The saturation number of $K_{3,3}$

Shenwei Huang ${ }^{1}$, Hui Lei ${ }^{2 *}$, Yongtang Shi ${ }^{3}$, and Junxue Zhang ${ }^{3}$
${ }^{1}$ College of Computer Science
Nankai University, Tianjin 300350, China
Email: shenweihuang@nankai.edu.cn
${ }^{2}$ School of Statistics and Data Science, LPMC and KLMDASR
Nankai University, Tianjin 300071, China
Email: hlei@nankai.edu.cn
${ }^{3}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Emails: shi@nankai.edu.cn; jxuezhang@163.com

Abstract

A graph G is called F-saturated if G does not contain F as a subgraph (not necessarily induced) but the addition of any missing edge to G creates a copy of F. The saturation number of F, denoted by $\operatorname{sat}(n, F)$, is the minimum number of edges in an n-vertex F-saturated graph. Determining the saturation number of complete bipartite graphs is one of the most important problems in the study of saturation numbers. The value of $\operatorname{sat}\left(n, K_{2,2}\right)$ was shown to be $\left\lfloor\frac{3 n-5}{2}\right\rfloor$ by Ollmann, and a shorter proof was later given by Tuza. For $K_{2,3}$, there has been a series of study aiming to determine $\operatorname{sat}\left(n, K_{2,3}\right)$ over the years. This was finally achieved by Chen who confirmed a conjecture of Bohman, Fonoberova, and Pikhurko that sat $\left(n, K_{2,3}\right)=2 n-3$ for all $n \geq 5$. Pikhurko and Schmitt conjectured that $\operatorname{sat}\left(n, K_{3,3}\right)=(3+o(1)) n$. In this paper, for $n \geq 9$, we give an upper bound of $3 n-9$ for $\operatorname{sat}\left(n, K_{3,3}\right)$, and prove that $3 n-9$ is also a lower bound when the minimum degree of a $K_{3,3}$-saturated graph is 2 or 5 , where it is trivial when the minimum degree is greater than 5 .

Keywords: saturation number; complete bipartite graph; minimum degree

1 Introduction

All graphs in this paper are finite and simple. Throughout the paper we use the terminology and notation of [11]. Given a graph G, we use $|G|, e(G), \delta(G)$, and $\Delta(G)$ to denote the number of vertices, the number of edges, the minimum degree and the maximum degree of G, respectively. Let \bar{G} denote the complement graph of G. For any $v \in V(G)$, let $d_{G}(v)$ and $N_{G}(v)$ denote the degree and neighborhood of v in G, respectively, and let $N_{G}[v]=N_{G}(v) \cup\{v\}$. We shall omit

[^0]the subscript G when the context is clear. For $A, B \subseteq V(G)$ with $A \cap B=\emptyset$, let $A \sim B$ denote that each vertex in A is adjacent to each vertex in B and $G[A, B]$ be the subgraph with vertex set $A \cup B$ and edge set $E(G[A, B])=\{x y \in E(G): x \in A, y \in B\}$. For $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S. Let n be a positive integer. For a positive integer k, we let $[k]=\{1,2, \ldots, k\}$. We denote a path, a cycle, a star, and a complete graph with n vertices by P_{n}, C_{n}, S_{n}, and K_{n}, respectively. For $r \geq 2$ and positive integers s_{1}, \ldots, s_{r}, let $K_{s_{1}, \ldots, s_{r}}$ denote the complete r-partite graph with part sizes s_{1}, \ldots, s_{r}. Let G and H be two disjoint graphs. Denote by $G \cup H$ the union of G and H. The $j o i n ~ G \vee H$ is the graph obtained from $G \cup H$ by joining each vertex of G to each vertex of H.

Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no member of \mathcal{F} is a subgraph of G, but for any $e \in E(\bar{G})$, some member of \mathcal{F} is a subgraph of $G+e$. The saturation number of \mathcal{F}, denoted by $\operatorname{sat}(n, \mathcal{F})$, is the minimum number of edges in an n-vertex \mathcal{F}-saturated graph. Define $\operatorname{sat}_{\delta}(n, \mathcal{F})$ to be the minimum number of edges in a graph with n vertices and minimum degree δ that is \mathcal{F}-saturated. If $\mathcal{F}=\{F\}$, then we also write $\operatorname{sat}(n,\{F\})$ and $\operatorname{sat}_{\delta}(n,\{F\})$ as $\operatorname{sat}(n, F)$ and $\operatorname{sat}_{\delta}(n, F)$, respectively.

Saturation numbers were first studied in 1964 by Erdős, Hajnal, and Moon [4], who proved that $\operatorname{sat}\left(n, K_{k+1}\right)=(k-1) n-\binom{k}{2}$. Furthermore, they proved that equality holds only for the graph $K_{k-1} \vee \overline{K_{n-k+1}}$. In 1986, Kászonyi and Tuza in [6] determined $\operatorname{sat}(n, F)$ for $F \in\left\{S_{k}, k K_{2}, P_{k}\right\}$, and they proved that $\operatorname{sat}(n, \mathcal{F})=O(n)$ for any family \mathcal{F} of graphs. Since then, there has been extensive research on saturation numbers for various graph families \mathcal{F}.

We now mention some results for complete multipartite graphs. When all but at most one parts have size 1, Pikhurko [8] and Chen, Faudree, and Gould [2] independently determined the saturation number of complete multipartite graphs with sufficiently large order. When there are at least two parts of size at least 2 , the exact values were only known for $K_{2,2}$ and $K_{2,3}$. The exact value for $K_{2,2}$ was first determined by Ollmann [7]. Later on, a shorter proof was given by Tuza [10]. For $K_{2,3}$, there have been several papers aiming to determine $\operatorname{sat}\left(n, K_{2,3}\right)$ over the years. This was finally achieved by Chen [3] who confirmed a conjecture of Bohman, Fonoberova, and Pikhurko [1] that $\operatorname{sat}\left(n, K_{2,3}\right)=2 n-3$ for all $n \geq 5$. For the case where the graph has r parts and all parts have size 2, Gould and Schmitt [5] conjectured that $\operatorname{sat}\left(n, K_{2, \ldots, 2}\right)=\left\lceil\left((4 r-5) n-4 r^{2}+6 r-1\right) / 2\right\rceil$,
 For general complete multipartite graphs $K_{s_{1}, \ldots, s_{r}}$ with $s_{r} \geq \cdots \geq s_{1} \geq 1$, Bohman, Fonoberova, and Pikhurko [1] determined the asymptotic bound on $\operatorname{sat}\left(n, K_{s_{1}, \ldots, s_{r}}\right)$ as $n \rightarrow \infty$.

Theorem 1.1 ([1]) Let $r \geq 2$ and $s_{r} \geq \cdots \geq s_{1} \geq 1$. Define $p=s_{1}+\cdots+s_{r-1}-1$. Then, for all large n,

$$
\left(p+\frac{s_{r}-1}{2}\right) n-O\left(n^{3 / 4}\right) \leq \operatorname{sat}\left(n, K_{s_{1}, \ldots, s_{r}}\right) \leq\binom{ p}{2}+p(n-p)+\left\lceil\frac{\left(s_{r}-1\right)(n-p)}{2}-\frac{s_{r}^{2}}{8}\right\rceil
$$

In particular, sat $\left(n, K_{s_{1}, \ldots, s_{r}}\right)=\left(s_{1}+\ldots+s_{r-1}+0.5 s_{r}-1.5\right) n+O\left(n^{3 / 4}\right)$.

We continue to study the saturation number for complete multipartite graphs. In light of the known results, studying $\operatorname{sat}\left(n, K_{3,3}\right)$ is the natural next step. In 2008, Pikhurko and Schmitt [9] conjectured that $\operatorname{sat}\left(n, K_{3,3}\right)=(3+o(1)) n$.

In this paper, we give an upper bound on $\operatorname{sat}\left(n, K_{3,3}\right)$. Moreover, we consider its lower bound. In particular, we determine the exact value of $\operatorname{sat}\left(n, K_{3,3}\right)$ for $6 \leq n \leq 8$ and provide a lower bound on $\operatorname{sat}\left(n, K_{3,3}\right)$ when the minimum degree of a $K_{3,3}$-saturated graph is 2 or 5 . The main results are the following theorems.

Theorem 1.2 Let n be a positive integer and $n \geq 6$. Then sat $\left(n, K_{3,3}\right) \leq \begin{cases}2 n, & 6 \leq n \leq 8, \\ 3 n-9, & n \geq 9 .\end{cases}$
Theorem 1.3 (i) For $6 \leq n \leq 8$, $\operatorname{sat}\left(n, K_{3,3}\right)=2 n$.
(ii) For $n \geq 9, \operatorname{sat}_{2}\left(n, K_{3,3}\right)=3 n-9$ and $\operatorname{sat}_{5}\left(n, K_{3,3}\right) \geq 3 n-9$.

Let G be a $K_{3,3}$-saturated graph with n vertices and $n \geq 9$. If $\delta(G) \geq 6$, then $e(G) \geq 3 n \geq 3 n-9$. Hence, for $n \geq 9$, in order to determine the exact value of $\operatorname{sat}\left(n, K_{3,3}\right)$, we only need to consider $K_{3,3}$-saturated graphs with the minimum degree at most 5 .

An outline of this paper is as follows. To prove Theorem 1.2, we construct an n-vertex $K_{3,3^{-}}$ saturated graph with $2 n$ edges when $6 \leq n \leq 8$ and $3 n-9$ edges when $n \geq 9$ in Section 2. In Section 3, we first prove that $\operatorname{sat}\left(n, K_{3,3}\right) \geq 2 n$ when $6 \leq n \leq 8$ in Section 3.1, then we prove $\operatorname{sat}_{\delta}\left(n, K_{3,3}\right) \geq 3 n-9$ when $\delta \in\{2,5\}$ in Section 3.2.

2 Proof of Theorem 1.2

In this section, for $n \geq 6$, we construct an n-vertex $K_{3,3}$-saturated graph G_{n} with $2 n$ edges when $6 \leq n \leq 8$, and $3 n-9$ edges when $n \geq 9$. Let G_{11} be a graph as depicted in Figure 1. Then $G_{n}=G_{11}\left[\left\{v_{1}, \ldots, v_{n}\right\}\right]$ for $6 \leq n \leq 11$.

Figure 1: The graph G_{11}.

Proposition 2.1 For $6 \leq n \leq 11$, the graph G_{n} is $K_{3,3}$-saturated and

$$
e\left(G_{n}\right)= \begin{cases}2 n, & 6 \leq n \leq 8 \\ 3 n-9, & 9 \leq n \leq 11\end{cases}
$$

Proof. It is easy to verify that $e\left(G_{n}\right)=2 n$ when $6 \leq n \leq 8$, and $e\left(G_{n}\right)=3 n-9$ when $9 \leq n \leq 11$. Next we show that G_{n} contains no copy of $K_{3,3}$ for $6 \leq n \leq 11$. Suppose R is a copy of $K_{3,3}$ of G_{11}. Then $v_{9} \notin V(R)$ because $d_{G_{11}}\left(v_{9}\right)=2$. For $u \in\left\{v_{7}, v_{8}, v_{10}, v_{11}\right\}$, since $d_{G_{11}}(u)=3$ and there exists $v \in N_{G_{11}}(u)$ such that $d_{G_{11}}(v)=3$ and $\left|N_{G_{11}}(u) \cap N_{G_{11}}(v)\right|=2$, we have $u \notin V(R)$. Thus $R \subseteq G_{6}$. Since $v_{1} v_{2} \notin E\left(G_{6}\right), v_{1}$ and v_{2} lie in the same part of R. Then $R\left[\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}\right]$ contains a copy of $K_{1,3}$, a contradiction. So G_{11} contains no copy of $K_{3,3}$. Note that $G_{n}(6 \leq n \leq 10)$ is a subgraph of G_{11}. Hence G_{n} contains no copy of $K_{3,3}$ for any $6 \leq n \leq 11$.

Let $x y$ be an edge in the complement of G_{n}. It remains to show that the graph G_{n}^{\prime} obtained by adding $x y$ to G_{n} has a copy of $K_{3,3}$. We consider the following cases.
(a) If $\{x, y\} \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$ or $x, y \in\left\{v_{7}, v_{8}, v_{10}, v_{11}\right\}$, then the subgraph of G_{n}^{\prime} induced by $\{x, y\} \cup$ $\left\{v_{3}, v_{5}\right\} \cup\left\{v_{4}, v_{6}\right\}$ contains a copy of $K_{3,3}$.
(b) If $\{x, y\} \cap\left\{v_{3}, v_{5}\right\} \neq \emptyset$ or $x=v_{9}, y \in\left\{v_{8}, v_{11}\right\}$, then the subgraph of G_{n}^{\prime} induced by $\{x, y\} \cup$ $\left\{v_{1}, v_{2}\right\} \cup\left\{v_{4}, v_{6}\right\}$ contains a copy of $K_{3,3}$.
(c) If $\{x, y\} \cap\left\{v_{4}, v_{6}\right\} \neq \emptyset$ or $x=v_{9}, y \in\left\{v_{7}, v_{10}\right\}$, then the subgraph of G_{n}^{\prime} induced by $\{x, y\} \cup$ $\left\{v_{1}, v_{2}\right\} \cup\left\{v_{3}, v_{5}\right\}$ contains a copy of $K_{3,3}$.

