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Abstract. In the last letter to Hardy, Ramanujan introduced seventeen functions defined

by q-series convergent for |q| < 1 with a complex variable q, and called these functions “mock

theta functions”. Subsequently, mock theta functions were widely studied in the literature.

In the survey of B. Gordon and R. J. McIntosh, they showed that the odd (resp. even)

order mock theta functions are related to the function g3(x, q) (resp. g2(x, q)). These two

functions are usually called “universal mock theta functions”. In 2014, D. R. Hickerson

and E. T. Mortenson expressed all the classical mock theta functions and the two universal

mock theta functions in terms of Appell–Lerch sums. In this paper, based on some q-series

identities, we find four functions, and express them in terms of Appell–Lerch sums. For

example,

1 + (xq−1 − x−1q)

∞∑
n=0

(−1; q)2nq
n

(xq−1, x−1q; q2)n+1
= 2m(x, q2, q).

Then we establish some identities related to these functions and the universal mock theta

function g2(x, q). These relations imply that all the classical mock theta functions can be

expressed in terms of these four functions. Furthermore, by means of q-series identities and

some properties of Appell–Lerch sums, we derive four radial limit results related to these

functions.

1. Introduction

Throughout the paper, we use the standard q-series notation [13]. For positive integers n
and m,

(a; q)0 := 1, (a; q)n :=

n−1∏
k=0

(1− aqk), (a; q)∞ :=

∞∏
k=0

(1− aqk),

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Define

j(x; q) := (x; q)∞(x−1q; q)∞(q; q)∞,

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), Jm := Jm,3m =
∞∏
i=1

(1− qmi).

The (unilateral) basic hypergeometric series rφs is definded as

rφs

(
a1, a2, . . . , ar
b1, . . . , bs

; q, x

)
:=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

(
(−1)nq(

n
2)
)1+s−r

xn.
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Seventeen mock theta functions were presented by Ramanujan [32] in his last letter to
Hardy. These functions were assigned orders 3, 5, and 7. In 1936, Watson [34, 35] proved
some identities for the third and fifth order mock theta functions. In view of Bailey’s lemma
and Bailey pairs, Andrews [1] established Hecke-type double sums for the fifth and seventh
order mock theta functions. For example, he showed that

f0(q) =
1

J1

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
qn(5n+1)/2−j2 ,

f1(q) =
1

J1

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qn(5n+3)/2−j2 ,

where the fifth order mock theta functions f0(q) and f1(q) are defined as

f0(q) =
∞∑
n=0

qn
2

(−q; q)n
and f1(q) =

∞∑
n=0

qn
2+n

(−q; q)n
.

Then based on these Hecke-type double sums, Hickerson [16] proved the following two iden-
tities which are known as Mock Theta Conjectures:

f0(q) =
J5,10J2,5
J1

− 2q2g(q2, q10),

f1(q) =
J5,10J4,5
J1

− 2q3g(q4, q10),

where the function g(x, q) is given by

g(x, q) = x−1

(
−1 +

∞∑
n=0

qn
2

(x; q)n+1(x−1q; q)n

)
=

∞∑
n=0

qn(n+1)

(x, x−1q; q)n+1
.

Since then, mock theta functions have received a great deal of attention. For the development
of the classical mock theta functions, one can see [3, 14] and the references therein. Gordon
and McIntosh [14] stated that the odd order mock theta functions can be represented by
g3(x, q) which is g(x, q) and the even order mock theta functions can be expressed in terms
of g2(x, q) where

g2(x, q) =
∞∑
n=0

(−q; q)nq(n
2+n)/2

(x, x−1q; q)n+1
.

They also obtained the following relation between g3(x, q) and g2(x, q) [14, Equation (6.1)]:

g3(x
4, q4) =

qg2(x
6q, q6)

x2
+
x2g2(x

6q−1, q6)

q
− x2(q2; q2)3∞(q12; q12)∞j(x

2q; q2)j(x12q6; q12)

q(q4; q4)∞(q6; q6)2∞j(x
4; q2)j(x6q−1; q2)

.

