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Combinatorics of biopolymer structures, especially enumera-
tion of various RNA secondary structures and protein contact 
maps, is of significant interest for communities of both com-
binatorics and computational biology. However, most of the 
previous combinatorial enumeration results for these struc-
tures are presented in terms of generating functions, and few 
are explicit formulas. This paper is mainly concerned with 
finding explicit enumeration formulas for a particular class of 
biologically relevant structures, say, saturated 2-regular sim-
ple stacks, whose configuration is related to protein folds in 
the 2D honeycomb lattice. We establish a semi-bijective al-
gorithm that converts saturated 2-regular simple stacks into 
forests of small trees, which produces a uniform formula for 
saturated extended 2-regular simple stacks with any of the six 
primary component types. Summarizing the six different pri-
mary component types, we obtain a bivariate explicit formula 
for saturated extended 2-regular simple stacks with n vertices 
and k arcs. As consequences, the uniform formula can be re-
duced to Clote’s results on k-saturated 2-regular simple stacks 
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and the optimal 2-regular simple stacks, and Guo et al.’s result 
on the optimal extended 2-regular simple stacks.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The diagram G([n], E), a graph represented by drawing n vertices in a horizontal line 
and arcs (i, j) ∈ E in the upper halfplane, is a classical combinatorial structure closely 
related to set partitions and lattice paths [2,4,25]. It attracts extensive studies by various 
motivations, one of which is from computational molecular biology, where the diagram is 
used to model biopolymer structures like RNA secondary structures and protein contact 
maps.

Since Waterman set up a combinatorial framework for the study of RNA secondary 
structures in the 1970s [28,30], combinatorial problems related to computational molec-
ular biology, especially the combinatorial enumeration of various RNA secondary struc-
tures has attracted significant interest from both combinatorialists and theoretical biol-
ogists. For example, Waterman and his coworkers further obtained recurrence relations, 
explicit and asymptotic formulas for the number of several types of RNA secondary 
structures [15,24,26,29]. Nebel and his coworkers provided enumerative results on statis-
tical properties for (extended) RNA secondary structures using dot-bracket words and 
context-free grammar methods [17–19]. Reidys et al. systematically studied RNA sec-
ondary structures with pseudoknots, and compiled their works in a monograph [22]. 
Clote and his coworkers proposed the concept of saturated RNA secondary structures 
and studied its enumeration problems [5–7,9,27].

Recently, the combinatorial framework for protein contact map has also been initi-
ated. When two amino acid residues in a protein fold come close enough to each other, 
they presumably form some kind of bond, which is called a contact. The contact map of 
a protein fold is a graph that represents the patterns of contacts in the fold. In combina-
torics, the contact map is usually represented by arranging its amino acid residues on a 
horizontal line and drawing an arc between two residues if they form a contact. Contacts 
play a fundamental role in the study of protein structure and folding problems. Goldman 
et al. [10] showed that for any protein fold in 2D square lattice, the contact map can be 
decomposed into (at most) two stacks and one queue, which can be seen as generaliza-
tions of RNA secondary structures without and with pseudoknots, respectively. Istrail 
and Lam [16] proposed the question concerning generalizations of the Schmitt-Waterman 
counting formulas for RNA secondary structures [24] to enumerating stacks and queues, 
and they pointed out that this could provide insights into computing rigorous approx-
imations of the partition function of protein folding in HP models. Thereafter, a series 
of works attacking the enumeration of stacks and queues were made by Chen, Guo and 
their co-authors [3,12–14].
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Fig. 1. The contact map of a protein fold in the 2D honeycomb lattice. It can be decomposed into two stacks 
and one queue which are labeled by S1, S2, and Q, respectively.

However, most of the above enumeration results are in the form of generating function, 
or generating function equation(s), or asymptotic formulas, few are explicit formulas. 
This paper makes efforts to find general explicit enumeration formulas for a particular 
class of diagrams, say, saturated extended 2-regular simple stacks, which emerges from 
the contact map of protein folds in the 2D honeycomb lattice.

It is known that in the classic hydrophobic-polar (HP) model [8], the protein fold 
is modeled as a self-avoiding walk in the 2D or 3D lattice. In different lattice models, 
the maximum vertex degree and the minimum arc length of the contact map can vary 
significantly. For instance, in a protein contact map in 2D square lattice, the degree 
of each internal vertex and terminal vertex is at most 2 and 3, respectively, and the 
minimum arc length is at least 3. While in the 2D honeycomb lattice, the degree of each 
internal vertex and terminal vertex is at most 1 and 2, respectively, and the minimum 
arc length is at least 5. Fig. 1 [11] shows the contact map of a protein fold in the 2D 
honeycomb lattice. For an investigation of various lattice models used for protein folding, 
we refer to [21].

In a diagram, we say two arcs (i, j) and (k, l) form a nesting, if i < k < l < j, and 
a crossing if i < k < j < l. A noncrossing diagram is called a stack, and a nonnesting 
diagram is called a queue. Following [3,14], a structure (stack or queue) with arc length 
at least m is called m-regular ; a structure with the degree of each vertex bounded by one 
and two are called simple and linear, respectively. Actually, an RNA secondary structure 
can be viewed as a 2-regular simple stack. Furthermore, an extended m-regular simple 
stack is an m-regular simple stack, except that the two terminal vertices have a degree 
bounded by 2 instead of 1.

The free energy minimization model plays an important role in the design of lots of 
structure prediction algorithms for RNA and protein [30,32]. In the classic Nussinov-
Jacobson energy model [20], the energy function is the negative of the number of base 
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pairs (for RNA) or contacts (for protein) and the structures with minimum energy are 
called optimal. The number of optimal 2-regular simple stacks of length n, denoted by 
LO0(n), is given by Clote [5, Corollary 13] as follows.

LO0(n) =
{

1, if n is odd,
n(n + 2)/8, if n is even,

(1.1)

where n ≥ 1, and LO0(0) = 1. Guo et al. [11, Theorem 2] obtained the explicit expression 
for the number of the optimal extended 2-regular simple stacks with n vertices, denoted 
by ELO0(n), as follows.

ELO0(n) =
{
n− 3, if n is even,
(n3 − 3n2 − 7n + 69)/12, if n is odd,

(1.2)

where n ≥ 5.
The saturated structure, introduced by Zuker [31], is formally defined as the struc-

ture in which no arcs can be added without violating the constraints like arc length, 
vertex degree, and noncrossing. With respect to the Nussinov-Jacobson energy model, 
saturated secondary structures are actually local minima in the energy landscape. The 
combinatorial problem related to the number of saturated RNA secondary structures has 
been studied extensively [5–7,9,27]. Following Zuker [31], Clote [5] introduced the con-
cept of k-saturated structure which is saturated and contains exactly k fewer arcs than 
the optimal structures, and obtained recurrence relations for the number of k-saturated 
2-regular simple stacks. Particularly, 0-saturated structures are just optimal structures.