For $6 \leq n \leq 11$, in all cases, G_{n}^{\prime} contains a copy of $K_{3,3}$, hence G_{n} is $K_{3,3}$-saturated.

Definition 2.2 For $n \geq 12$, let $H=\bar{K}_{2} \vee\left(C_{4} \cup C_{n-9} \cup K_{1}\right)$, where $V\left(\bar{K}_{2}\right)=\left\{v_{1}, v_{2}\right\}, C_{4}=$ $v_{3} v_{4} v_{5} v_{6} v_{3}, C_{n-9}=v_{7} v_{8} \ldots v_{n-3} v_{7}, V\left(K_{1}\right)=\left\{v_{n-2}\right\}$. Let G_{n} be the graph obtained from H by adding new vertices $\left\{v_{n-1}, v_{n}\right\}$ and new edges $\left\{v_{n-1} v_{3}, v_{n-1} v_{5}, v_{n} v_{4}, v_{n} v_{6}\right\}$.

Proposition 2.3 For $n \geq 12$, the graph G_{n} defined in Definition 2.2 is $K_{3,3}$-saturated and has $3 n-9$ edges.

Proof. Clearly, $e(G)=2(n-4)+(n-5)+4=3 n-9$. Firstly, We show that G_{n} has no subgraph isomorphic to $K_{3,3}$. Suppose R is a copy of $K_{3,3}$ of G_{n}. From the structure of G_{n}, we see that $d\left(v_{n-1}\right)=d\left(v_{n}\right)=2$ and hence $v_{n-1}, v_{n} \notin V(R)$. Thus $R \subseteq H$. Since each vertex of $C_{4} \cup C_{n-9} \cup K_{1}$ has at most two neighbors in $C_{4} \cup C_{n-9} \cup K_{1}, v_{1}, v_{2} \in V(R)$ and they lie in different parts of R. This contradicts $v_{1} v_{2} \notin E\left(G_{n}\right)$. So G_{n} contains no copy of $K_{3,3}$.

Let $x y$ be an edge in the complement of G_{n}. It remains to show that the graph $G^{\prime \prime}$ obtained by adding $x y$ to G_{n} has a copy of $K_{3,3}$. We consider the following cases.
(a) If $x, y \in\left\{v_{1}, v_{2}, v_{n-1}, v_{n}\right\}$, then the subgraph of $G^{\prime \prime}$ induced by $\{x, y\} \cup\left\{v_{3}, v_{5}\right\} \cup\left\{v_{4}, v_{6}\right\}$ contains a copy of $K_{3,3}$.
(b) If $x=v_{n-1}, y \in\left\{v_{4}, v_{6}, v_{7}, \ldots, v_{n-2}\right\}$ or $x=v_{4}, y=v_{6}$ or $x \in\left\{v_{4}, v_{6}\right\}, y \in\left\{v_{7}, \ldots, v_{n-2}\right\}$, then the subgraph of $G^{\prime \prime}$ induced by $\left\{x, v_{1}, v_{2}\right\} \cup\left\{y, v_{3}, v_{5}\right\}$ contains a copy of $K_{3,3}$.
(c) If $x=v_{n}, y \in\left\{v_{3}, v_{5}, v_{7}, \ldots, v_{n-2}\right\}$ or $x=v_{3}, y=v_{5}$ or $x \in\left\{v_{3}, v_{5}\right\}, y \in\left\{v_{7}, \ldots, v_{n-2}\right\}$, then the subgraph of $G^{\prime \prime}$ induced by $\left\{x, v_{1}, v_{2}\right\} \cup\left\{y, v_{4}, v_{6}\right\}$ contains a copy of $K_{3,3}$.
(d) If $x, y \in\left\{v_{7}, \ldots, v_{n-2}\right\}$ and $x \neq v_{n-2}$, let $N(x) \cap\left\{v_{7}, \ldots, v_{n-3}\right\}=\left\{x^{\prime}, x^{\prime \prime}\right\}$, then the subgraph of $G^{\prime \prime}$ induced by $\left\{x, v_{1}, v_{2}\right\} \cup\left\{y, x^{\prime}, x^{\prime \prime}\right\}$ contains a copy of $K_{3,3}$.

In all cases, $G^{\prime \prime}$ contains a copy of $K_{3,3}$. Hence G_{n} is $K_{3,3}$-saturated.
By Proposition 2.1 and Proposition 2.3, we complete the proof of Theorem 1.2.

3 Proof of Theorem 1.3

In the rest of the paper, we consider the lower bound on $\operatorname{sat}\left(n, K_{3,3}\right)$. Let $G=(V, E)$ be a $K_{3,3^{-}}$ saturated graph. We firstly choose a vertex a such that $d(a)=\delta(G)$ and $e(G[N(a)])$ is as small as possible. We partition V into four parts V_{1}, V_{2}, V_{3} and V_{4}, where $V_{1}=N[a], V_{2}=\left\{x \in V \backslash V_{1}\right.$: $|N(x) \cap N(a)| \geq 2\}, V_{3}=\left\{y \in V \backslash\left(V_{1} \cup V_{2}\right):|N(y) \cap N(a)|=1\right\}$ and $V_{4}=V \backslash\left(V_{1} \cup V_{2} \cup V_{3}\right)$. Let $N_{G}(a)=\left\{a_{1}, a_{2}, \ldots, a_{d(a)}\right\}$. For $i_{1}, i_{2}, \ldots, i_{s} \in[d(a)]$, let $V_{i_{1} i_{2} \ldots i_{s}}=\left\{x \in V_{2}: N(x) \cap V_{1}=\right.$ $\left.\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{s}}\right\}\right\}$.

In the following, we will first describe some useful properties of the $K_{3,3}$-saturated graph G.

Proposition 3.1 The following statements hold.

(i) For any $x, y \in V$, if $x y \notin E$, then there are $\left\{x_{1}, x_{2}\right\} \subseteq N(x)$ and $\left\{y_{1}, y_{2}\right\} \subseteq N(y)$ such that $\left\{x_{1}, x_{2}\right\} \sim\left\{y_{1}, y_{2}\right\}$. (We usually say there is a copy of $K_{2,2}$ between $N(x)$ and $N(y)$.)
(ii) For any $x \in V \backslash V_{1}$, we have $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right| \leq 2$ for any $i, j \in[d(a)]$ with $i \neq j$, and there exist $i, j \in[d(a)]$ with $i \neq j$ such that $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right|=2$.
(iii) For any $x \in V_{3}$, we have $\left|N(x) \cap V_{2}\right| \geq 1$. For any $x \in V_{4}$, we have $\left|N(x) \cap V_{2}\right| \geq 2$.
(iv) When $G\left[V_{1} \backslash\{a\}\right]$ contains no copy of $K_{1,2}$, we have $\left|N(x) \cap V_{2}\right| \geq 2$ for any $x \in V \backslash V_{1}$, and $\left|V_{2}\right| \geq 3$. When $G\left[V_{1} \backslash\{a\}\right]$ contains no copy of $K_{2,2}$, we have $\left|N(x) \cap V_{2}\right| \geq 1$ for any $x \in V_{2}$, and $\left|V_{2}\right| \geq 2$.

Proof. Suppose $x y \notin E$. Then there is a copy of $K_{3,3}$ in $G+x y$, and (i) follows. For any $x \in V \backslash V_{1}$, if there is a vertex $x \in V \backslash V_{1}$ such that $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right| \geq 3$ for some $i, j \in[d(a)]$ with $i \neq j$,
then we would obtain a copy of $K_{3,3}$ of G, a contradiction. So $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right| \leq 2$ for any $x \in V \backslash V_{1}$ and $i, j \in[d(a)]$ with $i \neq j$. Since $a x \notin E$ for any $x \in V \backslash V_{1}$, there exist $i, j \in[d(a)]$ such that $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right|=2$ by (i). This proves (ii). Let $x \in V \backslash V_{1}$ and $i, j \in[d(a)]$ with $i \neq j$ such that $\left|N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)\right|=2$, we say $\{u, v\}=N(x) \cap N\left(a_{i}\right) \cap N\left(a_{j}\right)$. Then $u, v \in\left(V_{1} \cup V_{2}\right) \backslash\{a\}$. If $x \in V_{3}$, then we have $\left|N(x) \cap V_{2}\right| \geq 1$ by the definition of V_{3}. If $x \in V_{4}$, then we have $\left|N(x) \cap V_{2}\right| \geq 2$ by the definition of V_{4}. This proves (iii). Suppose $G\left[V_{1} \backslash\{a\}\right]$ contains no copy of $K_{1,2}$. Then $u, v \in V_{2}$. Hence we have $\left|N(x) \cap V_{2}\right| \geq 2$ for any $x \in V \backslash V_{1}$, and $\left|V_{2}\right| \geq 3$. Suppose $G\left[V_{1} \backslash\{a\}\right]$ contains no copy of $K_{2,2}$. Then $\{u, v\} \cap V_{2} \neq \emptyset$. Hence we have $\left|N(x) \cap V_{2}\right| \geq 1$ for each $x \in V_{2}$, and $\left|V_{2}\right| \geq 2$. This proves (iv).

Proposition 3.1(i) implies $\delta(G) \geq 2$ for each $K_{3,3}$-saturated graph G. Thus we consider $\delta(G) \geq 2$.

3.1 Proof of Theorem $1.3(\mathrm{i})$

By Theorem 1.2, to prove $\operatorname{sat}\left(n, K_{3,3}\right)=2 n$ for $6 \leq n \leq 8$, it suffices to prove $\operatorname{sat}\left(n, K_{3,3}\right) \geq 2 n$. We consider the minimum degree of G. If $\delta(G) \geq 4$, then we have $e(G) \geq 2 n$. So we assume that $2 \leq$ $\delta(G) \leq 3$. For $i \in\{2,3,4\}$ and $x \in V_{i}$, we define $f(x)=\left|N(x) \cap\left(V_{1} \cup \cdots \cup V_{i-1}\right)\right|+0.5\left|N(x) \cap V_{i}\right|-2$. Let $s_{i}=\sum_{x \in V_{i}} f(x)$, where $i \in\{2,3,4\}$.

We first observe that one can relate the number of edges to s_{2}, s_{3} and s_{4} in the following way:

$$
\begin{align*}
e(G)= & e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right)+e\left(G\left[V_{3}\right]\right)+e\left(G\left[V_{1}, V_{3}\right]\right)+e\left(G\left[V_{2}, V_{3}\right]\right)+e\left(G\left[V_{4}\right]\right) \\
& +e\left(G\left[V_{4}, V_{2} \cup V_{3}\right]\right) \\
= & e\left(G\left[V_{1}\right]\right)+2\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)+s_{2}+s_{3}+s_{4} \\
= & e\left(G\left[V_{1}\right]\right)+2\left(n-\left|V_{1}\right|\right)+s_{2}+s_{3}+s_{4} \tag{1}
\end{align*}
$$

Lemma 3.2 For $6 \leq n \leq 8$,
(i) if $\delta(G)=2$, then $s_{2}+s_{3}+s_{4} \geq\left|V_{2}\right|+\left|V_{3}\right|$.
(ii) if $\delta(G)=3$, then $s_{2}+s_{3}+s_{4} \geq\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|$ when $e\left(G\left[V_{1} \backslash\{a\}\right]\right) \leq 1$ and $s_{2}+s_{3}+s_{4} \geq$ $0.5\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)$ when $e\left(G\left[V_{1} \backslash\{a\}\right]\right) \geq 2$.

