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Abstract19

A path in an edge-colored graph is called monochromatic if all the edges20

in the path have the same color. An edge-coloring of a connected graph21

G is called a monochromatic connection coloring (MC-coloring for short) if22

any two vertices of G are connected by a monochromatic path in G. For a23

connected graph G, the monochromatic connection number (MC-number for24

short) of G, denoted by mc(G), is the maximum number of colors that ensure25

G has a monochromatic connection coloring by using this number of colors.26

This concept was introduced by Caro and Yuster in 2011. They proved that27

mc(G) ≤ m−n+k if κ(G) ≤ k−1. In this paper we characterize all graphs28

G with mc(G) = m−n+κ(G) + 1 and mc(G) = m−n+κ(G), respectively,29

where κ(G) is the connectivity of G. We also prove that mc(G) ≤ m−n+ 430

if G is a planar graph, and classify all planar graphs by their monochromatic31

connection numbers.32
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1. Introduction37

All graphs considered in this paper are simple, finite and undirected. For38

notation and terminology not defined here we refer to the book [2]. We use39

κ(G) to denote the connectivity of a graph G, and χ(G) to denote the chromatic40

number of G. A planar graph is an outerplanar graph if it has an embedding with41

every vertex on the boundary of the unbounded face. If the vertex-set V (G) of42

a graph G can be partitioned into k independent subsets U1, · · · , Uk such that43

every vertex of Ui connects every vertex of Uj in G for any i 6= j, then we call G44

a complete k-partite graph. For nonempty and pairwise disjoint k sets V1, · · · , Vk45

of vertices, if every vertex of Vi is adjacent to every vertex of Vj for any i 6= j,46

then we say that V1, · · · , Vk form a complete k-partite graph. Note that here each47

Vi is not necessarily an independent set. If there is no confusion, we always use48

m and n to denote the number of edges and the number of vertices of a graph,49

respectively. Sometimes, we also use e(G) and |V (G)| to denote the two numbers,50

respectively. For a graph G, dG(v) denotes the degree of a vertex v in G. We51

use Pn, Cn, Sn,K
−
n to denote a path with n vertices, a cycle with n edges, a star52

with n edges and a graph obtained from Kn by removing one edge, respectively.53

Analogically, a k-path or a k-cycle is a path or a cycle with k edges. For an edge54

e = xy of G, G/e is called the contraction graph that is obtained from G by55

deleting e and then identifying x and y, which means replacing the two vertices56

x and y by a new vertex such that the new vertex is incident with all the edges57

which were incident with either x or y in G before. Suppose G and H are vertex-58

disjoint graphs. Then let G ∨H denote the join of G and H, which is obtained59

from G and H by adding an edge between every vertex of G and every vertex of60

H, and let G + H denote the graph with vertex-set V (G) ∪ V (H) and edge-set61

E(G) ∪ E(H). If G = H, we also denote G+H by 2G.62

Generally, the notation [k] refers to the set {1, 2, · · · , k} of integers. An63

edge-coloring of G is a mapping from E(G) to a set of positive integers, say [k].64

A monochromatic subgraph is a subgraph whose edges are assigned to the same65

color. An edge-coloring of a connected graph G is called a monochromatic con-66

nection coloring (MC-coloring for short) if any two vertices of G are connected by67

a monochromatic path in G, and the edge-colored graph G is called monochro-68

matic connected. An extremal monochromatic connection coloring (extremal MC-69

coloring for short) of G is a monochromatic connection coloring of G that uses70
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the maximum number of colors. For a connected graph G, the monochromatic71

connection number (MC-number for short) of G, denoted by mc(G), is the num-72

ber of colors in an extremal monochromatic connection coloring of G. Huang73

and Li in [8] recently showed that it is NP-hard to compute the monochromatic74

connection number for a given graph.75

Suppose Γ is an edge-coloring of G and i is a color of Γ(G). The i-induced76

subgraph is a subgraph of G induced by all the edges with color i. We also call an i-77

induced subgraph a color-induced subgraph. Suppose F is the i-induced subgraph.78

If F is a single edge, then we call the color i and F trivial. Otherwise, they are79

called nontrivial. For a subgraph H of G, we denote Γ|H as the edge-coloring of80

H by restricting the edge-coloring Γ of G to H.81

An edge-coloring of G is simple if any two nontrivial color-induced subgraphs82

intersect in at most one vertex. Caro and Yuster in [5] proved that each color-83

induced subgraph in a graph is a tree under any extremal MC-colorings of the84

graph and there exists a simple extremal MC-coloring for every connected graph.85

If there are t edges in a color-induced subgraph, then we say that the subgraph86

wastes t − 1 colors. Suppose Γ is an MC-coloring of G and H is the set of all87

nontrivial color-induced subgraphs H. Then Γ wastes w(Γ) = ΣH∈H(e(H) − 1)88

colors. Thus, the number of colors used in G is equal to m − w(Γ). If Γ is an89

extremal MC-coloring of G, then since each color-induced subgraph is a tree, we90

have that w(Γ) = ΣH∈H(e(H) − 1) = ΣH∈H(|V (H)| − 2), and thus mc(G) =91

m− ΣH∈H(|V (H)| − 2).92

For a connected graph G, we can obtain an MC-coloring by coloring a span-93

ning tree monochromatically and coloring every other edge with a trivial color.94

Therefore, mc(G) ≥ m− n+ 2 for every connected graph G. Caro and Yuster in95

[5] obtained the following results.96

Theorem 1.1 [5]. Let G be a connected graph with n ≥ 3. If G satisfies one of97

the following properties, then mc(G) = m− n+ 2.98

(1) κ(G) = 4, where G is the complement of G;99

(2) G is triangle-free;100

(3) ∆(G) < n− 2m−3(n−1)
n−3 ;101

(4) the diameter of G is greater than or equal to three;102

(5) G has a cut-vertex.103

Theorem 1.2 [5]. Let G be a connected graph. Then104

(1) mc(G) ≤ m− n+ χ(G);105

(2) mc(G) ≤ m− n+ k + 1 if κ(G) = k.106
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A graph G is called s-perfectly-connected if V (G) can be partitioned into s+1107

parts {v}, V1, · · · , Vs, such that each Vi induces a connected subgraph, V1, · · · , Vs108

form a complete s-partite graph, and v has precisely one neighbor in each Vi. We109

call v a special vertex.110

Proposition 1.3 [5]. If δ(G) = s, then mc(G) ≤ m − n + s, unless G is s-111

perfectly-connected, in which case mc(G) = m− n+ s+ 1.112

Jin et al. in [10] characterized all graphs with mc(G) = m− n+ χ(G). Li et113

al. in [11, 12] generalized the concept of MC-coloring. For more knowledge about114

the monochromatic connection of graphs, we refer to [1, 3, 4, 7, 9, 13, 14, 6]. Caro115

and Yuster in [5] showed that the bound of the second result of Theorem 1.2 is116

sharp, and they studied wheel graphs, outerplanar graphs and planar graphs with117

minimum degree three.118

The rest of this paper is organized as follows. In Section 2, we characterize119

all graphs G with mc(G) = m − n + κ(G) + 1 and mc(G) = m − n + κ(G),120

respectively, where κ(G) is the connectivity of G. In Section 3, we classify all121

planar graphs by their monochromatic connection numbers.122

2. Extremal graphs G with κ(G) = k123

For a graph G with connectivity κ(G) = k, we know that mc(G) ≤ m− n+124

k+ 1. In this section, we characterize all graphs with mc(G) = m−n+κ(G) + 1125

and mc(G) = m− n+ κ(G), respectively. These results will be used in the next126

section for the classification of planar graphs.127

Let S be a set of trees. Then we use V (S) to denote
⋃

T∈S V (T ), and |S|128

to denote the number of trees in S. Suppose that G is a graph with κ(G) =129

k and Γ is an MC-coloring of G. Let S = {w1, · · · , wk} be a vertex-cut of130

G and A1, · · · , At be the components of G − S. For a vertex x ∈ V (Ai), we131

always use Tx to denote the set of nontrivial trees connecting x and a vertex in132 ⋃
j 6=i V (Aj). Since x connects every vertex of