In this paper, to find explicit formulas for saturated extended 2-regular simple stacks, 
we establish a semi-bijective algorithm that maps saturated extended 2-regular simple 
stacks to small forests. This algorithm is a composition of Schmitt and Waterman’s 
bijection [24] between RNA secondary structures and linear trees, and a bijection between 
unlabeled linear trees and forests of small trees. The latter bijection can be seen as a 
variation of the bijection for Schröder trees due to Chen [1]. For saturated extended 2-
regular simple stacks, we distinguish six types of primary components. By counting the 
resulting forests, we obtain a uniform formula for saturated extended 2-regular simple 
stacks with any of the six primary component types. As consequences, the uniform 
formula can be reduced to Clote’s [5] results on k-saturated 2-regular simple stacks and 
the optimal 2-regular simple stacks. By using this uniform formula for each primary 
component type, we obtain the main result of this paper, an explicit formula for the 
enumeration of saturated extended 2-regular simple stacks refined by the number of 
arcs.

Theorem 1. Let ELO(n, k) denote the total number of saturated extended 2-regular simple 
stacks with n vertices and k arcs. For any n ≥ 6, k ≥ 3, we have
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ELO(n, k) =
k+1∑
t=1

4∑
i=1

(
k + 1
t

)(
2t + k

t− 1

)(
t

n− 2k − 2 − t + i

)
Pi(k, t), (1.3)

where

P1(k, t) = 2(k − t + 1)
(k + 1)3(k + 2t)2

(
k3 + (4t− 2)k2 + (2t2 − 4t + 1)k − 2t3 − 4t2 + 4t

)
,

P2(k, t) = k − t + 1
(k + 1)4(k + 2t)2

(
7k4 + (22t− 22) k3 +

(
−3t2 − 49t + 17

)
k2 − (22t3

+ 13t2 − 37t + 2)k + 6t4 + 44t3 − 4t2 − 18t
)
,

P3(k, t) = 2(k − t + 1)2
(k + 1)4(k + 2t)3

(
k4 + (7t− 6)k3 + (15t2 − 32t + 13)k2 + (7t3 − 44t2

+ 45t− 12)k − 4t4 − 18t3 + 48t2 − 30t + 4
)
,

P4(k, t) =(t− 1)(k + t + 1)
(k + 1)4(k + 2t)5

(
4k6 + (16t− 42)k5 + (8t2 − 106t + 160)k4 − (24t3

− 26t2 − 204t + 270)k3 + (−10t4 + 132t3 − 244t2 − 50t + 196)k2

+ (13t5 − 8t4 − 217t3 + 468t2 − 208t− 48)k − 2t6 − 20t5 + 66t4

+ 68t3 − 304t2 + 192t
)
,

and (n)k = n(n − 1) · · · (n − k + 1) denotes the kth falling factorial.

It is worthwhile noting that Equation (1.3) reduces to Guo et al.’s result [11, Theorem 
2] for the number of optimal extended 2-regular simple stacks when taking k = �n2 �.

This paper is organized as follows. In Section 2, we present the semi-bijective algorithm 
as well as some basic definitions and notations. In Section 3, we study the enumeration 
of saturated m-regular simple stacks. In Section 4, we give a uniform explicit formula 
for enumerating saturated extended 2-regular simple stacks with six primary component 
types. At last, Section 5 devotes to proving Theorem 1 by using the uniform formula.

2. The semi-bijective algorithm

In this section, we propose a semi-bijective algorithm that generates forests of small 
trees from 2-regular simple stacks. We first introduce some basic definitions and nota-
tions.

A tree with a fixed root is called a rooted tree. A linear tree is a rooted tree together 
with a linear ordering on the set of children of each vertex in the tree. A linear tree 
of height one is called a small tree, and a forest of small trees is called a small forest, 
also known as meadow in graph theory. In a linear tree, the fiber of a vertex is the list 
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Fig. 2. A labeled linear tree on [16] with internal vertices 1, 2, 3, 7, 8, 9, 16 and outmost internal vertices 
7, 8, 16.

of its children, a vertex with empty fiber is called a leaf, and all the other vertices are 
called internal. Obviously, the fiber of the root of a small tree is the list of its leaves. An 
internal vertex whose children are all leaves is called outmost internal. A labeled tree on 
[n] = {1, 2, . . . , n} is a tree in which the nodes are labeled 1, 2, . . . , n with no repetition. 
A linear tree on n vertices with each vertex labeled by a distinct number in [n] is called 
a labeled linear tree. See Fig. 2 for an example.

Let interval 〈i, j〉 denote the set {i + 1, i + 2, . . . , j − 1}, which may be empty. Let 
[m, n] denote the set {m, m +1, . . . , n}. Denote R(n, k) the set of 2-regular simple stacks 
on [n] with k arcs, and T (n, k) the set of unlabeled linear trees with n vertices, in which 
k vertices are internal.

Recall the following bijection given by Schmitt and Waterman [24],

ϕ : R(n, k) → T (n− k + 1, k + 1), (2.1)

S 	→ T,

which is defined as follows.
Denote the set of isolated vertices of S by I. Let V be the set {[i, j] : (i, j) ∈ S} ∪

{[0, n + 1]} ∪ I. Partially order V by set inclusion and then the Hasse diagram of V is 
a rooted tree having n − k + 1 vertices in which k + 1 vertices are internal. The linear 
order of the set I of terminal vertices gives this tree a linear structure. By removing all 
the labels of this linear tree, we obtain T ∈ T (n − k + 1, k + 1).

Fig. 3 illustrates the bijection ϕ.
Based on the bijection ϕ and the enumeration results on unlabeled linear trees [1], 

Schmitt and Waterman [24] derived the number of 2-regular simple stacks on [n] with k
arcs

|R(n, k)| = 1
k

(
n− k

k + 1

)(
n− k − 1
k − 1

)
, n, k ≥ 1. (2.2)

Next, we give a bijective algorithm that constructs small forests from labeled linear 
trees. The idea of our algorithm originates from Chen’s decomposition algorithm for 
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Fig. 3. A saturated 2-regular simple stack in R(21, 6) and its corresponding unlabeled linear tree in T (16, 7).

Schröder trees [1], which has been used to obtain many classical results for enumerations 
of trees.

Denote LT (n, k) the set of labeled linear trees on n vertices with k internal vertices. 
Let F(n, k) be the set of forests on [n] with k small trees such that all the roots are 
assigned labels less than or equal to n − k + 1, and all the vertices with labels greater 
than n − k + 1 are asterisked. In other words, the last k − 1 labels of [n] are asterisked 
and cannot be roots. Obviously, roots must be unasterisked. Note that the set of labels 
of the nodes in LT (n, k) is exactly [n], and that the set of all labels of the small trees 
in F(n, k) is also exactly [n] with no repetition in the labels among the trees in the 
forest.

We define the bijection between LT (n, k) and F(n + k − 1, k)

ψ : LT (n, k) → F(n + k − 1, k) (2.3)

LT 	→ F,

as follows: for a given LT ∈ LT (n, k),

1. Initialize F = ∅;
2. Suppose the label of the largest outmost internal vertex of LT is i, and denote its 

fiber by B. Then add a small tree with root i and fiber B into F ;
3. In LT , remove the fiber B and relabel the vertex i by (n + 1)∗;
4. Repeat step 2 and step 3, and relabel the largest outmost internal vertex i in each 

time by (n + 2)∗, . . . , (n + k − 1)∗ subsequently, until all the internal vertices have 
been asterisked except the root. Then add the small tree with the root of LT into F .
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Fig. 4. A labeled linear tree in LT (16, 7) and its corresponding small forest in F(22, 7).

