xi) defined as Equation (4), hence we only prove this result for the other two cases.

First, we prove that the design generated by single-point exchange procedure leads to no increase

in tr(M−1).

Let X be the model matrix of the current design and denote M = X ′X, which is updated as405

Mx − xix′i after exchanging x for xi according to the single exchange procedure. The following

delta function evaluates the multiple changes from tr(M−1) to tr((Mx − xix′i)−1):

4(xi, x) =
tr((Mx − xix′i)−1)

tr(M−1)

=
tr(M−1)− tr(wuu′) + tr(wiuiu

′
i)

tr(M−1)

= 1− tr(wu′u)− tr(wiu′iui)
tr(M−1)

= 1− 1

tr(M−1)

[
x′M−2x

1 + x′M−1x
− x′iM

−2
x xi

1− x′iM
−1
x xi

]
. (A.1)

Based on step (2) of this procedure, we know that
x′iM

−2
x xi

1−x′iM
−1
x xi

≤ x′M−2
x x

1−x′M−1
x x

. In the combination of

Lemma A.2, we obtain410

x′M−2x

1 + x′M−1x
− x′iM

−2
x xi

1− x′iM
−1
x xi

≥ x′M−2x

1 + x′M−1x
− x′M−2x x

1− x′M−1x x

=
x′M−2x

1 + x′M−1x
−

x′M−2x
(1+x′M−1x)2

1− x′M−1x
1+x′M−1x

=
x′M−2x

1 + x′M−1x
− x′M−2x

1 + x′M−1x

= 0.

Thus, 4(xi, x) ≤ 1 is obtained, which means tr(M−1) does not increase in the single-point

exchange procedure.

Second, we prove that the design generated in single-point procedure leads to no increase in

tr(M2).415

To calculate the multiple exchange on the tr(M2) during each iteration of the single-point

19

exchange procedure, we define a delta function 4(xi, x) as follows:

4(xi, x) =
tr((Mx − xix′i)2)

tr(M2)

=
tr(M2

x)− 2x′iMxxi + p2

tr(M2)

=
tr(M2) + 2x′Mx− 2x′iMxxi + 2p2

tr(M2)

= 1 +
2x′Mx− 2x′iMxxi + 2p2

tr(M2)
. (A.2)

By step (2) of this procedure, we have x′Mxx ≤ x′iMxxi and

x′Mx− x′iMxxi ≤ x′Mx− x′Mxx

≤ x′Mx− x′(M + xx′)x

≤ −p2. (A.3)

Thus, we obtain 4(xi, x) ≤ 1 from (A.2) and (A.3).

Theorem 3.1 is proved.420

20

Appendix B. Best PWO designs under the D-optimal criterion

Table B.1 D-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 3 4 1 2 4 3 3 2 1 4
1 3 4 2 1 2 3 4 3 2 4 1
2 1 4 3 1 3 4 2 4 1 3 2
3 1 2 4 2 1 4 3 4 2 1 3
3 2 4 1 2 3 4 1 4 2 3 1
4 1 3 2 3 1 4 2 4 3 1 2
4 2 3 1

Table B.2 D-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 3 4 2 1 5 2 3 4 3 5 4 1 2
2 5 3 4 1 1 2 5 4 3 3 4 2 1 5
2 3 1 4 5 1 3 4 2 5 4 1 5 3 2
2 4 1 3 5 1 4 2 3 5 4 3 1 5 2
3 2 5 1 4 2 1 4 3 5 4 3 5 1 2
3 4 5 1 2 2 5 4 1 3 4 5 3 2 1
4 2 5 1 3 2 3 4 5 1 5 1 3 2 4
4 3 1 2 5 2 4 5 3 1 5 2 3 1 4
4 5 3 2 1 3 2 1 5 4 5 3 1 4 2
5 1 2 4 3 3 5 2 1 4 5 4 2 1 3
5 4 2 3 1

