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Abstract

This paper gives some bounds for the vertex degree function
index Hf (G) in terms of the order and size of a graph G, where G
is a simple, finite and connected graph with minimum degree δ and
maximum degree ∆. Some families of graphs are also constructed
to show that the bounds can be achieved.

1 Introduction

Topological indices (or, chemical indices or graphical indices) play an im-

portant role in studying the structures and properties of molecules. There-

fore, a lot of papers and books for the extremal values and graphs of topo-

logical indices have been published. However, as one can see that the ex-

tremal graphs among many graph classes with respect to some topological

indices are the same or very similar, namely star or path, etc. Moreover,

mathematically the proof methods and techniques are also the same or very

similar. So, it is very worthy of finding a unified mathematical method to

study a set of topological indices, but not one by one separately. Recently,

this kind of approach started; see [4, 5, 7, 8] for examples.

https://doi.org/10.46793/match.90-1.175C
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In [9], Yao et al. introduced the vertex degree function index Hf (G).

Let f be a real value function defined on the vertices of a graph G, and

then sum up the values over all the vertices of G, i.e.

Hf (G) =
∑

v∈V (G)

f(dv). (1)

Some properties about the vertex degree function index have been studied,

see [2, 3, 5, 7, 8].

These studies mainly focus on simple, finite and connected graphs.

We will give some bounds for the vertex degree function index Hf (G) of

graphs with given size and order, as well as minimum degree and maximum

degree. We also construct families of graphs which achieve the bounds. As

a consequence, results in [1] can be seen as corollaries of ours.

2 Main results

Let G be a simple, finite and connected graph with minimum degree δ

and maximum degree ∆ = δ + k, and let size and order of G be m and n,

respectively.

We denote by nr as the number of vertices with degree r in G. Thus,

δ+k∑
i=δ

ni = n. (2)

By the definition of vertex degree function index and
∑n

i=1 d(vi) = 2m,

we have

Hf (G) =

δ+k∑
i=δ

nif(i), (3)

and
δ+k∑
i=δ

ini = 2m. (4)

Combining Eq.2 and 4, we obtain

nδ =
1

k
[(δ + k)n− 2m− (k − 1)nδ+1 − (k − 2)nδ+2 − · · · − nδ+k−1],
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and

nδ+k =
1

k
[2m− δn− nδ+1 − 2nδ+2 − · · · − (k − 1)nδ+k−1].

Substituting nδ and nδ+k into Eq. 3, we can get

Hf (G) =
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+

k−1∑
i=1

(f(δ + i)− k − i

k
f(δ)− i

k
f(δ + k))nδ+i.

For convenience, we denote

Γf (G) =

k−1∑
i=1

(f(δ + i)− k − i

k
f(δ)− i

k
f(δ + k))nδ+i,

gi = f(δ + i)− k − i

k
f(δ)− i

k
f(δ + k), i = 1, 2, . . . , k − 1.

Lemma 1. Let G be a graph with nδ+1+nδ+2+· · ·+nδ+k−1 ≥ k−1. If f is

a strictly monotone and strictly convex function, then Γf (G) < mini{gi}.

Proof. Firstly, all g′is are negative. Then

kf(δ + i)− (k − i)f(δ)− if(δ + k)

=(k − i)(f(δ + i)− f(δ)) + i(f(δ + i)− f(δ + k)).

Since f is a strictly convex function, gi is less than 0.

Secondly, we shall prove that tgj < gi <
gj
t for t ≥ k − 1 and i, j ∈

{1, 2, . . . , k − 1}. We distinguish the following cases.

Case 1. If i < j, then

k(tgi − gj)

=ti(f(δ + i)− f(δ + k)) + t(k − i)(f(δ + i)− f(δ))

− j(f(δ + j)− f(δ + k))− (k − j)(f(δ + j)− f(δ))

=(ti− j)(f(δ + j)− f(δ + k)) + [t(k − i)− (k − j)](f(δ + i)− f(δ))

+ [ti+ (k − j)](f(δ + i)− f(δ + j))
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=[t(k − i)− (k − j)]

i∑
t1=1

(f(δ + t1)− f(δ + t1 − 1))

+ [ti+ (k − j)]

j∑
t2=i+1

(f(δ + t2 − 1)− f(δ + t2))

+ (ti− j)

k∑
t3=j+1

(f(δ + t3 − 1)− f(δ + t3)).