Table 1
Correspondences between 2-regular simple stacks, linear trees and small forest.
R(n, k) T (n − k + 1, k + 1) F(n + 1, k + 1)
k arcs k + 1 internal vertices k + 1 small trees
n − 2k isolated vertices n − 2k leaves n − 2k unasterisked leaves
arc of length m and covering 

m − 1 isolated vertices
outmost internal vertice 
with degree m − 1

small trees with m − 1
unasterisked leaves

b visible vertices b leaves in the children 
of the root

b unasterisked leaves in 
the small tree that 
contains (n + 1)∗

Given F ∈ F(n + k − 1, k), the inverse map can be done as follows.

1. In F , among the trees with no asterisked vertex, select the one whose root label is 
the largest, denote that tree by T ;

2. Find the tree T ∗ in F that contains (n + 1)∗, then update F by replacing (n + 1)∗
with T in T ∗;

3. Repeat step 1 and step 2 for vertices (n +2)∗, . . . , (n +k−1)∗ until there is only one 
tree in F ;

4. Let LT be the only tree in F .

It is straightforward to see that the above two maps are inverse to each other, and 
thus ψ is a bijection. Fig. 4 shows an example.

Through the construction of ϕ and ψ, it is interesting to observe the correspondences 
between properties of 2-regular simple stacks, linear trees, and small forests as shown in 
Table 1.

We remark that a vertex in a stack is called visible if it is not covered by any arc. For 
the last cell in Table 1, note that if S ∈ R(n, k) has only isolated vertices, then T = ϕ(S)
is a small tree, all the vertices of S are visible, and T remains unchanged under bijection 
ψ, so all the leaves of ψ(T ) are unasterisked.

Now we are ready to give our semi-bijective algorithm that maps a 2-regular simple 
stack to its corresponding small forest. The main idea is that first convert the 2-regular 
simple stack S to an unlabeled linear tree, then label the vertices of the tree ϕ(S), and 
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finally apply bijection ψ to produce the desired small forests. The full algorithm is stated 
as follows.

Algorithm The semi-bijective algorithm STF.
Input: A 2-regular simple stack S ∈ R(n, k).
Output: A set of small forests F ⊆ F(n + 1, k + 1).

Step 1. Set T = ϕ(S) ∈ T (n − k + 1, k + 1).
Step 2. Label the vertices of T distinctly with numbers in [n − k + 1] arbitrarily, and let LT be the set of 
the (n − k + 1)! labeled linear trees.
Step 3. Set F = {F | F = ψ(T ), T ∈ LT }.

In the following, we will use the algorithm STF to enumerate saturated m-regular 
simple stacks, and a variant of STF will be used to enumerate saturated extended 2-
regular simple stacks.

3. Saturated m-regular simple stacks

In this section, we are concerned with the enumeration of saturated m-regular simple 
stacks through the semi-bijective algorithm STF.

Denote the set of saturated m-regular simple stacks on [n] with k arcs by Rs(n, k; m), 
and denote Fs(n + 1, k + 1; m) the set of small forests generated from Rs(n, k; m) by
STF, that is

Fs(n + 1, k + 1;m) =
⋃

S∈Rs(n,k;m)

STF(S).

Let Rs(n, k; m) = |Rs(n, k; m)| and Fs(n, k; m) = |Fs(n, k; m)|. The following lemma 
characterizes the set Fs(n + 1, k + 1; m).

Lemma 1. Assume F is a small forest, then F ∈ Fs(n + 1, k + 1; m) if and only if 
F ∈ F(n +1, k+1) and the fiber of any small tree in F satisfies the following properties:

(P1) When the fiber contains no asterisked vertex, it must be of m −1 or m unasterisked 
vertices.

(P2) When the fiber contains asterisked vertices, then the unasterisked vertices are all 
consecutive, and there are no more than m of them. Here unasterisked vertices are 
consecutive if no asterisked vertex appears between unasterisked ones.

Moreover, we have

Rs(n, k;m) = Fs(n + 1, k + 1;m)
(n− k + 1)! . (3.1)

Proof. Obviously, Fs(n +1, k+1; m) ⊆ F(n +1, k+1). Through the bijection ϕ defined 
by (2.1), one can see that the saturated m-regular simple stacks correspond to those 
unlabeled linear trees satisfying the following two restrictions:
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(R1) The fiber of any outmost internal vertex must be of m − 1 or m leaves.
(R2) The fiber of any non-outmost internal vertex contains at most m leaves, which are 

all consecutive.

Note that in Step 2 of algorithm STF, each unlabeled linear tree corresponds to (n −k+1)!
labeled linear trees and thus equation (3.1) holds. Further applying the bijection ψ, the 
internal vertices (except the root) and leaves of each labeled linear tree are mapped 
to asterisked and unasterisked leaves of small trees in the corresponding small forest, 
respectively. This leads to the two properties (P1) and (P2).

Conversely, assume that F ∈ F(n + 1, k + 1) satisfying (P1) and (P2). Applying the 
inverse map of the bijiection ψ to F , we see that the asterisked and unasterisked leaves 
of small trees in F correspond to the internal vertices (except the root) and leaves of a 
labeled linear tree, respectively. Let LT := ψ−1(F ) ∈ LT (n − k + 1, k + 1), then it is 
direct to check that LT satisfies (R1) and (R2) corresponding to the two properties (P1) 
and (P2) of F . Denote T the unlabeled linear tree obtained from removing the labels 
of LT . The restrictions (R1) and (R2) guarantee the preimage of T with respect to the 
bijiection ϕ is a saturated m-regular simple stack.

Moreover, note that there is no restriction for the labeling of LT . Thus we have 
(n − k + 1)! labeled linear trees with the same configuration as LT , which leads to 
equation (3.1) again. �

Let [m, n]∗ denote the set {m∗, (m +1)∗, . . . , n∗}, and [n]∗ = [1, n]∗. Based on relation 
(3.1), we can derive the following enumeration result on saturated m-regular simple 
stacks by counting the small forests in Fs(n + 1, k + 1; m).

Theorem 2. We have

Rs(n, k;m) =
[
xn−2kyk

] (y − y2 + xy + xm−1(1 − y)2 − xm+1)k+1

(k + 1)(1 − x)k+1(1 − y)2(k+1) , (3.2)

where n, k ≥ 0.

Proof. Let f(s, t) denote the number of fibers constructed by vertices on [s] ∪ [t]∗ satis-
fying the properties in Lemma 1. When t = 0, by the property (P1) in Lemma 1, it is 
easy to see that

f(s, 0) =
{
s!, s = m− 1 or s = m,

0, otherwise.

When t > 0, the property (P2) in Lemma 1 leads to that



Q. Guo et al. / Advances in Applied Mathematics 146 (2023) 102491 11
f(s, t) =

⎧⎪⎪⎨⎪⎪⎩
t!, s = 0,

s!(t + 1)!, 1 ≤ s ≤ m,

0, s > m.

Denote the exponential generating function of f(s, t) by

F (x, y;m) =
∑
s,t≥0

f(s, t)x
s

s!
yt

t! ,

then we have

F (x, y;m) =f(m− 1, 0) xm−1

(m− 1)! + f(m, 0)x
m

m! +
∑
t≥1

f(0, t)y
t

t! +
m∑
s=1

∞∑
t=1

f(s, t)x
s

s!
yt

t!

