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Abstract

For two graphs G and F, the extremal number of F' in G, denoted by ex(G, F), is the
maximum number of edges in a spanning subgraph of G not containing F' as a subgraph.
Determining ex(K,, F) for a given graph F is a classical extremal problem in graph
theory. In 1962, Erdés determined ex(K,,, kK3), which generalized Mantel’s Theorem.
On the other hand, in 1974, Bollobés, Erdés, and Straus determined ex(Ky, ny,...n,. s Kt),
which extended Turédn’s Theorem to complete multipartite graphs. In this paper, we
determine ex(Ky, ny....n,, kK3) for r > 4 and 10k —4 < ng +4k <ng <ng <--- < n,.

Keywords: extremal numbers; multipartite graphs; disjoint triangles

1 Introduction

All graphs considered in this paper are finite and simple. We follow [12] for undefined
notation and terminology. Let G = G(V(G), E(G)) be a graph, where V(G) is the vertex
set and F(G) is the edge set. Denote e¢(G) = |E(G)|. For any subset S C V(G), we use G[5]
to denote the subgraph of G induced by S and let G —S = G[V(G)\ S]. Given two disjoint
vertex sets Vi and Vs, the join V1 V Vs is the edge set obtained by joining each vertex of V;
to each vertex of V5. Furthermore, given two graphs G and H, the join GV H is the graph
obtained from the disjoint union of G and H by joining each vertex of G to each vertex of
H. Let r,t,k be three positive integers. For convenience, we write [r] = {1,2,3,...,7} in
the context. Denote by K; the complete graph on ¢ vertices and kK; the disjoint union of
k copies of K;. Moreover, for r positive integers ny,na,...,n,, we use Ky, n, . n, to denote
the complete r-partite graph with parts of sizes ny,no, ..., n,.

Let ex(G, H) = max{e(G’) : [V(G")| = [V(G)|, G’ C G, and H ¢ G'} and call it
the extremal number of H in G. Let n and ¢t be two integers with n > ¢t. The classical

Turén problem considers the case G = K,, i.e., determining the value of ex(K,, H) for a
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given H. For instance, the well-known Mantel’s Theorem [8] and Turdn’s Theorem [11]
determined ex(K,, K3) and ex(K,, K;), respectively. Turén’s Theorem is widely considered
to be the first extremal theorem on graphs and initiated the study of extremal graph theory.
Let T,.(n) be a balanced complete r-partite graph on n vertices, that is, any two parts of
sizes differ by at most one. In 1959, Erdds and Gallai [] determined ex(K,,, kK>) for any
positive integers n and k. Later, Erd8s [§] proved ex(K,,kK3) = e(Kp_1 V To(n —k + 1))
for n > 400(k — 1)? and Moon [9] proved that for n > % + 4. Moreover, Moon [9] (only
when n —k+1 is divisible by p) and Simonovits [10] showed that K1 VT,_1(n—k+1) is
the unique extremal graph containing no copy of kK, for sufficiently large n. The extremal
problem on multipartite graphs was first considered by Bollobas, Erdés, and Straus [[].
They determined ex(Ky, ny,..n,., K¢) for 1 > ¢ > 2. Later, Chen, Li, and Tu [2] determined
ex(Kp, ny, kK2). Recently, De Silva, Heysse and Young [4] proved ex(Kp, no....n,, kK2) =
(k=1)(n2+ng+--+mn,) forng <ng <--- <y

To make it easier to state the results in this paper, we define a function f. Let
Z1,%2,...,%y be positive integers and ¢ > 2 be an integer. Note that {z1,z9,...,2,} is a
multiset. For any subset P C [r], let xp := ), p x;. Now, we define the desired function
f as follows. For t = 2, let fo({z1,22,...,2,}) = 0. For t > 3, let fi({x1,22,...,2,}) =
max { > zp-zp}, where P = (P, P,,...,P1) is a partition of [r] into ¢ —1

1<i<j<t—1
nonempty parts. For convenience, we simply write fi(x1, z2,...,x,) for fi({z1,z2,...,2:}).
Notice that f.(x1,x2,...,2,) = (El§i<j§r zix;) —wixg if o1 <ap <o <y
Theorem 1.1 [1] Let ny,no,...,n,,t be positive integers with r >t > 2. Then

ew(Knl,nz,...,nm Kt) = ft(nh na,... 7n7‘)-

By replacing the forbidden graph K; with kK, De Silva et al. [3] considered a special

case t = r and raised the problem about ex(Ky, n,,..n,, kK;) for r > t.