Proof. Suppose that $\delta(G)=2$. Then $G\left[V_{1} \backslash\{a\}\right]$ contains no $K_{1,2}$. Thus $f(x) \geq 1$ for each $x \in V_{2} \cup V_{3}$ and $f(x) \geq 0$ for each $x \in V_{4}$ by Proposition 3.1 (iii). So $s_{2}+s_{3}+s_{4} \geq\left|V_{2}\right|+\left|V_{3}\right|$. Suppose that $\delta(G)=3$. If $e\left(G\left[V_{1} \backslash\{a\}\right]\right) \leq 1$, then $\left|V_{4}\right| \leq 1$ because $n \leq 8$ and $\left|V_{2}\right| \geq 3$ by Proposition 3.1(iv). Thus $f(x) \geq 1$ for each $x \in V \backslash V_{1}$ by Proposition 3.1 (iii). So $s_{2}+s_{3}+s_{4} \geq\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|$. If $e\left(G\left[V_{1} \backslash\{a\}\right]\right) \geq 2$, then we have $\left|N(x) \cap V_{2}\right| \geq 1$ for each $x \in V_{2} \cup V_{3}$ and $\left|N(x) \cap V_{2}\right| \geq 2$ for each $x \in V_{4}$ by Proposition 3.1 (iii). Thus for $x \in V_{2}, f(x) \geq 0.5$; for $y \in V_{3}, f(y) \geq 0.5$ or $f(y)=0$ and there exists a vertex $z \in V_{4}$ such that $f(z)=1$; for $z \in V_{4}, f(z) \geq 0.5$. Proposition 3.1(iv) implies $\left|V_{2}\right| \geq 2$ and so $\left|V_{3} \cup V_{4}\right| \leq 2$, we have $s_{2}+s_{3}+s_{4} \geq 0.5\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)$.

Suppose that $\delta(G)=2$. If $a_{1} a_{2} \in E$, then $e(G) \geq 2 n+\left|V_{2}\right|+\left|V_{3}\right|-3$ by Lemma 3.2(i) and (1). By Proposition 3.1(iii), we have $\left|V_{2}\right| \geq 3$. So $e(G) \geq 2 n$. If $a_{1} a_{2} \notin E(G)$, then $e(G) \geq 2 n+\left|V_{2}\right|+\left|V_{3}\right|-4$ by Lemma 3.2(i) and (1). Proposition 3.1(i) implies that there is a copy of $K_{2,2}$ between $N\left(a_{1}\right)$ and $N\left(a_{2}\right)$, we have $\left|V_{2} \cup V_{3}\right| \geq 4$. So $e(G) \geq 2 n$.

Suppose that $\delta(G)=3$. If $n=6$, then $\left|V_{2}\right|=2,\left|V_{3}\right|=\left|V_{4}\right|=0$ and $e\left(V_{1}\right)=6$ by Proposition 3.1(i). Otherwise, $a_{i} a_{j} \notin E$ where $i, j \in[3]$ with $i \neq j$, Proposition 3.1(i) implies that there is a copy of $K_{2,2}$ between $N\left(a_{i}\right)$ and $N\left(a_{j}\right)$, which contradicts the fact that $\left|V_{2} \cup V_{3}\right|=2$. Let $V_{2}=\left\{x_{1}, x_{2}\right\}$. Proposition 3.1(iv) implies $x_{1} x_{2} \in E$. If $x_{1} a_{i} \notin E$ for some $i \in[3]$, then $x_{2} \in V_{123}$ by Proposition 3.1 (i). Thus $e(G) \geq 12=2 n$.

If $n=7$ and $e\left(G\left[V_{1}\right]\right) \leq 4$, then $G\left[V_{1} \backslash\{a\}\right]$ contains no copy of $K_{1,2}$. Proposition 3.1(iv) implies $\left|V_{2}\right|=3$ and $e\left(G\left[V_{2}\right]\right)=3$. Since $a_{i} a_{j} \notin E$ for some $i, j \in$ [3], Proposition 3.1(i) implies there is a copy of $K_{2,2}$ between $N\left(a_{i}\right)$ and $N\left(a_{j}\right)$. Since $\left|V_{2} \cup V_{3}\right|=\left|V_{2}\right|=3, e\left(G\left[V_{1}\right]\right) \geq 4$. We see $\left|V_{123}\right| \leq 1$, else G contains a copy of $K_{3,3}$. There exists a vertex x such that $\left|N(x) \cap V_{1}\right|=2$ and $x a_{k} \notin E$ for some $k \in[3]$. Proposition 3.1(i) implies that there is a copy of $K_{2,2}$ between $N(x)$ and $N\left(a_{k}\right)$, say $\left\{x_{1}, x_{2}\right\} \sim\left\{a_{k 1}, a_{k 2}\right\}$. When $\left\{a_{k 1}, a_{k 2}\right\} \subseteq V_{2}$, then $\left\{x_{1}, x_{2}\right\} \subseteq V_{1}$ and $\left\{a_{k 1}, a_{k 2}\right\} \subseteq V_{123}$, a contradiction. When $\left\{a_{k 1}, a_{k 2}\right\} \cap V_{1} \neq \emptyset$, since $e\left(G\left[V_{1}\right]\right) \leq 4,\left|\left\{a_{k 1}, a_{k 2}\right\} \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \leq 1$. If $a_{k 1} \in\left\{a_{1}, a_{2}, a_{3}\right\}$, then $a_{k 2} \in V_{2}$. By $\left|V_{2}\right|=3,\left\{x_{k 1}, x_{k 2}\right\} \cap V_{1} \neq \emptyset$, which contradicts $e\left(G\left[V_{1}\right]\right) \leq 4$. If $a \in\left\{a_{k 1}, a_{k 2}\right\}$, say $a_{k 1}=a$, then $\left\{x_{1}, x_{2}\right\} \subseteq V_{1}, a_{k 2} \in V_{2}$ and $a_{k 2} \in V_{123}$. Then $e(G)=$ $e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right) \geq 4+3+7=14=2 n$.

If $n=7$ and $e\left(G\left[V_{1}\right]\right)=6$, by Lemma 3.2(ii), then $e(G) \geq 2 n-0.5$, that is $e(G) \geq 2 n$. Suppose $n=7$ and $e\left(G\left[V_{1}\right]\right)=5$. Let $E\left(G\left[V_{1} \backslash\{a\}\right]\right)=\left\{a_{1} a_{2}, a_{1} a_{3}\right\}$. If $\left|V_{2}\right|=2$, then let $V_{2}=\left\{x_{1}, x_{2}\right\}$. Applying Proposition 3.1(i) to $a x_{1} \notin E\left(a x_{2} \notin E\right)$, we have the $K_{2,2}$ between $N(a)$ and $N\left(x_{1}\right)$ $\left(N\left(x_{2}\right)\right)$ is $\left\{a_{2}, a_{3}\right\} \sim\left\{a_{1}, x_{2}\right\}\left(\left\{a_{1}, x_{1}\right\}\right)$. Then $\left\{x_{1}, x_{2}\right\} \subseteq V_{123}$, and so $\left\{a_{1}, a_{2}, a_{3}\right\} \sim\left\{a, x_{1}, x_{2}\right\}$ is a copy of $K_{3,3}$ of G, a contradiction. If $\left|V_{2}\right| \geq 3$, then $\left|V_{2}\right|=3$ by $n=7$. Let $V_{2}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Note that $f\left(x_{i}\right) \geq 0.5$ for each $i \in[3]$. If there exists a vertex $x_{i} \in V_{123}$ or there are two vertices $x_{i}, x_{j} \in V_{2}$ such that $f\left(x_{i}\right) \geq 1$ and $f\left(x_{j}\right) \geq 1$, then $e(G) \geq 2 n-0.5$ by (1), and so $e(G) \geq 2 n$. Thus we may assume $V_{123}=\emptyset$ and there is at most one vertex $x_{i} \in V_{2}$ such that $f\left(x_{i}\right) \geq 1$. Since there is a copy of $K_{2,2}$ between $N(x)$ and $N(a)$ for each $x \in V_{2}$, there is some vertex $x_{i} \in V_{2}$ with $f\left(x_{i}\right)=1$, say x_{1}. Then $x_{1} \in V_{23}$ and $\left\{x_{2}, x_{3}\right\} \subseteq V_{1 i}$ for some $i \in\{2,3\}$, say $i=2$. Then $N\left(a_{3}\right)=\left\{a, a_{1}, x_{1}\right\}$, but $e\left(G\left[N\left(a_{3}\right)\right]\right) \leq 1$, which contradicts the minimality of $e(G[N(a)])$. So $e(G) \geq 2 n$.

If $n=8$, then $e(G) \geq 2 n$ when $e\left(G\left[V_{1} \backslash\{a\}\right]\right)=1$ or 3 by Lemma 3.2(ii). Suppose $n=8$ and $e\left(G\left[V_{1} \backslash\{a\}\right]\right)=0$, then $e(G)=2 n+s_{2}+s_{3}+s_{4}-5$. So we need to show $s_{2}+s_{3}+s_{4} \geq 4.5$. If $\left|V_{123}\right| \geq 1$, then $f(x) \geq 2$ for each $x \in V_{123}$. So $s_{2}+s_{3}+s_{4} \geq\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|+1 \geq 5$ by the proof of Lemma 3.2(ii). Now we consider $\left|V_{123}\right|=0$. Since $a_{1} a_{2} \notin E$, Proposition 3.1(i) implies that there is a copy of $K_{2,2}$ between $N\left(a_{1}\right)$ and $N\left(a_{2}\right)$, say $\left\{x_{1}, x_{2}\right\} \sim\left\{x_{3}, x_{4}\right\}$. Then $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V_{2} \cup V_{3}$. Since $n=8,\left|V_{2} \cup V_{3}\right|=4$. If $x_{1} \in V_{3}$, then we can not find a copy of $K_{2,2}$ between $N\left(a_{2}\right)$ and $N\left(a_{3}\right)$ because $\left|\left(N\left(a_{2}\right) \cup N\left(a_{3}\right)\right) \cap\left(V_{2} \cup V_{3}\right)\right| \leq 3$, a contradiction. By symmetry, we have $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V_{2}$. If there exists $i \in[4]$ such that $\left|N\left(x_{i}\right) \cap V_{2}\right| \geq 3$, then $e(G)=e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right) \geq 3+5+8=16=2 n$. If $\left|N\left(x_{i}\right) \cap V_{2}\right|=2$ for each $i \in[4]$,
then $E\left(G\left[V_{2}\right]\right)=\left\{x_{i} x_{j} \mid i \in\{1,2\}, j \in\{3,4\}\right\}$. Since $x_{1} x_{2} \notin E$, Proposition 3.1(i) implies that there is a copy of $K_{2,2}$ between $N\left(x_{1}\right)$ and $N\left(x_{2}\right)$. Note that $N\left(x_{1}\right) \cup N\left(x_{2}\right) \subseteq\left\{a_{1}, a_{2}, a_{3}, x_{3}, x_{4}\right\}$, $e\left(G\left[\left\{a_{1}, a_{2}, a_{3}\right\}\right]\right)=0$ and $x_{3} x_{4} \notin E$. So the $K_{2,2}$ between $N\left(x_{1}\right)$ and $N\left(x_{2}\right)$ must be $\left\{a_{1}, a_{2}\right\} \sim$ $\left\{x_{3}, x_{4}\right\}$. Then $d\left(a_{3}\right)=1$, this contradicts $\delta(G) \geq 2$. Suppose $n=8$ and $e\left(G\left[V_{1} \backslash\{a\}\right]\right)=2$. Then $e(G)=2 n+s_{2}+s_{3}+s_{4}-3$. So we need to show $s_{2}+s_{3}+s_{4} \geq 2.5$. If $f(x) \geq 1$ for some $x \in V_{2}$, then $s_{2}+s_{3}+s_{4} \geq 2.5$ by the proof of Lemma 3.2(ii). If $f(x)=0.5$ for some $x \in V_{2}$, then $f\left(x^{\prime}\right) \geq 1$ where $\left\{x^{\prime}\right\}=N(x) \cap V_{2}$. So $s_{2}+s_{3}+s_{4} \geq 2.5$.

This completes the proof of the lower bound on $\operatorname{sat}\left(n, K_{3,3}\right)$ for $6 \leq n \leq 8$.

3.2 Proof of Theorem 1.3(ii)

Note that for $n \geq 9$, the minimum degree of the $K_{3,3}$-saturation graph we constructed in Section 2 with $3 n-9$ edges is 2 . Thus $\operatorname{sat}_{2}\left(n, K_{3,3}\right) \leq 3 n-9$ for $n \geq 9$. Hence, to prove $\operatorname{sat}_{2}\left(n, K_{3,3}\right)=3 n-9$, it suffices to prove $\operatorname{sat}_{2}\left(n, K_{3,3}\right) \geq 3 n-9$ for $n \geq 9$. In this section, we give the lower bound of $3 n-9$ for $\operatorname{sat}_{\delta}\left(n, K_{3,3}\right)$ for $\delta \in\{2,5\}$ and $n \geq 9$. We first consider the case where the minimum degree of G is 2 .

