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Abstract

Let G = {G1, . . . , Gs} be a collection of not necessarily distinct n-vertex graphs

with the same vertex set V . We use G̃ to denote an edge-colored multigraph of G with

V (G̃) = V and E(G̃) a multiset consisting of E(G1), . . . , E(Gs), and the edge e of G̃ is

colored by i if e ∈ E(Gi). A graph H is rainbow in G if any two edges of H belong to

different graphs of G. We say that G is rainbow vertex-pancyclic if each vertex of V is

contained in a rainbow cycle of G with length ` for every integer ` ∈ [3, n], and that G is

rainbow panconnected if for any pair of vertices u and v of V there exists a rainbow path

of G with length ` joining u and v for every integer ` ∈ [d
G̃

(u, v), n− 1]. In this paper,

we study the existences of rainbow spanning trees and rainbow Hamiltonian paths in

G under the Ore-type conditions. Moreover, we study the rainbow vertex-pancyclicity

and rainbow panconnectedness, as well as the existence of rainbow cliques in G under

the Dirac-type conditions. We also give some examples to show the sharpness of our

results.
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1 Introduction

First, we claim that all terminology and notation on graph theory not defined in this paper

are the same as those in the textbook [6]. For a positive integer n we use [n] to denote the
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set {1, 2, . . . , n} of integers, and for two positive integers d < n we use [d, n] to denote the

set {d, d+ 1, . . . , n} of integers.

Hamiltonicity of graphs is a classic subject in graph theory which has been researched

extensively. In 1952, Dirac [13] first gave a sufficient condition on the existence of Hamiltonian

cycles in a graph using the minimum degree condition of the graph, that is, every n-vertex

graph (n-graph, for short) G with δ(G) ≥ n/2 contains a Hamiltonian cycle. Later on,

Ore [19] relaxed the condition and proved that every n-graph G with σ2(G) ≥ n contains a

Hamiltonian cycle, where σ2(G) is the minimum degree-sum among all pairs of nonadjacent

vertices of G. Conditions in the above two results are usually called Dirac-type condition

and Ore-type condition, respectively. In 2020, Joos and Kim [17] proved a result which can

be seen as a generalization of Dirac’s theorem.

Theorem 1.1. [17] Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-

graphs with the same vertex set V , and δ(Gi) ≥ n
2

for i ∈ [n]. Then there exists a Hamiltonian

cycle on the vertex set V with edge set {e1, . . . , en} such that ei ∈ E(Gi) for i ∈ [n].

In fact, the Hamiltonian cycle in Theorem 1.1 is a special transversal of G = {Gi : i ∈ [n]}.
In general, for a collection G = {Gi : i ∈ [t]} of not necessarily distinct graphs with common

vertex set V , a simple graph H is a partial transversal of G if V (H) ⊆ V , |E(H)| ≤ t and

there exists an injection θ : E(H) → [t] such that e ∈ E(Gθ(e)) for every e ∈ E(H). In

particular, H is a (total) transversal of G if H is a partial transversal of G with |E(H)| = t.

From another perspective, we can view G as an edge-colored multigraph G̃ with V (G̃) =

V and E(G̃) a multiset consisting of E(G1), . . . , E(Gt), and an edge e of G̃ is colored by i if

e ∈ E(Gi). Therefore, H is a partial G-transversal if and only if H is a rainbow subgraph of

G̃. In this way we also say that H is a rainbow subgraph of G. Then Theorem 1.1 can be

restated as follows: If G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-graphs

with the same vertex set and δ(Gi) ≥ n
2

for i ∈ [n], then there exists a rainbow Hamiltonian

cycle in G̃. Note that the bound of the minimum degree in Theorem 1.1 agrees with that in

the Dirac’s theorem.

Another classic result in extremal graph theory is the Mantel’s theorem, which says that

an n-graph G contains a triangle if |E(G)| > n2

4
. Aharoni, DeVos, de la Maza, Montejano and

Šámal in [3] proved a rainbow version of the Mantel’s theorem: A collection G = {G1, G2, G3}
of n-graphs with |E(Gi)| > 1+τ2

4
n2 for all 1 ≤ i ≤ 3 contains a rainbow triangle, where

τ = 4−
√
7

9
. They also proved that there is a collection G = {G1, G2, G3} of n-graphs that

does not have a rainbow triangle but satisfies that |E(Gi)| > (1+τ
2

4
− ε)n2 for each 1 ≤ i ≤ 3

and ε > 0 when n is sufficiently large. So, τ 2 cannot be replaced by a smaller constant, which

means that the two bounds on the numbers of edges in Mantel’s theorem and the rainbow

version of Mantel’s theorem are different.
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Motivated by the above results, we want to explore whether other classical results can be

extended in a rainbow version. In fact, there are some scholars who started to investigate

on this topic and produced some beautiful results. In 2021, Cheng, Wang and Zhao in

[11] considered the rainbow pancyclicity and the existence of rainbow Hamiltonian paths.

Later on, Cheng, Han, Wang and Wang in [10] proved an asymptotical result of the rainbow

version of Hajnal-Szemerédi theorem by using probabilistic method. Recently, Montgomery,

Müyesser and Pehova in [18] gave some asymptotically-tight minimum degree conditions for a

collection G of n-graphs to have a rainbow F -factor or a rainbow tree with maximum degree

o( n
logn

). For more results about this topic, please see [1, 2, 4, 7, 8, 14, 21] for examples.

In this paper, we continue to study the rainbow versions of some extremal results. Before

stating our results, let us introduce some notation and preliminaries. For a vertex v of a

graph G and a subgraph H of G, we use NG(v,H) to denote the set of neighbours of v in H.

Given a vertex partition {V1, . . . , Vk} of G, we use EG[V1, . . . , Vk] to denote the set of edges

of G whose endpoints are in different Vi. For any two vertex-disjoint graphs H1 and and H2,

we use H1 ∨ H2 to denote a graph obtained by adding an edge between each vertex of H1

and each vertex of H2, and H1 ∪H2 to denote the union of H1 and H2. Let dG(u, v) denote

the distance of u and v in G. If G has exactly k components and each component of G is

isomorphic to H, then we denote G by kH. The number of components in G is denoted by

c(G). We say that G = {Gi : i ∈ [t]} consists of t copies of G if G1 = G2 = . . . = Gt = G.

Inspired by Theorem 1.1, it is natural to consider rainbow spanning structures in G under

Ore-type condition. The following two theorems focus on the existence of rainbow spanning

forests and Hamiltonian paths, respectively.

Theorem 1.2. Suppose G = {Gi : i ∈ [n − 1]} is a collection of not necessarily distinct

n-graphs with the same vertex set V , and σ2(Gi) ≥ 2n
3
− 2 for i ∈ [n− 1]. Then, one of the

following statements holds:

(1) there exists a rainbow spanning forest in G with n− c(G̃) edges;

(2) by renumbering [n − 1], we have that 3|n, G̃ is connected and {Gi : i ∈ [2, n − 1]}
consists of n− 2 copies of 3Kn

3
.

Theorem 1.3. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-

graphs with the same vertex set V , and σ2(Gi) ≥ n−2 for i ∈ [n]. Then, one of the following

statements holds:

(1) G has a rainbow Hamiltonian path;

(2) G consists of n copies of K` ∪Kn−`, where ` ∈ [n− 1];

(3) n is even and there is a partition (H, I) of V with |H| = n−2
2

and |I| = n+2
2

. For

each i ∈ [n], Gi = Gi[H]∨Gi[I], where Gi[I] is an independent set and Gi[H] is an arbitrary

graph.
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Next, we consider the existence of rainbow cliques under the minimum degree conditions.