Theorem 1.2 [3] For any integers r > 2 and 1 < k <nj <ng <--- < n,, we have

ex(Kn, no,...nn, KKy) = Z ninj —ning + (k — 1)ng
1<i<j<r

=k-1n-n1)+ fr(ni — (k—1),n2,...,n,),
where n. =Y n;.
Problem 1.3 [3] Determine ex(Ky, ny,..n,, kK¢) forr >t.

Han and Zhao [[7] determined ex(Kp, ny nsna, KK3) for a sufficiently large integer n; with
ny <ng <n3g < ny.



Theorem 1.4 [7] Let ni,...,n4 be sufficiently large and n1 < ny < nz < ng. For any

integer k > 1, we have

ex(Km,nmns,Ma kK3) = (k - 1)(” - nl) + f3(n1 - (k - 1)7 n27n37n4)

B n4(n1+n2+n3)+(k—1)(n2+n3), if ng > no + ns;
(n1 4+ na)(ng +ng) + (k — 1)na, if na < ng + na.

In addition, Han and Zhao [[7] proposed a conjecture on ex(Kp, no,...n,, KK¢).

Conjecture 1.5 [[] Given three integers k, r, andt withr >t > 3 and k > 2, let ny,...,n,
be sufficiently large. For I C [r], write my := min;ern,;. Given a partition P of [r], let

np := maxjep{nr — mr}. Then

ex(Knimo,...n., KKy) = mgx (k—1)np + Z nr-np oy,
IAI'EP

where the maximum is taken over all partitions P of [r] into t — 1 parts.

Actually, we can obtain an equivalent statement of Conjecture @ as follows, equivalence

will be proved in Section E

Conjecture 1.6 Given three integers k, r, andt withr >t > 3 andk > 2, letny < ng--- <
ny be integers with > . n; = n. If ny is sufficiently large, then ex(Kn, ny, .n,.,kK:) =
(k=1D(n—n1)+ fi(nn — (k—1),n9,...,n;:).

To support Conjecture @, we provide a simple construction, which gives a lower bound
for ex(Kn, ng,...n., KK¢).

Theorem 1.7 Let k and t be two integers with k > 2 and t > 3. Let ni,na,...,n, ber in-
tegers with ny < ming>o{n;}, n1 >k, r>1t, and >_;_;n; =n. Then ex(Kp, ny,..n., kK:) >
(k=1)(n—n1) + fi(n1 — (k= 1),n2,...,n;).

Furthermore, with Theorem @, we confirm Conjecture @ fort = 3, r > 4, and
ny + 4k S ng.

Theorem 1.8 Let r,n1,n2,...,n, be integers with r > 4, 10k —4 < ny + 4k < min;>o{n;}
and 25:1 n; =n. Then ex(Kp, ny... n., kK3) = (k—1)(n—n1)+ f3(n1 — (k—1),n2,...,n,).

In Conjecture @, it is required that “n; is sufficiently large”. But how large it can be?
By aforementioned results and Theorem @, we conjecture that the lower bound for n; is
k.



Conjecture 1.9 Given three integers k, r, andt withr >t > 2 and k > 1, let ny,na, ..., N,
be integers with ny < min;>o{n;} and >, _,n; =n. If ni >k, then ex(Ky, ny,...n, kK;) =
(k=1(n—n1)+ filn1 — (k= 1),n9,...,n;).

The rest of this paper is organized as follows. In Section , we first prove the equivalence
of Conjectures @ and @ Later, some basic properties of f3(ni,ng,...,n,) are provided,
which will be used frequently in the proof of Theorem @ The proofs of Theorems lﬁ and
@ are presented in Sections E and H, respectively.