We usually call g2(x, q) and g3(x, q) the universal mock theta functions due to the fact that
they are at the core of representing classical mock theta functions. In addition to these two
functions, McIntosh [28] also considered

N(x, q) =

∞∑
n=0

qn
2

(xq, x−1q; q)n
, K1(x, q) =

∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(xq, x−1q; q2)n+1
,

K(x, q) =
∞∑
n=0

(q; q2)n(−1)nqn
2

(xq2, x−1q2; q2)n
, K2(x, q) =

∞∑
n=0

(−1; q)nq
(n2+n)/2

(xq, x−1q; q)n
.

Notice that some of these functions have combinatorial interpretations. For example, N(x, q)
is the generating function of partitions of n with rank m [9], K(x, q) is the generating function
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of partitions of n with distinct odd parts with M2-rank m [5,25], and K2(x, q) is the generating
function of overpartitions of n with rank m [23]. A relation between K(x, q) and K1(x, q) was
given by Ramanujan [2, Entry 12.3.2]. Utilizing Appell–Lerch sums [20, 21], McIntosh [28]
provided various linear relations for these functions. For example, he showed that

1 + x

1− x
K2(x, q) = 1 + 2xg2(x, q).

For more on universal mock theta functions, one can see [6, 8, 12,19,29].

In [17], Hickerson and Mortenson gave the following definition of Appell–Lerch sums.

Definition 1.1. Let x, z ∈ C∗ := C\{0} with neither z nor xz an integral power of q. Then

m(x, q, z) =
1

j(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
.

Changing r to r + 1 in the above series gives another useful form of m(x, q, z):

m(x, q, z) =
−z

j(z; q)

∞∑
r=−∞

(−1)rq(
r+1
2 )zr

1− qrxz
. (1.1)

In view of the definition of Appell-Lerch sums, Hickerson and Mortenson [17] presented that

g(x, q) = −x−1m(x−3q2, q3, x2)− x−2m(x−3q, q3, x2),

g2(x, q) = −x−1m(x−2q, q2, x).

Moreover, they built some relations between Hecke-type double sums and Appell–Lerch sums,
and established explicit representations of all the classical mock theta functions by means
of Appell–Lerch sums. Subsequently, some new families of mock theta functions which are
expressed in terms of Appell–Lerch sums were established in [15,24,26,27].

In [30], according to the equations given by Ramanujan [33], Mortenson stated the fol-
lowing series in terms of Appell–Lerch sums, and built some mixed mock modular bilateral
q-hypergeometric series.

Proposition 1.2. [30, Proposition 2.6] We have

(1 + x−1)

∞∑
n=0

(−q; q)2nqn+1

(xq, x−1q; q2)n+1
= −m(x, q2, q),

∞∑
n=0

(q; q2)n(−1)nqn
2

(−x; q2)n+1(−x−1q2; q2)n
= m(x, q,−1) +

J2
1,2

2j(−x; q)

= 2m(x, q,−1)−m(x, q,
√
−x−1q)

= m(−x2q, q4,−q−1)− xq−1m(−x2q−1, q4,−q),
∞∑∗

n=0

(q; q2)n(−1)n

(−x; q)n+1(−x−1q; q)n
= m(x, q,−1), (1.2)

(1 + x−1)
∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(−xq,−x−1q; q2)n+1
= m(x, q,−1)−

J2
1,2

2j(−x; q)
,

∞∑
n=0

(q2; q4)n(−1)nq2n
2

(−x; q4)n+1(−x−1q4; q4)n
= m(x, q2, q) +

J
2
1,4j(−xq2; q4)

j(−x; q4)j(xq; q2)
. (1.3)
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Notice that the symbol
∑∗ in (1.2) denotes convergence problems. The series on the

left-hand side of (1.2) is a divergent series. Then based on the following identity [2, Equation
(12.3.6)]

lim
α→1−

∞∑
n=0

(αq; q)n(q; q2)n(−α)n

(q,−αxq,−αq/x; q)n
=

1

J0,1

∞∑
n=−∞

(1 + x)(1 + x−1)qn(n+1)/2

(1 + xqn)(1 + x−1qn)
, (1.4)

this divergent series can be replaced by the right-hand side of (1.4).

Recall that given any mock theta function f(q), for every root of unity ζ, when q tends to ζ
radially, there exists a theta function θζ(q) such that f(q)−θζ(q) is bounded. Moreover, there
is no single theta function which works for all ζ. In light of the bilateral q-series obtained
in [30], Mortenson [31] established some radial limits for the mock theta functions considered
by Zudilin [36] and also derived some new radial limit results. For example, Mortenson
derived the following theorem.