3.2.1 $\quad \delta(G)=2$

We prove $\operatorname{sat}_{2}\left(n, K_{3,3}\right) \geq 3 n-9$ for $n \geq 9$ in this part. According to the partition of V, we define $h(x)=\left|N(x) \cap\left(V_{1} \cup \ldots \cup V_{i-1}\right)\right|+0.5\left|N(x) \cap V_{i}\right|-3$ for each $x \in V_{i}$ and $q_{i}=\sum_{x \in V_{i}} h(x)$ where $i \in\{2,3,4\}$. For each $x \in V$, we say that the h-value of x is k if $h(x)=k$.

$$
\begin{align*}
e(G)= & e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right)+e\left(G\left[V_{3}\right]\right)+e\left(G\left[V_{1}, V_{3}\right]\right)+e\left(G\left[V_{2}, V_{3}\right]\right)+e\left(G\left[V_{4}\right]\right) \\
& +e\left(G\left[V_{4}, V_{2} \cup V_{3}\right]\right) \\
= & e\left(G\left[V_{1}\right]\right)+3\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)+q_{2}+q_{3}+q_{4} \\
= & e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+q_{2}+q_{3}+q_{4} . \tag{2}
\end{align*}
$$

By (2), we have $e(G) \geq 3 n-7+q_{2}+q_{3}+q_{4}$. Therefore, it suffices to prove

$$
\begin{equation*}
q_{2}+q_{3}+q_{4} \geq-2.5 \tag{3}
\end{equation*}
$$

By Proposition 3.1(iv), we have $\left|N(x) \cap V_{2}\right|=2$ for each $x \in V \backslash V_{1}$. So $h(z) \geq 0$ for each $z \in V_{2} \cup V_{3}$ and $h(z) \geq-1$ for each $z \in V_{4}$. Thus, $q_{2} \geq 0$ and $q_{3} \geq 0$. Therefore, to prove (3), it suffices to show $q_{4} \geq-2.5$.

Let $V_{4}^{-}=\left\{z \in V_{4}: h(z)<0\right\}=\left\{z_{1}, z_{2}, \ldots, z_{\left|V_{4}^{-}\right|}\right\}$and $n_{4}^{-}(x)=\left|N(x) \cap V_{4}^{-}\right|$for each $x \in V$. By Proposition 3.1(iii), each vertex $z \in V_{4}^{-}$has exactly two neighbors in V_{2}, so we let $N\left(z_{i}\right) \cap V_{2}=\left\{x_{i 1}, x_{i 2}\right\}$. Note that if $h\left(z_{i}\right)=-1$, then $N\left(z_{i}\right)=\left\{x_{i 1}, x_{i 2}\right\}$ and so z_{i} has no neighbor in V_{4}^{-}, and if $h\left(z_{i}\right)=-0.5$, then $d\left(z_{i}\right)=3$ and z_{i} has one neighbor in V_{4}, saying $N_{4}\left(z_{i}\right)=\left\{c_{i}\right\}$.

For each $z_{i}, z_{j} \in V_{4}^{-}$with $z_{i} z_{j} \notin E$, there is a $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ by Proposition 3.1(i), we define four different types of $K_{2,2}$ as follows.

Type 1: $\left\{x_{i 1}, x_{i 2}\right\} \sim\left\{x_{j 1}, x_{j 2}\right\} ;$
Type 2: $\left\{x_{i 1}, x_{i 2}\right\} \sim\left\{x_{j t}, c_{j}\right\}$, where $t \in\{1,2\}$;
Type 3: $\left\{x_{i s}, c_{i}\right\} \sim\left\{x_{j 1}, x_{j 2}\right\}$, where $s \in\{1,2\}$;
Type 4: $\left\{x_{i s}, c_{i}\right\} \sim\left\{x_{j t}, c_{j}\right\}$, where $s, t \in\{1,2\}$.
If there are three vertices in V_{4} with an h-value of -1 , then there are six distinct vertices $x_{1}, x_{2}, \ldots, x_{6} \in V_{2}$ such that $\left\{x_{1}, x_{2}\right\} \sim\left\{x_{3}, x_{4}\right\},\left\{x_{3}, x_{4}\right\} \sim\left\{x_{5}, x_{6}\right\}$ and $\left\{x_{1}, x_{2}\right\} \sim\left\{x_{5}, x_{6}\right\}$. Thus G contains a copy of $K_{3,3}$ as $\left\{a_{1}, a_{2}, x_{1}\right\} \sim\left\{x_{3}, x_{4}, x_{5}\right\}$, a contradiction. So there are at most two vertices in V_{4} with an h-value of -1 . Thus $q_{4} \geq-2.5$ when $\left|V_{4}^{-}\right| \leq 3$. In the following, we assume that $\left|V_{4}^{-}\right| \geq 4$.

Claim 1 There is at most one vertex in V_{4}^{-}with an h-value of -1 .

Proof. Suppose that, by contradiction, there are exactly two vertices with an h-value -1 , say z_{1} and z_{2}. Then $z_{1} z_{2} \notin E$ and the $K_{2,2}$ between $N\left(z_{1}\right)$ and $N\left(z_{2}\right)$ is Type 1 . Since $\left|V_{4}^{-}\right| \geq 4$, there exists a vertex, say z_{3}, such that $d\left(z_{3}\right)=3$ and $z_{1} z_{3} \notin E, z_{2} z_{3} \notin E$. Applying Proposition 3.1(i) to $z_{1} z_{3} \notin E$ and $z_{2} z_{3} \notin E$, we obtain that there exists $b \in N\left(z_{3}\right)$ such that $b \sim\left\{x_{11}, x_{12}, x_{21}, x_{22}\right\}$. Then G contains a copy of $K_{3,3}$ as $\left\{a_{1}, a_{2}, b\right\} \sim\left\{x_{11}, x_{12}, x_{21}\right\}$, a contradiction. Hence there is at most one vertex in V_{4}^{-}with an h-value of -1 .

By Claim 1, if $\left|V_{4}^{-}\right| \leq 4$, then $q_{4} \geq-2.5$. So we assume that $\left|V_{4}^{-}\right| \geq 5$ in the following.
Claim 2 If there exists a vertex in V_{4}^{-}with an h-value of -1 , then $q_{2}+q_{3}+q_{4} \geq-2.5$.

Proof. Without loss of generality, we assume that $h\left(z_{1}\right)=-1$. For each $z_{i} \in V_{4}^{-} \backslash\left\{z_{1}\right\}$, since $z_{1} z_{i} \notin E,\left\{x_{11}, x_{12}\right\} \nsubseteq N\left(z_{i}\right)$. We first prove that there is at most one vertex $z_{i} \in V_{4}^{-}$such that $\left\{x_{11}, x_{12}\right\} \sim\left\{x_{i 1}, x_{i 2}\right\}$. Suppose not. Then there exist two vertices, say z_{2} and z_{3}, such that $\left\{x_{11}, x_{12}\right\} \sim\left\{x_{t 1}, x_{t 2}\right\}$ for each $t \in\{2,3\}$. Since $\left|N(x) \cap V_{2}\right|=2$ for each $x \in V \backslash V_{1}$, $\left\{x_{21}, x_{22}\right\}=\left\{x_{31}, x_{32}\right\}$. Note that $z_{2} z_{3} \in E$ for otherwise the non-edge $z_{2} z_{3}$ contradicts Proposition 3.1(i). Since $\left|V_{4}^{-}\right| \geq 5$, there exists a vertex, say z_{4}, such that $z_{4} z_{p} \notin E$ for each $p \in[3]$. By applying Proposition 3.1(i) to $z_{1} z_{4}$, we have $\left\{x_{4 i}, c_{4}\right\} \sim\left\{x_{11}, x_{12}\right\}$ for some $i \in\{1,2\}$ and thus $x_{4 i} \in\left\{x_{21}, x_{22}\right\}$. Since $c_{2}=z_{3}$, there is no $K_{2,2}$ between $N\left(z_{2}\right)$ and $N\left(z_{4}\right)$, contradicting Proposition 3.1(i). This proves the statement. Thus for $i \in\left\{3,4, \ldots,\left|V_{4}^{-}\right|\right\}$, without loss of generality, we assume $\left\{x_{11}, x_{12}\right\} \sim\left\{x_{i j}, c_{i}\right\}$, where $j \in[2]$. Applying Proposition 3.1(i) to $c_{i} z_{1} \notin E$, we know that c_{i} has at least two neighbors other than x_{11}, x_{12} and z_{i} and thus $h\left(c_{i}\right) \geq 0.5$. Now we show that $c_{i} \neq c_{j}$ for $i, j \in\left\{3,4, \ldots,\left|V_{4}^{-}\right|\right\}$with $i \neq j$. Since $c_{i} \notin V_{4}^{-}$, we have $z_{i} z_{j} \notin E$. By Proposition 3.1 (i), there is a $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$. By considering the $K_{2,2}$ between $N\left(z_{k}\right)$ and $N\left(z_{1}\right)$
for $k \in\{i, j\}$, we see $N\left(c_{k}\right) \cap V_{2}=\left\{x_{11}, x_{12}\right\}$. It follows that the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ must be Type 4 . So $c_{i} \neq c_{j}$. Now we have

$$
q_{4} \geq h\left(z_{1}\right)+h\left(z_{2}\right)+\sum_{i=3}^{\left|V_{4}^{-}\right|}\left(h\left(z_{i}\right)+h\left(c_{i}\right)\right) \geq-1.5 .
$$

This completes the proof.
By Claim 2, we assume $h(z)=-0.5$ for each vertex $z \in V_{4}^{-}$. If $\left|V_{4}^{-}\right| \leq 5$, then $q_{4} \geq-2.5$. So we assume $\left|V_{4}^{-}\right| \geq 6$ in the following.

Claim 3 If $h(z)=-0.5$ for each vertex $z \in V_{4}^{-}$and there exist two non-adjacent vertices in V_{4}^{-} satisfying the $K_{2,2}$ between their neighborhood is Type 1 , then $q_{2}+q_{3}+q_{4} \geq-2.5$.

Proof. Suppose $z_{1} z_{2} \notin E$ and the $K_{2,2}$ between $N\left(z_{1}\right)$ and $N\left(z_{2}\right)$ is Type 1. Let $U=\{z \in$ $V_{4}^{-} \backslash\left\{z_{1}, z_{2}\right\}$ with $\left.z z_{1}, z z_{2} \notin E\right\}$. Since $\left|V_{4}^{-}\right| \geq 6$, we have $|U| \geq 2$. Let $z_{i} \in U$. By applying Proposition 3.1 (i) to $z_{i} z_{1} \notin E$, there is a copy of $K_{2,2}$ between $N\left(z_{1}\right)$ and $N\left(z_{i}\right)$. Note that $\left|N(v) \cap V_{2}\right|=2$ for each $v \in V \backslash V_{1}$. If the $K_{2,2}$ is Type 1 or Type 3, then $\left\{x_{i 1}, x_{i 2}\right\}=\left\{x_{21}, x_{22}\right\}$. If the $K_{2,2}$ is Type 2, then $N\left(c_{3}\right) \cap V_{2}=\left\{x_{11}, x_{12}\right\}$ and $x_{i s} \in\left\{x_{21}, x_{22}\right\}$ for some $s \in[2]$. In each case, we cannot find a $K_{2,2}$ between $N\left(z_{2}\right)$ and $N\left(z_{i}\right)$. So the $K_{2,2}$ between $N\left(z_{1}\right)$ and $N\left(z_{i}\right)$ is Type 4. Similarly, the $K_{2,2}$ between $N\left(z_{2}\right)$ and $N\left(z_{i}\right)$ is Type 4. So we have $x_{i s} \in\left\{x_{11}, x_{12}\right\}$ and $x_{i t} \in\left\{x_{21}, x_{22}\right\}$, where $\{s, t\}=[2]$, and $c_{1}, c_{2}, c_{i} \notin V_{4}^{-}$. Hence for each $z_{i}, z_{j} \in U$, the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 4. So $c_{i} \neq c_{j}$. This means that for each $z \in U$, its unique neighbor $c \in V_{4}$ has at least 3 neighbors in $V_{4} \backslash V_{4}^{-}$, so $h(z)+h(c) \geq 0$. And for any $z_{i}, z_{j} \in U, c_{i} \neq c_{j}$, so $q_{4} \geq-2$.

By Claim 3, we suppose there are no two vertices $z_{i}, z_{j} \in V_{4}^{-}$with $z_{i} z_{j} \notin E$ such that the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 1. Suppose that $c \in V_{4}^{-}$for each $z \in V_{4}^{-}$. Let $z_{i}, z_{j} \in V_{4}^{-}$with $z_{i} z_{j} \notin E$. By Proposition 3.1(i), Claim 3, and $c_{i}, c_{j} \in V_{4}^{-}$, we may assume the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 2. Then there is no copy of $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(c_{j}\right)$, a contradiction. So we choose $z \in V_{4}^{-}$with $c \notin V_{4}^{-}$as z_{1}. Let $A_{0}=\emptyset$. Let $A_{\ell}=\left\{z \mid z \in V_{4}^{-} \backslash\left(A_{0} \cup \ldots \cup\right.\right.$ $\left.A_{\ell-1}\right)$ and the $K_{2,2}$ between $N\left(z_{1}\right)$ and $N(z)$ is Type $\left.\ell\right\}$ and $B_{\ell}=\left\{c_{i}: z_{i} \in A_{\ell}\right\}$ for $\ell \in$ [4]. By Claim 3, we have $A_{1}=B_{1}=\emptyset$. Thus $\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right|=\left|V_{4}^{-}\right|-1$. Let $B=\left\{c_{1}\right\} \cup B_{2} \cup B_{3} \cup B_{4}$ and $B^{\prime}=\left\{c_{1}\right\} \cup B_{2} \cup B_{4}$. Note that B_{j} and B_{k} may intersect when $j \neq k$ and $j, k \in[4]$.