2 Equivalence and Properties of f3(ny,n9,...,n,)

Proposition 2.1 Conjecture 1.5 and Conjecture 1.6 are equivalent.

Proof. Let r >t >3,k >2,n1 <ng--- <n,. Our goal is to prove

maz § (k= Lnp + Yo onpenp p=(k=1)(n—m)+ filng — (k—1),n2,...,n,). (1)
[#I'eP

First we show the > direction of @) Let x1 =ny — (k — 1), x; = n; for any i > 2, and

Po = (P1, Pa,...,Pi_1) be a partition of [r] maximizing fi(x1,z2,...,2,). Assume 1 € Pj.

Hence

(kj — 1)(’0 - nl) + ft(nl - (k‘ - 1),712, .. .,nr)
= (k—=1)(np, —n1) + (k= 1)(n —np) + Z Lp; - Tp;
ijeli—1]

< (k—1)np, + Z np, - np;
i#jelt—1]

< max (k—1)np + Z nr-np
I£I'EP
Now we prove the < direction of @) For any given partition P = (P1, Py, ..., P,_1) of
[r], let £ € [t — 1] such that np = np, — mp, and a € P, such that n, = mp,.

Notice that

(k—1)np + Z nr-ny

I£I'EP
= (k_l)(npe _mPe)+nPe '(n_npe)+ Z nr-np
I£I'€P\{ P}
=(k=D(n—mp)+(np,— (k=1))-(n—np)+ >, nr-np
I#I'eP\{P;}

< (k=1Dn =na) + fil{nr, - s nrf Ufna = (k= 1)} \ {na}).



Next we assume that P be the partition maximizing the value (k— 1)np + 21#1,673 nr-np.

It remains to show

(k= 1)(n = na) + fil{n1,--- 0} U{na = (k = D} \ {na})
< (k=D —n1)+ fil{na, -~ ,ne} U{na — (k= D} \ {m}). (2)

If ng = n1, then we are done. We may assume that n, > ni. We can see 1 ¢ P;. We may
assume 1 € P; and £ # 1. Now note that mp, = n; and mp, = no. Then np,—no > np, —n1
by ¢ # 1. Since n, > n1 and np, —ny > np, —n1, we can switch 1 and o in the partition P
and thus increases (k — 1)np + >/ pepnir - np, a contradiction. Thus the Inequation (E)
holds.

[ |

Next we provided some properties of the function f3(ni,ne,...,n,).

Proposition 2.2 Let ny,na, ..., n,, u be positive integers with p € [r] and n, —1 > ny +1.
Then fs({n1,n2,...,n.}\ {ni,n,} U{ni +1,n, —1}) < fa(ni,n9,...,np) +n, — (01 +1).

Proof. Let 21 = n1 +1, 2, = n, — 1, and z; = n; for any j € [r] \ {1,u}. Then
fs({ni,ne,...,ne 3\ {n1,nu} U {ni + 1,n, — 1}) = fa(z1,22,...,2,). Let P = (P, P)
be the partition of [r] maximizing f3(z1,%2,...,2,). Note that > z; = > n;. If
{1,u} € Py or {1,u} C P, then zp, = np, and zp, = np,. Thus, f3(x1,z9,...,2,) =
xp, -xp, =np, -np, < fz(ny,ng,...,n,). Hence, without loss of generality, we may assume
that 1 € P, and pp € Po. Observe that xp, = np, +1, xp, = np, — 1, Tp\ ({1} = np)\{1}, and

TP} = "R\(up I TPy 2 TR\(ups then np(1) 2 npy\(p), and we have

fa(z1,z2,...,2,) =xp, - TP,
=(np, + 1) (np, — 1)
=np, -np, —np, +np, — 1
<fs(ni,n2,...,n.) — (np\gy +n1) + (Mpp\guy +7u) — 1
<fz(ni,n2,...,ny) +ny,— (n1 +1).