⋃
j 6=i V (Aj) by a nontrivial tree,133

we have
⋃

j 6=i V (Aj) ⊆ V (Tx).134

Let An,k be the set of graphs Kk−1 ∨H, where H is a connected graph with135

|V (H)| = n− k + 1 and H has a cut-vertex.136

Theorem 2.1. Suppose k ≥ 2 and G is a graph with κ(G) = k. Then mc(G) =137

m−n+k+1 if and only if either G ∈ An,k or G is a k-perfectly-connected graph.138

Proof. If G is a k-perfectly-connected graph, then by Proposition 1.3, mc(G) =139

m − n + k + 1. If G = Kk−1 ∨ H is a graph in An,k, then let Γ be an edge-140

coloring of G such that a spanning tree of H is the only nontrivial tree. Then141

Γ is an MC-coloring of G and Γ wastes n − k − 1 colors. By Theorem 1.2,142

mc(G) = m− n+ k + 1.143
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Next, we prove that either G ∈ An,k or G is a k-perfectly-connected graph if144

mc(G) = m − n + k + 1. Suppose that Γ is an extremal MC-coloring of G and145

S is the set of all non-trivial trees. Let S = {w1, · · · , wk} be a vertex-cut and146

A1, · · · , At be the components of G− S. We distinguish the following cases.147

Case 1. There is a component, say A1, and a vertex u of A1, such that148

V (A1) ⊆ V (Tu).149

Let Tu = {T1, · · · , Tr}. Since u connects every vertex of
⋃t

i=2 V (Ai) by a150

nontrivial tree in {T1, · · · , Tr}, we have
⋃

i∈[t] V (Ai) ⊆ V (
⋃

i∈[r] Ti). Since any151

two trees of {T1, · · · , Tr} share a common vertex u and Γ is simple, we have152 ⋃
i∈[r] Ti is a tree. Moreover, |V (

⋃
i∈[r] Ti) ∩ S| ≥ r. Therefore,

⋃
i∈[r] Ti wastes153

at least n − (k − r) − 1 − r = n − k − 1 colors. Since mc(G) = m − n + k + 1,154

we have S = {T1, · · · , Tr} and |V (
⋃

i∈[r] Ti) ∩ S| = r. Thus, |V (Ti) ∩ S| = 1, say155

V (Ti) ∩ S = {wi}.156

If A1 = {u}, then since κ(G) = k and dG(u) ≤ |S| = k, δ(G) = k. By157

Proposition 1.3, mc(G) = m−n+k+ 1 implies that G is a k-perfectly-connected158

graph.159

If |V (A1)| ≥ 2, then r = 1; otherwise, there are at least two nontrivial trees in160

S. Suppose v ∈ V (A1)− u and v ∈ V (T1). Let w ∈ (
⋃t

i=2 V (Ai)) ∩ V (T2). Then161

there is a nontrivial tree Tj connecting w and v. Since v ∈ V (Tj) and v /∈ V (T2),162

Tj 6= T2. However, {u,w} ⊆ V (Tj)∩V (T2), a contradiction. Therefore, S = {T1}.163

Since mc(G) = m − n + k + 1, we have |V (T1)| = n − k + 1. Recall that164

V (T1)∩S = {w1}. Let S′ = S−w1. Then T1 is a spanning tree of G−S′. Thus,165

G − S′ is connected and w1 is a cut-vertex of G − S′. Since T1 is the unique166

nontrivial tree of G, we have G[S′] = Kk−1 and G = G[S′]∨ (G−S′). Therefore,167

G ∈ An,k.168

Case 2. For each component Ai of G − S and each vertex u ∈ V (Ai),169

V (Ai)− V (Tu) 6= ∅.170

For a vertex u of A1, denote A = V (A1)−V (Tu) and v ∈ A. Let w ∈ V (A2),171

and let F be the set of nontrivial trees connecting w and a vertex of A. Since Γ172

is simple, we have |V (Tu)∩S| ≥ |Tu| and |V (F)∩S| ≥ |F|. So, Tu wastes at least173

n−k−|A|−1 colors, and F wastes at least |A| colors. Since mc(G) = m−n+k+1,174

Tu wastes precisely n − k − |A| − 1 colors, F wastes precisely |A| colors and175

S = Tu ∪ F . The conclusion that F wastes precisely |A| colors implies that176

V (A2) ∩ V (T ) = {w} for each T ∈ F . Since V (A2) * V (Tw), there is at least177

one vertex in V (A2)− V (Tw), say w′ ∈ V (A2)− V (Tw). Then there is no tree of178

Tu ∪ F that contains both v and w′, which contradicts that S = Tu ∪ F .179

For convenience, we define three sets of graphs G, say B1
n,k, B2

n,k and B3
n,k,180

with κ(G) = k in the following.181

B1
n,k denotes the set of graphs G that satisfies the following four conditions:182

1. V (G) can be partitioned into k nonempty sets {u}, U1, · · · , Uk−1 such that183
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the subgraph induced by each Ui ∪ {u} is connected,184

2. U1, · · · , Uk−1 form a complete (k − 1)-partite graph,185

3. u has precisely two neighbors in Ut for t ∈ [k − 1] as well as one neighbor186

in Ui for i 6= t,187

4. G is neither a k-perfectly-connected graph nor a graph of An,k.188

B2
n,k denotes the set of graphs Kk−2 ∨H ′, where H ′ is a graph with connec-189

tivity 2 and |V (H ′)| = n−k+2, and Kk−2∨H ′ is neither a k-perfectly-connected190

graph nor a graph of An,k.191

B3
n,k denotes the set of graphs K−k−1 ∨ G

′, where G′ is a connected graph of192

order n− k + 1 with a cut-vertex.193

Lemma 2.2. For every graph G ∈ B3
n,k, G is neither a k-perfectly-connected194

graph nor a graph of An,k.195

Proof. Suppose G ∈ B3
n,k and G = H ∨ H ′, where H = K−k−1 and H ′ is a196

connected graph of order n − k + 1 with a cut-vertex. It is obvious that there197

are at most k − 2 vertices of G with degree n − 1. Since every graph of An,k198

has at least k − 1 vertices of degree n − 1, B3
n,k ∩ An,k = ∅. Suppose that G199

is a k-perfectly-connected graph and v is a special vertex of G. If v ∈ V (H ′),200

then H is a complete graph, a contradiction. If v ∈ V (H), then H ′ = Kn−k+2, a201

contradiction to that H ′ has a cut-vertex. Therefore, G is neither a k-perfectly-202

connected graph nor a graph of An,k.203

Combining Lemma 2.2 and the definitions of B1
n,k and B2

n,k, we have that for204

every graph G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, G is neither a k-perfectly-connected graph205

nor a graph of An,k. Since κ(G) = k, by Theorem 2.1, mc(G) ≤ m− n+ k.206

Lemma 2.3. If G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, then mc(G) = m− n+ k.207