=(m− 1)! xm−1

(m− 1)! + m!x
m

m! +
∑
t≥1

t!y
t

t! +
(

m∑
s=1

s!x
s

s!

)⎛⎝∑
t≥1

(t + 1)!y
t

t!

⎞⎠

=
(

m∑
s=0

xs

)⎛⎝∑
t≥0

(t + 1)yt
⎞⎠−

m−2∑
s=0

xs −
∑
t≥1

tyt

=1 − xm+1

1 − x
· 1
(1 − y)2 − 1 − xm−1

1 − x
− y

(1 − y)2

=y − y2 + xy + xm−1(1 − y)2 − xm+1

(1 − x)(1 − y)2 . (3.3)

Note that a small forest F ∈ Fs(n +1, k+1; m) contains n −k+1 unasterisked vertices, 
n − 2k unasterisked leaves, and k asterisked leaves. To construct such a small forest, we 
can first choose k+1 unasterisked numbers as the roots’ labels, and then choose the k+1
fibers, the numbers of which coincide with the generating function F (x, y; m). Therefore

Rs(n, k;m) =Fs(n + 1, k + 1;m)
(n− k + 1)!

= 1
(n− k + 1)!

(
n− k + 1
k + 1

)[
xn−2k

(n− 2k)! ·
yk

k!

]
(F (x, y;m))k+1

=
[
xn−2kyk

] (y − y2 + xy + xm−1(1 − y)2 − xm+1)k+1

(k + 1)(1 − x)k+1(1 − y)2(k+1) . �
Note that an m-regular simple stack on [n] contains at most �n−m+1

2 � arcs, thus 
n ≥ m − 1 and 0 ≤ k ≤ �n−m+1� is a necessary condition for Rs(n, k; m) = 0. Specially, 
2
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for the case of saturated 2-regular and 3-regular simple stacks, (3.2) reduces to the 
following explicit formulas.

Corollary 1. When n, k ≥ 0, we have

Rs(n, k; 2) = 1
k + 1

k+1∑
t=1

(
k + 1
t

)(
2t + k − 1

t− 1

)(
t

n− 2k − t

)
, (3.4)

Rs(n, k; 3) =
n−2k∑
s=2

s∑
t=1

(−1)s−t−1

k + 1

(
k + 1

n− 2k − s

)(
k + 1
t

)(
t

s− t

)(
s + k − n− 1

s− t− 1

)
.

(3.5)

Proof. Setting m = 2 in (3.2) leads to

Rs(n, k; 2) =
[
xn−2kyk

] (x2 + x− y2 + y
)k+1

(k + 1)(1 − y)2(k+1)

=
[
yk

]
k+1∑
t=0

(
k + 1
t

)
(y − y2)k+1−t

[
xn−2k] (x2 + x)t

(k + 1)(1 − y)2(k+1)

= 1
k + 1

k+1∑
t=0

(
k + 1
t

)([
yt−1] (1 − y)−(k+t+1)

) ([
xn−2k−t

]
(x + 1)t

)
= 1
k + 1

k+1∑
t=1

(
k + 1
t

)(
2t + k − 1

t− 1

)(
t

n− 2k − t

)
.

Substituting m = 3 into (3.2), we have

Rs(n, k; 3) =
[
xn−2kyk

] (x2 + xy + y
)k+1 (x− y + 1)k+1

(k + 1)(1 − y)2(k+1)

=
[
yk

]
n−2k∑
s=0

(
[xs] (x2 + xy + y)k+1) ([xn−2k−s

]
(x− y + 1)k+1)

(k + 1)(1 − y)2(k+1) ,

where

[xs] (x2 + xy + y)k+1 =
k+1∑
t=0

(
k + 1
t

)(
t

s− t

)
yt+k−s+1,

[
xn−2k−s

]
(x− y + 1)k+1 =

(
k + 1

n− 2k − s

)
(1 − y)−(n−3k−s−1).
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Hence,

Rs(n, k; 3) =
n−2k∑
s=0

k+1∑
t=0

(
k + 1

n− 2k − s

)(
k + 1
t

)(
t

s− t

)([
yk

] yt+k−s+1

(1 − y)n−k−s+1

)

=
n−2k∑
s=2

s∑
t=1

(−1)s−t−1

k + 1

(
k + 1

n− 2k − s

)(
k + 1
t

)(
t

s− t

)(
k + s− n− 1

s− t− 1

)
. �

Let LOk(n) denote the number of k-saturated 2-regular simple stacks on [n]. According 
to the definition of k-saturated 2-regular simple stacks, we have

LOk(n) = Rs

(
n,

⌊
n− 1

2

⌋
− k; 2

)
. (3.6)

Hence, when k = �(n− 1)/2�, (3.4) reduces to Clote’s results [5, Corollary 13] for the 
optimal 2-regular simple stacks, see (1.1). Moreover, substituting k = �(n− 1)/2� − 1
and k = �(n− 1)/2� − 2 into (3.4), we have the following results for 1-saturated and 
2-saturated 2-regular simple stacks, respectively.

Corollary 2. For any n ≥ 3, we have

LO1(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n− 1)(n− 3)

192 (n2 + 8n + 31), if n is odd,

(n− 2)(n− 4)
9216 (n4 + 12n3 + 68n2 − 288n− 2304), if n is even,

(3.7)

LO2(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n− 3) (n− 5) (n− 7)
737280

(
n5 + 23n4 + 278n3 + 634n2

−9879n− 52497) ,
if n is odd,

(n− 4) (n− 6) (n− 8)
88473600

(
n7 + 28n6 + 400n5 − 560n4

−56336n3 − 320768n2 + 1555200n + 13363200
)
,

if n is even.

(3.8)

Note that for LO1(n), Clote [5, Corollary 15] obtained a recurrence relation which 
can be reformulated as follows,

LO1(2m + 1) = LO1(2m− 1) + 1
3m

3 + 1
2m

2 + 1
6m− 1,

LO1(2m) = LO1(2m− 2) + LO1(2m− 3) + 1
120m

5 + 7
24m

3 −m2

− 3
10m + 2 +

m−1∑
i=1

(LO1(2i− 1) + LO1(2m− 2i− 1)) ,
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Table 2
Six primary component types of saturated extended 2-regular simple stacks on [n].

(deg(1), deg(n)) primary component types

(2,0), (0,2)
1 n

A1

T2 T1 T6 1 n
A′

1

T2T1T ′
6

(2,1), (1,2)
1, n form an arc 1 n

A2

T2 T6 1 n
A′

2

T2T ′
6

(2,1), (1,2)
1, n do not form an arc 1 n

A3

T2 T1 T3 T7 1 n
A′

3

T ′
7 T3 T1 T2

(1,1)
1 n

A4

T5

(2,2)
1, n form an arc

1 n
A5

T2 T1 T2

(2,2)
1, n do not form an arc 1 n

A6

T2 T1 T1 T1 T2

where m ≥ 3 and LO1(0) = LO1(1) = LO1(2) = LO1(3) = LO1(4) = 0, LO1(5) = 4.