Now zp\(1} < Zp,\(u), equivalently, np\(1y < np,\gu)- Recall that 21 = ng +1 <
npg—1 =z, Ifn+1<mn,—1 then [(zp\j1y +2u) — (@p\(uy +21)] < [(@pp1y +
r1) — (Tpz\{uy + Tu)| = |z, — Tp,|, which contradicts the choice of P that minimizes

|tp, — xp,|, i.e., maximizes xp, - xp,. Thus, we obtain n; +1 = n, — 1. This implies



Tp - Tp, = (xPl\{l} + x#) . (wPQ\{M} + .%'1). Then,

fas(x1,z2,...,2,) =xp, - TP,
=(@p\ (13 T ) - (T (y + 71)
=(np g1y = 1) - (p gy + 11+ 1)
=(npny 1) - (e gy +10) + (e g1y + ) — (R (uy + ) —
<fz(ni,n2,...,ny) +n,— (ng +1).

Proposition 2.3 Let ny,ng,...,n, ber integers with ny+2 < min;>o{n;}. For two indices
i,7 € [r] with i # j, let P = (P, P2) be the partition attaining fz({ni,...,n.} \ {ni,n;} U
{n; —1,n; —1}). Then

f3({n17 cee 7n7'} \ {nlanj} U {nl - 17n] - 1}) §f3(n17n27 cee 7”7‘) - Z Nim
m=1
+max{ni +2,n;, —n; + 1}

Proof. Let ; =n; — 1, x; = n; — 1, and 2y = ny for any £ € [r] \ {i,j}. Then we know
fs{ni,...,n. 3\ {ns,n;} U{n; —1,n; —1}) = f3(x1,22,...,2,) and the partition P attains
fa(x1,xa,...,2,). Moreover, for any ¢ € [r] \ {1}, we have xy > ny — 1 > ny; > x; since
ng > ny + 2.

If {i,j} € P for any ¢ € [2], we have rp. =np, —1land xp, . =np,_  — 1. Thus

f3(xlax27 R 7$T) TP XPy_ = (nPC - 1) ’ (npg_c - 1)
ZTLPC . TLPB_C — TLPC — nps_C + 1

r
§f3(n17n2> . 'anT) +1- Z Nm -
m=1

Assume {i,j} C P for some ¢ € [2]. Notice that zp. = np. —2 and zp, . = np, .. Thus,

f3(x17$27 s 7:(:7’) :xPC : ng_C = (nPC - 2) : nP3_<
:npg . 7‘Lp37C — 27l1337C
Sf?)(nla na,... 7n1”) - 27’Lp37<. (3)
If 1 € P, we have Tp,_, > Tp, — T1. Otherwise Tp, - Tpy,_, < Tp, TPy + T1-

(azpC —x1 — azpsig) = (Jcp< — ) - ($p37< + x1), which contradicts to the choice of P. With

rp, tap_ = Tp, We know

nP,j—C = xP,j—C -



Thus, by the inequality (E),
fg(.fCl,.’L‘Q, cee )$T) Sf3<n17n25 o 7”7") - 2nP3,C

,
<fz(ni,n2,...,n;)+ny+2— Z Ny -

m=1
It remains to consider the case 1 € P3_¢. Recall z; > 1 and ¢ € P, we have Tp,_ —T1 >
rp, — x;. Otherwise rp, - xp,  <zp 2Py + (i —71) (¥p, —Ti — TPy +71) = (TP, —
xi+xy)- (angic —x1+x;), a contradiction to the choice of P again. With rp.tTp_. = Tp,
we know
TpH T —x Yo Nm— 14N —n;

np,_ =Tpy,_ = 5 = 5

Thus, by the inequality (E),
f3($1,$2, s axT’) §f3(n1,n27 cee 7”7‘) - 2”P3,(

,
<fs(ni,n2,...,n;) —n1+n; +1— an

m=1

3 Proof of Theorem [1.7

We shall provide a construction to complete the proof. Let 1 = ny — (k—1) and z; = n; for
any i # 1. Then fi(n;1 —(k—1),n9,...,n,) = fi(z1,22,...,2,). Let P = (P, Ps,..., P_1)
be the partition of [r] that attains fi(z1,22,...,2,). Assume that V} is a set of (k — 1)
vertices and V; is a set of x; vertices for any ¢ € [r| such that Vp, Vi, .., V, are pairwise
disjoint. According to the partition P of [r], we set Vp, = U;cp,V; for each ¢ € [t — 1].
So Vi) = Upe—1)Vp, and |Vp,| = zp,. Now we construct the graph G as follows. Let
V(G) = Vo UV}, and

E(G) ={Vo V (UimoVi)} U{Ui<i<j<t-1(Vp, V Vp;) }.
We see |V(G)|=(k—1)+ > jzi=>,_yn;=n,and

E@G)|=(k=1)(n—m)+ >  xp-zp
1<e<j<t—1

=(k—1)(n—n1) + fr(ny — (k —1),n2,...,7n,).