Proof. Since mc(G) ≤ m−n+k, we only need to prove that mc(G) ≥ m−n+k208

below.209

If G ∈ B1
n,k, then let Ti be a spanning tree of G[Ui ∪ {u}] for i ∈ [k − 1]. We210

color the edges of Ti with i and color any other edges with trivial colors. Then211

the edge-coloring is an MC-coloring of G, which uses m − n + k colors. Thus,212

mc(G) ≥ m− n+ k.213

If G ∈ B2
n,k, then G = Kk−2 ∨ H ′. We color the edges of G such that a214

spanning tree of H ′ is the unique nontrivial color-induced subgraph. The edge-215

coloring is obviously an MC-coloring of G, which uses m − n + k colors. Thus,216

mc(G) ≥ m− n+ k.217

If G ∈ B3
n,k, then G = K−k−1∨G

′. Let T be a spanning tree of G′ and let F be218

a 2-path obtained by connecting one vertex of G′ and two nonadjacent vertices219
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of K−k−1. We color the edges of G such that {T, F} is the set of nontrivial color-220

induced subgraphs. The edge-coloring is obviously an MC-coloring of G, which221

uses m− n+ k colors. Thus, mc(G) ≥ m− n+ k.222

Theorem 2.4. Suppose k ≥ 3, and G is a graph with κ(G) = k. Then mc(G) =223

m− n+ k if and only if G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k.224

Proof. If G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, then by Lemma 2.3, mc(G) = m− n+ k.225

Suppose mc(G) = m − n + k. We will prove that G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k.

Suppose that S = {v1, · · · , vk} is a vertex-cut of G and G− S has r components
A1, · · · , Ar. Let Γ be an extremal MC-coloring of G and u ∈ V (Ai). Then Γ
wastes n − k colors. Since Γ is simple, any two trees of Tu intersect only at u.
Thus, Tu wastes

|
⋃
l 6=i

V (Al)|+ |V (Tu) ∩ V (Ai)|+ |V (Tu) ∩ S| − 1− |Tu|

= n− k − |V (Ai)− V (Tu)|+ (|V (Tu) ∩ S| − |Tu|)− 1 (1)

colors.226

Claim 2.5. Suppose U ⊆ V (A1). Then
⋃

w∈U Tw wastes at least |U |+|
⋃r

l=2 V (Al)|−227

1 colors.228

Proof. Let U = {a1, · · · , aq} and let Fi = Tai−
⋃i−1

l=1 Tal . Suppose Fi contains ci
vertices of U . Then

∑
i∈[q] ci ≥ q = |U |. Since each tree of Fi connects one vertex

of S and one vertex of
⋃r

l=2 V (Al), Fi wastes at least ci colors if ci 6= 0. Since
Fi = Ta1 wastes at least |

⋃r
l=2 V (Al)| + c1 − 1 colors by equality (1),

⋃
w∈U Tw

wastes at least ∑
i∈[q]

wi ≥ |
r⋃

l=2

V (Al)|+ c1 − 1 + Σq
i=2ci

= |
r⋃

l=2

V (Al)| − 1 +
∑
i∈[q]

ci

≥ |
r⋃

l=2

V (Al)|+ |U | − 1

colors.229

Claim 2.6. If T is a 2-path of G, then the two leaves of T are nonadjacent.230

Proof. Suppose the two leaves of T are adjacent. Then recolor every edge of T231

by a trivial color. It is easy to verify that the new coloring is an MC-coloring of G.232

However, the new coloring wastes less colors, a contradiction to the assumption233

that Γ is extremal.234
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The proof of Theorem 2.4 continues by distinguishing the following cases.235

Case 1. There is a component, say A1, and a vertex u of A1 such that236

A1 ⊆ V (Tu).237

Let Tu = {T1, · · · , Tt} and B =
⋃r

l=2 V (Al). Here Ti is a tree colored with i.238

Each Ti contains at least one vertex of S.239

Case 1.1. V (A1) = {u}.240

Since S is a vertex-cut of order k and κ(G) = k, u connects every vertex of241

S, that is, S = N(u).242

If there is a tree of Tu, say Tt, which contains at least two vertices of S,243

then by equality (1), Tu wastes at least n− k colors. Since mc(G) = m− n+ k,244

Tu wastes precisely n − k colors. Thus, Tt contains precisely two vertices of S245

(say vt, vt+1), and Tl contains precisely one vertex of S for l ∈ [t − 1] (say vl).246

Therefore, Tu is the set of all nontrivial trees of G. Since Γ is simple, any two247

trees of Tu share a common vertex u. Let Ui = V (Ti) − {u} for i ∈ [t] and248

Ui = {vi+1} for t + 1 ≤ i ≤ k − 1. Then u, U1, · · · , Uk−1 form a partition of249

V (G) and each G[Ui ∪{u}] is connected. Moreover, |Ui ∩N(u)| = 1 for i 6= t and250

|Ut ∩N(u)| = 2. Since there is no nontrivial tree connecting a vertex of Ui and a251

vertex of Uj if i 6= j, U1, · · · , Uk−1 form a complete (k − 1)-partite graph. Since252

mc(G) 6= m − n + k + 1, by Theorem 2.1, G is neither a k-perfectly-connected253

graph nor a graph of An,k. Thus, G ∈ B1
n,k.254

If every tree of Tu contains precisely one vertex of S, say V (Ti) ∩ S = {vi}255

for i ∈ [t]. Then Tu wastes n − k − 1 colors. Thus, there is a nontrivial tree T256

that wastes one color, in other words, T is a 2-path. So, Tu ∪{T} is the set of all257

nontrivial trees of G. Since T is a 2-path, by Claim 2.6, the two leaves of T are258

nonadjacent. Let Ui = V (Ti) − {u} for i ∈ [t] and Ui = {vi} for t + 1 ≤ i ≤ k.259

Since Γ is simple, the two leaves of T cannot appear in the same set Ui. Thus,260

there are two different integers i, j of [k] such that one leaf of T is in Ui and the261

other leaf is in Uj . Then U1, · · · , Ui ∪Uj , · · · , Uk form a complete (k− 1)-partite262

graph. Since mc(G) 6= m−n+ k+ 1, by Theorem 2.1, G is neither a k-perfectly-263

connected graph nor a graph of An,k. Recalling the definition of B1
n,k, we get264

G ∈ B1
n,k.265

Case 1.2. t = 1.266

From the assumption,
⋃

i∈[r] V (Ai) ⊆ V (T1). Then T1 wastes n−k+ |V (T1)∩267

S| − 2 colors. Since Γ wastes n − k colors, either T1 is the only nontrivial tree268

and |V (T1)∩S| = 2, or |V (T1)∩S| = 1 and there is a 2-path F such that {F, T1}269

is the set of all nontrivial trees. Let V = V (T1) and U = V (G)− V .270

If |V (T1) ∩ S| = 2, then since T1 is the unique nontrivial tree of Γ, we have271

that G[U ] = Kk−2 and G = G[U ] ∨ G[V ]. Since S is a vertex-cut with |S| = k,272

V (T1) ∩ S is a vertex-cut of G − U , then G[V ] is a graph with connectivity 2.273

Since G is neither a k-perfectly-connected graph nor a graph of An,k, we have274

G ∈ B2
n,k.275
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If |V (T1) ∩ S| = 1, then suppose F = x1e1ye2x2 and V (T1) ∩ S = {w}. If,276

by symmetry, x1 ∈ V (T1), then V (F ) ∩ V (T1) = {x1}. Let w′ ∈ V (T1) − {x1}.277