For any $z \in A_{2}$, we have $c \notin V_{4}^{-}$for otherwise there is no copy of $K_{2,2}$ between $N\left(z_{1}\right)$ and $N(c)$. Thus for each $z_{i}, z_{j} \in A_{2}$, we have $z_{i} z_{j} \notin E$. Since $z_{i}, z_{j} \in A_{2}$, we have $N\left(c_{i}\right) \cap V_{2}=N\left(c_{j}\right) \cap V_{2}=$ $\left\{x_{11}, x_{12}\right\}$ and there exist $s, t \in[2]$ such that $x_{i s} \notin\left\{x_{11}, x_{12}\right\}$ and $x_{j t} \notin\left\{x_{11}, x_{12}\right\}$. If the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 2 or Type 3, then $N\left(c_{j}\right) \cap V_{2}=\left\{x_{i 1}, x_{i 2}\right\}$ or $N\left(c_{i}\right) \cap V_{2}=\left\{x_{j 1}, x_{j 2}\right\}$, a contradiction. So the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 4 . This implies that C_{2} is a clique. For each two vertices $z_{i}, z_{j} \in A_{3}$, we have $N\left(z_{i}\right) \cap V_{2}=N\left(z_{j}\right) \cap V_{2}$ since $\left|N\left(c_{1}\right) \cap V_{2}\right|=2$. If
$z_{i} z_{j} \notin E$, then the $K_{2,2}$ between $N\left(z_{i}\right)$ and $N\left(z_{j}\right)$ is Type 4. If $z_{i} z_{j} \in E$, then $c_{i} c_{j} \in E$. This implies that B_{3} is a clique. Thus if $\left|A_{3}\right| \geq 3$, then for each $z \in A_{3}$, we have $c \notin V_{4}^{-}$.

Let $\left|B_{2}\right|=p,\left|B_{3} \backslash B_{2}\right|=q$ and $\left|B_{4} \backslash\left(B_{3} \cup B_{2}\right)\right|=r$. Note that $|B| \leq p+q+r+1$ and the equation $|B|=p+q+r+1$ implies that $c_{1} \notin C_{2} \cup C_{3}$. Note that

$$
\begin{equation*}
q_{4} \geq \sum_{v \in C \backslash V_{4}^{-}} h(v)+\sum_{v \in V_{4}^{-}} h(v)=\sum_{v \in C \backslash V_{4}^{-}} h(v)-0.5\left|V_{4}^{-}\right| . \tag{4}
\end{equation*}
$$

To prove $q_{4} \geq-2.5$, it suffices to prove $\sum_{v \in C \backslash V_{4}^{-}} h(v) \geq 0.5\left|V_{4}^{-}\right|-2.5$ by (4). Recall that B_{2} and B_{3} are two cliques of $G,\left(B_{2} \cup B_{4}\right) \cap V_{4}^{-}=\emptyset$ and $B_{3} \cap B_{4}^{-}=\emptyset$ if $\left|A_{3}\right| \geq 3$.
Case 1: $\left|B_{3}\right|=\left|A_{3}\right| \geq 3$.
In this case, we have $\left(B_{2} \cup B_{3} \cup B_{4}\right) \cap V_{4}^{-}=\emptyset$. Thus $\sum_{v \in B \backslash V_{4}^{-}} h(v)=\sum_{v \in B} h(v)$.
If $B_{2} \cap B_{3} \neq \emptyset$, then

$$
\begin{aligned}
\sum_{v \in B} h(v) & \geq 2|B|+e(G[B])+0.5 e\left(G\left[B, V_{4}^{-}\right]\right)-3|B| \\
& \geq 2|B|+\binom{p}{2}+\binom{q}{2}+q+r+0.5\left|V_{4}^{-}\right|-3|B| \\
& =\binom{p}{2}+\binom{q}{2}+q+r+0.5\left|V_{4}^{-}\right|-|B| \\
& \geq \max \{0, p-1\}+\max \{0, q-1\}+q+r+0.5\left|V_{4}^{-}\right|-(p+q+r+1) \\
& \geq 0.5\left|V_{4}^{-}\right|-2 .
\end{aligned}
$$

If $B_{2} \cap B_{3}=\emptyset$, then $q \geq 3$ and

$$
\begin{aligned}
\sum_{v \in B} h(v) & \geq 2|B|+e(G[B])+0.5 e\left(G\left[B, V_{4}^{-}\right]\right)-3|B| \\
& \geq 2|B|+\binom{p}{2}+\binom{q}{2}+r+0.5\left|V_{4}^{-}\right|-3|B| \\
& =\binom{p}{2}+\binom{q}{2}+r+0.5\left|V_{4}^{-}\right|-(p+q+r+1) \\
& \geq p-1+q+r+0.5\left|V_{4}^{-}\right|-(p+q+r+1) \\
& =0.5\left|V_{4}^{-}\right|-2 .
\end{aligned}
$$

Case 2: $\left|A_{3}\right| \leq 2$ and $\left|A_{2}\right|=p \geq 3$.

$$
\begin{aligned}
\sum_{v \in B \backslash V_{4}^{-}} h(v) & \geq \sum_{v \in B^{\prime}} h(v) \geq 2\left|B^{\prime}\right|+e\left(G\left[B^{\prime}\right]\right)+0.5 e\left(G\left[B^{\prime}, V_{4}^{-}\right]\right)-3\left|B^{\prime}\right| \\
& \geq 2\left|B^{\prime}\right|+\binom{p}{2}+\left|B_{4} \backslash B_{2}\right|+0.5\left(\left|V_{4}^{-}\right|-2\right)-3\left|B^{\prime}\right| \\
& \geq\binom{ p}{2}+\left|B_{4} \backslash B_{2}\right|+0.5\left|V_{4}^{-}\right|-1-\left(p+\left|B_{4} \backslash B_{2}\right|+1\right) \\
& \geq\binom{ p}{2}-p+0.5\left|V_{4}^{-}\right|-2 \\
& \geq 0.5\left|V_{4}^{-}\right|-2 .
\end{aligned}
$$

Case 3: $\left|A_{2}\right| \leq 2$ and $\left|A_{3}\right| \leq 2$.
Note that $\left(\left\{c_{1}\right\} \cup B_{4}\right) \cap\left(\left\{z_{1}\right\} \cup A_{4}\right)=\emptyset$. We have

$$
\begin{align*}
\sum_{v \in\left\{c_{1}\right\} \cup B_{4}} h(v) & \geq 2\left(\left|B_{4}\right|+1\right)+e\left(G\left[\left\{c_{1}\right\} \cup B_{4}\right]\right)+0.5 e\left(G\left[\left\{c_{1}\right\} \cup B_{4},\left\{z_{1}\right\} \cup A_{4}\right]\right)-3\left(\left|B_{4}\right|+1\right) \\
& \geq 2\left(\left|B_{4}\right|+1\right)+\left|B_{4}\right|+0.5\left(\left|A_{4}\right|+1\right)-3\left(\left|B_{4}\right|+1\right)=0.5\left(\left|A_{4}\right|-1\right) . \tag{5}
\end{align*}
$$

Then

$$
\begin{aligned}
q_{4} & \geq \sum_{v \in\left\{c_{1}\right\} \cup B_{4}} h(v)+\sum_{v \in V_{4}^{-}} h(v) \\
& \geq 0.5\left(\left|A_{4}\right|-1\right)-0.5\left(\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right|+1\right)=-0.5\left(\left|A_{2}\right|+\left|A_{3}\right|\right)-1 .
\end{aligned}
$$

Observe that $q_{4} \geq-2.5$ when $\left|A_{2}\right|+\left|A_{3}\right| \leq 3$. Thus we just need to consider the case $\left|A_{2}\right|=\left|A_{3}\right|=2$.
Note that $B^{\prime} \cap V_{4}^{-}=\emptyset$. Suppose $B_{2} \cap\left(\left\{c_{1}\right\} \cup B_{4}\right) \neq \emptyset$. Then $G\left[B^{\prime}\right]$ is a connected graph, and so $e\left(G\left[B^{\prime}\right]\right) \geq\left|B^{\prime}\right|-1$. We see

$$
\begin{aligned}
\sum_{v \in B \backslash V_{4}^{-}} h(v) \geq \sum_{v \in B^{\prime}} h(v) & \geq 2\left|B^{\prime}\right|+e\left(G\left[B^{\prime}\right]\right)+0.5 e\left(G\left[B^{\prime}, V_{4}^{-} \backslash A_{3}\right]\right)-3\left|B^{\prime}\right| \\
& \geq e\left(G\left[B^{\prime}\right]\right)-\left|B^{\prime}\right|+0.5\left(\left|V_{4}^{-}\right|-2\right) \\
& \geq\left|B^{\prime}\right|-1-\left|B^{\prime}\right|+0.5\left|V_{4}^{-}\right|-1 \\
& \geq 0.5\left|V_{4}^{-}\right|-2 .
\end{aligned}
$$

Suppose $B_{2} \cap\left(\left\{c_{1}\right\} \cup B_{4}\right)=\emptyset$. Let $B_{2}=\left\{c_{2}, c_{3}\right\}$. If $h\left(c_{2}\right)>0$ or $h\left(c_{3}\right)>0$, by (5), then

$$
\begin{aligned}
q_{4} & \geq \sum_{v \in\left\{c_{1}\right\} \cup B_{4}} h(v)+\sum_{v \in B_{2}} h(v)+\sum_{v \in V_{4}^{-}} h(v) \\
& \geq 0.5\left(\left|A_{4}\right|-1\right)+0.5-0.5\left(1+4+\left|A_{4}\right|\right)=-2.5 .
\end{aligned}
$$

If $h\left(c_{2}\right)=h\left(c_{3}\right)=0$, then $N\left(c_{2}\right)=\left\{x_{11}, x_{12}, c_{3}, z_{2}\right\}$ and $N\left(c_{3}\right)=\left\{x_{11}, x_{12}, c_{2}, z_{3}\right\}$. Since $z_{1} c_{2} \notin E$, the $K_{2,2}$ between $N\left(z_{1}\right)$ and $N\left(c_{2}\right)$ must be Type 4 , which contradicts $c_{3} c_{1} \notin E$.

In a conclusion, $q_{4} \geq-2.5$ and so $e(G) \geq 3 n-9$. This completes the proof of the lower bound on $\operatorname{sat}_{2}\left(n, K_{3,3}\right)$ for ≥ 9.

3.2.2 $\quad \delta(G)=5$

We prove $\operatorname{sat}_{5}\left(n, K_{3,3}\right) \geq 3 n-9$ for $n \geq 9$ in this part. Since $\delta(G)=5$, we have $e(G) \geq 2.5 n$. Then $e(G) \geq 3 n-9$ when $n \leq 19$. Thus we assume $n \geq 20$ in the following.

We define a new function g as follows.

- For $x \in V_{2}$, let $g(x)=\left|N(x) \cap V_{1}\right|+0.5\left|N(x) \cap\left(V_{2} \cup V_{3}\right)\right|+0.25\left|N(x) \cap V_{4}\right|-3$.
- For $x \in V_{3}$, let $g(x)=\left|N(x) \cap V_{1}\right|+0.5\left|N(x) \cap\left(V_{2} \cup V_{3} \cup V_{4}\right)\right|-3$.
- For $x \in V_{4}$, let $g(x)=0.75\left|N(x) \cap V_{2}\right|+0.5\left|N(x) \cap\left(V_{3} \cup V_{4}\right)\right|-3$.