Theorem 1.3. [31, Theorem 5.1] If ζ is a primitive even order 2k root of unity, k odd,
then, as q approaches ζ radially within the unit disk, we have that

lim
q→ζ

(
2

∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(−q; q2)2n+1

+
J2
1,2

J0,1

)
= −2

(k−1)/2∑
n=0

(−ζ; ζ2)2nζ
2n+1

(ζ; ζ2)n+1
.

For more on radial limits, one can see [4, 7, 10,11,18].

Inspired by Mortenson’s work [30,31], we find the following four functions:

A(x, q) : = 1 + (xq−1 − x−1q)
∞∑
n=0

(−1; q)2nq
n

(xq−1, x−1q; q2)n+1
, (1.5)

B(x, q) : = 1 + (x− x−1q)
∞∑
n=0

(q; q2)n(−q)n

(x, x−1q; q)n+1
,

C(x, q) : =
1

x+ 1
+
x− 1

x+ 1

∞∑
n=0

(−q; q)nq(n
2−n)/2

(x, x−1; q)n+1
,

D(x, q) : = −(1 + x)q2

1− x2q2
− (1 + xq2)(1 + x−1)

1 + xq

∞∑
n=0

(−q; q2)n(−q2; q2)n+1q
n+1

(xq; q2)n+2(x−1q; q2)n+1
. (1.6)

Then we establish the Appell–Lerch sum representations of these functions.

Theorem 1.4. We have

A(x, q) = 2m(x, q2, q).

Theorem 1.5. We have

B(x, q) = 2m(−x, q,−1).

Theorem 1.6. We have

C(x, q) = m(x2q, q2, q) +
xJ

2
1,4

j(x2; q2)
.

Theorem 1.7. We have

D(x, q) = m(x, q2, q).
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Moreover, we derive the following relations.

Theorem 1.8. We have

A(x, q)−B(−x, q2) = −
J
2
1,2j(−xq; q2)

j(−x; q2)j(xq; q2)
, (1.7)

A(x2q, q)− 2C(x, q) = −
2xJ

2
1,4

j(x2; q2)
, (1.8)

A(x, q)− 2D(x, q) = 0, (1.9)

A(x−2q, q) + 2xg2(x, q) =
2xJ

2
1,4

j(x2; q2)
, (1.10)

B(−x−2q, q2) + 2xg2(x, q) =
J2
2,4j(−x; q)

j(x; q)j(−x2q; q2)
, (1.11)

C(x−1, q) + xg2(x, q) = 0, (1.12)

D(x−2q, q) + xg2(x, q) =
xJ

2
1,4

j(x2; q2)
. (1.13)

Equations (1.10)-(1.13) imply that all the classical mock theta functions can be expressed
by A(x, q), B(x, q), C(x, q), or D(x, q), respectively.

Finally, in view of an identity given by Liu [22, Theorem 6] and the properties of Appell–
Lerch sums, we obtain the following radial limits.

Theorem 1.9. If ζ is a primitive odd order 2k + 1 root of unity, then when q tends to ζ
radially within the unit disk, we have

lim
q→ζ

(
A(q3, q2)− 1−

J
2
2,4

J1,4

)
= ζ(1− ζ2)

k∑
n=0

(ζ4; ζ8)n(−1)nζ4n

(−ζ; ζ2)2n+2
.

Theorem 1.10. If ζ is a primitive even order 4k root of unity, then when q tends to ζ
radially within the unit disk, we have

lim
q→ζ

(
B(−1, q2)− 1−

J
3
1,2

2J2
1,4

)
=

1− ζ2

ζ

k∑
n=0

(−1; ζ)2nζ
n

(ζ, ζ−1; ζ2)n+1
.

Theorem 1.11. If ζ is a primitive odd order 2k + 1 root of unity, then when q tends to ζ
radially within the unit disk, we have

lim
q→ζ

(
C(q, q2)− q

J
2
1,4J2,8

J2,4J4,8

)
=

k∑
n=0

(ζ4; ζ8)n(−1)nζ4n
2

(−ζ4; ζ8)n+1(−ζ4; ζ8)n
.