We can see G is a subgraph of Ky, n, . n, and G—Vj is a complete (¢t — 1)-partite graph. So
any copy of K; in G must contain at least one vertex of Vj. Since |Vp| = k — 1, G contains
ne kEKe) 2 (k= 1)(n —n1) + fe(na — (k= 1),n2,...,ny).
This completes the proof of Theorem @ [

no copy of kK;. Thus ex(Kp, n,

77777



4 Proof of Theorem [1.8

Recall that, in this section, r,n1,n9,...,n, are integers with r > 4, 10k — 4 < nqy + 4k <
min;>2{n;}, and »_;_; n; = n. By Theorem @, it suffices to prove
ex(Kn, no.,...nm, kK3) < (k—1)(n —n1) + fa(n1 — (kK —1),n2,...,ny). (4)

By way of contradiction, we suppose that k is the minimum positive integer such that
ex(Kny na,..np KK3) > (k= 1)(n —n1) + fa(ni — (k — 1),n2,...,n,). Thus, there exists a
graph G, as a spanning subgraph of K, n,, .. n,, containing no copy of kK3 and satisfying

e(G) = ex(Kn, ng,...n  kK3) > (k= 1)(n —n1) + f3(n1 — (k= 1),n9,...,n,). (5)

Moreover, we use Vi, Va,...,V, to denote the parts of G , where |V;| = n; for each i € [r].
It is worth noting that the inequality (H) holds for k = 1 by Theorem EI Hence, we may

assume k > 2.
Claim 1 G — {v} contains at least one copy of (k — 1)K3 for each v € V(G).

Proof. By contradiction, suppose that there is a vertex v in V(G) such that G — {v}
contains no copy of (k — 1)K3. Suppose that v € V; for some ¢ € [r]. Let nj = ngy — 1,

n; =mn; for any j# ¢, and n’ =n —1. Then 10(k—1) —4 <nj +4(k — 1) < min;>2{n;}.

Moreover, G —{v} C Kyr p .

(k — 1) K3, we obtain e(G' — {v}) < ex(Kyy ny...nes (K — 1)K3). By the minimality of k, we

have

n,. by the construction. Because G' — {v} contains no copy of

e(G) =e(G —{v}) + da(v)
<ex(Kp, ny,...nrs (k= 1)K3) + dg(v)
<=2 — 1) + folh — (k = 2), s . L) + dgr(v). (6)
Ifv € Vi, thenn) = ni—1and dg(v) = [Ng(v)| < |[V(G)\Vi| = n—n; since G C Ky, sy,
By the inequality (B), we have
e(G) <(k—=2)(n—1—n1 +1)+ fa(n1 — 1 — (k —2),n2,n3,...,n;) +n—m
=k —-1)(n—n1)+ f3(n1 — (k—1),n9,n3,...,n;),
which contradicts the inequality (a) Hence, we may assume v ¢ V4. Then dg(v) < n — ny,

ny =ng — 1, and n; = n; for any ¢ # ¢. Note that ny — 1 >ny +4k—1>n; —k+ 2. By
the inequality (E) and Proposition , we have

e(G)<(k—-2)(n—1-=—mn1)+ fs({n1 — (k—2),n2,n3,...,n.} \ {ne} U{ng —1}) + n —ny
<(k—2)n—1—mn1)+ (fs(n1 — (k—1),n2,n3,...,n.) +ng— (ng —k+2))+n—ny
=k-1)n-n1)—k+2+n+ fs(n1 — (k—1),n2,n3,....,n,) — (01 —k+2)
=k —-1)(n—n1)+ fs(n1 — (k—1),n2,n3,...,n.),



which is a contradiction to the inequality (B) This completes the proof of Claim m [