21

Table B.3 D-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 6 5 2 4 3 1 6 2 5 3 4 4 5 1 6 2 3
1 2 4 5 3 6 1 2 6 3 5 4 4 5 2 6 1 3
1 5 3 6 4 2 1 3 4 2 5 6 4 5 3 1 2 6
2 1 3 5 4 6 1 4 6 3 5 2 5 2 1 3 6 4
2 3 6 5 4 1 2 1 5 4 6 3 5 2 3 1 4 6
3 1 4 2 6 5 2 6 4 1 5 3 5 4 1 3 6 2
3 2 5 1 6 4 2 3 5 4 6 1 5 4 3 6 1 2
3 4 5 1 6 2 3 1 5 2 6 4 5 6 3 1 2 4
4 1 3 5 2 6 3 1 6 4 2 5 5 6 3 4 2 1
4 2 5 1 6 3 3 2 6 5 1 4 6 1 5 4 2 3
4 3 6 5 2 1 3 2 4 1 6 5 6 1 2 3 4 5
5 2 6 3 1 4 3 4 6 1 5 2 6 2 1 4 5 3
5 4 6 3 1 2 3 5 6 2 1 4 6 2 4 3 5 1
6 1 4 2 3 5 4 2 1 3 5 6 6 3 5 4 2 1
6 3 2 4 1 5 4 2 6 5 3 1 6 5 1 3 2 4
6 5 1 3 2 4

Table B.4 D-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 7 5 2 6 4 3 1 7 6 5 2 3 4 4 3 7 5 6 2 1
1 4 3 6 5 7 2 1 4 7 2 3 6 5 4 7 2 1 5 6 3
2 5 6 1 3 4 7 1 4 3 2 7 6 5 4 6 2 1 7 5 3
2 6 3 4 7 1 5 1 5 6 4 2 7 3 4 6 5 3 7 1 2
3 1 2 5 6 7 4 1 6 2 4 5 3 7 5 1 6 4 7 3 2
3 2 7 4 6 5 1 2 1 4 3 6 7 5 5 2 1 7 4 6 3
3 7 5 6 1 4 2 2 3 7 1 6 4 5 5 2 3 6 4 1 7
3 5 4 1 7 6 2 2 3 5 4 7 6 1 5 3 1 4 6 7 2
4 2 1 7 5 3 6 2 5 7 1 3 4 6 5 7 2 6 1 4 3
4 5 6 1 2 7 3 2 5 4 7 3 6 1 6 1 7 2 3 4 5
5 2 7 1 6 3 4 2 5 6 1 3 7 4 6 1 5 3 4 2 7
5 3 6 7 2 4 1 2 6 7 5 4 3 1 6 3 2 4 7 5 1
5 4 6 3 2 7 1 2 6 4 7 3 5 1 6 3 4 5 1 2 7
5 7 4 2 3 6 1 3 1 7 2 5 6 4 6 7 1 3 5 2 4
6 1 7 5 3 4 2 3 1 5 6 2 7 4 6 7 1 4 2 5 3
6 2 1 3 7 5 4 3 2 4 1 6 5 7 7 3 1 4 5 2 6
6 2 5 4 7 3 1 3 7 5 4 1 2 6 7 3 6 4 2 5 1
6 4 1 3 2 5 7 3 6 5 7 4 2 1 7 4 1 6 2 3 5
6 7 4 3 2 5 1 4 1 3 2 5 6 7 7 4 5 3 6 1 2
7 1 3 2 5 4 6 4 1 5 7 3 2 6 7 6 3 2 1 5 4
7 1 4 6 2 5 3 4 2 6 3 1 5 7 7 6 5 4 1 3 2
7 6 3 2 1 4 5

22

Appendix C. Best PWO designs under the A-optimal criterion

Table C.1 A-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 3 4 2 1 4 3 2 3 1 2 4
2 1 4 3 1 2 3 4 3 2 4 1
2 3 1 4 2 1 3 4 3 4 2 1
3 1 2 4 2 1 4 3 4 1 3 2
3 2 4 1 2 4 3 1 4 1 2 3
4 1 2 3 3 1 4 2 4 2 3 1
4 3 2 1

Table C.2 A-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 4 2 3 5 1 5 3 4 2 3 5 1 4 2
2 1 5 4 3 1 2 5 4 3 3 5 2 4 1
2 1 3 4 5 1 3 2 4 5 4 1 5 2 3
2 3 5 4 1 2 1 4 3 5 4 2 1 3 5
2 4 5 1 3 2 5 4 3 1 4 2 5 1 3
3 4 1 2 5 2 3 5 4 1 4 3 1 5 2
4 1 3 5 2 2 3 4 1 5 4 5 3 2 1
4 3 2 5 1 3 1 4 2 5 5 1 2 4 3
4 5 2 3 1 3 2 1 5 4 5 2 3 1 4
5 1 3 4 2 3 2 4 5 1 5 4 1 3 2
5 3 1 2 4