Theorem 1.12. If ζ is a primitive odd order 2k + 1 root of unity, then when q tends to ζ
radially within the unit disk, we have

lim
q→ζ

(
D(1, q) +

2q2

1− q2
+ 4q

J8
4

J7
2

)
=

2ζ(1 + ζ2)2

1− ζ2
k∑

n=0

(ζ,−ζ4; ζ2)n(−1)nζn

(−ζ,−ζ3; ζ2)n+1
.

This paper is organized as follows. In Section 2, we state some preliminaries. In Section
3, the proofs of Theorems 1.4-1.8 are established. In Section 4, we prove Theorems 1.9-1.12.
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2. Preliminaries

The following identities are frequently used in this paper.

j(x; q) = j(x−1q; q),

j(xq; q) = −x−1j(x; q),

j(x; q)J1,4 = j(x; q2)j(xq; q2).

In order to prove the main theorems, the following results are needed.

Lemma 2.1. [33, p.1] If z is not an integral power of q, then

∞∑
n=−∞

(−1)nq(
n+1
2 )

1− zqn
=

J3
1

j(z; q)
. (2.1)

Proposition 2.2. [17, Proposition 3.1] For generic x, z ∈ C∗,

m(x, q, z) = m(x, q, zq), (2.2)

m(x, q, z) = x−1m(x−1, q, z−1), (2.3)

m(xq, q, z) = 1− xm(x, q, z). (2.4)

Following [17], the term “generic” means that the parameters do not cause poles in the
Appell–Lerch sums or in the quotients of theta functions.

Corollary 2.3. [17, Corollary 3.2] We have

m(−1, q2, q) = 0. (2.5)

Lemma 2.4. [17, Theorem 3.3] For generic x, z0, z1 ∈ C∗,

m(x, q, z1)−m(x, q, z0) =
z0J

3
1 j(z1/z0; q)j(xz0z1; q)

j(z0; q)j(z1; q)j(xz0; q)j(xz1; q)
. (2.6)

Lemma 2.5. [13, Appendix (III.17)] The Watson–Whipple transformation formula is given
by

8φ7

(
a, a1/2q, −a1/2q, b, c, d, e, f

a1/2, −a1/2, aq/b, aq/c, aq/d, aq/e, aq/f
; q,

a2q2

bcdef

)
=

(aq, aq/de, aq/df, aq/ef ; q)∞
(aq/d, aq/e, aq/f, aq/def ; q)∞

4φ3

(
aq/bc, d, e, f

aq/b, aq/c, def/a
; q, q

)
.

Letting f →∞ in the above identity yields

∞∑
n=0

1− aq2n

1− a
(a, b, c, d, e; q)n(−1)nq(

n
2)

(q, aq/b, aq/c, aq/d, aq/e; q)n

(
a2q2

bcde

)n
=

(aq, aq/de; q)∞
(aq/d, aq/e; q)∞

∞∑
n=0

(aq/bc, d, e; q)n
(q, aq/b, aq/c; q)n

(aq
de

)n
. (2.7)

Lemma 2.6. [22, Theorem 6] We have

d

∞∑
n=0

(q/bc, acdf ; q)n(bd)n

(ad, df ; q)n+1
− c

∞∑
n=0

(q/bd, acdf ; q)n(bc)n

(ac, cf ; q)n+1
= d

(q, qd/c, c/d, abcd, acdf, bcdf ; q)∞
(ac, ad, cf, df, bc, bd; q)∞

.

(2.8)
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3. Proofs of Theorems 1.4-1.8

In this section, we establish the Appell–Lerch sums of A(x, q), B(x, q), C(x, q), and
D(x, q).