4. Enumeration of saturated extended 2-regular simple stacks with given primary 
component types

In this section, we devote to deriving a uniform explicit formula for enumerating 
saturated extended 2-regular simple stacks with any of the six primary component types. 
Clote’s result [5] on saturated 2-regular simple stacks is then a consequence of this 
uniform formula.

The concept of primary component plays a key role in the enumeration of stacks. 
Following the structure decomposition idea proposed by Chen et al. [3], the primary 
component is defined as the union of the connected components containing vertices 1 
and n. Following the idea of Guo et al. [11], the primary component of saturated extended 
2-regular simple stacks on [n] can be classified into six types according to the degrees of 
vertices 1 and n, see Table 2.

As shown in Table 2, the primary component splits [n] into disjoint intervals, each 
of which contains a substructure. According to the degree and arc length restrictions 
of saturated extended 2-regular simple stacks, we can classify these substructures into 
seven types.

Denote T and T̂ an arbitrary nonempty saturated 2-regular simple stack, and a 
nonempty saturated 2-regular simple stack with no visible vertex, respectively. Let •
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 5. A saturated extended 2-regular simple stack.

and ε stand for an isolated vertex and an empty stack, respectively. Then with these 
notations, the seven types of the substructures in the intervals can be represented as 
follows:

• T1 = T + ε: T or an empty stack;
• T2 = T ;
• T3 = T̂ + ε: T̂ or an empty stack;
• T4 = T̂ ;
• T5 = T̂ + •: T̂ or an isolated vertex;
• T6 = T̂ • + • +T̂ + ε: T3 followed by an isolated vertex, or just T3;
• T7 = T̂ • + • +T̂ : T3 followed by an isolated vertex, or just T̂ .

Note that the substructures of types T1, T3 may be empty. T ′
6 and T ′

7 stand for the reverse 
structures of T6 and T7, respectively.

In the following, we give a semi-bijective algorithm that maps an extended 2-regular 
simple stack S on [n] with a given primary component type A ∈ {Ai}6

i=1 to a set of 
small forests, which is actually a variation of algorithm STF. The idea is to preprocess S
before applying STF and redefine the labeling rules in Step 2 of STF to distinguish the 
primary component from the other parts. Denote this varied algorithm eSTF which is 
stated as follows.

Algorithm The semi-bijective algorithm eSTF.
Input: An extended 2-regular simple stack S with n vertices and k arcs, denote k1 the number of arcs in 

the primary component of S.
Output: A set of small forests F ⊆ F(n + d + 1, k + 1).

Step 0. For v ∈ {1, n}, if deg v = 0, delete v from S; if deg v = 1, do nothing; if deg v = 2, add a new 
vertex u to the left of v and bond one of the two arcs at v to u so that no crossing occurs. Denote 
d = ∑

v∈{1,n}
(deg v − 1). Relabel the vertices of S by [n + d] from left to right.

Step 1. Apply the Schmitt-Waterman’s bijection on S, set T = ϕ(S) ∈ T (n + d − k + 1, k + 1).
Step 2. Denote P the vertex subset of T consisting of the root and the k1 internal vertices corresponding 
to k1 arcs in the primary component. Label the vertices of P by breadth-first order with 1, . . . , k1 + 1, 
and label the other vertices in T by [k1 + 2, n + d − k + 1] in any of the (n + d − k − k1)! ways. Denote 
the set of these (n + d − k − k1)! labeled linear trees by LT .
Step 3. Set F = {F | F = ψ(T ), T ∈ LT }.

The following example illustrates algorithm eSTF. In the saturated extended 2-regular 
simple stack in Fig. 5, n = 21, k = 6, k1 = 2, d = 0. By Step 0 and Step 1, we get the 
simple stack S and its corresponding unlabeled linear tree ϕ(S) as shown in Fig. 3. The 



16 Q. Guo et al. / Advances in Applied Mathematics 146 (2023) 102491
new labeling rule will produce 13! different labeled trees from ϕ(S). Fig. 4 shows one of 
the labeled linear trees and its corresponding small forest.

According to Lemma 1, saturated 2-regular simple stacks will produce a subset of 
small forests in which the fiber of any small tree contains no unasterisked vertex, or 
one unasterisked vertex, or two adjacent unasterisked vertices, and we call such a fiber 
saturated. Corresponding to the substructures of type T1, T2, T3, T4, we can classify the 
fiber of small trees into the following four types.

• F1: an arbitrary saturated fiber;
• F2: an arbitrary nonempty saturated fiber;
• F3: an arbitrary saturated fiber with no unasterisked vertex;
• F4: an arbitrary nonempty saturated fiber with no unasterisked vertex.

Let Rs(n, k; k1, d) denote the set of extended saturated 2-regular simple stacks on [n]
with k arcs whose primary component A contains k1 arcs and 

∑
v∈{1,n}

(deg v − 1) = d. 

Denote the set of small forests corresponding to Rs(n, k; k1, d) by

Fs(n + d + 1, k + 1; k1, d) =
⋃

S∈Rs(n,k;k1,d)

eSTF(S).

Set Rs(n, k; k1, d) = |Rs(n, k; k1, d)| and Fs(n + d + 1, k + 1; k1, d) = |Fs(n + d + 1, k +
1; k1, d)|. Similarly to Lemma 1, we have the following conclusion.

Lemma 2. Suppose that F is a small forest. If F ∈ Fs(n + d + 1, k + 1; k1, d), then

(P1) The fiber of any small tree in F contains no unasterisked vertex, or one unas-
terisked vertex, or two adjacent unasterisked vertices.

(P2) The vertices 1, 2, . . . , k1+1 are roots of the small trees, and the positions of vertices 
(n + d + 1)∗, . . . , (n + d − k1 + 2)∗ are fully determined by the primary component 
A.

(P3) The vertex (n + d − k1 + 1)∗, if exists, must be a leaf of one of the small trees with 
roots 1, 2, . . . , k1 + 1.

Moreover,

Rs(n, k; k1, d) = Fs(n + d + 1, k + 1; k1, d)
(n + d− k − k1)!

. (4.1)

Proof. Assume S ∈ Rs(n, k; k1, d). By Step 0 of eSTF, we obtain a saturated simple 
stack in R(n + d, k), still denoted by S. Step 1 of eSTF maps S to a unlabeled tree 
T ∈ T (n + d − k + 1, k + 1) in which the fiber of any vertex contains no leaf, or one leaf, 
or two adjacent leaves, which is the case m = 2 in Lemma 1, thus property (P1) holds.
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According to Step 2 of eSTF, the numbers in [k1 + 1] are the labels of some internal 
vertices, and thus they are the roots of some of the small trees. Note that the primary 
component A corresponds to the vertices in P except the root, which are labeled by 
2, . . . , k1 + 1 in Step 2 and relabeled by (n + d + 1)∗, . . . , (n + d − k1 + 2)∗ in bijection 
ψ. Thus the positions of vertices (n + d + 1)∗, . . . , (n + d − k1 + 2)∗ are fully determined 
by A and property (P2) follows.

For property (P3), assume that LT is one of the labeled linear trees obtained after 
Step 2. Note that (n + d − k1 + 1)∗ is the largest asterisked vertex, except the vertices 
in [n + d − k1 + 2, n + d + 1]∗, this implies that (n + d − k1 + 1)∗ is the new label of a 
vertex whose parent is in [1, k1 + 1]. Therefore ψ(LT ) satisfies the property (P3).