If f is a strictly decreasing function, then for all t1 ∈ {1, 2, . . . , i}, t2 ∈
{i+ 1, i+ 2, . . . , j}, t3 ∈ {j + 1, j + 2, . . . , k}, we have

f(δ + t1)− f(δ + t1 − 1) < 0,

f(δ + t2 − 1)− f(δ + t2) > 0,

f(δ + t3 − 1)− f(δ + t3) > 0.

Since f is a strictly convex function, we have that for all t1 ∈ {1, 2, . . . , i}, t2
∈ {i+ 1, i+ 2, . . . , j}, t3 ∈ {j + 1, j + 2, . . . , k},

|f(δ+t1)−f(δ+t1−1)| > |f(δ+t2−1)−f(δ+t2)| > |f(δ+t3−1)−f(δ+t3)|.

Since t ≥ k − 1, the coefficients of the above three summations are all

nonnegative and

[t(k − i)− (k − j)]i = [ti+ (k − j)](j − i) + (ti− j)(k − j).

Thus, tgi − gj < 0.

If f is a strictly increasing function, then for all t1 ∈ {1, 2, . . . , i}, t2 ∈
{i+ 1, i+ 2, . . . , j}, t3 ∈ {j + 1, j + 2, . . . , k}, we have

f(δ + t1)− f(δ + t1 − 1) > 0,

f(δ + t2 − 1)− f(δ + t2) < 0,

f(δ + t3 − 1)− f(δ + t3) < 0.

Since f is a strictly convex function, we have that for all t1 ∈ {1, 2, . . . , i}, t2
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∈ {i+ 1, i+ 2, . . . , j}, t3 ∈ {j + 1, j + 2, . . . , k},

|f(δ+t1)−f(δ+t1−1)| < |f(δ+t2−1)−f(δ+t2)| < |f(δ+t3−1)−f(δ+t3)|.

Since t ≥ k − 1, the coefficients of the above three summations are all

nonnegative and

[t(k − i)− (k − j)]i = [ti+ (k − j)](j − i) + (ti− j)(k − j).

Thus, tgi − gj < 0.

Case 2. If i > j, then

k(tgi − gj)

=[t(k − i)− (k − j)]

j∑
t1=1

(f(δ + t1)− f(δ + t1 − 1))

+ [t(k − i) + j]

i∑
t2=j+1

(f(δ + t2)− f(δ + t2 − 1))

+ (ti− j)

k∑
t3=i+1

(f(δ + t3 − 1)− f(δ + t3)).

Now the proof is done similarly to Case 1. Consequently, we can deduce

Γf (G) =

k−1∑
i=1

(f(δ + i)− k − i

k
f(δ)− i

k
f(δ + k))nδ+i

≤(nδ+1 + nδ+2 + · · ·+ nδ+k−1)max
i

{gi}

≤(k − 1)max
i

{gi}

<min
i
{gi}.

Theorem 1. Let G be a graph of order n and size m with minimum degree

δ and maximum degree ∆ = δ + k, and let f be a strictly monotone and

strictly convex function.
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1 If nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≥ k − 1, then

Hf (G) <
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m+min

i
{gi}.

2 If 2 ≤ nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≤ k − 2, then

Hf (G) <
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+max{g1, gk−1}.

3 If nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≤ 1, then

Hf (G) =
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+

ginδ+i, if 2m− δn ≡ i (mod k), i = 1, 2, . . . , k − 1,

0, if 2m− δn ≡ 0 (mod k).

Moreover, the set of degrees of G is

{δ,∆, δ+i} and only one vertex has a degree δ+i for 2m−δn ≡ i (mod k),

{δ,∆} for 2m− δn ≡ 0 (mod k).

Proof.

1 If nδ+1 + nδ+2 + · · · + nδ+k−1 ≥ k − 1, then from Lemma 1 the result

follows obviously.

2 If 2 ≤ nδ+1 + nδ+2 + · · · + nδ+k−1 ≤ k − 2, we prove that maxi{gi} =

max{g1, gk−1}.
For i ∈ {1, 2, . . . , k − 2}, we have

k(gi − gi+1)

=k(f(δ + i)− f(δ)) + i(f(δ)− f(δ + k))

− k(f(δ + i+ 1)− f(δ))− (i+ 1)(f(δ)− f(δ + k))

=k(f(δ + i)− f(δ + i+ 1)) + (f(δ + k)− f(δ)).