23

Table C.3 A-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

2 1 5 6 3 4 1 3 2 6 4 5 4 1 5 2 3 6
3 1 2 4 5 6 1 3 5 6 2 4 4 2 1 3 5 6
3 1 6 4 5 2 1 4 2 6 3 5 4 3 2 5 6 1
3 5 2 4 1 6 1 4 3 6 2 5 4 6 1 2 3 5
3 5 6 4 1 2 2 1 6 4 5 3 4 5 1 6 3 2
4 2 3 6 5 1 2 1 6 3 5 4 5 2 3 1 4 6
4 3 6 2 1 5 2 1 4 5 6 3 5 2 4 6 1 3
4 5 6 2 3 1 2 3 5 1 6 4 5 3 4 1 2 6
5 1 6 4 3 2 2 5 3 6 4 1 5 6 1 3 4 2
5 1 3 4 6 2 2 5 4 3 1 6 6 1 4 2 5 3
5 3 2 6 1 4 3 1 2 5 4 6 6 2 1 5 3 4
6 1 5 2 4 3 3 1 4 5 6 2 6 2 3 4 5 1
6 1 3 4 5 2 3 2 4 6 1 5 6 4 3 1 5 2
6 2 3 5 1 4 3 4 6 5 2 1 6 5 1 2 4 3
6 2 4 5 1 3 3 5 2 6 1 4 6 5 4 3 2 1
6 5 3 4 1 2

Table C.4 A-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 3 7 4 2 6 5 1 2 7 3 5 4 6 4 7 3 6 1 5 2
1 5 4 6 3 7 2 1 3 7 6 5 2 4 4 7 6 1 2 5 3
1 6 7 4 5 3 2 1 5 4 6 3 7 2 4 5 2 1 3 6 7
1 6 3 4 5 7 2 1 6 2 5 3 4 7 5 1 7 4 3 6 2
2 7 6 1 4 3 5 1 6 4 7 3 2 5 5 3 6 4 1 7 2
2 4 5 6 1 3 7 1 6 4 5 2 7 3 5 7 3 2 4 1 6
2 6 5 4 3 1 7 2 1 4 5 7 6 3 5 7 3 6 1 4 2
3 6 1 5 7 2 4 2 7 6 5 1 4 3 5 6 4 3 1 2 7
3 6 2 5 1 4 7 2 4 3 5 6 7 1 6 1 7 3 5 2 4
3 6 4 2 7 1 5 2 4 5 6 1 3 7 6 1 3 4 5 2 7
4 1 6 2 7 3 5 2 6 5 4 7 1 3 6 1 5 3 7 4 2
4 1 5 2 7 3 6 3 1 2 4 6 7 5 6 2 3 5 1 4 7
4 2 3 5 6 7 1 3 1 7 2 6 4 5 6 2 4 1 7 5 3
4 3 1 7 5 6 2 3 2 7 1 5 4 6 6 3 5 2 7 4 1
4 7 6 5 3 1 2 3 4 2 1 7 5 6 6 7 4 3 1 2 5
5 3 2 7 4 1 6 3 4 5 7 1 2 6 6 7 5 2 3 1 4
5 6 3 1 4 2 7 3 6 2 7 1 4 5 7 1 5 2 6 4 3
7 1 6 2 4 5 3 4 2 6 3 1 5 7 7 2 1 3 5 6 4
7 1 3 2 5 6 4 4 2 6 7 5 1 3 7 4 5 1 6 2 3
7 5 2 3 1 4 6 4 2 3 1 6 5 7 7 5 2 6 3 1 4
7 6 3 4 2 1 5 4 3 7 6 5 2 1 7 6 3 4 2 5 1
7 6 5 4 2 1 3

24

Appendix D. Best PWO designs under the M.S.-optimal criterion

Table D.1 M.S.-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 4 3 1 4 3 2 2 3 1 4
2 1 3 4 1 4 2 3 3 2 1 4
2 4 3 1 1 2 3 4 3 4 1 2
3 1 4 2 1 3 2 4 3 4 2 1
3 2 4 1 2 4 1 3 4 2 1 3
4 1 3 2 2 4 3 1 4 3 1 2
4 2 1 3