Since k > 2, the graph G contains at least one triangle by Claim m Arbitrarily choose a
triangle K3 in G with vertices u1, u2, u3. Assume that uy € V,, ug € V;;, and ug € Vg, where
a,n,& are three distinct integers in [r]. Moreover, let S = {a,7,£}, njy = ny — 1 for any
te S, n}=mn;forany j € [r]\ S, and n’ =3 7_, nj. Notice that n’ =37_;n; —3=mn—3
and G — {uj,u2,us} C K,

! / /.
17”27"'7”7‘

Claim 2 ¢(G) < (k=2)(n'—n)+f3(n) = (k—=2),n5, ..., m)+> 21 i <3 [N (u) NG (ug) |+
n—3.

Proof. Note that G — {u;,u2,us} contains no copy of (k — 1)K3 since G contains no copy
of kK3. Moreover, we have 10(k —1) —4 < n} +4(k—1) < min;>2{n,} . By the minimality
of k, we know e(G — {u1,u2,us}) < ex(Ky ny, s (k= 1) K3) < (k—2)(n" —n}) + fs(n) —
(k—2),nh,...,n). Thus,

» T

3
e(G) =e(G — {ur,uz,uz}) + ) [N (u;)| -3

=1
3
<(k=2)(n' —nh) + f3(n} — (k= 2),mh,...,n}) + > [N (ui)| - 3. (7)
i=1
By the Principle of Inclusion-Exclusion,
3 3 3
Y ING ()| =[ | Na(u)l+ > |Na(uw)) N Na(uy)| = | {7) No(us)l
i=1 i=1 1<i<j<3 i=1
<V(@I+ > INa(us) N Ne(uy)]
1<i<j<3
=n+ Y |[Na(us) N Ne(ug)|, (8)
1<i<yi<3

Combining inequalities (B) and (E), we see

e(G) < (k—2)(n' —nh) + fa(nh — (k= 2),nh,....n0)+ > |[Ng(u:) N Ne(ug)| +n—3.
1<i<j<3

We finish our proof in the following two cases.
Case 1. |Ng(u;) N Ng(uj)| < 6(k — 1) for every two distinct vertices u; and u; in
{ul,uQ,u;),}.

Recall that G — {u1,u2,us} C K,
{a,n, &} and 1 ¢ {a,n,&}. First, assume 1 € {a,n,£}. Without loss of generality, say

1 mb,...nt,- We shall consider the two cases when 1 €



1 =a. Then n} =n;—1and {nh,ns,...,n.} = {ng,n3,...,n.} \ {ny, nefU{n, —1,ne —1}.
By Claim E, we have
e(G)<(k—2)(n—3—-n1+1)+18(k—1)4+n—3
+ fa({n1 =1 =k +2,n2,n3,...,n.} \ {ny,ne} U{n, — 1,ne —1})
=k-1)(n-n)—2k-=2)—(n—n1)+18k—-1)+n—-3
+ fa({n1 — k+1,no,n3,...,n.} \ {ng,ne} U{n, —1,ne — 1})
=k-1)(n-ny1)+n +16(k—1)—1
+ f3s({n1 —k+1,n2,n3,...,n.} \ {ny,ne} U{n, —1,ne — 1}).

Now, we assume 1 ¢ {«,n,&}. Then n} =n; —1 > ny for any i € {a,n,&}, and n/;

5=
for any j € [r] \ {a,n,&}. By Claim E,

e(G)<(k—2)(n—3—-mn1)+18k—-1)+n—3
+ fa({n1 — k+2,n2,n3,...,1n:} \ {na, ny,net U{ng — 1,0,y —1,ne — 1})

=(k—1)(n—n1)+15(k—1)+mn
+ f3({n1 —k+ 2a n2,ng,... 7nT} \ {navnnanﬁ} U {noé - 17”7] - 1a ng — 1}) (9)

Note that no, —1 > n1 — k + 2. By Proposition @,

f3({n1 _k+27n27n37'"7nr}\{na7nn7n§}u{na_17n77_ 17”5_1})
< fs({n1 =k +1,n2,n3,... ;00\ {ny, ne} U {n, —1,ng —1}) + no — (n1 — k +2).