Theorem 1.4. Suppose G = {Gi : i ∈ [
(
s
2

)
]} is a collection of not necessarily distinct

n-graphs with the same vertex set V . If δ(Gi) ≥ (1 − 1
s−1)n for i ∈ [

(
s
2

)
− 1] and δ(G(s

2)
) >

(1− 1
s−1)n, then G has a rainbow clique Ks, and the bound on the minimum degrees is sharp.

A cycle or a path on ` vertices is called an `-cycle or an `-path, respectively. An n-graph

G is called vertex pancyclic if each vertex of G is contained in an `-cycle for all ` ∈ [3, n].

Similarly, a collection G = {G1, . . . , Gn} of n-graphs is called rainbow vertex-pancyclic if

each vertex of G is contained in a rainbow `-cycle for all ` ∈ [3, n]. In 1990, Hendry [16]

proved that every n-graph with δ(G) ≥ n+1
2

is vertex pancyclic. We obtain a rainbow version

of this result as follows.

Theorem 1.5. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-

graphs with the same vertex set V , and δ(Gi) ≥ n+1
2

for all i ∈ [n]. Then G is rainbow

vertex-pancyclic.

We say that a collection G of n-graphs is rainbow panconnected if for any two vertices

u and v of G, there exists a rainbow `-path of G joining u and v for every integer ` ∈
[dG̃(u, v) + 1, n]. Now we define a special collection of graphs as follows.

Definition 1. Let n be an odd integer and H1 be an empty graph with n−1
2

vertices, and let

H2 be a graph on n+1
2

vertices with δ(H2) ≥ 1 such that one component of H2 is a single edge

ww′. Define Fn as a collection of n copies of H1 ∨H2.

It is easy to verify that H1 ∨H2 is not panconnected, since dH1∨H2(w,w
′) = 1 but there

is no 4-path joining w and w′. Hence, Fn is not rainbow panconnected. However, it is worth

noticing that Fn has rainbow `-paths joining w and w′ for ` ∈ [3, n]−{4}. We further discuss

the rainbow panconnectedness of a collection of graphs.

Theorem 1.6. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-graphs

with the same vertex set V , and δ(Gi) ≥ n+1
2

for each i ∈ [n]. Then either G is rainbow

panconnected or G = Fn.

The rest of this paper is organized as follows. In Section 2, we prove the existences of

rainbow spanning trees (Theorem 1.2) and rainbow Hamiltonian paths (Theorem 1.3) in G

under Ore-type conditions, and then give characterizations of the extremal graphs. At the end

of this section, we show the existence of rainbow cliques (Theorem 1.4) in G under minimum

degree conditions. In Section 3, we prove that G is rainbow vertex-pancyclic (Theorem 1.5)

and rainbow panconnected (Theorem 1.6) under minimum degree conditions. In Section 4,

we discuss some related problems for further study.
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2 Proofs of Theorems 1.2, 1.3 and 1.4

In a collection G = {Gi : i ∈ [t]} of graphs on the vertex set V , any two vertices u, v ∈ V
may be adjacent in different graphs of G. In order to distinguish these parallel edges, we use

C(uv) = i to denote that the edge uv comes from Gi. If F is a rainbow subgraph of G, we

use C(F ) to denote the set of colors appearing on F . For a tree T and an edge xy ∈ E(T ),

we use Tx to denote the component of T − xy containing x. Now we begin to our proofs.

Proof of Theorem 1.2: Since σ2(Gi) ≥ 2n
3
− 2, each Gi has at most three components.

If Gi has exactly three components, say D1, D2 and D3, then each |V (Di)| is either
⌊
n
3

⌋
or⌈

n
3

⌉
. Otherwise, suppose |V (D1)| <

⌊
n
3

⌋
. Then |V (D2)| + |V (D3)| > n −

⌊
n
3

⌋
≥ 2n

3
. Since

σ2(Gi) ≥ 2n
3
− 2, it follows that |V (D1)|+ |V (D2)| ≥ 2n

3
and |V (D1)|+ |V (D3)| ≥ 2n

3
. Thus,

|V (D1)|+ |V (D2)|+ |V (D3)| > n, a contradiction. Now we consider the following two cases:

Case 1. G̃ is connected.

Assume that T is a maximum rainbow tree in G and U = V − V (T ). If U = ∅, then the

statement (1) holds. Otherwise, we will prove that the statement (2) holds below. Assume

that |V (T )| = k < n and C(T ) = [k − 1]. It follows from the maximality of T that

EGi
[V (T ), U ] = ∅ for each i ∈ [k, n − 1]. Thus, without loss of generality, suppose that

e ∈ EG1 [V (T ), U ] and xy is an edge of T with C(xy) = 1. We first prove the following claim.

Claim 1. NGi
(v) ⊆ V (Tx) for each vertex v ∈ V (Tx) and NGi

(v′) ⊆ V (Ty) for each vertex

v′ ∈ V (Ty), where i ∈ [2, n− 1].

Proof. By symmetry, we only need to prove that NGi
(v) ⊆ V (Tx) for each vertex v ∈ V (Tx)

and i ∈ [2, n−1]. We first show that the result holds for i ∈ [k, n−1]. Fix an integer i ∈ [k, n−
1]. The maximality of T implies that NGi

(v)∩U = ∅. We assert that EGi
[V (Tx), V (Ty)] = ∅.

Otherwise, there is an edge f ∈ EGi
[V (Tx), V (Ty)], and we can observe that T − xy + e+ f

is a rainbow (k + 1)-tree, a contradiction. Therefore, we have NGi
(v) ⊆ V (Tx).

We prove below that the result holds for i ∈ [2, k− 1]. Fix an integer i ∈ [2, k− 1]. There

is an edge f ′ = zz′ of T with C(f ′) = i. Without loss of generality, suppose f ′ ∈ E(Ty).

Let Fz, Fz′ be two components of Ty − f ′. Since NGk
(v) ⊆ V (Tx) for each vertex v ∈ V (Tx),

it follows that E(Gk) ∩ EGk
[V (Tx), V (Ty)] = ∅. If E(Gk) ∩ EGk

[V (Fz), V (Fz′)] = ∅, then

E(Gk) ∩ EGk
[V (Tx), V (Fz), V (Fz′)] = ∅, which implies that Gk[V (T )] has at least three

components. Recall that U 6= ∅. Then Gk has at least four components, a contradiction.

Hence, there is an edge g of Gk such that Ty ∪ g has a unique cycle containing f ′ and g.

If NGi
(v) ∩ U 6= ∅, say w ∈ NGi

(v) ∩ U , then T − f ′ + g + vw is a rainbow (k + 1)-tree, a

contradiction. Note that T ′ = T − f ′ + g is a rainbow tree with V (T ) = V (T ′), T ′x = Tx

and T ′y = Ty − f ′ + g. If NGi
(v) ∩ V (Ty) 6= ∅, say w′ ∈ NGi

(v) ∩ V (Ty), then T ′ + vw′
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contains a unique cycle C ′ such that xy, vw′ ∈ E(C ′). Since e ∈ EG1 [V (T ), U ], it follows that

T ′ + e+ vw′ − xy is a rainbow (k + 1)-tree, a contradiction.

For i ∈ [2, n− 1], it follows from Claim 1 that Gi has at least three components. Then Gi

has exactly three components Gi[V1], Gi[V2] and Gi[V3]. We can see that |Vj| ∈ {
⌊
n
3

⌋
,
⌈
n
3

⌉
} for

j ∈ [3]. It is easy to verify that 3|n and Gi[V1] = Gi[V2] = Gi[V3] = Kn
3

since σ2(Gj) ≥ 2n
3
−2.

Then the statement (2) holds.

Case 2. G̃ is disconnected.