Observe that

$$
\begin{align*}
e(G)= & e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right)+e\left(G\left[V_{3}\right]\right)+e\left(G\left[V_{1}, V_{3}\right]\right)+e\left(G\left[V_{2}, V_{3}\right]\right)+e\left(G\left[V_{4}\right]\right) \\
& +e\left(G\left[V_{4}, V_{2} \cup V_{3}\right]\right) \\
= & e\left(G\left[V_{1}\right]\right)+3\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)+\sum_{x \in V \backslash V_{1}} g(x) \\
= & e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+\sum_{x \in V \backslash V_{1}} g(x) . \tag{6}
\end{align*}
$$

Note that $\delta(G)=5$. Then $g(x) \geq-0.25$ for each $x \in V_{2}$ because $\left|N(x) \cap V_{1}\right| \geq 2 ; g(x) \geq 0$ for each $x \in V_{3}$ because $\left|N(x) \cap V_{1}\right|=1 ; g(x) \geq 0$ for each $x \in V_{4}$ because $\left|N(x) \cap V_{2}\right| \geq 2$. If there exists a vertex $x_{0} \in V_{2}$ such that $g\left(x_{0}\right)<0$, then $g\left(x_{0}\right)=-0.25, d\left(x_{0}\right)=5, N\left(x_{0}\right) \cap\left(V_{2} \cup V_{3}\right)=\emptyset$, $\left|N\left(x_{0}\right) \cap V_{1}\right|=2$ and $\left|N\left(x_{0}\right) \cap V_{4}\right|=3$. We may assume that $N\left(x_{0}\right)=\left\{a_{i}, a_{j}, z_{1}, z_{2}, z_{3}\right\}$, where $i, j \in[5], i \neq j$ and $\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq V_{4}$. Since $a x_{0} \notin E(G)$, Proposition 3.1(ii) implies that there is a copy of $K_{2,2}$ in $G\left[V_{1} \backslash\{a\}\right]$. Let $s=1$ if $a_{i} a_{j} \in E$ and $s=0$ if $a_{i} a_{j} \notin E$. Thus $e\left(G\left[V_{1} \backslash\{a\}\right]\right) \geq 4+s$. But $e\left(G\left[N\left(x_{0}\right)\right]\right) \leq 3+s$ because $N\left(z_{i}\right) \cap V_{1}=\emptyset$ for each $i \in[3]$, which contradicts the minimality of $e(G[N(a)])$. Hence, $g(x) \geq 0$ for each $x \in V \backslash V_{1}$ and so $\sum_{x \in V \backslash V_{1}} g(x) \geq 0$. When $e\left(G\left[V_{1}\right]\right) \geq 9$, by (6), we have $e(G) \geq 3 n-9$. Thus we next consider $e\left(G\left[V_{1}\right]\right) \leq 8$. Note that $\left|N(x) \cap V_{2}\right| \geq 1$ for each $x \in V_{2}$ when $e\left(G\left[V_{1}\right]\right) \leq 8$. The following discussion is split into three cases below.

Case 1: $e\left(G\left[V_{1}\right]\right)=8$.
If $\sum_{x \in V \backslash V_{1}} g(x)>0$, then $e(G)=3 n-10+\sum_{x \in V \backslash V_{1}} g(x)>3 n-10$ by (6) and so $e(G) \geq 3 n-9$ because $e(G)$ is an integer. Next we prove $\sum_{x \in V \backslash V_{1}} g(x)>0$. If there exists a vertex $x \in V_{2}$ with $\left|N(x) \cap V_{1}\right| \geq 3$, then $g(x)>0$ and so $\sum_{x \in V \backslash V_{1}} g(x)>0$. So we may assume that $\left|N(x) \cap V_{1}\right|=2$ for each $x \in V_{2}$. Since $e\left(G\left[V_{1} \backslash\{a\}\right]\right)=3$, there is a vertex a_{i} such that $N\left(a_{i}\right) \cap N(a)=\emptyset$ or $N\left(a_{i}\right) \cap N(a)=\left\{a_{j}\right\}$ with $N\left(a_{j}\right) \cap N(a)=\left\{a_{i}\right\}$, where $i, j \in[5]$ and $i \neq j$. We denote such a vertex by a_{1}. There is a vertex a_{k} such that $a_{1} a_{k} \notin E$ for $k \in[5]$ and $k \neq 1$. Since $a_{1} a_{k} \notin E$, by Proposition 3.1(i), $N\left(a_{1}\right) \cap\left(V_{2} \cup V_{3}\right) \neq \emptyset$. Let $x \in N\left(a_{1}\right) \cap\left(V_{2} \cup V_{3}\right)$ and $x_{1} \in N(x) \cap V_{2}$. If $x \in V_{3}$, then $\left|N\left(x_{1}\right) \cap\left(V_{2} \cup V_{3}\right)\right| \geq 2$. If $x \in V_{2}$, by the choice of a_{1}, then we have $\left|N\left(x_{1}\right) \cap V_{2}\right| \geq 2$, else there is no $K_{2,2}$ between $N\left(x_{1}\right)$ and $N(a)$. So $g\left(x_{1}\right) \geq 0.25$, which implies $\sum_{x \in V \backslash V_{1}} g(x)>0$. Hence $e(G) \geq 3 n-9$.

Case 2: $e\left(G\left[V_{1}\right]\right)=7$ and there is a copy of $K_{1,2}$ in $G\left[V_{1} \backslash\{a\}\right]$.
We may assume that $E\left(G\left[V_{1} \backslash\{a\}\right]\right)=\left\{a_{1} a_{2}, a_{1} a_{3}\right\}$. If $\sum_{x \in V \backslash V_{1}} g(x)>1$, by (6), then

$$
e(G)=e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+\sum_{x \in V \backslash V_{1}} g(x)>7+3(n-6)+1=3 n-10 .
$$

Since $e(G)$ is an integer, $e(G) \geq 3 n-9$. Thus we just need to prove $\sum_{x \in V \backslash V_{1}} g(x)>1$. Let $V_{2}^{1}=$ $\left\{x \in V_{2}:\left|N(x) \cap V_{2}\right|=1\right\}$ and $V_{2}^{2}=\left\{x \in V_{2}:\left|N(x) \cap V_{2}\right| \geq 2\right\}$. Let $x \in V_{2}^{1}$ and $x x_{1} \in E\left(G\left[V_{2}\right]\right)$. Applying Proposition 3.1(i) to $a x \notin E(G)$, we have $x \in N\left(a_{1}\right)$ and $x_{1} \in N\left(a_{2}\right) \cap N\left(a_{3}\right)$. If $x_{1} \in V_{2}^{1}$, then $x_{1} \in N\left(a_{1}\right)$ and $x \in N\left(a_{2}\right) \cap N\left(a_{3}\right)$ by $x_{1} a \notin E(G)$. Thus $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq\left(N(x) \cap V_{1}\right) \cap$ $\left(N\left(x_{1}\right) \cap V_{1}\right)$. There is a copy of $K_{3,3}$ in G, that is $\left\{a, x, x_{1}\right\} \sim\left\{a_{1}, a_{2}, a_{3}\right\}$, a contradiction. This implies that $e\left(G\left[V_{2}^{1}\right]\right)=0, V_{2}^{2} \neq \emptyset$ and $\left|V_{2}\right| \geq 3$. Since $a_{4} a_{5} \notin E$, there is a copy of $K_{2,2}$ between $N\left(a_{4}\right)$ and $N\left(a_{5}\right)$, say $\left\{x_{41}, x_{42}\right\} \sim\left\{x_{51}, x_{52}\right\}$. Notice that $N\left(a_{4}\right) \cap V_{1}=N\left(a_{5}\right) \cap V_{1}=\{a\}$. Thus $\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \subseteq V_{2} \cup V_{3}$. For each $y \in\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \cap V_{3}$, by Proposition 3.1(i), then $\left|N(y) \cap V_{2}\right| \geq 2$. By the definition of g-function, for each $x \in V_{2}$, we have

$$
\begin{aligned}
g(x) & =\left|N(x) \cap V_{1}\right|+0.25\left|N(x) \cap\left(V_{2} \cup V_{3} \cup V_{4}\right)\right|+0.25\left|N(x) \cap\left(V_{2} \cup V_{3}\right)\right|-3 \\
& =\left|N(x) \cap V_{1}\right|+0.25\left|N(x) \cap\left(V_{2} \cup V_{3} \cup V_{4}\right)\right|+0.25\left|N(x) \cap V_{2}\right|-3+0.25\left|N(x) \cap V_{3}\right| .
\end{aligned}
$$

If $x \in V_{2}^{1}$, then

$$
g(x) \geq 2+0.25 \times 3+0.25 \times 1-3+0.25\left|N(x) \cap V_{3}\right|=0.25\left|N(x) \cap V_{3}\right| .
$$

If $x \in V_{2}^{2}$, then

$$
g(x) \geq 2+0.25 \times 3+0.25 \times 2-3+0.25\left|N(x) \cap V_{3}\right|=0.25+0.25\left|N(x) \cap V_{3}\right| .
$$

If $\left|N(x) \cap V_{1}\right| \geq 3$, then

$$
g(x) \geq 3+0.25 \times 2+0.25 \times 1-3+0.25\left|N(x) \cap V_{3}\right|=0.75+0.25\left|N(x) \cap V_{3}\right| .
$$

Suppose $\left|\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \cap V_{3}\right| \geq 2$. Then $e\left(G\left[V_{2}, V_{3}\right]\right) \geq 2\left|\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \cap V_{3}\right| \geq 4$. Note that $V_{2}^{2} \neq \emptyset$. Thus

$$
\sum_{x \in V \backslash V_{1}} g(x) \geq \sum_{x \in V_{2}} g(x) \geq 0.25+\sum_{x \in V_{2}} 0.25\left|N(x) \cap V_{3}\right|=0.25+0.25 e\left(G\left[V_{2}, V_{3}\right]\right) \geq 1.25 .
$$

Suppose $\left|\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \cap V_{3}\right|=1$, say $x_{41} \in V_{3}$. Then $\left\{x_{42}, x_{51}, x_{52}\right\} \subseteq V_{2}$ and $x_{42} \in V_{2}^{2}$. We see $\left\{x_{51}, x_{52}\right\} \subseteq V_{2}^{2}$ or $x_{42} \in N\left(a_{2}\right) \cap N\left(a_{3}\right)$. Note that $\left|N\left(x_{42}\right) \cap V_{1}\right| \geq 3$ when $x_{42} \in N\left(a_{2}\right) \cap N\left(a_{3}\right)$. Thus

$$
\sum_{x \in V \backslash V_{1}} g(x) \geq \sum_{x \in V_{2}} g(x) \geq 0.75+\sum_{x \in V_{2}} 0.25\left|N(x) \cap V_{3}\right|=0.75+0.25 e\left(G\left[V_{2}, V_{3}\right]\right) \geq 1.25
$$

It remains to consider the case $\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \subseteq V_{2}$, that is $\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \subseteq V_{2}^{2}$. If $V_{3} \neq \emptyset$, then $e\left(G\left[V_{2}, V_{3}\right]\right) \geq 1$ and

$$
\sum_{x \in V \backslash V_{1}} g(x) \geq \sum_{x \in V_{2}} g(x) \geq 0.25\left|V_{2}^{2}\right|+\sum_{x \in V_{2}} 0.25\left|N(x) \cap V_{3}\right| \geq 1+0.25 e\left(G\left[V_{2}, V_{3}\right]\right) \geq 1.25 .
$$

If $\left|N(x) \cap V_{1}\right| \geq 3$ for some $x \in V_{2}$, then

$$
\sum_{x \in V \backslash V_{1}} g(x) \geq \sum_{x \in V_{2}} g(x) \geq 0.75+0.25\left(\left|V_{2}^{2}\right|-1\right)+\sum_{x \in V_{2}} 0.25\left|N(x) \cap V_{3}\right| \geq 1.5 .
$$

Next we assume that $\left|N(x) \cap V_{1}\right|=2$ for each $x \in V_{2}$ and $\left|V_{3}\right|=0$. Note that for each $x \in V_{2}^{1}$, let $x x_{1} \in E\left(G\left[V_{2}\right]\right)$, we have $x_{1} \in N\left(a_{2}\right) \cap N\left(a_{3}\right)$. Thus $x_{1} \notin\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\}$. If $\left|V_{2}\right| \geq 5$, then $V_{2}^{2} \backslash\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\} \neq \emptyset$. Thus $\left|V_{2}^{2}\right| \geq 5$ and $\sum_{x \in V \backslash V_{1}} g(x) \geq 1.25$. If $\left|V_{2}\right| \leq 4$, that is $V_{2}=\left\{x_{41}, x_{42}, x_{51}, x_{52}\right\}$, then we have $\left|V_{4}\right| \geq n-\left|V_{2}\right|-\left|V_{3}\right|-6=n-10$ because $\left|V_{3}\right|=0$. Note that $n \geq 20$. Thus

$$
\begin{aligned}
e(G) & =e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1} \cup V_{4}, V_{2}\right]\right)+e\left(G\left[V_{4}\right]\right) \\
& \geq 7+4+8+2\left|V_{4}\right|+\frac{3\left|V_{4}\right|}{2}>3 n-9
\end{aligned}
$$

Case 3: $e\left(G\left[V_{1}\right]\right)=7$ and there is no copy of $K_{1,2}$ in $G\left[V_{1} \backslash\{a\}\right]$ or $5 \leq e\left(G\left[V_{1}\right]\right) \leq 6$.
In this case, we define a new function g^{\prime} as follows.