(10)
Thus, combining inequalities (E) and (@),
e(G)<(k—1)(n—n1)+15(k—1)+n1 +nq— (n1 —k+2)
+ fs({n1 =k + Ling,ng, .o onp b\ {ng, neb U {ny; — 1,ne — 1})
=k—-1)(n—mn1)+16(k—1)4+n, —1
+ fa3({n1 — k+1,n2,n3,...,n,:} \ {ny,ne} U {n, — 1,ne — 1}). (11)

In both cases (1 € {,n,&} and 1 ¢ {a,n,{}), we have inequality (@) holds. Since
ny —k + 14 2 < min;>2{n;}, by Proposition @ and the inequality (El),

e(G)<(k—1)(n—mn1)+ng+16(k—1) =1+ fs(n1 —k+ 1,n2,n3,...,np) — (n —k+1)
+max{n; —(k—1)+2,n, —n1 + (k—1) + 1}
=k—-1)(n—n1)+ f3(n1 —k+1,n2,n3,...,n,)
+ 17k — 18 — n + max{n, +n1 — k+ 3,ny + no —n1 + k}.

10



Since n —ng —n1 > (1 —2)ng > 2ng > 20k — 8 and n+ny —ny —ng > (r—1)ng > 3ng >
18k — 12, we have

e(G) < (k=1)(n—mn1)+ fs(n1 — k+1,n2,n3,...,n,),

which contradicts the inequality (B)
Case 2. There exist two distinct vertices u; and u; in {ui,us,u3} such that
‘Ng(uz) N N(;(Uj)’ > G(k — 1).

Without loss of generality, we may assume |Ng(u2) N Ng(us)| > 6(k — 1) + 1. Then we

have the following claim.

Claim 3 For any vertex set A C V(G), if [Ng(u2) " Ng(us) N A| > 6(k—1)+1, then there
is a vertex ug with ug € AN Ng(u2) N Ng(uz) such that |[Ng(up) N Ng(ui)| < 3(k — 1) for
any i € {2,3}.

Proof. By Claim m, denote by 7; a copy of (k —1)K3 in G\ {u;} for any i € {2,3}. Since
|INg(u2) N Ng(us) N Al > 6(k— 1) + 1 and |T1| = |T2| = 3(k — 1), there is a vertex, say o,
such that ug € (Ng(u2) N Ng(usz) N A)\ (71 UTz2). If [Ng(ug) N Ng(u;)| > 3(k—1) +1
for some ¢ € {2,3}, then there exists a vertex w; € (Ng(uo) N Ng(u;)) \ 7;. Notice that
{wi, ug,u;} NT; = 0 and upu;w;ug is a triangle. So the disjoint union of ugu;w;ug and T; is
a copy of kK3 in G, a contradiction to the choice of G. Thus, |Ng(up) N Na(u;)| < 3(k—1)
for any 7 € {2,3}. W

By setting A = V(@) in Claim E, there exists a vertex ug with ug € Ng(u2) N Ng(us3)
such that |Ng(up) N Ng(w;)| < 3(k—1) for any i € {2,3}. Note that upuausug is a triangle
in G. Recall up € V;; and u3z € V¢. Assume ug € V.

According to the arbitrariness of the choice of K3 in G, we know that Claims E and
E are applicable to the triangle ugususug by replacing K3 with ugususug and replacing S
with {a/,n,£}. The remaining proof is divided into two subcases.

Subcase 1. 1 € {/,n,&}.