Suppose D is a component of G̃. Let G′i = Gi[D] and G′′i = Gi−D for i ∈ [n−1], and let

G′ = {G′i : i ∈ [n− 1]} and G′′ = {G′′i : i ∈ [n− 1]}. Note that σ2(G
′
i) ≥ 2n

3
− 2 > 2|V (D)|

3
− 2

and σ2(G
′′
i ) ≥ 2n

3
− 2 > 2(|V |−|V (D)|)

3
− 2 for i ∈ [n− 1]. By induction, G′ contains a rainbow

spanning tree T ′ with C(T ′) = [|V (D)| − 1] and G′′ contains a rainbow forest F ′′ with

e(F ′′) = n − |V (D)| − c(G̃′′) and C(F ′′) ⊆ {|V (D)|, . . . , n − 1}. Thus, T = T ′ ∪ F ′′ is a

rainbow spanning forest of G with e(T ) = n− c(G̃). Then the statement (1) holds.

The proof is now complete. �

If we add an extra condition “G̃ is connected” in Theorem 1.2, then either G contains a

rainbow spanning tree or the statement (2) holds. However, we can observe that σ2(Gi) =
2n
3
− 2 for i ∈ [2, n − 1] when the statement (2) holds. Hence, the following result can be

deduced from Theorem 1.2 immediately.

Corollary 2.1. Suppose G = {Gi : i ∈ [n − 1]} is a collection of not necessarily distinct

n-graphs with the same vertex set such that G̃ is connected and σ2(Gi) ≥ 2n
3
−1 for i ∈ [n−1].

Then there is a rainbow spanning tree in G.

Before we proceed our discussion, let us introduce some additional notation. Let C =

v1v2 . . . vkv1 be a cycle and vk+1 = v1. For any two integers i, j ∈ [k], we use vi
−→
C vj to denote

the path vivi+1 . . . vj and vi
←−
C vj to denote the path vivi−1 . . . vj. Similarly, we can define

vi
−→
P vj and vj

←−
P vi respect to a path P = v1v2 . . . vk.

Proof of Theorem 1.3: The proof proceeds by contradiction. Let P = v1v2 . . . v` be an

arbitrary maximum rainbow path of G and C(vivi+1) = i for all i ∈ [`− 1]. Then ` ≤ n− 1.

For each color i ∈ [`, n] and each vertex u ∈ V \ V (P ), the maximality of P implies that

v1u /∈ E(Gi) and v`u /∈ E(Gi). Then NGi
(v1), NGi

(v`) ⊆ V (P ) for all i ∈ [`, n].

Claim 2. There is no rainbow `-cycle in G.

Proof. Suppose to the contrary that there is a rainbow cycle C = u1u2 . . . u`u1 in G and

C(uiui+1) = i for all i ∈ [`], where u`+1 = u1. If there is a color k ∈ [` + 1, n] and a

vertex u ∈ V \ V (C) such that NGk
(u,C) 6= ∅, choosing an arbitrary vertex ui ∈ NGk

(u,C),
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then uui
−→
Cui−1 is a rainbow (` + 1)-path, a contradiction. Hence, NGk

(u,C) = ∅ for each

color k ∈ [` + 1, n] and each vertex u ∈ V \ V (C). Since σ2(Gk) ≥ n − 2 for each color

k ∈ [`+1, n], it follows that Gk[V (C)] ∼= K` and Gk[V \V (C)] ∼= Kn−`. Hence, the collection

{Gi : i ∈ [`+ 1, n]} of graphs consists of n− ` copies of K` ∪Kn−`.

Fix an integer k ∈ [`]. If NGk
(u,C) 6= ∅, then there is a vertex ui ∈ NGk

(u,C). Recall

that e = ukuk+1 is an edge of C with C(e) = k. Since G`+1[V (C)] is a complete subgraph,

there is an edge f = ukuk+1 in G`+1. If i 6= k, then C − e − uiui+1 + f + uiu is a rainbow

(` + 1)-path with C(uiui+1) = i and C(uiu) = k, a contradiction. If i = k, then uui
←−
Cui+1

is a rainbow (` + 1)-path with C(uiu) = k, a contradiction. Thus, NGk
(u,C) = ∅ for each

color k ∈ [`] and each vertex u ∈ V \ V (C). By a similar discussion, we can deduce that

Gi[V (C)] ∼= K` and Gi[V \ V (C)] ∼= Kn−` for each integer i ∈ [`], which implies that the

collection {Gi : i ∈ [`]} of graphs consists of ` copies of K` ∪Kn−`.

In conclusion, the collection {Gi : i ∈ [n]} of graphs consists of n copies of K` ∪ Kn−`.

Then the statement (2) holds, a contradiction. The claim thus follows.

Choosing two colors s, t ∈ [`, n], it follows from Claim 2 that v1v` /∈ E(Gs) and v1v` /∈
E(Gt). Then dGs(v1) + dGs(v`) ≥ n − 2 and dGt(v1) + dGt(v`) ≥ n − 2, which implies that

either dGs(v1) + dGt(v`) ≥ n− 2 or dGs(v`) + dGt(v1) ≥ n− 2. Without loss of generality, set

dGs(v1) + dGt(v`) ≥ n− 2 and define

A0 = {i ∈ [`− 2] : v1vi+1 ∈ E(Gs)} and B0 = {i ∈ [2, `− 1] : viv` ∈ E(Gt)}.

Since NGs(v1), NGt(v`) ⊆ V (P )− {v1, v`}, we have |A0|+ |B0| ≥ n− 2.

We assert that A0 ∩ B0 = ∅. Otherwise, choosing an integer i ∈ A0 ∩ B0, we get that

v1vi+1

−→
P v`vi

←−
P v1 is a rainbow `-cycle with C(v1vi+1) = s and C(v`vi) = t, a contradiction.

It is easy to verify that A0 ∪ B0 = [n − 2], dGs(v1) + dGt(v`) = n − 2, ` = n − 1 and

{s, t} = {n− 1, n}. Without loss of generality, set

dGn−1(v1) + dGn(vn−1) = n− 2. (1)

Since vnv1 /∈ E(Gn−1)∪E(Gn), we have dGn−1(v1)+dGn−1(vn) ≥ n−2 and dGn(v1)+dGn(vn) ≥
n− 2. Then one of the following two statements holds:

(a) dGn−1(v1) + dGn(vn) ≥ n− 2;

(b) dGn−1(vn) + dGn(v1) ≥ n− 2.

Since vnvn−1 /∈ E(Gn−1) ∪ E(Gn), similarly, one of the following two statements holds:

(c) dGn−1(vn) + dGn(vn−1) ≥ n− 2;

(d) dGn−1(vn−1) + dGn(vn) ≥ n− 2.

By symmetry, we only consider the case that dGn−1(v1) + dGn(vn) ≥ n − 2 and dGn−1(vn) +
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dGn(vn−1) ≥ n− 2. Define the following four sets:

A1 = {i ∈ [n− 3] : v1vi+1 ∈ E(Gn−1)};
B1 = {i ∈ [2, n− 2] : vivn ∈ E(Gn)};
A2 = {i ∈ [3, n− 1] : vn−1vi−1 ∈ E(Gn)};
B2 = {i ∈ [2, n− 2] : vivn ∈ E(Gn−1)}.

If A1 ∩ B1 6= ∅, say i ∈ A1 ∩ B1, then vnvi
←−
P v1vi+1

−→
P vn−1 is a rainbow Hamiltonian path

with C(vnvi) = n and C(v1vi+1) = n − 1, a contradiction. Thus, A1 ∩ B1 = ∅. Note that

NGn−1(v1) ⊆ V (P )− {v1, vn−1} and NGn(vn) ⊆ V (P )− {v1, vn−1}. Hence,

dGn−1(v1) + dGn(vn) = n− 2. (2)

By a similar discussion for A2 and B2, we have

dGn−1(vn) + dGn(vn−1) = n− 2. (3)

From Equations (1), (2) and (3), we have dGn(vn−1) = dGn(vn) and dGn−1(v1) = dGn−1(vn).