Proof of Theorem 1.4. Setting a = 1, b = x−1q, c = xq−1, d = −1, e = −q, and q → q2 in
(2.7), and then dividing both sides by (1− xq−1)(1− x−1q), we obtain

∞∑
n=0

(−1; q)2nq
n

(xq−1, x−1q; q2)n+1

=
1

J1,2

(
1

(1− xq−1)(1− x−1q)
+ 2

∞∑
n=1

(−1)nqn
2+2n

(1− xq2n−1)(1− x−1q2n+1)

)

=
1

J1,2

∞∑
n=−∞

(−1)nqn
2+2n

(1− xq2n−1)(1− x−1q2n+1)

=
1

(xq−1 − x−1q)J1,2

∞∑
n=−∞

(
(−1)nxqn

2+2n−1

1− xq2n−1
− (−1)nx−1qn

2+2n+1

1− x−1q2n+1

)

=
−xq−2m(xq−2, q2, q) + x−1m(x−1, q2, q)

xq−1 − x−1q
, (3.1)

where the last step follows from (1.1). Then applying (2.2) and (2.3) yields that

m(x−1, q2, q) = xm(x, q2, q−1) = xm(x, q2, q). (3.2)

In addition, in view of (2.4), we have

−xq−2m(xq−2, q2, q) = m(x, q2, q)− 1. (3.3)

Finally, substituting (3.2) and (3.3) into (3.1), we prove the theorem. �

Proof of Theorem 1.5. Substituting a = q, b = x−1q, c = x, d = q1/2, and e = −q1/2 into
(2.7), we deduce

∞∑
n=0

(q; q2)n(−q)n

(x, x−1q; q)n+1
=

2

J0,1

∞∑
n=0

q(n
2+3n)/2

(1− xqn)(1− x−1qn+1)

=
1

J0,1

∞∑
n=−∞

q(n
2+3n)/2

(1− xqn)(1− x−1qn+1)

=
1

(x−1q − x)J0,1

( ∞∑
n=−∞

x−1q(n
2+3n+2)/2

1− x−1qn+1
−

∞∑
n=−∞

xq(n
2+3n)/2

1− xqn

)

=
1

(x−1q − x)J0,1

(
−

∞∑
n=−∞

q(n
2+n)/2

1− xqn
−

∞∑
n=−∞

xq(n
2+3n)/2

1− xqn

)

= −m(−x, q,−1)

x−1q − x
− xq−1m(−xq−1, q,−q)

x−1q − x
(by (1.1))

= −m(−x, q,−1)

x−1q − x
− xq−1m(−xq−1, q,−1)

x−1q − x
(by (2.2))

= −m(−x, q,−1)

x−1q − x
− m(−x, q,−1)

x−1q − x
+

1

x−1q − x
,

where the last step follows from (2.4). Hence, we complete the proof. �
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Proof of Theorem 1.6. Letting a = 1, b = x, c = x−1, d = −q, and e → ∞ in (2.7), we
derive

∞∑
n=0

(−q; q)nq(n
2−n)/2

(x, x−1; q)n+1

=
2

J1,2

(
1

(1− x)(1− x−1)
+

∞∑
n=1

(1 + qn)2(−1)nqn
2

2(1− xqn)(1− x−1qn)

)

=
1

2J1,2

∞∑
n=−∞

(1 + qn)2(−1)nqn
2

(1− xqn)(1− x−1qn)

=
1

2(1− x)J1,2

∞∑
n=−∞

(
(1 + qn)(−1)nqn

2

1− x−1qn
− (1 + qn)(−1)nxqn

2

1− xqn

)

=
−x

(1− x)J1,2

∞∑
n=−∞

(1 + qn)(−1)nqn
2

1− xqn

=
−x

(1− x)J1,2

∞∑
n=−∞

(1 + qn)(1 + xqn)(−1)nqn
2

1− x2q2n

=
−x

(1− x)J1,2

( ∞∑
n=−∞

(−1)nqn
2

1− x2q2n
+ x

∞∑
n=−∞

(−1)nqn
2+2n

1− x2q2n
+ (1 + x)

∞∑
n=−∞

(−1)nqn
2+n

1− x2q2n

)

=
−x

1− x
(
m(x2q, q2, q−1)− xq−1m(x2q−1, q2, q)

)
− x(1 + x)

1− x
J
2
1,4

j(x2; q2)

=
−x

1− x
(
m(x2q, q2, q)− x−1 + x−1m(x2q, q2, q)

)
− x(1 + x)

1− x
J
2
1,4

j(x2; q2)

=
−(1 + x)

1− x
m(x2q, q2, q) +

1

1− x
− x(1 + x)

1− x
J
2
1,4

j(x2; q2)
,

where we obtain the last third step by utilizing (1.1) and (2.1), and the penultimate step
follows from (2.2) and (2.4). Therefore, we complete the proof. �

Proof of Theorem 1.7. Setting a = q4, b = xq2, c = x−1q2, d = −q, e = −q4, and q → q2

in (2.7), we have

∞∑
n=0

(−q,−q4; q2)nqn

(xq2, x−1q2; q2)n+1

=
1

(1 + q2)J1,2

∞∑
n=0

(1− q4n+4)2(−1)nqn
2+2n

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+1)(1 + q2n+3)

=
1

2(1 + q2)J1,2

( ∞∑
n=0

+
−2∑

n=−∞

)
(1− q4n+4)2(−1)nqn

2+2n

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+1)(1 + q2n+3)

=
1

2(1 + q2)J1,2

∞∑
n=−∞

(1− q4n+4)2(−1)nqn
2+2n

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+1)(1 + q2n+3)

=
1

2(1 + q2)J1,2

∞∑
n=−∞

(1− q4n+4)(−1)nqn
2+2n

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+1)
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− 1

2(1 + q2)J1,2

∞∑
n=−∞

(1− q4n+4)(−1)nqn
2+4n+3

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+3)

=
1

(1 + q2)J1,2

∞∑
n=−∞

(1− q4n+4)(−1)nqn
2+2n

(1− xq2n+2)(1− x−1q2n+2)(1 + q2n+1)

=
1

(1 + q2)J1,2

∞∑
n=−∞

(
(−1)nqn

2+2n

(1− x−1q2n+2)(1 + q2n+1)
+

(−1)nxqn
2+4n+2

(1− xq2n+2)(1 + q2n+1)

)

=
x−1q

(1 + q2)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+2n

1− x−1q2n+2
+

1

(1 + q2)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+2n

1 + q2n+1

+
x2q3

(1 + q2)(1 + xq)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1− xq2n+2
+

xq2

(1 + q2)(1 + xq)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1 + q2n+1

= − q3

(1 + q2)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1− xq2n+2
+

1

(1 + q2)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+2n

1 + q2n+1

+
x2q3

(1 + q2)(1 + xq)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1− xq2n+2
+

xq2

(1 + q2)(1 + xq)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1 + q2n+1

= − (1− x2)q3

(1 + q2)(1 + xq)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1− xq2n+2

+
1

(1 + q2)(1 + x−1q)J1,2

∞∑
n=−∞

(−1)nqn
2+2n

1 + q2n+1
+

xq2

(1 + q2)(1 + xq)J1,2

∞∑
n=−∞

(−1)nqn
2+4n

1 + q2n+1

= − (1− x2)q−1

(1 + q2)(1 + xq)(1 + x−1q)
m(xq−1, q2, q3)− q−1

(1 + q2)(1 + x−1q)
m(−1, q2, q)

+
xq−2

(1 + q2)(1 + xq)
m(−q−2, q2, q3), (3.4)

where the last step follows from (1.1). Notice that we use the technique n→ −n− 2 several
times in the above equalities.

Next, based on (2.2) and (2.4), we obtain

m(−q−2, q2, q3) = −q2 + q2m(−1, q2, q3) = −q2 + q2m(−1, q2, q). (3.5)

Then substituting (3.5) into (3.4) and applying (2.2) and (2.5), we derive

∞∑
n=0

(−q,−q4; q2)nqn

(xq2, x−1q2; q2)n+1
= − (1− x2)q−1

(1 + q2)(1 + xq)(1 + x−1q)
m(xq−1, q2, q)− x

(1 + q2)(1 + xq)
.

Finally, replacing x by xq in the above identity yields

∞∑
n=0

(−q,−q4; q2)nqn

(xq3, x−1q; q2)n+1
= − (1− x2q2)q−1

(1 + q2)(1 + xq2)(1 + x−1)
m(x, q2, q)− xq

(1 + q2)(1 + xq2)

which implies the theorem. �

Proof of Theorem 1.8. In view of Theorems 1.4 and 1.5, we have

A(x, q)−B(−x, q2) = 2m(x, q2, q)− 2m(x, q2,−1).

Then using (2.6) in the above identity, we complete the proof of (1.7).
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The proofs of (1.8)-(1.13) are similar to that of (1.7). �

4. Proofs of Theorems 1.9-1.12

In this section, using (2.8) given by Liu [22, Theorem 6] and some properties of Appell–
Lerch sums, we establish some radial limits.