- For $x \in V_{2}$, let $g^{\prime}(x)=\left|N(x) \cap V_{1}\right|+0.5\left|N(x) \cap V_{2}\right|-3$.
- For $x \in V_{3} \cup V_{4}$, let $g^{\prime}(x)=\left|N(x) \cap\left(V_{1} \cup V_{2}\right)\right|+0.5\left|N(x) \cap\left(V_{3} \cup V_{4}\right)\right|-3$.

We see

$$
\begin{align*}
e(G)= & e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right)+e\left(G\left[V_{1}, V_{2}\right]\right)+e\left(G\left[V_{3}\right]\right)+e\left(G\left[V_{1}, V_{3}\right]\right)+e\left(G\left[V_{2}, V_{3}\right]\right)+e\left(G\left[V_{4}\right]\right) \\
& +e\left(G\left[V_{4}, V_{2} \cup V_{3}\right]\right) \\
= & e\left(G\left[V_{1}\right]\right)+3\left(\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{4}\right|\right)+\sum_{x \in V \backslash V_{1}} g^{\prime}(x) \\
= & e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+\sum_{x \in V \backslash V_{1}} g^{\prime}(x) . \tag{7}
\end{align*}
$$

For each $x \in V_{2}$, by Proposition 3.1(iv), $\left|N(x) \cap V_{2}\right| \geq 2$. Thus $g(x) \geq 0.25$ because $d(x) \geq 5$. It follows that $\sum_{x \in V \backslash V_{1}} g(x) \geq 0.25\left|V_{2}\right|$. It suffices to consider the following two subcases.
Subcase 3.1: $\left|V_{2}\right| \geq 13$ or $\left|V_{3} \cup V_{4}\right| \geq 7$
Suppose $\left|V_{2}\right| \geq 13$. Then

$$
e(G)=e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+\sum_{x \in V \backslash V_{1}} g(x) \geq 5+3 n-18+0.25\left|V_{2}\right| \geq 3 n-9.75
$$

and so $e(G) \geq 3 n-9$ because $e(G)$ is an integer.
Suppose $\left|V_{3} \cup V_{4}\right| \geq 7$. By Proposition 3.1(iv), $\left|N(x) \cap V_{2}\right| \geq 2$ for each $x \in V \backslash V_{1}$. Thus $g^{\prime}(x) \geq 0$ for each $x \in V_{2}, g^{\prime}(x) \geq 1$ for each $x \in V_{3}$, and $g^{\prime}(x) \geq 0.5$ for each $x \in V_{4}$. It follows that

$$
e(G)=e\left(G\left[V_{1}\right]\right)+3\left(n-\left|V_{1}\right|\right)+\sum_{x \in V \backslash V_{1}} g^{\prime}(x) \geq 5+3 n-18+0.5\left|V_{3} \cup V_{4}\right| \geq 3 n-9.5 .
$$

Since $e(G)$ is an integer, $e(G) \geq 3 n-9$.
Subcase 3.2: $\left|V_{2}\right| \leq 12$ or $\left|V_{3} \cup V_{4}\right| \leq 6$
Since $n \geq 20,\left|V_{3} \cup V_{4}\right| \geq 2$. We first prove the following claim.
Claim 4 If there is no copy of $K_{1,2}$ in $G\left[V_{1} \backslash\{a\}\right]$ and $\left|V_{3} \cup V_{4}\right| \geq 2$, then $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 2$. In particular, if $\left|V_{3}\right| \geq 1$ or $\left|N(z) \cap V_{2}\right| \geq 3$ for some $z \in V_{4}$, then $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 3$.

Proof. By the definition of g^{\prime}-function and $\delta(G)=5$, we have for each $x \in V_{3}, g^{\prime}(x) \geq 1$ and for each $x \in V_{4}, g^{\prime}(x) \geq 0.5$. When $\left|V_{3} \cup V_{4}\right| \geq 4, \sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 2$. When $2 \leq\left|V_{3} \cup V_{4}\right| \leq 3$, for each $x \in V_{3} \cup V_{4}$, we have $\left|N(x) \cap\left(V_{1} \cup V_{2}\right)\right| \geq 5-\left(\left|V_{3} \cup V_{4}\right|-1\right)$. Thus

$$
g^{\prime}(x) \geq\left(6-\left|V_{3} \cup V_{4}\right|\right)+0.5\left(\left|V_{3} \cup V_{4}\right|-1\right)-3=2.5-0.5\left(\left|V_{3} \cup V_{4}\right|\right.
$$

and

$$
\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq\left(2.5-0.5\left(\left|V_{3} \cup V_{4}\right|\right)\right)\left|V_{3} \cup V_{4}\right| \geq 3 .
$$

Next we assume that $\left|V_{3}\right| \geq 1$ or $\left|N(z) \cap V_{2}\right| \geq 3$ for some $z \in V_{4}$. To prove $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 3$, it suffices to consider the case $\left|V_{3} \cup V_{4}\right| \geq 4$ by the above discussion. If $\left|V_{3} \cup V_{4}\right| \geq 5$ or $\left|V_{3}\right| \geq 2$, then $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 3$. Suppose $\left|V_{3} \cup V_{4}\right|=4$ and $\left|V_{3}\right| \leq 1$. Let $V_{3} \cup V_{4}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq V_{4}$. Let $y_{4} \in V_{3}$ or $\left|N\left(y_{4}\right) \cap V_{2}\right| \geq 3$ when $y_{4} \in V_{4}$. If $g^{\prime}\left(y_{i}\right) \geq 1$ for some $i \in[3]$, then $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 3$. So we assume $g^{\prime}\left(y_{i}\right)=0.5$ for each $i \in[3]$, then we have $\left|N\left(y_{i}\right) \cap\left(V_{3} \cup V_{4}\right)\right|=3$. Thus $G\left[\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]$ is a clique. It follows that $g^{\prime}\left(y_{4}\right) \geq 1.5$ and $\sum_{x \in V_{3} \cup V_{4}} g^{\prime}(x) \geq 3$.

Since $\left|V_{3} \cup V_{4}\right| \geq 2, \sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 2$ by Claim 4. When $e\left(G\left[V_{1}\right]\right) \geq 7$, by inequality (7), $e(G) \geq 3 n-9$. Now we consider the case $e\left(G\left[V_{1}\right]\right)=6$. If we can show $\sum_{v \in V_{2}} g^{\prime}(v)>0$ or $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v)>2$, by Claim 4 and (7), then $e(G)>3 n-10$ and so $e(G) \geq 3 n-9$. If there exists a vertex $u \in V_{2}$ such that $\left|N(u) \cap V_{1}\right| \geq 3$, then $g^{\prime}(u) \geq 1$ and so $\sum_{v \in V_{2}} g^{\prime}(v)>0$. If $V_{3} \neq \emptyset$, then $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3$ by Claim 4. Thus we may assume that $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2}$ and $V_{3}=\emptyset$. We choose a vertex $x \in V_{2}$. Without loss generality, suppose $x \in N\left(a_{1}\right) \cap N\left(a_{2}\right)$. Since $x a_{i} \notin E$ for each $i \in\{3,4,5\}$, there is a copy of $K_{2,2}$ between $N\left(a_{i}\right)$ and $N(x)$, say $\left\{a_{i 1}, a_{i 2}\right\} \sim\left\{x_{i 1}, x_{i 2}\right\}$. Note that there is no copy of $K_{1,2}$ in $G\left[V_{1} \backslash\{a\}\right]$. Thus $\left\{a_{i 1}, a_{i 2}\right\} \cap V_{2} \neq \emptyset$ for each $i \in\{3,4,5\}$. Recall that $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2}$ and $V_{3}=\emptyset$. We have $\left\{x_{i 1}, x_{i 2}\right\} \cap\left(V_{2} \cup V_{4}\right) \neq \emptyset$ for each $i \in\{3,4,5\}$. By Proposition 3.1(ii), we have
$\left|N(w) \cap V_{2}\right| \geq 3$ for each $w \in\left(\bigcup_{i \in\{3,4,5\}}\left\{x_{i 1}, x_{i 2}\right\}\right) \cap\left(V_{2} \cup V_{4}\right)$. Thus $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3$ by Claim 4 or $\sum_{v \in V_{2}} g^{\prime}(v) \geq 0.5$.

Next we consider $e\left(G\left[V_{1}\right]\right)=5$. If $\sum_{v \in V \backslash V_{1}} g^{\prime}(v)>3$, by (7), then $e(G)>3 n-10$ and so $e(G) \geq 3 n-9$. Thus we prove $\sum_{v \in V \backslash V_{1}} g^{\prime}(v)>3$ in the following. Recall $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 2$. If there is a vertex $x \in V_{2}$ with $\left|N(x) \cap V_{1}\right| \geq 4$, then $g^{\prime}(x) \geq 2$ and

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(x)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 4 .
$$

If there are two different vertices $x, y \in V_{2}$ with $\left|N(x) \cap V_{1}\right|=\left|N(y) \cap V_{1}\right|=3$, then $g^{\prime}(x) \geq 1$, $g^{\prime}(y) \geq 1$ and

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(x)+g^{\prime}(y)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 4 .
$$

Suppose $x \in V_{2}$ with $\left|N(x) \cap V_{1}\right|=3$, and $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2} \backslash\{x\}$. Let $N(x) \cap V_{1}=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $x a_{4} \notin E$, there is a copy of $K_{2,2}$ between $N(x)$ and $N\left(a_{4}\right)$, say $\left\{x_{11}, x_{12}\right\} \sim$ $\left\{a_{41}, a_{42}\right\}$. If $V_{3} \neq \emptyset$, by Claim 4, then $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3$. Thus

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(x)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 4 .
$$

So we may assume that $V_{3}=\emptyset$. Then $\left\{a_{41}, a_{42}\right\} \subseteq V_{2}$ and $\left\{x_{11}, x_{12}\right\} \cap\left(V_{2} \cup V_{4}\right) \neq \emptyset$. Let $w \in\left\{x_{11}, x_{12}\right\} \cap\left(V_{2} \cup V_{4}\right)$. By Proposition 3.1(ii), $\left|N(w) \cap V_{2}\right| \geq 3$. Thus $g^{\prime}(w) \geq 0.5$. If $w \in V_{2}$, then

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(x)+g^{\prime}(w)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3.5 .
$$

If $w \in V_{4}$, by Claim 4, then $\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq 4$.
Suppose $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2}$. Since $\left|V_{3} \cup V_{4}\right| \leq 6$ and $n \geq 20,\left|V_{2}\right| \geq 8$. Recall the definition of g-function, for each $v \in V_{2}$, we have $g(v) \geq 0.25$ and if $g(v)>0.25$, then $g(v) \geq 0.5$. We see there exists a vertex $x \in V_{2}$ such that $g(x)=0.25$, otherwise, $g(v) \geq 0.5$ for each $v \in V_{2}$ and so $\sum_{v \in V_{2}} g(v) \geq 0.5\left|V_{2}\right| \geq 4$. By (6), $e(G) \geq 5+3(n-6)+4=3 n-9$. We choose such a vertex $x \in V_{2}$ such that $g(x)=0.25$. Then $d(x)=5$ and let $N(x)=\left\{a_{1}, a_{2}, x_{11}, x_{12}, z\right\}$, where $\left\{a_{1}, a_{2}\right\} \subseteq V_{1}$, $\left\{x_{11}, x_{12}\right\} \subseteq V_{2}$ and $z \in V_{4}$. Note that $x a_{j} \notin E$ for each $j \in\{3,4,5\}$. By Proposition 3.1(i), there is a copy of $K_{2,2}$ between $N(x)$ and $N\left(a_{j}\right)$, say $\left\{x_{j 1}, x_{j 2}\right\} \sim\left\{a_{j 1}, a_{j 2}\right\}$. We see $\left\{a_{j 1}, a_{j 2}\right\} \subseteq V_{2} \cup V_{3}$ for each $j \in\{3,4,5\}$. Since $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2},\left\{x_{j 1}, x_{j 2}\right\} \nsubseteq V_{1}$ for each $j \in\{3,4,5\}$. Otherwise, $\left\{x_{j 1}, x_{j 2}, a_{j}\right\} \subseteq N\left(a_{j 1}\right) \cap V_{1}$, a contradiction.