Thus gi < gi+1 when f(δ+k)−f(δ)
k < f(δ+i+1)−f(δ+i)

1 , and gi ≥ gi+1 when
f(δ+k)−f(δ)

k ≥ f(δ+i+1)−f(δ+i)
1 .
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Since f is strictly convex function, we obtain that the maximum value

among all gi must be g1 or gk−1. Then

Γf (G) =

k−1∑
i=1

(f(δ + i)− k − i

k
f(δ)− i

k
f(δ + k))nδ+i

≤(nδ+1 + nδ+2 + · · ·+ nδ+k−1)max{gi}

≤2max{g1, gk−1}

<max{g1, gk−1}.

Thus,

Hf (G) <
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+max{g1, gk−1}.

3 If nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≤ 1, then by Eqs.2 and 4, we have

2m− δn ≡ nδ+1 + 2nδ+2 + · · ·+ (k − 1)nδ+k−1 (mod k).

Since nδ+1 + nδ+2 + · · · + nδ+k−1 ≤ 1, one can deduce that all n′
is are 0

but at most one is 1. Thus,

(nδ+1, nδ+2, . . . , nδ+k−1) =(0, . . . , 1ith, . . . , 0), if 2m− δn ≡ i (mod k),

(0, 0, . . . , 0), if 2m− δn ≡ 0 (mod k).

The proof is thus complete.

From the third part of the proof of Theorem 1, we can see that the

condition ‘f be a strictly monotone and strictly convex function’ is not

necessary for equality in 3 of Theorem 1.

Corollary. 1 Let G be a graph of order n and size m with minimum degree

δ and maximum degree ∆ = δ + k, and let f be a strictly monotone and
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strictly convex function. Then we have

Hf (G) ≤ 1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m,

and the equality holds if and only if the set of degrees of G is {δ,∆}.

Now we show how to construct a family of graphs which achieve the

bounds of Theorem 1. The two construction are inspired by [6].

Construction 1. For (nδ+1, nδ+2, . . . , nδ+k−1) = (0, 0, . . . , 0), we do

the following constructions:

(1) Input {n,m,∆, δ}. This quadruple should be graphical, i.e., there

exists a simple, connected graph with n vertices, m edges and the

set of degrees is {∆, δ}.

(2) Construct a complete n-partite graph H = H(V1, V2, . . . , Vn), such

that the order of Vi is ∆ for i ∈ {1, 2, . . . , 2m−δn
∆−δ } and the order of

Vi is δ for i ∈ { 2m−δn
∆−δ + 1, 2m−δn

∆−δ + 2, . . . , n}.

(3) Find all perfect matchings {M1,M2, . . . ,Mt} of H.

(4) For each matching Mi, construct a graph Gi with vertex set {v1, v2,
. . . , vn}, and if there are j edges between Vs and Vt in Mi, then

connect vs and vt by j edges. Then we obtain a family of graphs

{G1, G2, . . . , Gt}, which with n vertices, m edges and the set of de-

grees is {∆, δ}.

(5) Delete multigraphs, disconnected graphs and isomorphic graphs from

{G1, G2, . . . , Gt}. Then we obtain a family of simple, connected

graphs with n vertices, m edges and the set of degrees is {∆, δ}.

Construction 2. For (nδ+1, nδ+2, . . . , nδ+k−1) = (0, . . . , 1ith, . . . , 0),

we do the following constructions:

(1) Input {n,m,∆, δ, δ + i}. This quintuple should be graphical, i.e.,

there exists a simple, connected graph with n vertices, m edges, the

set of degrees is {∆, δ, δ + i} and only one vertex has a degree δ + i.
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(2) Construct a complete n-partite graph H = H(V1, V2, . . . , Vn), such

that the order of Vi is ∆ for i ∈ {1, 2, . . . , 2m−δn−i
∆−δ }, the order of

V 2m−δn−i
∆−δ +1 is δ + i and the order of Vi is δ for i ∈ { 2m−δn−i

∆−δ +

2, 2m−δn−i
∆−δ + 3, . . . , n}.

(3) Find all perfect matchings {M1,M2, . . . ,Mt} of H.

(4) For each matching Mi, construct a graph Gi with vertex set {v1, v2,
. . . , vn}, and if there are j edges between Vs and Vt in Mi, then

connect vs and vt by j edges. Then we obtain a family of graphs

{G1, G2, . . . , Gt}, which with n vertices, m edges, the set of degrees

is {∆, δ, δ + i} and only one vertex has a degree δ + i.