Since v1vn /∈ E(Gn−1) and vn−1vn /∈ E(Gn), it follows that dGn−1(v1) +dGn−1(vn) ≥ n−2 and

dGn(vn−1) + dGn(vn) ≥ n− 2. Hence,

dGn−1(v1) = dGn−1(vn) = dGn(vn−1) = dGn(vn) =
n− 2

2
.

Similarly, since vnvn−1 /∈ E(Gn−1) and v1vn /∈ E(Gn), we can also deduce that

dGn−1(vn−1) = dGn−1(vn) = dGn(v1) = dGn(vn) =
n− 2

2
.

Then dGi
(vj) = n−2

2
for all i ∈ {n− 1, n} and j ∈ {1, n− 1, n}. In addition, n is even.

Claim 3. NGi
(vj) = {v2k : k ∈ [n−2

2
]} for all i ∈ {n− 1, n} and j ∈ {1, n− 1, n}.

Proof. Define A = {i ∈ [n− 3] : vi+1vn ∈ E(Gn)} and B = {i ∈ [2, n− 2] : vivn ∈ E(Gn−1)}.
Then A∩B = ∅; otherwise, choosing an integer i ∈ A∩B, we can find a rainbow Hamiltonian

path v1
−→
P vivnvi+1

−→
P vn−1 with C(vivn) = n − 1 and C(vnvi+1) = n, a contradiction. Since

dGn−1(vn) = dGn(vn) = n−2
2

, we have |A| = |B| = n−2
2

. It is easy to verify that B is

the set of even integers in [2, n − 2] and A is the set of odd integers in [n − 3]. Then

NGi
(vn) = {v2k : k ∈ [n−2

2
]} for i ∈ {n− 1, n}.

By symmetry, we only need to prove below that NGn(v1) = {v2k : k ∈ [n−2
2

]}. Suppose to

the contrary that v1v2k+1 is an edge of Gn for some k ∈ [n−2
2
−1]. Then vnv2k

←−
P v1v2k+1

−→
P vn−1

is a rainbow Hamiltonian path with C(v2kvn) = n − 1 and C(v1v2k+1) = n, a contradiction.

Thus, NGn(v1) ⊆ {v2k : k ∈ [n−2
2

]}. Combining dGn(v1) = n−2
2

, we get that NGn(v1) = {v2k :

k ∈ [n−2
2

]}.
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For convenience, for a path R = x1x2 . . . x2k+1, we use Ve(R) to denote the vertex set

{x2i : i ∈ [k]}. In fact, since P is an arbitrary maximum rainbow path, it follows from Claim

3 that for a rainbow (n− 1)-path L with endpoints x, y and V − V (L) = {z},

NGi
(x) = NGi

(y) = NGi
(z) = Ve(L)

for each i ∈ [n]− C(L).

Claim 4. Suppose Q = x1x2 . . . xn−1 is a rainbow (n − 1)-path in G. Then NGi
(x1) =

NGi
(xn−1) = Ve(Q) for each i ∈ [n].

Proof. Assume that V − V (Q) = {xn} and C(xixi+1) = i for i ∈ [n − 2]. From Claim

3, we know that NGn−1(xn) = NGn(xn) = Ve(Q). For i ∈ {3, 5, . . . , n − 3}, let Li =

xi
←−
Qx2xnxi+1

−→
Qxn−1 be a rainbow (n − 1)-path with C(x2xn) = n − 1 and C(xnxi+1) = n,

and let L′i = xi
−→
Qxn−2xnxi−1

←−
Qx1 be a rainbow (n − 1)-path with C(xnxn−2) = n − 1

and C(xnxi−1) = n. Since i, 1 /∈ C(Li) and i − 1, n − 2 /∈ C(L′i), by Claim 3 again, we

have that NGi
(x1) = NG1(x1) = Ve(Li) = {x2, x4, . . . , xn−2} and NGi−1

(x1) = NGn−2(x1) =

Ve(L
′
i) = {x2, x4, . . . , xn−2}. Note that NGn−1(x1) = NGn(x1) = {x2, x4, . . . , xn−2}. There-

fore, NGi
(x1) = Ve(Q) = {x2, x4, . . . , xn−2} for each i ∈ [n]. By symmetry, NGi

(xn−1) =

Ve(Q) for each i ∈ [n]. The claim thus follows.

Recall that P = v1v2 . . . vn−1 is a rainbow (n− 1)-path and C(vivi+1) = i for i ∈ [n− 2].

Then NGi
(v1) = NGi

(vn−1) = Ve(P ) = {v2, v4, . . . , vn−2} for i ∈ [n] by Claim 4. Note that

vnv2
−→
P vn−1 is a rainbow (n − 1)-path with C(v2vn) = n from Claim 3. Then NGi

(vn) =

{v2, v4, . . . , vn−2} for i ∈ [n]. For j ∈ {3, 5, . . . , n− 3}, note that Lj = vj
←−
P v2vnvj+1

−→
P vn−1 is

a rainbow (n− 1)-path with C(v2vn) = n− 1 and C(vnvj+1) = n. Since vj is an endpoint of

Lj and Ve(Lj) = Ve(P ), it follows from Claim 4 that NGi
(vj) = Ve(Lj) = {v2, v4, . . . , vn−2}

for i ∈ [n]. In conclusion, we have that NGi
(x) = {v2, v4, . . . , vn−2} for i ∈ [n] and x ∈

{v1, v3, . . . , vn−1, vn}. Moreover, {v1, v3, . . . , vn−1, vn} is an independent set in each Gi. Set

I = {v1, v3, . . . , vn−1, vn} and H = V − I. It is easy to verify that σ2(Gi) ≥ n− 2 and there

is no rainbow Hamiltonian path in G when Gi[H] is an arbitrary graph for i ∈ [n]. Then the

statement (3) holds, a contradiction. The result thus follows. �

Note that if G contains no rainbow Hamiltonian path in Theorem 1.3, then one of the

statements (2) and (3) holds, which implies that σ2(Gi) = n − 2 for i ∈ [n]. Then we can

obtain a sufficient condition on the existence of a rainbow Hamiltonian path in a collection

G = {Gi : i ∈ [n]} of n-graphs.

Corollary 2.2. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-

graphs with the same vertex set, and σ2(Gi) ≥ n− 1 for i ∈ [n]. Then there exists a rainbow

Hamiltonian path in G.
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The following result can be deduced from Corollary 2.2 directly.

Theorem 2.3. [11] Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct

n-graphs with the same vertex set, and δ(Gi) ≥ n−1
2

for i ∈ [n]. Then there exists a rainbow

Hamiltonian path in G.

Now we prove the last result of this section.

Proof of Theorem 1.4: For 2 ≤ j ≤ s, let Hj = {Gi : i ∈ [
(
j
2

)
]}. The proof proceeds by

induction on s. It is obvious that H2 contains a rainbow K2. Since the minimum degree of

each graph in Hs−1 is larger than (1− 1
s−2)n, it follows that Hs−1 contains a rainbow complete

graph R with |V (R)| = s−1. Without loss of generality, assume V (R) = {v1, · · · , vs−1}. We

prove that Hs contains a rainbow clique Ks below. First, we construct an auxiliary digraph

D with V (D) = V and

A(D) = {(vi, u) : viu is an edge of G(s−1
2 )+i, where i ∈ [s− 1]}.

Observe that Hs contains a rainbow clique Ks if there is a vertex in V −V (R) with in-degree

at least s− 1. Now we verify that the vertex exists. Note that∑
v∈V (D)

d−D(v) = |A(D)| =
∑

v∈V (D)

d+D(v) =
∑

v∈V (R)

d+D(v) > (s− 1)(1− 1

s− 1
)n.