Then w′x2 is a trivial edge of G. Let T = T1 ∪ w′x2 and let Γ′ be an edge-278

coloring of G such that T is the only nontrivial tree of G. Then Γ′ is an extremal279

MC-coloring of G with |V (T ) ∩ S| = 2, this case has been discussed above. If280

{x1, x2} ∩ V (T1) = ∅, then G[U ] = K−k−1 and G = G[U ] ∨G[V ]. Moreover, G[V ]281

is a connected graph with a cut-vertex w. Thus, G ∈ B3
n,k.282

Case 1.3. |V (A1)| ≥ 2 and t ≥ 2.283

If |V (A1)| ≥ 3, then there are two trees of Tu, say T1, T2, such that either284

|V (T1)∩V (A1)| ≥ 3 or |V (T1)∩V (A1)| = |V (T2)∩V (A1)| = 2. Let wi ∈ V (Ti)∩B285

for i ∈ [2]. If |V (T1)∩V (A1)| ≥ 3, then there are trees of Tw2 −Tu connecting w2286

and V (T1) ∩ V (A1)− {u}. It is obvious that Tw2 − Tu wastes at least two colors.287

Since Tu wastes at least n− k− 1 colors, Tw2 ∪Tu wastes at least n− k− 1 + 2 =288

n − k + 1 colors, which contradicts that Γ is an extremal MC-coloring of G. If289

|V (T1) ∩ V (A1)| = |V (T2) ∩ V (A1)| = 2, say {zi} = V (Ti) ∩ V (A1) − {u} for290

i ∈ [2]. Then there is a nontrivial tree F1 connecting w1, z2, and a nontrivial tree291

F2 connecting w2, z1. Since Γ is simple, we have F1 6= F2. Since {F1, F2}∩Tu = ∅,292

{F1, F2}∪Tu wastes at least n−k+1 colors, a contradiction. Therefore, |V (A1)| =293

2. Let V (A1) = {z, u} and let T1 contain z, u. Then V (Ti) ∩ V (A1) = {u} for294

i ≥ 2.295

Since t ≥ 2, we have B − V (T1) 6= ∅. Then z connects every vertex of296

B − V (T1) by a nontrivial tree, Tz − Tu is not an empty set. It is obvious that297

Tu wastes at least n − k − 1 colors and Tz − Tu wastes at least one color. Since298

mc(G) = m − n + k, Tu wastes precisely n − k − 1 colors and Tz − Tu wastes299

precisely one color. Therefore, Tz − Tu has only one member, and the member is300

a 2-path (denoting the 2-path by F , then Tz − Tu = {F}). So, |B − V (T1)| = 1301

and t = 2. Then Tu = {T1, T2} and S = {F, T1, T2} is the set of all nontrivial302

trees. We can also get that each tree of S intersects with S at only one vertex.303

So, F and T2 are 2-paths.304

Let Γ′ be an edge-coloring of G obtained from Γ by recoloring T ′ = T1 ∪ F305

with 1 and recoloring any other edges with trivial colors. Then the new coloring306

is also an MC-coloring of G. Since Γ′ wastes n− k colors, Γ′ is an extremal MC-307

coloring of G. Then T ′ is the unique nontrivial tree of Γ′ and |V (T ′) ∩ S| = 2,308

this case has been discussed in Case 1.2.309

Case 2. For each i ∈ [r] and each u ∈ V (Ai), V (Ai)− V (Tu) 6= ∅ (then each310

Al has an order at least two).311

If there is an integer i ∈ [r] such that |
⋃

l 6=i V (Al)| ≥ 3, then let u ∈ V (Ai)312

and let A′ = V (Ai) − V (Tu). Then Tu wastes at least n − |A′| − k − 1 colors.313

By Claim 2.5,
⋃

w∈A′ Tw wastes at least |A′| + |
⋃

l 6=i V (Al)| − 1 colors. Since314

(
⋃

w∈A′ Tw) ∩ Tu = ∅, Tu ∪ (
⋃

w∈A′ Tw) wastes at least n− k + 1 colors, a contra-315

diction. Therefore, |
⋃

l 6=i V (Al)| ≤ 2 for each i ∈ [r], and |V (Ai)| = 2 for i ∈ [r]316
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and r = 2. Let V (A1) = {x1, x2} and V (A2) = {y1, y2}. Then each nontrivial317

tree contains at most two of {x1, x2, y1, y2}. Therefore, there is a nontrivial tree318

Ti,j connecting xi, yj for i, j ∈ [2], and the four nontrivial trees are pairwise dif-319

ferent. Since n = k + 4 in this case and Γ wastes n− k = 4 colors, each Ti,j is a320

2-path and there is no other nontrivial tree. By Claim 2.6, the two leaves of each321

Ti,j are nonadjacent. Thus, G = {x1y1, x1y2, x2y1, x2y2} is a 4-cycle. Choose a322

vertex of S, say v1. Let T =
⋃

i∈[2](v1xi ∪ v1yi). Then T is a tree of G. Let323

Γ′ be an edge-coloring of G such that T is the only nontrivial tree. Then Γ′ is324

an MC-coloring of G and it wastes three colors, which contradicts that Γ is an325

extremal MC-coloring of G.326

3. Classification of planar graphs327

In this section, we consider the monochromatic connection numbers of all328

planar graphs. Since the connectivity of a planar graph is at most five, the329

monochromatic connection number of a planar graph is less than or equal to330

m− n+ 6. In fact, we get that m− n+ 2 ≤ mc(G) ≤ m− n+ 4 if G is a planar331

graph. We characterize all planar graphs G of κ(G) = k with mc(G) = m−n+r,332

for 1 ≤ k ≤ 5 and 2 ≤ r ≤ 4.333

It is well-known that a graph is outerplanar if and only if it does not con-334

tain a K4-minor or a K2,3-minor, and an outerplanar graph with connectivity 2335

contains a vertex of degree 2. Moreover, if κ(G) = 2, then the exterior face of an336

outerplanar graph G is a Hamiltonian cycle, called the boundary of G. A forest is337

called a linear forest if every component of the forest is a path (possibly a single338

vertex).339

Lemma 3.1. Let H be a graph. Then340

(1) K1 ∨H is a planar graph if and only if H is an outerplanar graph.341

(2) 2K1 ∨H is a planar graph if and only if H is either a cycle or linear forest.342

(3) K2 ∨H is a planar graph if and only if H is a linear forest.343

(4) if H is an outerplanar graph with κ(H) = 2 and |V (H)| ≥ 4, then H contains344

two nonadjacent vertices of degree 2.345

Proof. Notice that K1 ∨H is a planar graph if H is an outerplanar graph. On346

the other hand, if K1 ∨H is a planar graph but H is not an outerplanar graph,347

then H contains either a K4-minor or a K2,3-minor. Therefore, K1 ∨H contains348

either a K5-minor or a K3,3-minor, a contradiction.349

It is obvious that 2K1∨S3 contains a K3,3 as a subgraph, and 2K1∨(K3+K1)350

contains a K5-minor. Therefore, H does not have vertices of degrees at least three351
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when 2K1 ∨H is a planar graph. Then each component of H is either a cycle or352

a path. If H has two components H1, H2 such that H1 is a cycle, then H has a353

(K3 + K1)-minor. Thus, 2K1 ∨ H has a K5-minor, a contradiction. Therefore,354

H is either a cycle or a linear forest if 2K1 ∨H is a planar graph. On the other355

hand, if H is either a cycle or a linear forest, then 2K1 ∨ H is clearly a planar356

graph.357

If H is a linear forest, then K2 ∨H is obviously a planar graph. If K2 ∨H is358

a planar graph, then since 2K1 ∨H is a subgraph of K2 ∨H, H is either a cycle359

or a linear forest. Since K2 ∨H contains a K5-minor if one component of H is a360

cycle, H is a linear forest.361

If H is an outerplanar graph with connectivity 2 and |V (H)| = 4, then H362

has two nonadjacent vertices of degree 2. If |V (H)| ≥ 5 and H does not have any363

chord, then H has two nonadjacent vertices of degree 2. If |V (H)| ≥ 5 and H has364

a chord e = xy, then the two {x, y}-components, say H1 and H2, are outerplanar365

graphs with connectivity 2. For i ∈ [2], if |V (Hi)| ≥ 4, then by induction, Hi has366

a vertex zi /∈ {x, y} such that dHi(zi) = 2; if Hi = K3, let {zi} = V (Hi)− {x, y}.367