Note that n} = n;—1 and n’ = n—3. Moreover, we have | Ng(u2) "\Ng(u3)| < n—ny,—ng
by us € V,; and uz € Ve. Let {1,s,0} = {/,n,£}. Due to {s, ¢} N{n,&} # 0, without loss of
generality, we may assume s € {n,£}. Since |Ng(uo) N Ng(u;)| < 3(k—1) for any i € {2,3},
by Claim E, we know
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e(G) <(k—2)(n—3—n1+1)+ (6(k—1)+ |Ng(uz2) N Ng(us)|) +n—3
+ f3({n1 —k+ 1,ng,n3,. .. anr} \ {ns7nf} U {nS —1,ng— 1})
<(k-1)(n—n1)+4k—=54+n+n1 —n, —ng
+ fs({n1 —k+1,n2,n3,...,n.} \ {ns,ne} U{ns — 1,ny, — 1})
<(k-1)(n—n1)+4k —=5+n+n; —ny —ne+ fs({n1 —k+1,n9,n3,...,n.})
—(n—(k—1))+max{(n1 —k+1)+2,ns— (1 —k+1)+1}
g(k - ].)(TL - nl) + f3({n1 —k+ 17”27”35 s 7n7‘})
+5k — 64+ ny — ny — ng + max{n; —k+3,n, —n1 +k+2}
<(k—=1)(n—mn1)+ fs({n1 — k+ 1,n2,n3,...,n.}),
where the third inequality holds by Proposition @ and the last inequality holds by 4k —
3+ 2ny1 < ny + ne and 6k — 4+ ng < ny + ne.
Subcase 2. 1 ¢ {d/,n,&}.
By setting A = V; in Claim E, if [N (ug2) N N(ug) NVi| > 6(k — 1) + 1, then there exists
a vertex uf, with u(, € Ng(u2) N Ng(ug) NV; such that [Ng(uj) N Ne(u;)| < 3(k — 1) for
any ¢ € {2,3}. Note that ujusuguyy is also a triangle in G. This cases reduces to Subcase 1.
Hence, we may assume |N(u2) N N(ug) N V1| < 6(k —1). Then

[Na(u2) N Nea(us)| = [Ng(u2) 0 Na(ug) N (V(G) \ Vi)| + |Na(uz2) N Na(us) N Vi
<n-—ny—ng—ni+6(k—1).
Recall that n’ = n — 3, n} = n1, and |Ng(uo) N Ng(ui)| < 3(k — 1) for any i € {2,3}. By
Claim E,
e(G) <(k—=2)(n—3—n)+(6(k—1)+n—ny,—ng—n1+6(k—1)) +n—3
+ fa({n1 — k+2,n2,n3,...,n:} \ {na, nyy e} U {ng — 1,ny — 1,ne — 1})
=(k—=1)(n—n1)+ 9% =94+ n—n,; —ng
+ fs({n1 — k+2,n2,m3,...,n,} \ {na’annanﬁ} U{na — Lng—1,ne — 1}). (12)
Since ny 4+ 4k < min;>o{n;}, we know n; —k +3 < min;>o{n;}. By Proposition @ and the
inequality (@),
e(G)<(k-=1)(n—n1) +9% —=9+n—n, —ne+ne—(n1 —k+2)
+ fa({n1 —k+1,no,n3,...,n0} \ {no/, iy} U{ng —1,n, — 1})
=(k—-1)(n—n1)+ 10k =11+ n —ny —my
+ fs({n1 —k+1,n2,n3,...,n.} \ {no,ny} U{ny — 1,0y — 1}). (13)
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Proposition @ implies that

fs({n1 =k +1,ng,n3,...,n.} \ {ne,ny} U{ng — 1,0, —1})
< fs(ni —k+1,n9,...,n) +max{ng —(k—1)+2,n, —(n1 —k+1)+1} —n+k—1.
(14)

Since ny > 6k —4 and n, > n1 + 4k > 10k — 4, combining inequalities (@) and (@), we

have

e(G) <(k—-1)(n—n1) +10k =11 +n—n, —m
+ f3(n1 —k+1,n2,...,n,) + max{n; —k+3,n, —n1 +k} —n+k—1
=(k—1)(n—n1)+ fa(ni —k+1,n9,...,n,) + 11k — 12
— max{n, + k — 3,2n; — k}
<(k—=1)(n—mn1)+ fs(n1 —k+1,n2,....n),

which contradicts to the inequality (H) This completes the proof of the inequality (H), and
so Theorem 1.8 follows.
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