Then there is at least one vertex w in V (D) such that d−D(w) ≥ s − 1. Since d−(v) ≤ s − 2

for each v ∈ V (R), we have w ∈ V − V (R). Hence, Hs contains a rainbow clique Ks.

Note that if (k − 1)|n and G = {G1, · · · , G(k
2)
} consists of

(
k
2

)
copies of Tn,k−1, then

δ(Gi) = (1 − 1
k−1)n for each i ∈ [

(
k
2

)
] and G does not contain a rainbow clique Kk, where

Tn,k−1 is a balanced complete (k− 1)-partite graph. This implies that the bound of Theorem

1.4 is sharp. The result thus follows. �

3 Proofs of Theorems 1.5 and 1.6

Given an edge-colored multigraph G, a subgraph H of G and a vertex u ∈ V (G)−V (H), let

N i(u,H) = {v ∈ V (H) : there is an edge with color i between u and v}

and di(u,H) = |N i(u,H)|. The following lemma is useful for our later proofs.

Lemma 3.1. Let G be an edge-colored multigraph and C = v1 . . . vpv1 be a rainbow cycle

in G. For each vertex y ∈ V (G) \ V (C) and any two colors g, f that are not used in C, if

dg(y, C) ≥ p
2

and df (y, C) ≥ p
2
, then one of the following two statement holds:

(1) there is a rainbow (p+ 1)-cycle in G;

(2) p is even and either N g(y, C) = N f (y, C) = {v1, v3, . . . , vp−1} or N g(y, C) = N f (y, C) =

{v2, v4, . . . , vp}.
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Proof. Suppose that there is no rainbow (p+ 1)-cycle in G. Define

A = {i ∈ [p] : there is an edge e between y and vi+1 such that C(e) = g}

and

B = {i ∈ [p] : there is an edge e between y and vi such that C(e) = f}.

Since dg(y, C) ≥ p
2

and df (y, C) ≥ p
2
, we have |A| ≥ p

2
and |B| ≥ p

2
. If A ∩ B 6= ∅, choosing

an integer i ∈ A ∩B, then viyvi+1
−→
C vi is a rainbow (p+ 1)-cycle, a contradiction.

If A∩B = ∅, then A∪B = [p], which implies that p is even and dg(y, C) = df (y, C) = p
2
.

We assert that vi and vj are not adjacent in C for any two integers i, j ∈ A. Otherwise,

choosing a maximal subset {i, i + 1, . . . , i + k} ⊆ A such that i − 1, i + k + 1 ∈ B, we get

that vi+kyvi+k+1

−→
C vi+k is a rainbow (p+1)-cycle, a contradiction. Hence, we have that either

A = {1, 3, . . . , p − 1} or A = {2, 4, . . . , p}. If A = {1, 3, . . . , p − 1}, then B = {2, 4, . . . , p},
which implies that N g(y, C) = N f (y, C) = {v2, v4, . . . , vp}. If A = {2, 4, . . . , p}, then B =

{1, 3, . . . , p − 1}, which implies that N g(y, C) = N f (y, C) = {v1, v3, . . . , vp−1}. The claim

thus follows.

In [17], the authors proved that G = {Gi : i ∈ [n]} contains a rainbow Hamiltonian cycle

if the minimum degree of each Gi is at least n
2

(see Theorem 1.1). The following result focuses

on the existence of rainbow (n− 1)-cycles in G.

Lemma 3.2. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-graphs

with the same vertex set V , and δ(Gi) ≥ n
2

for all i ∈ [n]. Then, one of the following

statements holds:

(1) there is a rainbow (n− 1)-cycle in G;

(2) n is even and G consists of n copies of Kn
2
,n
2
.

Proof. Suppose that there is no a rainbow (n− 1)-cycle in G. First, we prove the following

claim.

Claim 5. There is a rainbow (n− 2)-cycle in G.

Proof. From Corollary 2.2, assume that P = v1v2 . . . vn−2 is a rainbow (n−2)-path of G with

vivi+1 ∈ E(Gi) for each i ∈ [n− 3] and define

A = {i ∈ [n− 4] : v1vi+1 ∈ E(Gn)} and B = {i ∈ [2, n− 3] : vn−2vi ∈ E(Gn−1)}.

If v1vn−2 ∈ E(Gn) or v1vn−2 ∈ E(Gn−1), then there is a rainbow (n−2)-cycle in G, the result

thus follows. Next, we suppose v1vn−2 /∈ E(Gn) and v1vn−2 /∈ E(Gn−1). Since there is no

rainbow (n− 1)-cycle in G, we have that

|EGn−1({vn−2}, {vn−1, vn}) ∪ EGn({v1}, {vn−1, vn})| ≤ 2.
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Then, |A|+ |B| ≥ n−2. It follows from A∪B ⊆ [n−3] that A∩B 6= ∅. Choosing an integer

i ∈ A ∩B, we can deduce that v1vi+1

−→
P vn−2vi

←−
P v1 is a rainbow (n− 2)-cycle of G.

Assume that C = v1v2 . . . vn−2v1 is a rainbow (n − 2)-cycle of G and vivi+1 ∈ E(Gi) for

all i ∈ [n− 2], where vn−1 = v1. Set V \ V (C) = {x, y} and define

A = {i ∈ [n− 2] : xvi+1 ∈ E(Gn)} and B = {i ∈ [n− 2] : xvi ∈ E(Gn−1)}.

Note that |NGn(x,C)| ≥ n
2
− 1 and |NGn−1(x,C)| ≥ n

2
− 1. From Lemma 3.1 and the

assumption that there is no rainbow (n − 1)-cycle in G, we know that n is even and either

NGn(x) = NGn−1(x) = {v1, v3, . . . , vn−3, y} or NGn(x) = NGn−1(x) = {v2, v4, . . . , vn−2, y}.
Similarly, we have either NGn(y) = NGn−1(y) = {v1, v3, . . . , vn−3, x} or NGn(y) = NGn−1(y) =

{v2, v4, . . . , vn−2, x}.

Claim 6. NGn(x) ∪NGn(y) = V .

Proof. Otherwise, by symmetry, assume that NGn(x) = NGn−1(x) = {v1, v3, . . . , vn−3, y} and

NGn(y) = NGn−1(y) = {v1, v3, . . . , vn−3, x}. If v2x ∈ E(G1), then v1xv2
−→
C v1 is a rainbow

(n − 1)-cycle of G with C(xv1) = n and C(xv2) = 1, a contradiction. So, v2x /∈ E(G1).

Similarly, we have v2y /∈ E(G1), which implies NG1(v2) ⊆ V (C). Since dG1(v2) ≥ n
2

and

|{v1, v3, . . . , vn−3}| = n−2
2

, we know that there is an even integer i ∈ [n − 2] such that

viv2 ∈ E(G1). Hence, viv2
−→
C vi−1xv1

←−
C vi is a rainbow (n − 1)-cycle of G with C(viv2) = 1,

C(vi−1x) = n− 1 and C(xv1) = n, a contradiction. The claim thus follows.

Without loss of generality, assume that NGn(x) = NGn−1(x) = {v1, v3, . . . , vn−3, y} and

NGn(y) = NGn−1(y) = {v2, v4, . . . , vn−2, x}. Choosing an arbitrary vertex vi ∈ {v2, v4, . . . , vn−2},
we get that vi−1xvi+1

−→
C vi−1 is a rainbow (n − 2)-cycle of G with C(vi−1x) = n − 1 and

C(xvi+1) = n. Note that this cycle contains no edges of Gi−1 or Gi. By a similar argu-

ment, we have NGi
(vi) = NGi−1

(vi) = {v1, v3, . . . , vn−3, y}, and so NGi
(y) = NGi−1

(y) =

{v2, v4, . . . , vn−2, x}. Consequently, we have NGi
(y) = {v2, v4, . . . , vn−2, x} for all i ∈ [n]. By

symmetry, we have NGi
(x) = {v1, v3, . . . , vn−3, y} for all i ∈ [n].