Then z1, z2 are two nonadjacent vertices of degree 2 in H.368

Let P1 denote the set of graphsG = v∨H, whereH is a connected outerplanar369

graph with a cut-vertex.370

Lemma 3.2. Let G be a planar graph with κ(G) = 2. Then mc(G) = m− n+ 3371

if and only if G ∈ P1.372

Proof. By Lemma 3.1 (1) and Theorem 2.1, G is a planar graph and mc(G) =373

m−n+3 if G ∈ P1. Suppose mc(G) = m−n+3. Then by Theorem 2.1, G is either374

a 2-perfectly-connected graph or a graph in An,2. If G ∈ An,2, then G = v ∨H375

and H is a connected graph with a cut-vertex. Then by Lemma 3.1 (1), H is a376

connected outerplanar graph with a cut-vertex. If G is a 2-perfectly-connected377

graph, then V (G) can be partitioned into three nonempty sets {v}, A,B such378

that A,B form a complete bipartite graph. Let |A| ≤ |B|. Then 1 ≤ |A| ≤ 2;379

otherwise, G contains a K3,3 as a subgraph. If |A| = 1, say A = {x}, then by380

Lemma 3.1 (1), G[B] is a connected outerplanar graph. Let H = G[B ∪ v]. Then381

H is a connected outerplanar graph with a cut-vertex and G = x ∨ H, and so382

G ∈ P1. If |A| = 2, that is, G[A] = K2, then G[B] is a path by Lemma 3.1 (3).383

Let A = {x, y} and N(v) = {x, z}, Then G−x = (y∨G[B])∪vz. Since G[B] is a384

path, G− x is an outerplanar graph with a cut-vertex z. Since G = x ∨ (G− x),385

we get G ∈ P1.386

Let P2 = {v ∨H : H is an outerplanar graph with κ(H) = 2 and H 6= u ∨387

Pn−2}.388

Lemma 3.3. Let G be a planar graph with κ(G) = 3. Then389
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(1) mc(G) = m− n+ 3 if and only if G ∈ {2K1 ∨ Pn−2} ∪ P2;390

(2) mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2.391

Proof. By Lemma 3.1 (3) and Theorem 2.1, K2 ∨ Pn−2 is a planar graph with392

mc(K2 ∨ Pn−2) = m − n + 4. Next, we prove that G = K2 ∨ Pn−2 if mc(G) =393

m − n + 4. Suppose mc(G) = m − n + 4. Then either G ∈ An,3 or G is a 3-394

perfectly-connected graph. If G is the latter, then V (G) can be partitioned into395

four parts v, V1, V2, V3, such that each Vi induces a connected subgraph, V1, V2, V3396

form a complete 3-partite graph, and v has precisely one neighbor in each Vi. Let397

|V1| ≤ |V2| ≤ |V3|. If |V1| = |V2| = 1, then G[V1 ∪ V2] is an edge, say e. Thus,398

G = e∨G[V3∪v]. By Lemma 3.1 (3), since G is a graph with κ(G) = 3, G[V3∪v] is399

a path of order n−2. Therefore, G = K2∨Pn−2. If |V2| ≥ 2, then G[V1∪V2∪V3]400

contains a K5-minor, a contradiction. If G ∈ An,3, then G = K2 ∨ H. By401

Lemma 3.1 (3), since G is a graph with κ(G) = 3, G = K2 ∨ Pn−2. Therefore,402

mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2.403

If mc(G) = m− n + 3, then G ∈ B1
n,3 ∪ B2

n,3 ∪ B3
n,3. If G ∈ B3

n,3, then V (G)404

can be partitioned into two parts U, V such that G[U ] = K−2 = 2K1, G[V ] is a405

connected graph with a cut-vertex and G = G[U ] ∨ G[V ]. Note that κ(G) = 3.406

By Lemma 3.1 (2), we get that G[V ] is a path. If G ∈ B2
n,3, then G = K1 ∨H,407

where H is a graph with connectivity 2. Since G is planar, by Lemma 3.1 (1),408

H is an outerplanar graph with connectivity 2 (recall that connectivity of H is409

possibly 1 or 2). Therefore, G ∈ P2. If G ∈ B1
n,3, then V (G) can be partitioned410

into three parts v,A,B, such that v has two neighbors in A and one neighbor in411

B, and A,B form a complete bipartite graph.412

If G[A] = K2, then by Lemma 3.1 (3), G[B] is a path Pn−3. Thus, G =413

K2 ∨ Pn−2, a contradiction to the assumption that mc(G) = m − n + 3. If414

G[A] = 2K1, then G = G[A] ∨G[B ∪ v]. By Lemma 3.1 (2), G[B ∪ v] is either a415

path Pn−3 or a cycle Cn−3. Since v has precisely one neighbor in B, G[B ∪ v] is416

a path. Thus, G = 2K1 ∨ Pn−2.417

If |A| ≥ 3, then |B| ≤ 2. Let x be the neighbor of v in B. Since mc(G) =418

m − n + 3, we have G 6= K2 ∨ Pn−2. If |B| = 2, that is, G[B] = K2, then419

G = x ∨ (G − x), where x = NG(v) ∩ B. Thus, G − x is an outerplanar graph420

with connectivity 2. If |B| = 1, then V (B) = {x} and G = x∨ (G− x), and thus421

G− x is an outerplanar graph with connectivity 2. Therefore, G ∈ P2.422

Claim 3.4. Suppose G is a planar graph with κ(G) = k and S is a vertex-cut423

with |S| = k. Then G[S] is either a cycle or a linear forest.424

Proof. Let u, v be two vertices in different components of G − S. Since G is a425

graph with κ(G) = k, there are k internally disjoint uv-paths L1, · · · , Lk. Let426

H be a graph obtained from
⋃

i∈[k] Li by contracting all edges but those incident427
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with u and v. Then H = K2,k is a minor of G with one part S. Thus, by Lemma428

3.1 (2), G[S] is either a cycle or a linear forest.429

Lemma 3.5. Let G be a planar graph with κ(G) = k and S be a vertex-cut with430

|S| = k. Suppose Γ is an extremal MC-coloring of G such that G[S] does not431

contain nontrivial edges. Then432

(1) if k = 4 and G[S] is not a 4-cycle, then mc(G) = m− n+ 2;433

(2) if k = 5, then mc(G) = m− n+ 2.434

In addition, if k = 4 and G[S] does not contain nontrivial edges under any435

extremal MC-colorings, then mc(G) = m− n+ 2.436

Proof. By Claim 3.4, G has a K2,k-minor with one part S. Since G is a planar437

graph, by Lemma 3.1 (2), G[S] is either a cycle or a linear forest. Let A1, · · · , Ar438

be the components of G− S.439

Suppose Γ is an extremal MC-coloring of G such that G[S] does not contain440

nontrivial edges. We use S to denote the set of all nontrivial trees of G. For441

each T ∈ S, let xT = |V (T ) ∩ S| when |V (T ) ∩ S| ≥ 2 and let xT = 1 when442

|V (T ) ∩ S| ≤ 1. Suppose T is a tree of S such that xT is maximum. Since G[S]443

is not a complete graph, we have xT ≥ 2.444

Without loss of generality, suppose A1 is a minimum component of G − S.
Choose two vertices u, v from A1, A2, respectively. Let U = V (A1) − V (Tu).
Denote F as the set of nontrivial trees connecting v and a vertex of U (if U = ∅,
then F = ∅). Then Tu wastes n − k − |U | − 1 +