Proof of Theorem 1.9. Setting a = q, b = q2, c = −q2, d = 1, f = q−1, and q → q4 in
(2.8), we deduce

∞∑
n=0

(−1; q2)2nq
2n

(q, q−1; q4)n+1
+ q2

∞∑
n=0

(q4; q8)n(−1)nq4n

(−q; q2)2n+2
= − q

1− q2
J
2
2,4

J1,4
.

If ζ is a primitive order 2k + 1 root of unity, then when q tends to ζ radially within the unit
disk,

lim
q→ζ

( ∞∑
n=0

(−1; q2)2nq
2n

(q, q−1; q4)n+1
+

q

1− q2
J
2
2,4

J1,4

)
= −ζ2

k∑
n=0

(ζ4; ζ8)n(−1)nζ4n

(−ζ; ζ2)2n+2
.

Therefore, combining (1.5) and the above identity, we complete the proof. �

Proof of Theorem 1.10. Letting a = −1, b = −q2, c = −q−1, d = 1, f = −q2, and q → q2

in (2.8), we derive

∞∑
n=0

(q2; q4)n(−1)nq2n

(−1,−q2; q2)n+1
+ q−1

∞∑
n=0

(−1; q)2nq
n

(q, q−1; q2)n+1
= −

J
3
1,2

2(1− q2)J2
1,4

.

Namely,

B(−1, q2)− 1−
J
3
1,2

2J2
1,4

=
1− q2

q

∞∑
n=0

(−1; q)2nq
n

(q, q−1; q2)n+1
.

Hence, if ζ is a primitive order 4k root of unity, then we obtain the theorem by letting q tend
to ζ radially within the unit disk. �

Proof of Theorem 1.11. In view of Theorem 1.6, we deduce

C(q, q2) = m(q4, q4, q2) + q
J
2
2,8

J2,4
. (4.1)

Then applying (1.3) with x = q4 and q → q2 yields

∞∑
n=0

(q4; q8)n(−1)nq4n
2

(−q4; q8)n+1(−q4; q8)n
= m(q4, q4, q2)− q2

J0,8J
2
2,8

J2,4J4,8

. (4.2)

Combining (4.1) and (4.2), we derive

∞∑
n=0

(q4; q8)n(−1)nq4n
2

(−q4; q8)n+1(−q4; q8)n
= C(q, q2)− q

J
2
2,8

J2,4
− q2

J0,8J
2
2,8

J2,4J4,8

= C(q, q2)− q
J
2
2,8(J4,8 + qJ0,8)

J2,4J4,8

= C(q, q2)− q
J
2
1,4J2,8

J2,4J4,8

,
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where we use the following identity [17] with x = −q, y = −q3, and q → q4 to obtain the
third equality.

j(x; q)j(y; q) = j(−xy; q2)j(−qx−1y; q2)− xj(−qxy; q2)j(−x−1y; q2).

Thus, if ζ is a primitive order 2k + 1 root of unity, then when q tends to ζ radially within
the unit disk, we prove the theorem. �

Proof of Theorem 1.12. Substituting a = q3, b = q, c = −1, d = 1, f = q, and q → q2 in
(2.8) yields

∞∑
n=0

(−q,−q4; q2)nqn

(q, q3; q2)n+1
+

∞∑
n=0

(q,−q4; q2)n(−1)nqn

(−q,−q3; q2)n+1
=

2(1− q2)J8
4

(1 + q2)2J7
2

. (4.3)

In addition, in view of (1.6), we have

D(1, q) = − 2q2

1− q2
− 2q(1 + q2)2

1− q2
∞∑
n=0

(−q,−q4; q2)nqn

(q, q3; q2)n+1
. (4.4)

Then combining (4.3) and (4.4), we derive

D(1, q) +
2q2

1− q2
+

4qJ8
4

J7
2

=
2q(1 + q2)2

1− q2
∞∑
n=0

(q,−q4; q2)n(−1)nqn

(−q,−q3; q2)n+1
.

Thus, if ζ is a primitive order 2k + 1 root of unity, then letting q tend to ζ radially within
the unit disk, we complete the proof. �
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