For an odd integer a and an even integer b of [n−2], va−1yva+1
−→
C va−1 and vb−1xvb+1

−→
C vb−1

are rainbow (n − 2)-cycles with C(va−1y) = a − 1, C(yva+1) = a, C(vb−1x) = b − 1 and

C(xvb+1) = b. We can regard va as y and vb as x in the above discussion, and hence the

following two statements hold:

(1) NGj
(vi) = {v1, v3, . . . , vn−3, y} for any two integers i ∈ {2, 4, . . . , n− 2} and j ∈ [n];

(2) NGj
(vi) = {v2, v4, . . . , vn−2, x} for any two integers i ∈ {1, 3, . . . , n− 3} and j ∈ [n].

We can easily see that Gi is a complete bipartite graph with bipartition {v1, v3, . . . , vn−3, y}
and {v2, v4, . . . , vn−2, x} for all i ∈ [n]. The proof is now complete.
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Now, we start to prove the rainbow vertex-pancyclicity of a collection G of graphs.

Proof of Theorem 1.5: From Theorem 1.1, each vertex is contained in a rainbow Hamilto-

nian cycle of G. Choose an arbitrary vertex x ∈ V , and set Hi = Gi \{x} for each i ∈ [n−1]

and H = {H1, H2, . . . , Hn−1}. Then |V (Hi)| = n − 1 and δ(Hi) ≥ n−1
2

for each i ∈ [n − 1].

Using Theorem 1.1 again, we know that there is a rainbow (n − 1)-cycle in H. This also

implies that each vertex of G is contained in a rainbow (n− 1)-cycle.

From Lemma 3.2, there is a rainbow (n− 2)-cycle in H, or n− 1 is even and H consists

of n − 1 copies of Kn−1
2
,n−1

2
. If the latter holds, then Hi is an n−1

2
-regular graph for each

i ∈ [n − 1]. Recall that δ(Gi) ≥ n
2

for each i ∈ [n − 1]. Then Gi = Hi ∨ {x} for each

i ∈ [n − 1]. Hence, we can easily verify that each vertex of G is contained in a rainbow

`-cycle for each integer ` ∈ [3, n − 1]. The result thus follows. If the former holds, then

assume that C = v1v2 . . . vn−2v1 is a rainbow (n − 2)-cycle of H with vivi+1 ∈ E(Gi) for all

i ∈ [n − 2] and vn−1 = v1. Next, we prove that x is contained in a rainbow a-cycle for each

integer a ∈ [3, . . . , n− 2]. Define

A = {i ∈ [n− 2] : vi ∈ NGn(x)} and B = {i ∈ [n− 2] : vi+a−2 ∈ NGn−1(x)}.

Since dGn(x) ≥ n+1
2

and dGn−1(x) ≥ n+1
2

, we have |A| ≥ n−1
2

and |B| ≥ n−1
2

. Note that

A ∪ B ⊆ [n − 2] and |A| + |B| ≥ n − 1. Then A ∩ B 6= ∅. Choosing an integer i ∈ A ∩ B,

we can see that xvi
−→
C vi+a−2x is a rainbow a-cycle with C(xvi) = n and C(vi+a−2x) = n− 1.

Consequently, by the arbitrariness of x, each vertex of G is contained in a rainbow `-cycle

for each integer ` ∈ [3, n− 1]. The result thus follows. �

In order to prove the panconnectedness of G, we first give the characterization of the

existence of a rainbow (n− 1)-cycle or n-cycle in G.

Lemma 3.3. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-graphs

with the same vertex set V , and δ(Gi) ≥ n−1
2

for all i ∈ [n]. Then, one of the following

statements holds:

(1) G has a rainbow cycle of length at least n− 1;

(2) n is odd and G consists of n copies of K1 ∨ (2Kn−1
2

).

Proof. If n is even, then by Theorem 1.1, G has a rainbow Hamiltonian cycle. Thus, we only

need to prove the result when n is an odd integer. Suppose that the statement (1) does not

hold. We prove below that the statement (2) holds.

Claim 7. Either G has a rainbow (n− 2)-cycle, or G consists of n copies of K1 ∨ (2Kn−1
2

).

Proof. From Theorem 2.3, there is a rainbow Hamiltonian path x1x2 . . . xn in G, and set

xixi+1 ∈ E(Gi) for i ∈ [n − 1]. Let P = x1x2 . . . xn−1, U = {x1, x2, . . . , xn+1
2
} and W =
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{xn+1
2
, xn+3

2
, . . . , xn}. Define

A1 = {i ∈ [n− 3] : x1xi+1 ∈ E(Gn)} and B1 = {i ∈ [2, n− 2] : xn−1xi ∈ E(Gn−1)}.

The assumption that G has no rainbow cycle of length at least n−1 implies that x1xn /∈ Gn,

x1xn−1 /∈ Gn and x1xn−1 /∈ Gn−1. Hence, NGn(x1) ⊆ V (P ) − {xn−1} and NGn−1(xn−1) ⊆
V (P ) ∪ {xn} − {x1}. Moreover, |A1| ≥ n−1

2
and |B1| ≥ n−3

2
.

If A1 ∩ B1 6= ∅, then we can find a rainbow (n − 1)-cycle in G, a contradiction. If

A1∩B1 = ∅, then A1∪B1 = [n−2], which means that |A1| = n−1
2

and |B1| = n−3
2

. If there is

an integer i such that i ∈ B1 and i+ 1 ∈ A1, then x1xi+2

−→
P xn−1xi

←−
P x1 is a rainbow (n− 2)-

cycle of G with C(x1xi+2) = n and C(xn−1xi) = n − 1, the claim thus follows. Otherwise,

A1 = {1, 2, . . . , n−1
2
} and B1 = {n+1

2
, n+3

2
, . . . , n− 2}. From the definitions of A1 and B1, we

have

NGn(x1) = U − {x1} and NGn−1(xn−1) = W − {xn−1}. (4)

By symmetry, considering the rainbow (n−1)-path x2x3 . . . xn, we can conclude thatNGn(xn) =

{xn−1
2
, . . . , xn−1} and NG1(x2) = {x1, x3, x4, . . . , xn−1

2
}. Then xn−1xn ∈ E(Gn).

Now let us continue to consider the rainbow path P = x1x2 . . . xn−1. Define

A2 = {i ∈ [n− 3] : x1xi+1 ∈ E(Gn−1)} and B2 = {i ∈ [2, n− 2] : xn−1xi ∈ E(Gn)}.

If x1xn ∈ E(Gn−1), then x1
−→
P xn−1xnx1 is a rainbow Hamiltonian cycle of G with C(x1xn) =

n − 1 and C(xn−1xn) = n, a contradiction. Then we have x1xn /∈ E(Gn−1). Recall that

xnxn−1 ∈ E(Gn). By a similar discussion, we can get that

NGn−1(x1) = U − {x1} and NGn(xn−1) = W − {xn−1}. (5)

Combining (4) and (5), we have NGn(x1) = NGn−1(x1) = U − {x1} and NGn−1(xn−1) =

NGn(xn−1) = W − {xn−1}.
For each integer i ∈ {2, 3, . . . , n−1

2
}, consider the rainbow (n− 1)-path xi

←−
P x1xi+1

−→
P xn−1

with C(x1xi+1) = n − 1 (resp. C(x1xi+1) = n). One can deduce that dGn(xi) = n−1
2

and NGn(xi) = U − {xi} (resp. dGn−1(xi) = n−1
2

and NGn−1(xi) = U − {xi}). Similarly,

one can also deduce that dGn(xj) = n−1
2

and NGn(xj) = W − {xj} (resp. dGn−1(xj) =
n−1
2

and NGn−1(xj) = W − {xj}) for j ∈ {n+3
2
, . . . , n − 1}. In conclusion, we know that

Gn[U ] = Gn−1[U ] = Kn+1
2

and Gn[W ] = Gn−1[W ] = Kn+1
2

. Hence, Gn = Gn−1 = K1 ∨
(2Kn−1

2
). By symmetry of P and v2v3 · · · vn, we can obtain that G1 = Gn = K1 ∨ (2Kn−1

2
).