∑
T ′∈Tu(xT ′ − 1) colors and F

wastes at least |U |+
∑

T ′∈F (xT ′−1) colors. Assume T = Tu∪F . Then T wastes

wT ≥ n− k − 1 +
∑
T ′∈T

(xT ′ − 1) (2)

colors. Moreover, the equality will mean that each tree of F intersects with⋃
i 6=1Ai only at v if F 6= ∅. Since G[S] does not contain nontrivial edges, if

T ′ ∈ S − T , then T ′ wastes at least xT ′ − 1 colors. Then Γ wastes

wΓ ≥ n− k − 1 +
∑
T ′∈S

(xT ′ − 1) (3)

colors. If the equality of (3) holds, then the equality of (2) will hold. Therefore,445

the equality of (3) will mean that each tree of F intersects with
⋃

i 6=1Ai only at446

v if F 6= ∅.447

Claim 3.6. If it does not simultaneously happen that G[S] is a 4-cycle and xT =448

2, then mc(G) = m− n+ 2.449
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Proof. Note thatG[S] is either a cycle or a linear forest. Therefore, G[S] contains450

a 5-cycle if |S| = 5, and G[S] contains a 2K2 if |S| = 4.451

Suppose xT ≥ 4. If k = 4, then wΓ ≥ n − 2. If k = 5 and xT ≥ 5, then452

wΓ ≥ n− 2. If k = 5 and xT = 4, then let S − V (T ) = {u′}. Since G[S] contains453

a 5-cycle, u′ does not connect a vertex of S − u′ in G[S]. Therefore, u′ connects454

this vertex by a nontrivial tree different from T . Thus, wΓ ≥ n− 2.455

Suppose xT = 3. If k = 4, then let S − V (T ) = {u}. Since G[S] contains a456

2K2, u does not connect a vertex of S − u in G[S]. Therefore, u connects this457

vertex by a nontrivial tree different from T . Thus, wΓ ≥ n− 2. If k = 5, then let458

{u, v} = S − V (T ). Since G[S] contains a 5-cycle, u connects a vertex of S − u459

by a nontrivial tree T1, and v connects a vertex of S − u by a nontrivial tree T2.460

No matter T1 = T2 or not, Γ wastes at least n− 2 colors.461

Suppose xT = 2. Since T is a tree of S such that xT is maximum, for any two462

different pairs of nonadjacent vertices of S, there are two different nontrivial trees463

connecting them, respectively. Therefore,
∑

T ′∈S(xT ′ − 1) ≥ e(G[S]). Since G[S]464

contains a 5-cycle for k = 5 and G[S] contains a 2K2 for k = 4, if Γ wastes at most465

n − 3 colors, then k = 4 and G[S] = 2K2. Note that it does not simultaneously466

happen that G[S] is a 4-cycle and xT = 2. Thus, Γ wastes at least n− 2 colors,467

and then mc(G) = m− n+ 2.468

By Claim 3.6, the former two results hold. Now we prove that if k = 4 and469

G[S] does not contain nontrivial edges under any extremal MC-colorings, then470

mc(G) = m− n+ 2. If it does not simultaneously happen that G[S] is a 4-cycle471

and xT = 2, then by Claim 3.6, mc(G) = m−n+ 2. Thus, we only need to prove472

that subject to the conditions that G[S] is a 4-cycle and xT = 2, we can get a473

contradiction if mc(G) ≥ m− n+ 3.474

Assume that G[S] is a 4-cycle and xT = 2. Then let E(G[S]) = {v1v2, v3v4}.
Suppose, to the contrary, that mc(G) ≥ m − n + 3. Since xT = 2, there is a
nontrivial tree T1 connecting v1, v2, and a nontrivial tree T2 connecting v3, v4.
Then Γ wastes at least

n− k − 1 +
∑
T ′∈S

(xT ′ − 1) ≥ n− k − 1 + (xT1 − 1) + (xT2 − 1) = n− 3 (4)

colors. Since mc(G) ≥ m − n + 3, Γ wastes exactly n − 3 colors, and so the475

equality of (4) holds. Since the equality of (4) will mean that the equality of (3)476

holds, each tree of F intersects with A2 only at v if F 6= ∅. In addition, T1 and T2477

are the only two trees each of which intersects with S at more than one vertex.478

If S 6= T , then S ′ = S − T 6= ∅. Since T1 and T2 are the only two trees each
of which intersects with S at more than one vertex, T wastes at least

n− k − 1 + ΣT ′∈T ∩{T1,T2}(xT ′ − 1)
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colors, and Γ wastes at least

n− k − 1 + ΣT ′∈T ∩{T1,T2}(xT ′ − 1) + ΣT ′∈S′∩{T1,T2}(e(T
′)− 1)

colors. Let T ′ ∈ S ′. Since k = 4 and Γ wastes exactly n− 3 colors, T ′ is a 2-path479

and T ′ ∈ S ′ ∩ {T1, T2}, say T ′ = T1. Let T ∗ = v1v3 ∪ v2v3 and let Γ′ be an480

edge-coloring of G obtained from Γ by recoloring T ∗ with a new nontrivial colors481

and recoloring all edges of T1 with new trivial colors. Then Γ′ is an extremal482

MC-coloring of G and G[S] contains nontrivial edges, a contradiction.483

If S = T and U 6= ∅, then each tree of F intersects with V (A2) only at v.484

Suppose |
⋃

l 6=1 V (Al)| ≥ 2 and v′ ∈
⋃

l 6=1 V (Al) − {v}. Since U 6= ∅, there is a485

nontrivial tree T ′′ connecting v′ and a vertex of U . However, T ′′ is not a member486

of T , a contradiction to that S = T . Thus, |
⋃

l 6=1 V (Al)| = 1, in other words,487

G− S has two components A1, A2 and |V (A2)| = 1. Note that A1 is a minimum488

component of G − S, |V (A1)| = 1. Therefore, G = 2K1 ∨ C4 and G[S] = C4.489

Let F ′ be a 2-path connecting the two components of G − S in G, and let F ′′490

be a 3-path of G[S]. Suppose Γ′ is an edge-coloring of G such that F ′, F ′′ are491

all nontrivial trees. Then Γ′ is an extremal MC-coloring of G and G[S] contains492

nontrivial edges, a contradiction.493

If S = T and U = ∅, then S = Tu. Since each pair of different trees in494

Tu intersect only at u, we have Tu = {T1, T2}. Therefore, S = {T1, T2}. Let495

Bi = V (Ti) ∩ (S ∪
⋃

l 6=1 V (Al)) for i = [2]. Then |V (B1)|, |V (B2)| ≥ 3. Since T1496

and T2 intersect only at u, every vertex of B1 connects every vertex of B2 by a497

trivial edge, then G[B1 ∪B2] contains a K3,3, a contradiction.498

Claim 3.7. Let Γ be a simple extremal MC-coloring of G and e = xy be a499

nontrivial edge in G. Suppose that mc(G) = e(G) − |V (G)| + x and H is the500

underlying graph of G/e. Then mc(H) ≥ e(H)− |V (H)|+ x.501

Proof. Since Γ is a simple extremal MC-coloring of G and mc(G) = e(G) −502

|V (G)|+ x, Γ wastes |V (G)| − x colors. Suppose z is the new vertex of V (G/e).503