Equation (4.1) is straightforward by noting that the vertices of T , except those in P , 
are labeled arbitrarily in any of the (n + d − k − k1)! ways. �

Lemma 2 shows that the number of saturated extended 2-regular simple stacks can 
be obtained by enumerating the corresponding small forests. To this end, the following 
basic notations and properties on set partitions are prerequisite.

Recall a partition of a finite set S is a collection π = {B1, B2, . . . , Bk} of subsets 
Bi ⊆ S such that Bi = ∅, Bi ∩ Bj = ∅ for i = j, and B1 ∪ B2 ∪ . . . ∪ Bk = S. We 
call Bi ∈ π a block of π. An ordered partition is a set partition in which the blocks 
are linearly ordered. If the elements of each block of π are ordered linearly, we call π
an inner-ordered partition of S. An ordered partition is called dual-ordered if it is also 
inner-ordered. If a partition π contains exactly k blocks, we call π a k-partition.

Lemma 3. The number of inner-ordered k-partitions of [n] that each block contains at 
most two elements is n!

k!
(

k
n−k

)
.

Proof. To obtain a dual-ordered k-partition of [n] that each block contains at most two 
elements, we first linearly order [n] in n! ways. Then divide each sequence on n elements 
into k linearly ordered nonempty blocks such that each block contains at most two 
elements, which can be obtained through the following generating function

[xn](x + x2)k = [xn−k]
k∑

i=0

(
k

i

)
xi =

(
k

n− k

)
.

At last, dividing k! to remove the order of the k blocks completes the proof. �
Next, we consider the inner-ordered partitions of a union set consisting of two kinds 

of elements.

Lemma 4. Let S = {si}si=1 and T = {tj}kj=1. Then the number of inner-ordered k-
partitions on the set S ∪ T such that each block contains exactly one element in T is 
s!
(2k+s−1).
s
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Proof. Note that any inner-ordered k-partition under consideration can be obtained 
from a dual-ordered k-partition by neglecting the order of the blocks. To construct a 
dual-ordered k-partition, we first construct a sequence of length 2k − 1 consisting of 
alternatively appeared tj ∈ T and vertical bars, then from the 2k positions before or 
after each element of the sequence, choose s positions with repetitions in 

((2k
s

))
ways to 

place the elements of S. At last, linearly ordering the elements of S and T in s! and k!
ways, respectively, and neglecting the order of the k blocks completes the proof. �
Lemma 5. Given l ≥ 1, r ≥ 0, u ≥ 0, v ≥ 0, r + v ≥ 1, denote C(l, r, u, v) the number of 
dual-ordered (u +v+r)-partitions on [l] ∪ [l+1, l+r]∗ with the following three properties:

(a) Each block contains no unasterisked element, or one unasterisked element, or two 
adjacent unasterisked elements.

(b) The first u blocks contain no unasterisked element.
(c) The element (l + r)∗ is contained in one of the first u + v blocks.

Then we have

C(l, r, u, v) = l!r!
min{l,r+v}∑

t=1

(
t

l − t

)(
r + v − 1
t− 1

)(
2t + r

t− u− v

)
f(t, r, u, v), (4.2)

where

f(t, r, u, v) = ut + (u + v)(t + r + v)
t(2t + r) . (4.3)

Proof. To construct such a partition under consideration with u + v + r blocks, assume 
that l unasterisked vertices are contained by exactly t blocks, and these t blocks contain 
s asterisked vertices. Then by the properties (a) and (b), it is easy to see that � l

2� ≤
t ≤ min{l, r + v} and 0 ≤ s ≤ t − u − v. We denote p = u + v + r for convenience. A 
dual-ordered partition π can be constructed by the following four steps:

(1) First construct an inner-ordered t-partitions π1 of l unasterisked vertices such that 
each block contains at most two vertices to satisfy the property (a). According to 
Lemma 3, there are l!t!

(
t

l−t

)
ways.

(2) Insert s unlabeled asterisked vertices into t blocks of π1. According to Lemma 4, 
there are 

(2t+s−1
s

)
ways to do this.

(3) Divide the remaining r−s unlabeled asterisked vertices into (p −t) blocks to construct 
a (p − t)-partition π2. The number of ways to do this is 1

(p−t)!
(
r−s−1
p−t−1

)
.

(4) List the r asterisked vertices. Assume that the first s asterisked vertices are just the 
ones inserted into the t blocks of π1. For each permutation of all p blocks, denote 
U -blocks and R-blocks the first u blocks and last r blocks, respectively, let V -blocks 
denote the v blocks between U -blocks and R-blocks. To meet properties (b) and (c), 
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according to the position of the vertex (l+ r)∗, we need to discuss the following two 
cases.
Case 1. If the vertex (l+r)∗ lies in one of the first s positions, then there are s(r−1)!

ways to list the asterisked vertices, and the block containing (l + r)∗ must 
contain an unasterisked vertex. It is easy to see that (l + r)∗ must lie in 
V -blocks of π. So π can be constructed by choosing u blocks from p − t

blocks of π2 and linearly ordering, then taking the block containing (l+ r)∗
as one of the V -blocks, and permuting the remaining r+ v− 1 blocks. Thus 
there are

v

(
p− t

u

)
u!(r + v − 1)!

ways to produce π.
Case 2. If the vertex (l + r)∗ lies in one of the last r − s positions, then there are 

(r − s)(r − 1)! ways to list the asterisked vertices, and the block containing 
(l + r)∗ has no unasterisked vertex. If we take the block containing (l + r)∗
as one of the U -blocks, there are

u

(
p− t− 1
u− 1

)
(u− 1)!(r + v)!

ways to produce π. Otherwise, the block containing (l + r)∗ should be one 
of the V -blocks, then the number of ways is

v

(
p− t− 1

u

)
u!(r + v − 1)!.

Summarizing, we have

C(l, r, u, v)

=
min{l,r+v}∑
t=�l/2	

l!(r − 1)!
t!(p− t)!

(
t

l − t

) t−u−v∑
s=0

(
2t + s− 1

s

)(
r − s− 1
p− t− 1

)(
sv

(
p− t

u

)
u!(r + v − 1)!

+(r − s)
(
u

(
p− t− 1
u− 1

)
(u− 1)!(r + v)! + v

(
p− t− 1

u

)
u!(r + v − 1)!

))
. (4.4)

For the case of u > 0, we have p − t ≥ u > 0. Then (4.4) can be simplified as

l!r!
min{l,r+v}∑

t=1

(
t

l − t

)(
r + v − 1
t− 1

) t−u−v∑
s=0

(
2t + s− 1

s

)(
r − s− 1
p− t− 1

)
g(s, t, r, u, v), (4.5)

where
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g(s, t, r, u, v) = sv

tr
+ (r − s) (u(r + v) + v(r + v − t))

(p− t)tr .