For i ∈ {2, 3, . . . , n−1
2
} and j ∈ {n+1

2
, . . . , n − 2}, P ′ = xi

←−
P x1xi+1

−→
P xjxn−1

←−
P xj+1 is a

rainbow (n − 1)-path of G with C(x1xi+1) = n and C(xjxn−1) = n − 1. Then C(P ′) =

[n] − {i, j}. By a similar analysis, one can show that Gi[U ] = Gj[U ] = Kn+1
2

and Gi[W ] =

Gj[W ] = Kn+1
2

, which implies that Gi = Gj = K1 ∨ (2Kn−1
2

). The claim thus follows.
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By Claim 7 and the hypothesis that the statement (1) does not hold, the maximum rain-

bow cycle in G is an (n−2)-cycle. In order to complete the proof, suppose C = x1x2 . . . xn−2x1

is a rainbow (n− 2)-cycle of G with xixi+1 ∈ E(Gi) for all i ∈ [n− 2], where xn−1 = x1. Set

V \ V (C) = {y, z} and define

A1 = {i ∈ [n− 2] : yxi+1 ∈ E(Gn)} and B1 = {i ∈ [n− 2] : yxi ∈ E(Gn−1)}.

The assumption that there is no rainbow (n− 1)-cycle in G implies that A1 ∩B1 = ∅. Then

A1 ∪ B1 ⊆ [n − 2] and |A1| + |B1| ≤ n − 2. Recall that n is odd and δ(Gi) ≥ n−1
2

for all

i ∈ [n]. Then n−3
2
≤ |A1| ≤ n−1

2
and n−3

2
≤ |B1| ≤ n−1

2
.

If |A1| = n−1
2

, then |B1| = n−3
2

and A1 ∪ B1 = [n − 2]. Hence, there is a subset {i, i +

1, . . . , i+k} ⊆ A1 such that k ≥ 1 and i−1, i+k+1 ∈ B1, which means that xi+kyxi+k+1

−→
Cxi+k

is a rainbow (n− 1)-cycle of G with C(xi+ky) = n and C(yxi+k+1) = n− 1, a contradiction.

By symmetry, we have |A1| = |B1| = n−3
2

, which implies that yz ∈ E(Gn) ∩ E(Gn−1). It

follows from A1 ∩B1 = ∅ that |A1 ∪B1| = n− 3. Let V (C)− (NGn−1(y) ∪NGn(y)) = {w}.
We assert that there are no two successive integers in A1. Otherwise, without loss of

generality, let A′1 = {1, 2, . . . , a} be a subset of A1 such that |A′1| ≥ 2 and n− 2, a+ 1 /∈ A1.

Since xayxa+1

−→
Cxa is not a rainbow (n−1)-cycle, it follows that a+1 /∈ B1. Hence, w = xa+1.

By the uniqueness of w, we get that there is only one subset of order at least two in A1.

Hence, the elements of A1 − A′1 and those of B1 appear alternately in [a + 2, n − 2], which

implies |A1 − A′1|+ 1 ≥ |B1|. Recall |A′1| ≥ 2, we have |A1| ≥ |B1|+ 1, a contradiction.

Therefore, the elements of A1 and those of B1 appear alternately in C − w. Without

loss of generality, let w = xn−2. Since n is odd, A1, B1 ⊆ [n − 3] and |A1| = |B1| = n−3
2

, it

follows that either A1 = {1, 3, . . . , n − 4} or A1 = {2, 4, . . . , n − 3}. By symmetry, suppose

A1 = {2, 4, . . . , n − 3}. Since dGi
(y) ≥ n−1

2
for each i ∈ [n], it follows that NGn(y) =

NGn−1(y) = {x1, x3, . . . , xn−4, z}.
Let C ′ = yx3

−→
Cx1y be a rainbow (n−2)-cycle of G with C(yx3) = n−1 and C(yx1) = n.

Note that the colors 1 and 2 do not appear in C ′. Similarly, we can also get that x2z ∈
E(G1) ∩ E(G2). Recall that NGn(y) = NGn−1(y) = {x1, x3, . . . , xn−4, z}. Then x1yzx2

−→
Cx1

is a rainbow Hamiltonian cycle of G with C(x1y) = n − 1, C(yz) = n and C(zx2) = 1, a

contradiction.

Proof of Theorem 1.6: Suppose G 6= Fn. Choose two vertices x and y in V arbitrarily.

We prove that there is a rainbow k-path in G between them for each k ∈ [3, n]. Assume that

Hi = Gi−{x, y} for all i ∈ [n] and H = {H1, . . . , Hn−2}. Note that δ(Hi) ≥ |V (Hi)|−1
2

for each

i ∈ [n]. Suppose that C = v1v2 . . . v`v1 is a maximum rainbow cycle of H. Clearly, ` ≤ n− 2.

Without loss of generality, assume that vivi+1 ∈ E(Gi) for all i ∈ [`] and v`+1 = v1.

From Lemma 3.3, we know that one of the following statements holds:

(1) ` ∈ {n− 3, n− 2};
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(2) n− 2 is odd and H consists of n− 2 copies of K1 ∨ (2Kn−3
2

).

Hence, we consider the following two cases:

Case 1. The statement (1) holds, i.e., ` = n− 2 or ` = n− 3.

Let C = v1v2 . . . v`v1 be a rainbow `-cycle of H with C(vivi+1) = i, where v`+1 = v1. For

each k ∈ [3, n], we define

A1 = {i ∈ [`] : xvi+k−3 ∈ E(Gn)} and B1 = {i ∈ [`] : yvi ∈ E(Gn−1)}.

If ` = n − 2, then |A1| ≥ n−1
2

, |B1| ≥ n−1
2

and |A1 ∪ B1| ≤ n − 2, and hence A1 ∩
B1 6= ∅. Choosing an integer i ∈ A1 ∩ B1, we get that yvi

−→
C vi+k−3x is a rainbow k-path

with C(xvi+k−3) = n and C(yvi) = n − 1, the result then follows. Thus, suppose that

H has a rainbow (n − 3)-cycle C but has no rainbow (n − 2)-cycles. For convenience, let

V \ V (C) = {x, y, z}.
Since |NGn(z, C)| ≥ n−3

2
and |NGn−1(z, C)| ≥ n−3

2
, by Lemma 3.1 we have that n is

odd, and either NGn(z, C) = NGn−1(z, C) = {v1, v3, . . . , vn−4} or NGn(z, C) = NGn−1(z, C) =

{v2, v4, . . . , vn−3}. It is obvious that NGn(z) = NGn−1(z) = I0 ∪ {x, y}, where I0 is either

{v1, v3, . . . , vn−4} or {v2, v4, . . . , vn−3}. By symmetry, we have

NGn(z) = NGn−1(z) = NGn−2(z) = I0 ∪ {x, y}.

By the same discussion, we have that

NGn(x) = NGn−1(x) = NGn−2(x) = I1 ∪ {z, y}

and

NGn(y) = NGn−1(y) = NGn−2(y) = I2 ∪ {x, z},

where Ij is either {v1, v3, . . . , vn−4} or {v2, v4, . . . , vn−3} for j ∈ [2].

Case 1.1. I1 6= I2.