Then any parallel edges are incident with z, and between any two vertices there504

are at most two parallel edges. Since e is a nontrivial edge, Γ is simple and every505

color-induced subgraph in G is a tree, we have that any color-induced subgraph506

of G/e is a tree. It is obvious that any two vertices of G/e are connected by507

a monochromatic path under Γ|G/e. Moreover, Γ|G/e wastes |V (G)| − 1 − x =508

|V (G/e)| − x colors.509

Suppose there are parallel edges e1, e2 between u and z. If there is a trivial510

and parallel edge between u and z, say e1, then we delete e1. Then the resulting511

graph is also monochromatic connected, and the edge-coloring wastes |V (G/e)|−x512

colors. If the two parallel edges are nontrivial, then suppose e1, e2 are edges of two513

nontrivial trees T1, T2, respectively. Let T be a spanning tree of T1∪T2 containing514

e1. Let Γ′ be an edge-coloring of G/e−e2 obtained from Γ by recoloring T with a515
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new nontrivial color, and then recoloring any other edges of E(T1∪T2)−E(T )−e2516

with trivial colors. Then Γ′ is an MC-coloring of G/e− e2 and Γ′ wastes at most517

|V (G/e− e2)| − x = |V (G/e)| − x colors. By the above operation, we obtain an518

underlying graph H of G/e, and a simple MC-coloring Γ′′ of H, which wastes at519

most |V (H)| − x colors. Thus, mc(H) ≥ e(H)− |V (H)|+ x.520

Claim 3.8. Let G be a planar graph and e = ab be an edge of G. If the underlying521

graph of G/e contains {u, v} ∨ Pt as a subgraph, u is the new vertex and a (and522

also b) connects two leaves of Pt, then either NG(a) ∩ I = ∅ and I ⊆ NG(b), or523

NG(b) ∩ I = ∅ and I ⊆ NG(a), where I is the set of internal vertices of Pt.524

Proof. If NG(a) ∩ I 6= ∅ and NG(b) ∩ I 6= ∅, then let G′ be a graph obtained525

from G by contracting all but two pendent edges of Pt. Then G′ has a subgraph526

K3,3 with one part {a, b, v}, and so G also has a K3,3-minor, a contradiction.527

Lemma 3.9. If G is a planar graph with κ(G) = 4, then mc(G) ≤ m − n + 3,528

and mc(G) = m− n+ 3 if and only if G = 2K1 ∨ Cn−2.529

Proof. Suppose G = {u, v}∨H, where H is an (n−2)-cycle and uv is not an edge530

of G. Then there is a 2-path P connecting u and v. Let L be a spanning tree of H.531

Suppose Γ is an edge-coloring such that P and L are all nontrivial trees ofG. Then532

Γ is an MC-coloring of G , which wastes n− 3 colors. Thus, mc(G) ≥ m−n+ 3.533

It is easy to verify that G is neither a graph of An,4 ∪ B1
n,4 ∪ B2

n,4 ∪ B3
n,4, nor a534

4-perfectly-connected graph. Therefore, mc(G) = m− n+ 3.535

Suppose mc(G) ≥ m−n+3. We prove that G = 2K1∨Cn−2 below. Suppose536

S = {x1, x2, x3, x4} is a vertex-cut of G. If G[S] does not contain nontrivial edges537

under any extremal MC-colorings of G, then by Lemma 3.5, mc(G) = m−n+ 2.538

If there is an extremal MC-coloring Γ of G such that G[S] has a nontrivial edge,539

say e = x1x2, then by Claim 3.7 the underlying graph H of G/e satisfies that540

mc(H) ≥ e(H) − |V (H)| + 3. Since H is a graph with κ(H) = 3, H is either541

2K1 ∨ Pn−3 or K2 ∨ Pn−3, or a graph of P2. Since κ(G) = 4, if there is a vertex542

x of H with dH(x) = 3, then either x is the new vertex or x is incident with the543

new vertex.544

Case 1. Either H = 2K1 ∨ Pn−3 or H = K2 ∨ Pn−3.545

From the assumption, V (H) can be partitioned into two parts A = {u, v}546

and B, such that H[B] = Pn−3 and H = H[A] ∨ H[B]. Here, uv is an edge547

of H if H = K2 ∨ Pn−3, and uv is not an edge of H if H = 2K1 ∨ Pn−3. Let548

H[B] = v1e1v2e2 · · · en−4vn−3. If |B| = 3, then H contains a spanning subgraph549

K1 ∨ C4. Since each vertex of V (H) − {v2} has a degree three in H, v2 is the550

new vertex and G has a subgraph K2 ∨ C4, a contradiction to the choice that G551

is a planar graph. Thus, |V (B)| ≥ 4 and v1, vn−3 are the only two vertices with552

degree 3 in H. Therefore, the new vertex is either u or v, say u by symmetry.553

Since κ(G) = 4, v1 (and also vn−3) connects x1, x2 in G. Then by Claim 3.8,554
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suppose that x1 does not connect any vertices of {v2, · · · , vn−4} and x2 connects555

every vertex of {v2, · · · , vn−4}. Since κ(G) = 4, x1 connects v. Then G[B ∪ x1]556

is an (n− 2)-cycle and thus G = 2K1 ∨ Cn−2.557

Case 2. H ∈ P2.558

From the definition of P2, H = v ∨ R, where R is an outerplanar graph559

with connectivity 2. If R = K3, then |V (G)| = 5. Since κ(G) = 4, G =560

K5, a contradiction. Thus, |V (R)| ≥ 4. Since R is an outerplanar graph with561

connectivity 2, by Lemma 3.1 (4), R has two nonadjacent vertices of degree 2.562

Moreover, the boundary C of R is a Hamiltonian cycle.563

Case 2.1. R has at least three vertices of degree two, say u1, u2, u3.564

Note that every vertex of degree 2 in R is either a new vertex or incident with565

the new vertex in H. Thus, v is the new vertex and each ui connects both x1 and566

x2 in G. Note that u1, u2 and u3 divide C into three paths. Let H ′ be a graph567

obtained from H by contracting all but one edge of each such path. Then the568

underlying graph of H ′ is a K5, and so G also has a K5-minor, a contradiction.569

Case 2.2. R has exactly two vertices of degree two and v is not the new570

vertex.571

Suppose w1, w2 are nonadjacent vertices of degree 2 in R. Since v is not the572

new vertex, w1, w2 have a common neighbor z in R, and z is the new vertex.573

Let P = R − z. We prove that H = vz ∨ P and P is a path. We first prove574

that R = z ∨ P , which implies that each chord of R is incident with z. Suppose,575

to the contrary, that there is a chord f = z1z2 of R such that z /∈ {z1, z2}.576

Then z1, z2 divide C into two paths L1 and L2, say z is an internal vertex of L1.577

Since R is an outerplanar graph, z does not connect any internal vertices of L2578

in H. Furthermore, since z is the new vertex, neither x1 nor x2 connects internal579

vertices of L2 in G. Thus, {v, z1, z2} is a vertex-cut of G, a contradiction to the580

assumption that κ(G) = 4. So, R = z ∨ P and P is a path. Since v connects581

every vertex of R, we have H = vz ∨ P .582

Consider the graph G below. Since w1, w2 are vertices of degree 3 and z is583

the new vertex of H, w1 (and also w2) connects x1 and x2 in G. Let I = V (P )−584