(5) Delete multigraphs, disconnected graphs and isomorphic graphs from

{G1, G2, . . . , Gt}. Then we obtain a family of simple, connected

graphs with n vertices, m edges, the set of degrees is {∆, δ, δ + i}
and only one vertex has a degree δ + i.

Corollary. 2 Let G be a tree with n vertices and maximum degree ∆ =

1 + k, and f be a strictly monotone and strictly convex function. Then

Hf (G) ≤ 1

k
[(1 + k)f(1)− f(1 + k)]n+

2

k
(f(1 + k)− f(1))(n− 1),

and the equality holds if and only if G is a graph constructed in Construc-

tion 1. Particularly, if ∆ = n− 1, then the equality holds if and only if G

is a star.

Corollary. 3 Let G be a tree with n vertices, and f be a strictly monotone

and strictly convex function. Then

Hf (G) ≤ (n− 1)f(1) + f(n− 1),

and the equality holds if and only if G is a star.

Proof. For convenience, we denote

h(∆) =
1

∆− 1
[∆f(1)− f(∆)]n+

2

∆− 1
(f(∆)− f(1))m,
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then,

h(∆)− h(∆ + 1)

=
1

∆− 1
[∆f(1)− f(∆)]n+

2

∆− 1
(f(∆)− f(1))m

− 1

∆
[(∆ + 1)f(1)− f(∆ + 1)]n− 2

∆
(f(∆ + 1)− f(1))m

=
2(n− 1)

(∆− 1)∆
(∆f(∆)− (∆− 1)f(∆ + 1)− f(1))

− n

(∆− 1)∆
(f(1)− (k + 1)f(∆) + kf(∆ + 1))

=
1− n

∆(∆− 1)
(f(1)− (k + 1)f(∆) + kf(∆ + 1)).

Since f is a strictly monotone and strictly convex function, the formula

above is less than 0. Thus, h(n−1) = max∆{h(∆)}. By Corollaries 1 and

2, we can obtain this result.

The proof is thus complete.

If f is a strictly monotone and strictly concave function, we can get

the corresponding results.

Lemma 2. Let G be a graph with nδ+1+nδ+2+· · ·+nδ+k−1 ≥ k−1. If f is

a strictly monotone and strictly concave function, then Γf (G) > maxi{gi}.

Theorem 2. Let G be a graph of order n and size m with minimum degree

δ and maximum degree ∆ = δ + k, and let f be a strictly monotone and

strictly concave function.

1 If nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≥ k − 1, then

Hf (G) >
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m+max

i
{gi}.

2 If 2 ≤ nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≤ k − 2, then

Hf (G) >
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+min{g1, gk−1}.
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3 If nδ+1 + nδ+2 + · · ·+ nδ+k−1 ≤ 1, then

Hf (G) =
1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m

+

ginδ+i, if 2m− δn ≡ i (mod k), i = 1, 2, . . . , k − 1,

0, if 2m− δn ≡ 0 (mod k).

Moreover, the degree set of G is

{δ,∆, δ+ i} and only one vertex has a degree δ+ i if 2m− δn ≡ i (mod k),

{δ,∆} if 2m− δn ≡ 0 (mod k).

Corollary. 4 Let G be a graph of order n and size m with minimum degree

δ and maximum degree ∆ = δ + k, and let f be a strictly monotone and

strictly concave function. Then we have

Hf (G) ≥ 1

k
[(δ + k)f(δ)− δf(δ + k)]n+

2

k
(f(δ + k)− f(δ))m,

and the equality holds if and only if the degree set of G is {δ,∆}.

Corollary. 5 Let G be a tree with n vertices and maximum degree ∆ =

1+k, and let f be a strictly monotone and strictly concave function. Then

Hf (G) ≥ 1

k
[(1 + k)f(1)− f(1 + k)]n+

2

k
(f(1 + k)− f(1))(n− 1),

and the equality holds if and only if G is a graph constructed in Construc-

tion 1. Particularly, if ∆ = n− 1, the equality holds if and only if G is a

star.

Corollary. 6 Let G be a tree with n vertices, and f be a strictly monotone

and strictly concave function. Then

Hf (G) ≥ (n− 1)f(1) + f(n− 1),

and the equality holds if and only if G is a star.
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