Without loss of generality, suppose I0 = I1 = {v1, v3, . . . , vn−4} and I2 = {v2, v4, . . . , vn−3}.
If k is even, then xv1

−→
C vk−2y is a rainbow k-path joining x and y, where C(xv1) = n − 1

and C(vk−2y) = n. If k is odd, then xzv1
−→
C vk−3y is a rainbow k-path joining x and y, where

C(xz) = n− 2, C(zv1) = n− 1 and C(vk−3y) = n.

Case 1.2. I1 = I2 = I0.

Suppose I1 = {v1, v3, . . . , vn−4}. If k is even, then xzv1
−→
C vk−3y is a rainbow k-path joining

x and y, where C(xz) = n−2, C(zv1) = n−1 and C(vk−3y) = n. If k is odd and k 6= n, then

xv1
−→
C vk−2y is a rainbow k-path joining x and y, where C(xv1) = n − 1 and C(vk−2y) = n.

Now, we consider n = k. If |NG1(v2)∩{x, y, z}| ≥ 2, then either x ∈ NG1(v2) or y ∈ NG1(v2),
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say x ∈ NG1(v2). We can find a rainbow Hamiltonian path xv2
−→
C v1zy of G with C(xv2) = 1,

C(v2z) = n − 1 and C(yz) = n. If |NG1(v2) ∩ {x, y, z}| ≤ 1, then since dG1(v2) ≥ n+1
2

, it

follows that there is a vertex v2j ∈ NG1(v2), where j ∈ [n−3
2

]. Then xv1
←−
C v2jv2

−→
C v2j−1zy is a

rainbow Hamiltonian path of G with C(xv1) = n− 2, C(v2jv2) = 1, C(v2j−1z) = n− 1 and

C(zy) = n. Thus, the result follows.

Case 1.3. I1 = I2 and I1 6= I0.

Suppose I1 = I2 = {v1, v3, . . . , vn−4} and I0 = {v2, v4, . . . , vn−3}. If k is odd and k 6= n,

then xv1
−→
C vk−2y is a rainbow k-path joining x and y, where C(xv1) = n−1 and C(vk−2y) = n.

If k = n, then yzv2
−→
C v1x is a rainbow Hamiltonian path of G joining x and y, where

C(yz) = n − 2, C(zv2) = n − 1 and C(v1x) = n. Recall that n is odd. We only need to

consider that k is even and k 6= n below.

If NG1(v2)∩{x, y} 6= ∅, say x ∈ NG1(v2)∩{x, y}, then xv2
−→
C vk−1y is a rainbow k-path with

C(xv2) = 1 and C(vk−1y) = n. If NG1(v2) ∩ {x, y} = ∅, then there is a vertex v2j of C such

that v2j ∈ NG1(v2), where j ∈ [n−3
2

]. If k ≥ 6, then let P1 = v2
−→
C v2j and P2 = v2j

−→
C v2. Thus,

it is not difficult to show that there is a vertex v2s+1 of V (P1) and a vertex v2t+1 of V (P2)

such that xv2s+1

−→
C v2jv2

←−
C v2t+1y is a rainbow k-path with C(xv2s+1) = n − 1, C(v2v2j) = 1

and C(yv2t+1) = n. Therefore, we only need to consider k = 4.

Let U1 = {x, y, v2, v4, . . . , vn−3} and U2 = {z, v1, v3, . . . , vn−4}. Suppose to the contrary

that there is no rainbow 4-path in G joining x and y. Recall that U2 ⊆ NGi
(x) ∩ NGi

(y)

for i ∈ {n − 2, n − 1, n}. Choosing an integer i ∈ [n] arbitrarily, it is obvious that U2 is an

independent set in Gi; for otherwise there is a rainbow 4-path joining x and y, a contradiction.

Since dGi
(a) ≥ n+1

2
for each a ∈ U2, it follows that every vertex of U2 is adjacent to every

vertex of U1 in Gi. Since dGi
(b) ≥ n+1

2
for each b ∈ U1, it follows that δ(Gi[U1]) ≥ 1. Since

there is no rainbow 4-path in G joining x and y, xy is a component of Gi[U1]. Otherwise,

there is an edge yy′ (resp. xx′) of Gi[U1] such that y′ 6= x (resp. x′ 6= y). Choose two integers

{p, q} = {n − 2, n − 1, n} − {i}. Then yy′zx (resp. xx′zy) is a rainbow 4-path of G with

C(yy′) = i, C(y′z) = p and C(zx) = q (resp. C(xx′) = i, C(x′z) = p and C(zy) = q),

a contradiction. Therefore, Gi = Gi[U1] ∨ Gi[U2] for each i ∈ [n]. According to the above

discussion, we have G = Fn, which contradicts the hypothesis that G 6= Fn.

Case 2. The statement (2) holds.

Set H′ = {H3, H4, . . . , Hn}. By symmetry of H and H′, we know that H consists of n−2

copies of K1∨ (2Kn−3
2

). It follows that {H1, H2, . . . , Hn} consists of n copies of K1∨ (2Kn−3
2

).

Hence, there are two subsets U,W of V −{x, y} such that both Hi[U ] and Hi[W ] are complete

graphs of order n−1
2

for i ∈ [n], and U ∩W = {z}. For each vertex u ∈ U ∪W −{z} and each

i ∈ [n], we have |NGi
(u)∩(U∪W )| = n−3

2
. Since dGi

(u) ≥ n+1
2

, it follows that ux, uy ∈ E(Gi)

for i ∈ [n]. Thus, either Gi = Hi ∨ {x, y} or Gi = Hi ∨ xy. It is easy to verify that there is a
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rainbow s-path in G joining x and y for each integer s ∈ [3, n]. The proof is now complete.

�

A collection G of graphs on the same vertex set V is called rainbow Hamiltonian connected

if for any two vertices of V , G has a rainbow Hamiltonian path joining them. From Theorem

1.6, we can deduce the following result.

Corollary 3.1. Suppose G = {Gi : i ∈ [n]} is a collection of not necessarily distinct n-graphs

with the same vertex set, and δ(Gi) ≥ n+1
2

for all i ∈ [n]. Then G is rainbow Hamiltonian

connected.

Corollary 3.1 is best possible, since the collection G of graphs consisting of n copies of

Kbn2 c,dn2 e is not rainbow Hamiltonian connected.

4 Concluding remarks

Motivated by the rainbow version of Dirac’s theorem (Theorem 1.1), it is natural to generalize

the Ore’s theorem into rainbow version, that is, to find a rainbow Hamiltonian cycle in a

collection G of graphs under the Ore-type condition. Corollary 2.2 says that a rainbow

Hamiltonian path can be found in G under Ore-type condition, which can be seen as a

weak generalization of the Ore’s theorem. More generally, there are many other sufficient

conditions to guarantee the Hamiltonicity of a graph, such as Pósa’s condition [20], Bondy’s

condition [5], Chvátal’s condition [12] and Fan’s condition [15]. It is also interesting to obtain

the rainbow versions of the results under these conditions.

Theorem 1.3 provides a sufficient condition for the existence of a rainbow Hamiltonian

path in G = {Gi : i ∈ [n]}. However, the edges of a rainbow Hamiltonian path only

come from n − 1 graphs in the collection G of graphs. It is worth studying whether n − 1

graphs are sufficient to guarantee the existence of a rainbow Hamiltonian path in a collection

G = {Gi : i ∈ [n− 1]} of graphs.

We have considered rainbow panconnectedness of the collection G of graphs in Theorem

1.6. Another problem is the rainbow connectedness of a collection G of graphs. Let G =

{Gi : i ∈ [t]} be a collection of n-graphs with the same vertex set such that each Gi has

a property P . What is the smallest positive integer tP such that G is rainbow connected

when t = tP? Bradshaw and Mohar in [9] studied the threshold functions for a collection of

random graphs to be rainbow connected.
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