Suppose $V_{3} \neq \emptyset$. Then we have $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3$ by Claim 4. We have $\left|V_{3}\right| \leq 3$, otherwise $\sum_{v \in V_{3}} g^{\prime}(v) \geq 4$ and we are done. Note that $\left\{a_{j 1}, a_{j 2}\right\} \subseteq V_{2} \cup V_{3}$ for any $j \in\{3,4,5\}$. When $\left|\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\}\right| \leq 5$, we may assume $a_{31}=a_{41}$. When $\left|\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\}\right|=6$, we have $\left|\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\} \cap V_{2}\right| \geq 3$ because $\left|V_{3}\right| \leq 3$, so we may assume $\left\{a_{31}, a_{41}\right\} \subseteq \bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\} \cap$ V_{2}. In two cases, we have $\left\{a_{31}, a_{41}\right\} \subseteq V_{2}$. Let $k \in\{3,4\}$. If $\left\{x_{k 1}, x_{k 2}\right\} \cap V_{2} \neq \emptyset$, let $w \in$
$\left\{x_{k 1}, x_{k 2}\right\} \cap V_{2}$, then $\left\{x, a_{k 1}\right\} \subseteq N(w) \cap V_{2}$, Proposition 3.1(ii) implies that $\left|N(w) \cap V_{2}\right| \geq 3$ and so $g^{\prime}(w) \geq 0.5$. Thus

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(w)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3.5 .
$$

So we assume $\left\{x_{k 1}, x_{k 2}\right\} \cap V_{2}=\emptyset$. Note that $\left\{x_{k 1}, x_{k 2}\right\} \nsubseteq V_{1}$. Since $d(x)=5,\left\{x_{k 1}, x_{k 2}\right\}=\left\{a_{1}, z\right\}$ or $\left\{a_{2}, z\right\}$, and so $N\left(a_{k 1}\right) \cap N\left(a_{k 2}\right) \cap V_{1}=\left\{a_{k}, a_{\ell_{k}}\right\}$ for some $\ell_{k} \in[2]$. Then $\left\{x, a_{31}, a_{32}, a_{41}, a_{42}\right\} \subseteq$ $N(z) \cap V_{2}$. Note that $\left|N(v) \cap V_{1}\right|=2$ for any $v \in V_{2}$. Since $x \in V_{12},\left\{a_{31}, a_{32}\right\} \subseteq V_{1 \ell_{3}}$ and $\left\{a_{41}, a_{42}\right\} \subseteq V_{1 e_{4}},\left|\left\{x, a_{31}, a_{32}, a_{41}, a_{42}\right\}\right|=5$, which follows that $g^{\prime}(z) \geq 2$. Note that $V_{3} \neq \emptyset$ and $g^{\prime}(y) \geq 1$ for each $y \in V_{3}$ and $g^{\prime}(v) \geq 0.5$ for each $v \in V_{4}$. Recall $z \in V_{4}$ and $\left|V_{3} \cup V_{4}\right| \geq 2$. So $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v)>3$ when $\left|V_{3} \cup V_{4}\right| \geq 3$. If $\left|V_{3} \cup V_{4}\right|=2$, then $g^{\prime}(y)>1$ for $y \in V_{3}$ because $d(y) \geq 5$. Therefore $\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v)>3$.

It remains to consider $V_{3}=\emptyset$. Then $\left\{a_{j 1}, a_{j 2}\right\} \subseteq V_{2}$ for any $j \in\{3,4,5\}$. When $\left\{x_{j 1}, x_{j 2}\right\} \cap V_{2}=$ \emptyset for any $j \in\{3,4,5\}$, then $\left\{x_{j 1}, x_{j 2}\right\}=\left\{a_{1}, z\right\}$ or $\left\{a_{2}, z\right\}$. Note that $\left|N(v) \cap V_{1}\right|=2$ for each $v \in V_{2}$. Since $\left\{a_{j 1}, a_{j 2}\right\} \subseteq V_{j \ell_{j}}$ for $\ell_{j} \in[2],\left|\left(\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\}\right) \cup\{x\}\right|=7$. Thus $\left|N(z) \cap V_{2}\right| \geq 7$, which implies that $\sum_{v \in V_{2}} g^{\prime}(v) \geq 4$. When there exists $j \in\{3,4,5\}$ such that $\left\{x_{j 1}, x_{j 2}\right\} \cap V_{2} \neq \emptyset$, then $g^{\prime}(w) \geq 0.5$ for $w \in\left\{x_{j 1}, x_{j 2}\right\} \cap V_{2}$ because $\left|N(w) \cap V_{2}\right| \geq 3$ by Proposition 3.1(ii). In this case, we have $z \notin\left\{x_{j 1}, x_{j 2}\right\} \cap V_{4}$. Otherwise, Proposition 3.1(ii) implies $\left|N(z) \cap V_{2}\right| \geq 3$. By Claim 4 ,

$$
\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq g^{\prime}(w)+\sum_{v \in V_{3} \cup V_{4}} g^{\prime}(v) \geq 3.5 .
$$

Thus we are done. If $\left|N\left(x_{11}\right) \cap V_{2}\right|+\left|N\left(x_{12}\right) \cap V_{2}\right| \geq 7$, then we have
$g^{\prime}\left(x_{11}\right)+g^{\prime}\left(x_{12}\right)=e\left(G\left[\left\{x_{11}, x_{12}\right\}, V_{1}\right]\right)+0.5\left(e\left(G\left[\left\{x_{11}\right\}, V_{2}\right]\right)+e\left(G\left[\left\{x_{12}\right\}, V_{2}\right]\right)\right)-6 \geq 4+3.5-6=1.5$.
Thus $\sum_{v \in V \backslash V_{1}} g^{\prime}(v) \geq 3.5$, and we are done. So it suffices to prove $\left|N\left(x_{11}\right) \cap V_{2}\right|+\left|N\left(x_{12}\right) \cap V_{2}\right| \geq 7$ in the following. Since $z \notin\left\{x_{j 1}, x_{j 2}\right\}$, we have $\left\{x_{j 1}, x_{j 2}\right\} \cap V_{2} \neq \emptyset$ for any $j \in\{3,4,5\}$. Recall $N(x)=\left\{a_{1}, a_{2}, x_{11}, x_{12}, z\right\}$ and $x \in N\left(x_{11}\right) \cap N\left(x_{12}\right) \cap V_{12}$. Then $\left\{a_{31}, a_{32}, a_{41}, a_{42}, a_{51}, a_{52}\right\} \subseteq$ $N\left(x_{11}\right) \cup N\left(x_{12}\right)$. If $\left|\left\{a_{31}, a_{32}, a_{41}, a_{42}, a_{51}, a_{52}\right\}\right| \geq 5$, then

$$
\left|N\left(x_{11}\right) \cap V_{2}\right|+\left|N\left(x_{12}\right) \cap V_{2}\right|=\left|\left(N\left(x_{11}\right) \cup N\left(x_{12}\right)\right) \cap V_{2}\right|+\left|\left(N\left(x_{11}\right) \cap N\left(x_{12}\right)\right) \cap V_{2}\right| \geq 7 .
$$

Suppose that $\left|\left\{a_{31}, a_{32}, a_{41}, a_{42}, a_{51}, a_{52}\right\}\right| \leq 4$. Note that $\left|N(x) \cap V_{1}\right|=2$ for each $x \in V_{2}$. We obtain $\left|\left\{a_{31}, a_{32}, a_{41}, a_{42}, a_{51}, a_{52}\right\}\right| \geq 3$. When $\left\{x_{31}, x_{32}\right\} \cap V_{1} \neq \emptyset$, say $a_{\ell} \in\left\{x_{31}, x_{32}\right\}$ for some $\ell \in[2]$, then $\left\{a_{31}, a_{32}\right\} \subseteq V_{3 \ell}$ and $\left\{a_{31}, a_{32}\right\} \cap\left\{a_{k 1}, a_{k 2}\right\}=\emptyset$ for each $k \in\{4,5\}$. Since $\left|\left\{a_{31}, a_{32}, a_{41}, a_{42}, a_{51}, a_{52}\right\}\right| \leq 4$, we have $\left\{x_{k 1}, x_{k 2}\right\}=\left\{x_{11}, x_{12}\right\}$ for each $k \in\{4,5\}$, that is $\left|N\left(x_{11}\right) \cap N\left(x_{12}\right) \cap \bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\}\right| \geq 2$. Thus

$$
\begin{aligned}
\left|N\left(x_{11}\right) \cap V_{2}\right|+\left|N\left(x_{12}\right) \cap V_{2}\right| & =\left|\left(N\left(x_{11}\right) \cup N\left(x_{12}\right)\right) \cap V_{2}\right|+\left|\left(N\left(x_{11}\right) \cap N\left(x_{12}\right)\right) \cap V_{2}\right| \\
& \geq\left|\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\} \cup\{x\}\right|+3 \geq 7 .
\end{aligned}
$$

When $\left\{x_{j 1}, x_{j 2}\right\} \cap V_{1}=\emptyset$ for each $j \in\{3,4,5\}$, then $\left\{x_{j 1}, x_{j 2}\right\}=\left\{x_{11}, x_{12}\right\}$ for each $j \in\{3,4,5\}$ and $\bigcup_{j \in\{3,4,5\}}\left\{a_{j 1}, a_{j 2}\right\} \subseteq N\left(x_{11}\right) \cap N\left(x_{12}\right)$. By $\left|\bigcup_{j \in\{3,4,5\}}\left\{a_{i 1}, a_{i 2}\right\}\right| \geq 3$ and $x \notin \bigcup_{j \in\{3,4,5\}}\left\{a_{i 1}, a_{i 2}\right\}$, we have $\left|N\left(x_{11}\right) \cap V_{2}\right|+\left|N\left(x_{12}\right) \cap V_{2}\right| \geq 8$.

As a result, we have $e(G) \geq 3 n-9$ for $n \geq 9$ in each case and so $\operatorname{sat}_{5}\left(n, K_{3,3}\right) \geq 3 n-9$.
This completes the proof of Theorem 1.3.

4 Conclusion

Based on above results, we make the following conjecture, which proposes an exact value for $\operatorname{sat}\left(n, K_{3,3}\right)$.

Conjecture 4.1 For $n \geq 9$, $\operatorname{sat}\left(n, K_{3,3}\right)=3 n-9$.
By Theorem 1.2, $\operatorname{sat}\left(n, K_{3,3}\right) \leq 3 n-9$ for $n \geq 9$. To confirm Conjecture 4.1, it suffices to prove $\operatorname{sat}\left(n, K_{3,3}\right) \geq 3 n-9$ for $n \geq 9$. Let G be a $K_{3,3}$-saturated graph with n vertices and $n \geq 9$. Proposition 3.1(i) implies $\delta(G) \geq 2$. If $\delta(G) \geq 6$, then $e(G) \geq 3 n \geq 3 n-9$. Thus we only need to consider $2 \leq \delta(G) \leq 5$. We have proved $\operatorname{sat}_{\delta}\left(n, K_{3,3}\right) \geq 3 n-9$ when $\delta \in\{2,5\}$. Actually, for $\delta \in\{3,4\}$, we can also apply the method in this paper, but it is more complex and there are quite a few cases to consider.

Acknowledgments. Huang was partially supported by the National Natural Science Foundation of China (No. 12171256). Lei was partially supported by the National Natural Science Foundation of China (No. 12371351). Shi and Zhang were partially supported by the National Natural Science Foundation of China (No. 12161141006), the Natural Science Foundation of Tianjin (No. 20JCJQJC00090).

References

[1] T. Bohman, M. Fonoberova and O. Pikhurko, The saturation function of complete partite graphs, J. Combin. 1(2010), 149-170.
[2] G. Chen, R. Faudree and R. Gould, Saturation numbers of books, Electron. J. Combin. 15(2008), \# 118.
[3] Y. Chen, Minimum $K_{2,3}$-saturated graphs, J. Graph Theory $\mathbf{7 6 (4) (2 0 1 4) , 3 0 9 - 3 2 2 .}$
[4] P. Erdős, A. Hajnal and J. Moon, A problem in graph theory, Amer. Math. Monthly, 71(1964), 1107-1110.
[5] R. Gould and J. Schmitt, Minimum degree and the minimum size of K_{2}^{t}-saturated graphs, Discrete Math. 307(2007), 1108-1114.
[6] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10(1986), 203-210.
[7] L. Ollmann, $K_{2,2}$-saturated graphs with a minimal number of edges, in Combinatorics, Graph Theory and Computing, Proc. 3rd Southeast. Conf., Boca Raton, (Utilitas Math., Winnipeg), (1972), 367-392.
[8] O. Pikhurko, The minimum size of saturated hypergraphs, Combin. Probab. Comput. 8(1999), 483-492.
[9] O. Pikhurko and J. Schmitt, A note on minimum $K_{2,3}$-saturated graphs, Australas J Combin. 40(2008), 211-215.
[10] Z. Tuza, C_{4}-saturated graphs of minimum size, Acta Univ. Carolin. Math. Phys. 30(1989), 161-167.
[11] D. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.

[^0]: *The corresponding author.