Table D.2 M.S.-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 2 4 3 1 5 3 4 2 3 5 2 1 4
1 5 3 4 2 1 2 5 4 3 4 1 3 2 5
1 3 2 4 5 1 3 4 5 2 4 2 5 1 3
2 5 1 4 3 2 1 4 3 5 4 2 3 1 5
2 5 3 4 1 2 1 5 3 4 4 3 1 5 2
2 3 1 4 5 2 3 1 4 5 4 5 1 2 3
3 5 1 4 2 2 3 4 5 1 4 5 3 2 1
3 5 2 4 1 3 1 4 2 5 5 1 2 4 3
4 1 2 3 5 3 2 5 4 1 5 3 2 4 1
4 3 2 1 5 3 5 1 4 2 5 4 2 3 1
4 5 2 1 3

25

Table D.3 M.S.-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 2 6 4 5 3 1 4 2 3 5 6 4 2 1 6 3 5
1 3 4 6 5 2 1 4 3 2 6 5 4 5 6 2 3 1
1 5 2 4 3 6 1 4 5 3 6 2 5 1 6 3 4 2
2 6 3 4 5 1 2 1 6 5 3 4 5 1 2 6 4 3
2 5 1 3 4 6 2 6 4 5 1 3 5 2 1 3 4 6
3 2 6 1 5 4 2 3 5 6 1 4 5 3 1 2 4 6
3 4 1 2 5 6 2 3 4 1 5 6 5 3 6 4 2 1
3 5 1 6 4 2 2 4 6 5 3 1 5 4 2 3 6 1
4 1 3 6 2 5 3 1 6 5 2 4 5 4 6 1 3 2
4 2 3 5 6 1 3 2 5 4 1 6 6 1 2 3 4 5
4 6 5 3 1 2 3 2 6 4 1 5 6 2 1 5 4 3
5 3 6 2 4 1 3 4 6 2 5 1 6 3 1 4 2 5
5 4 2 1 6 3 3 4 6 5 1 2 6 3 1 5 2 4
5 6 1 4 3 2 4 1 3 5 2 6 6 4 3 5 2 1
6 1 2 3 5 4 4 1 6 2 5 3 6 5 4 1 2 3
6 4 2 1 5 3

26

Table D.4 M.S.-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 2 3 6 7 4 5 1 7 2 6 3 4 5 4 2 6 7 3 5 1
1 2 5 7 6 3 4 1 7 2 4 5 6 3 4 3 5 1 7 2 6
1 4 3 6 2 5 7 1 7 5 3 2 6 4 4 7 5 3 2 1 6
2 1 6 5 4 3 7 1 3 2 5 7 4 6 4 5 3 6 2 1 7
2 5 4 6 3 1 7 1 3 4 5 6 2 7 4 5 7 6 2 1 3
3 4 1 7 5 6 2 1 4 3 2 6 7 5 4 6 3 7 1 5 2
3 4 2 7 6 5 1 1 5 7 4 2 3 6 5 2 1 6 4 3 7
4 5 2 6 7 1 3 1 6 5 2 4 7 3 5 3 2 4 7 6 1
4 5 3 1 7 2 6 2 7 5 1 3 4 6 5 4 1 6 3 7 2
4 6 1 7 2 5 3 2 3 4 1 6 5 7 5 7 4 2 3 6 1
5 2 1 7 3 4 6 2 3 5 6 4 7 1 5 6 7 3 1 2 4
5 3 6 1 7 4 2 2 4 7 6 1 5 3 6 1 4 2 5 3 7
5 3 6 2 4 7 1 2 4 3 7 1 6 5 6 1 5 3 4 7 2
6 1 4 5 7 3 2 2 5 3 7 1 4 6 6 2 5 1 7 4 3
6 3 2 1 7 4 5 2 6 3 1 7 5 4 6 5 3 4 1 2 7
6 3 5 7 1 2 4 3 1 4 6 7 2 5 6 7 2 5 4 1 3
6 7 5 4 2 3 1 3 2 6 4 5 1 7 6 7 4 5 1 2 3
7 1 5 4 6 3 2 3 7 6 4 2 5 1 7 1 3 6 5 4 2
7 2 4 3 1 5 6 3 7 5 6 1 2 4 7 4 6 1 3 2 5
7 3 2 6 1 5 4 3 6 7 2 1 4 5 7 5 3 4 1 2 6
7 5 1 3 2 4 6 4 2 1 7 5 6 3 7 6 3 5 2 1 4
7 6 2 4 5 1 3

27

	Introduction
	 Model specification
	Exchange algorithms for constructing D-, A-, and M.S.-optimal designs
	The single-point exchange procedure
	The technique for avoiding the singularity of the matrix for the exchange algorithm
	The performance of the exchange algorithm

	Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm combining the exchange algorithm and PSO algorithm
	Numerical simulations
	Concluding Remarks