Applying the following identity [23, P8 (3b)]

m∑
s=0

(
q + s− 1

s

)(
n− s

m− s

)
=

(
n + q

m

)
, n,m ≥ 0, q ≥ 1, (4.6)

we have

m∑
s=0

(
q + s− 1

s

)(
n− s

m− s

)
s = q

(
n + q

m− 1

)
, (4.7)

m∑
s=0

(
q + s− 1

s

)(
n− s

m− s

)
(n + 1 − s) = (n−m + 1)

(
n + q + 1

m

)
. (4.8)

Setting q = 2t, n = r−1, m = t −u −v in the above two identities and substituting them 
into the sums involving s in (4.5), it turns to

l!r!
min{l,r+v}∑

t=1

(
t

l − t

)(
r + v − 1
t− 1

)(
2v
r

(
2t + r − 1

p + t

)

+u(r + v) + v(r + v − t)
tr

(
2t + r

p + t

))

=l!r!
min{l,r+v}∑

t=1

(
t

l − t

)(
r + v − 1
t− 1

)(
2t + r

t− u− v

)
ut + (u + v)(t + r + v)

t(2t + r) . (4.9)

For the case of u = 0, we divide the summation of (4.4) into two parts as �l/2� ≤ t <
r + v = p and t = r + v = p. As in the case of u > 0, the part for �l/2� ≤ t < p can be 
simplified to

l!r!
min{l,r+v−1}∑

t=1

(
t

l − t

)(
r + v − 1
t− 1

)(
2t + r

t− v

)
v(t + r + v)
t(2t + r) . (4.10)

The part for t = r + v = p equals

l!(r − 1)!
(r + v)!

(
r + v

l − r − v

)(
3r + 2v − 1

r

)
rv

(
0
u

)
(r + v − 1)!

=l!r!
(

r + v

l − r − v

)(
3r + 2v

r

)
2v

3r + 2v . (4.11)

At last, summing (4.10) and (4.11) completes the proof. �
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Now we are ready to give the uniform formula for saturated extended 2-regular simple 
stacks with any of the six primary component types.

Theorem 3. Denote P(n, k; k1, d, I1, I2, J1, J2) the set of extended saturated 2-regular sim-
ple stacks on [n] with k arcs and the primary component A satisfying that

(1) A contains k1 arcs and 
∑

v∈{1,n}(deg v − 1) = d.
(2) A splits [n] into disjoint intervals, on which there are I1, I2, J1, J2 substructures of 

type T1, T2, T3 and T4, respectively.

Let P (n, k; k1, d, I1, I2, J1, J2) = |P(n, k; k1, d, I1, I2, J1, J2)|, then

P (n, k; k1, d, I1, I2, J1, J2) =
I1∑
i=0

J1∑
j=0

(
I1
i

)(
J1

j

)
C(l, r, j + J2, i + I2)

l!r! , (4.12)

where l = n + d − 2k, r = k − k1, and C(l, r, u, v) is defined by (4.2).

Proof. Note that the total number of vertices in the intervals is l = n + d − 2k. For the 
trivial case k = k1, it is obvious that J2 = 0, and the J1 intervals of type T3 must be 
empty. Suppose that there are i nonempty intervals in I1 intervals of type T1, so that l
vertices are distributed in I2 + i intervals and these intervals can contain only one or two 
isolated vertices. Choose l − I2 − i intervals from I2 + i intervals to place two vertices. 
Therefore

P (n, k1; k1, d, I1, I2, J1, J2) =

⎧⎪⎪⎨⎪⎪⎩
0, J2 > 0,
I1∑
i=0

(
I1
i

)(
I2 + i

l − I2 − i

)
, J2 = 0.

(4.13)

For the case of k > k1, since P(n, k; k1, d, I1, I2, J1, J2) ⊆ R(n, k; k1, d), the small 
forests corresponding to P(n, k; k1, d, I1, I2, J1, J2) must satisfy conditions (P1)–(P3) in 
Lemma 2. Additionally, from the second restriction for the primary component A, the 
small forests corresponding to P(n, k; k1, d, I1, I2, J1, J2) should also satisfy the following 
fourth condition.

(P4) Ignore the determined vertices (n + d +1)∗, . . . , (n + d − k1 +2)∗. The fiber type of 
the small trees with roots in [k1 + 1] is determined, where there are I1, I2, J1, and 
J2 fibers of type F1, F2, F3, and F4, respectively.

We take four steps to construct the small forests on [n + d − k + 1] satisfying those four 
restrictions.



22 Q. Guo et al. / Advances in Applied Mathematics 146 (2023) 102491
(1) Assume there are i, j nonempty fibers in the I1, J1 fibers of type F1 and F3, respec-
tively. Choose these fibers in 

(
I1
i

)(
J1
j

)
ways.

(2) From the condition (P2) in Lemma 2, we have determined k1 +1 root labels of small 
trees corresponding to the primary component A. Select the remaining k − k1 root 
labels from [k1 + 2, n + d − k + 1] in 

(
l+r
r

)
ways.

(3) Ignore vertices (n + d + 1)∗, . . . , (n + d − k1 + 2)∗, there are n + d − 2k unasterisked 
vertices and k − k1 asterisked vertices distributed in r + i + j + I2 + J2 saturated 
fibers. Construct a dual-ordered (r + i + j + I2 + J2)-partition π of these vertices 
with the following three restrictions:
(a) Each block contains no unasterisked element, or one unasterisked element, or 

two adjacent unasterisked elements.
(b) The first j + J2 blocks contain no unasterisked element.
(c) The element (n + d − k1 + 1)∗ is contained in one of the first i + j + I2 + J2

blocks.
According to Lemma 5, we have C(l, r, j + J2, i + I2) ways to do this.

(4) Denote RI and RJ the sets of the roots of i + I2 fibers of type F2 and j + J2 fibers 
of type F4, respectively. Let LI and LJ be the increasing list of the roots in RI and 
RJ , respectively. Allocate r + i + j + I2 + J2 blocks of π to the roots in LJ , LI and 
(k1 + 2, . . . , k + 1) orderly.

It derives that

(l + r)!P (n, k; k1, d, I1, I2, J1, J2)

=
I1∑
i=0

J1∑
j=0

(
I1
i

)(
J1

j

)(
l + r

r

)
C(l, r, j + J2, i + I2). (4.14)

Thus equation (4.12) follows. It is easy to prove that equation (4.12) equals 0 when 
k < k1 and reduces to equation (4.13) when k = k1. The theorem therefore holds for all 
nonnegative integers k. �

In fact, the idea of Theorem 3 is also applicable to enumerate saturated 2-regular 
simple structures. Note that when n ≥ 1, a saturated 2-regular simple stack is just a 
structure of type T2. Taking the primary component to be an empty graph and k1, d to 
be 0 in Theorem 3, we immediately get

Rs(n, k; 2) =P (n, k; 0, 0, 0, 1, 0, 0),

= 1
k + 1

k+1∑
t=1

(
k + 1
t

)(
2t + k − 1

t− 1

)(
t

n− 2k − t

)
,

which is the same as (3.4).
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5. Enumeration of saturated extended 2-regular simple stacks

In this section, we aim to study the enumeration of the saturated extended 2-regular 
simple stacks on [n] with k arcs based on Theorem 3 for such stacks with given primary 
component types. As consequences, we also obtain enumeration formulas for optimal, 
1-saturated, and 2-saturated extended 2-regular simple stacks.

First, we give the detailed proof of Theorem 1, which is a case-by-case application of 
Theorem 3 on the six primary component types shown in Table 2.