{w1, w2}. Since H = vz ∨ P , by Claim 3.8, suppose that x1 does not connect585

any vertices of I and x2 connects every vertex of I. Then D = G[V (P ) ∪ x1] is586

a Cn−2 and G − v = x2 ∨D. Since {v, x2} ∨D is a spanning subgraph of G, v587

does not connect x2 by Lemma 3.1 (3). This implies that G = {x2, v} ∨D, and588

so G = 2K1 ∨ Cn−2.589

Case 2.3. R has exactly two vertices of degree two and v is the new vertex.590

Suppose a, b are nonadjacent vertices of degree 2 in R. Then a, b divide591

C into two paths, say L1 and L2. Let L1 = ae1z1e2, · · · zses+1b and L2 =592

af1w1f2, · · ·wtft+1b. Since a, b are vertices of degree 3 in H, a (and also b)593

connects x1 and x2 in G.594

If NG(x1)∩ (V (L1)−{a, b}) 6= ∅ and NG(x2)∩ (V (L1)−{a, b}) 6= ∅, then let595
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J be a graph obtained from H by contracting all edges of C but e1, es+1 and f1.596

Then the underlying graph of J is a K5, and so G has a K5-minor, a contradiction.597

Thus, by symmetry, suppose V (L1) ⊆ NG(x1) and NG(x2) ∩ V (L1) = {a, b}.598

By the same reason, it will happen that NG(x1) ∩ (V (L2) − {a, b}) 6= ∅ and599

NG(x2) ∩ (V (L2) − {a, b}) 6= ∅. Thus, V (L2) ⊆ NG(x2) and NG(x1) ∩ V (L2) =600

{a, b}. Therefore, NG(x1) ∩ V (R) = V (L1) and NG(x2) ∩ V (R) = V (L2).601

If R = K1 ∨Pn−3, then G = 2K1 ∨Cn−2. We will prove that R = K1 ∨Pn−3602

below.603

Claim 3.10. Suppose l = n1n2 is a chord of R. Then one end of l is contained604

in V (L1)− {a, b} and the other end of l is contained in V (L2)− {a, b}.605

Proof. Suppose, to the contrary, that {n1, n2} ⊆ V (L1). Then S′ = {x1, x2, n1, n2}606

is a vertex-cut of G with |S′| = 4. However, dG[S′](x1) = 3, a contradiction to607

Claim 3.4.608

If, by symmetry, |V (L1)| = 3, then L1 = ae1z1e2b, and so by Claim 3.10, z1609

connects every vertex of L2. Thus, R = K1 ∨ Pn−3.610

If |V (L1)|, |V (L2)| ≥ 4. Recall that e = x1x2 is a nontrivial edge under Γ.611

Suppose e is an edge of a nontrivial tree T . Then there is a nontrivial edge f of612

T between {x1, x2} and R. By symmetry, suppose f = x1w, where w ∈ V (L1).613

Let H ′ be the underlying graph of G/f . Then by Claim 3.7, mc(H ′) ≥ e(H ′) −614

|V (H ′)|+ 3. Since H ′ is a planar graph with κ(H ′) = 3, H ′ is either 2K1 ∨ Pn−3615

or K2 ∨ Pn−3, or a graph of P2.616

Suppose H ′ is either 2K1 ∨ Pn−3 or K2 ∨ Pn−3. Let H ′ = A ∨ Pn−3, where617

V (A) = {y1, y2}. If x2 ∈ V (A) (say x2 = y2), then since |L1| ≥ 4, y1 is an618

internal vertex of L1 and y1 6= w. This implies that either y1a or y1b is an edge619

of G, a contradiction. If x2 /∈ {y1, y2}, then the degree of x2 in H ′ is at most620

4. Since V (L2) ⊆ NH′(x2) and |L2| ≥ 4, we have |L2| = 4 and A ⊆ V (L1).621

So, L2 = af1w1f2w2f3b. Since |L1| ≥ 4, by Claim 3.10, A = {w1, w2}. Let J622

be a graph obtained from H ′ by contracting all edges of L1 but e2. Then the623

underlying graph of J is a K5, and so G has a K5-minor, a contradiction.624

Suppose H ′ is a graph of P2. Then H ′ = y ∨H ′′, where H ′′ is an outerpla-625

nar graph with connectivity 2. If y = x2, then x2 connects every vertex of R.626

However, since NG(x2) ∩ V (L1) = {a, b} and |V (L1)| ≥ 4, we get a contradic-627

tion. If y 6= x2, then y ∈ V (R) and thus R = K1 ∨ Pn−3, a contradiction to the628

assumption that |V (L1)|, |V (L2)| ≥ 4.629

Lemma 3.11. If G is a planar graph with κ(G) = 5, then mc(G) = m− n+ 2.630

Proof. Suppose mc(G) ≥ m − n + 3. Let S = {v1, · · · , v5} be a vertex-cut of631

G and Γ be an extremal MC-coloring of G. If G[S] does not contain nontrivial632

edges, then by Lemma 3.5, mc(G) = m−n+2, a contradiction. Otherwise, there633
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is a nontrivial edge in G[S], say e = v1v2. Let H be the underlying graph of634

G/e. Then by Claim 3.7, mc(H) ≥ e(H)− |V (H)|+ 3. Since κ(H) = 4, we have635

mc(H) = e(H)− |V (H)|+ 3. Thus, H = 2K1 ∨Cn−2, say H = {u, v}∨C, where636

C = Cn−2. Since each vertex of C has a degree 4 in H, either u or v is the new637

vertex. By symmetry, let u be the new vertex. Thus, v1, v2 connect every vertex638

of C, in other words, e∨C is a subgraph of G, a contradiction to the choice that639

G is planar.640

Combining Lemmas 3.2, 3.3, 3.9 and 3.11, we get the following conclusions.641

Theorem 3.12. Suppose G is a connected planar graph. Then mc(G) ≤ m−n+4642

and the following results hold:643

(1) if G is a graph with κ(G) = 1, then mc(G) = m− n+ 2;644

(2) if G is a graph with κ(G) = 2, then m − n + 2 ≤ mc(G) ≤ m − n + 3 and645

mc(G) = m− n+ 3 if and only if G ∈ P1;646

(3) if G is a graph with κ(G) = 3, then m−n+2 ≤ mc(G) ≤ m−n+4. Moreover,647

mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2, and mc(G) = m− n+ 3648

if and only if either G ∈ P2, or G = 2K1 ∨ Pn−2;649

(4) if G is a graph with κ(G) = 4, then m − n + 2 ≤ mc(G) ≤ m − n + 3, and650

mc(G) = m− n+ 3 if and only if G = 2K1 ∨ Cn−2;651

(5) if G is a graph with κ(G) = 5, then mc(G) = m− n+ 2.652

For ease of reading, the classification of planar graphs are summarized in the653

following table (remember that the connectivity κ(G) of a planar graph G is at654

most 5).655

mc(G)
κ(G)

1 2 3 4 5

m− n+ 4 ∅ ∅ G = K2 ∨ Pn−2 ∅ ∅

m− n+ 3 ∅ G ∈ P1
either G ∈ P2,

or G = 2K1 ∨ Pn−2
G = 2K1 ∨ Cn−2 ∅

m− n+ 2 all all but the above all but the above all but the above all

Table 1.: The classification of planar graphs.
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