Proof of Theorem 1. Denote the number of the saturated extended 2-regular simple 
stacks on [n] with k arcs and primary component type being Ai in Table 2 by si(n, k). 
Note that types Ai and A′

i (i = 1, 2, 3) are symmetric, we will consider Ai only, therefore,

ELO(n, k) = 2(s1(n, k) + s2(n, k) + s3(n, k)) + s4(n, k) + s5(n, k) + s6(n, k). (5.1)

For saturated extended 2-regular simple stacks with primary component of type A1, 
the three intervals splitted by the primary component are of type T2, T1 and T6, re-
spectively. If T6 is just T3, it is the case k1 = 2, d = 0, I1 = I2 = J1 = 1, J2 = 0
in Theorem 3. If T6 is T3 followed by an isolated vertex, we delete the isolated 
vertex and the length of the structure becomes n − 1. It corresponds to the case 
k1 = 2, d = 0, I1 = I2 = J1 = 1, J2 = 0 in Theorem 3. Therefore

s1(n, k)

= P (n, k; 2, 0, 1, 1, 1, 0) + P (n− 1, k; 2, 0, 1, 1, 1, 0)

=
k+1∑
t=1

((
t

h

)
+

(
t

h− 1

)) 1∑
i=0

1∑
j=0

(
k + i− 2
t− 1

)(
2t + k − 2
t− i− j − 1

)
f(t, k − 2, j, 1 + i),

where h = n − 2k − t, and f(t, r, u, v) is given by (4.3).
For the case of primary component type being A2, the two intervals are of type T2

and T6, respectively. Following similar discussions on the interval of type T6, we have

s2(n, k) =P (n, k; 2, 1, 0, 1, 1, 0) + P (n− 1, k; 2, 1, 0, 1, 1, 0)

= 1
k − 1

k+1∑
t=1

(
k − 1
t

)(
2t + k − 1

t− 1

)((
t

h + 1

)
+

(
t

h

))
.

For the case of primary component type being A3, the four intervals are of type 
T2, T1, T3, and T7, respectively. For the interval of type T7, if it is just T4, it is the case 
k1 = 3, d = 1, I1 = I2 = J1 = J2 = 1 in Theorem 3. Otherwise, if it is T3 followed by an 
isolated vertex. We obtain a structure with n −1 vertices by deleting the isolated vertex. 
It corresponds to the case k1 = 3, d = 1, I1 = I2 = 1, J1 = 2, J2 = 0 in Theorem 3. 
Therefore,
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s3(n, k) =P (n, k; 3, 1, 1, 1, 1, 1) + P (n− 1, k; 3, 1, 1, 1, 2, 0)

=
k+1∑
t=1

1∑
i=0

2∑
j=0

(
k + i− 3
t− 1

)((
t

h + 1

)(
1
j

)(
2t + k − 3
t− i− j − 2

)
f(t, k − 3, 1 + j, 1 + i)

+
(
t

h

)(
2
j

)(
2t + k − 3
t− i− j − 1

)
f(t, k − 3, j, 1 + i)

)
.

Similarly, we also have

s4(n, k) =P (n, k; 1, 0, 0, 0, 0, 1)

=
n−2k∑
t=1

1
t

(
k − 2
t− 1

)(
t

h

)(
2t + k − 1

t− 1

)
,

s5(n, k) =P (n, k; 3, 2, 1, 2, 0, 0)

=
k+1∑
t=1

1∑
i=0

2 + i

t

(
k − 2 + i

t− 1

)(
t

h + 2

)(
2t + k − 4
t− 2 − i

)
,

s6(n, k) =P (n, k; 4, 2, 3, 2, 0, 0)

=
k+1∑
t=1

3∑
i=0

2 + i

t

(
3
i

)(
k − 3 + i

t− 1

)(
t

h + 2

)(
2t + k − 5
t− 2 − i

)
.

Substituting the above expressions for si(n, k), i = 1, . . . , 6 into (5.1) and simplifying, it 
leads to (1.3) which completes the proof. �

Let ELOk(n) denote the number of k-saturated extended 2-regular simple stacks on 
[n]. Due to Guo et al. [11, Lemma 4], for n ≥ 3, it holds that

ELOk(n) = ELO
(
n,

⌊n
2

⌋
− k

)
. (5.2)

According to (5.2), we can obtain the enumeration formula for k-saturated extended 
2-regular simple stacks from Theorem 1. For example, when k =

⌊
n
2
⌋
, (1.3) reduces 

to the result (1.2) for optimal structures due to Guo et al. [11]. Moreover, for n ≥ 7, 
substituting k =

⌊
n
2
⌋
− 1 into (1.3), we obtain the enumeration formula for 1-saturated 

extended 2-regular simple stacks.

ELO1(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
384n

5 − 1
128n

4 − 1
24n

3 + 5
32n

2 + 7
8n− 3, if n is even,

1
23040n

7 − 1
7680n

6 − 29
23040n

5 − 23
1536n

4 + 2599
23040n

3

+ 7481
n2 − 46937

n + 533
,

if n is odd.
7680 7680 512
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Table 3
Values of ELO(n, k) for 3 ≤ n ≤ 24.

k

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 2 7 9 8 6 2
3 3 18 46 73 82 70 40 10
4 5 41 162 395 666 834 799 563 251
5 7 80 444 1534 3667 6449 8690
6 9 139 1026 4728 15151
7 11 222 2099
8 13
sum 1 2 7 12 26 57 116 251 545 1159 2517 5503 11962 26204

k

n 17 18 19 20 21 22 23 24

4 50
5 9146 7403 4312 1570 260
6 35820 64919 92557 105168 94660 65265 32109 9875
7 12362 50796 154746 363026 673021 1003604 1214930 1191281
8 333 3921 28613 145817 553028 1623141 3784746 7141955
9 15 476 6827 60299 371629 1708309 6100976
10 17 655 11239 117960 862174
11 19 874 17676
12 21
sum 57711 127054 280704 622425 1381923 3074897 6858928 15323958

For n ≥ 8, substituting k =
⌊
n
2
⌋
− 2 into (1.3), we obtain the enumeration formula for 

2-saturated extended 2-regular simple stacks.

ELO2(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2211840n

9 − 1
737280n

8 − 1
46080n

7 − 23
30720n

6 + 223
46080n

5

+ 1397
15360n

4 − 10049
17280n

3 − 6413
2880n

2 + 23
2 n + 27,

if n is even,

1
309657600n

11 − 1
103219200n

10 − 1
4128768n

9 − 61
4128768n

8

+ 5323
51609600n

7 + 21673
7372800n

6 − 558619
30965760n

5 − 143243
688128n

4

+ 75730687
103219200n

3 + 361742593
34406400 n2 − 32607521

2293760 n− 14339839
65536 ,

if n is odd.

We list some values of ELO(n, k) in Table 3. Note that Theorem 1 only holds for k ≥ 3, 
ELO(n, 1) and ELO(n, 2) can be obtained by straightforward exhaustive enumeration.

At last, we illustrate the bivariate sequence ELO(n, k) for some n and k in 
Fig. 6. The Maple source codes of this paper can be found at https://github .com /
xiaoshuangxiaoshuang /SE2RSS.
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