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Abstract. Let 𝐺 be a finite group and 𝑆 a subset of 𝐺 ∖ {0}. We
call 𝑆 an additive basis of 𝐺 if every element of 𝐺 can be expressed
as a sum over a nonempty subset in some order. Let 𝑐𝑟(𝐺) be the

smallest integer 𝑡 such that every subset of 𝐺 ∖ {0} of cardinality 𝑡
is an additive basis of 𝐺. In this paper, we determine 𝑐𝑟(𝐺) for the
following cases: (𝑖) 𝐺 is a finite nilpotent group; (𝑖𝑖) 𝐺 is a group of
even order which possesses a subgroup of index 2.

1. Introduction and Main Results

Let 𝐺 be a finite additively written group(not necessarily commutative).
Let 𝑆 = {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑘} be a subset of 𝐺 ∖ {0}. Define

∑
(𝑆) = {𝑎𝑖1 + ⋅ ⋅ ⋅ +

𝑎𝑖𝑙 ∣𝑖1, ⋅ ⋅ ⋅ , 𝑖𝑙 are distinct and 1 ≤ 𝑙 ≤ 𝑘}, and for any 1 ≤ 𝑟 ≤ 𝑘, define∑
𝑟(𝑆) = {𝑎𝑖1 + ⋅ ⋅ ⋅ + 𝑎𝑖𝑟 ∣𝑖1, ⋅ ⋅ ⋅ , 𝑖𝑟 are distinct}. We call 𝑆 an additive

basis of 𝐺 if
∑

(𝑆) = 𝐺. The critical number 𝑐𝑟(𝐺) of 𝐺 is the smallest
integer 𝑡 such that every subset 𝑆 of 𝐺 ∖ {0} with ∣𝑆∣ ≥ 𝑡 forms an additive
basis of 𝐺.

Let 𝑍𝑛 be the cyclic group of 𝑛 elements. 𝑐𝑟(𝐺) was first introduced
and studied by Erdős and Heilbronn in 1964 for 𝐺 = 𝑍𝑝 where 𝑝 is
a prime. With many mathematicians’ efforts, after nearly half a cen-
tury, 𝑐𝑟(𝐺) has been determined for all finite abelian groups recently (see
[3][5][7][10][11][13]).

However, the problem to determine 𝑐𝑟(𝐺) for 𝐺 non-abelian is widely
open. So far, we only have the following results in this direction.

Theorem 1.1. ([8], [14]) Let 𝐺 be a finite group of order 𝑛 and 𝑝 be the
smallest prime divisor of 𝑛. Then, 𝑐𝑟(𝐺) = 𝑛/𝑝 + 𝑝 − 2 providing one of
the following conditions holds,

(𝑖) 𝐺 is nilpotent, 𝑝 ≥ 149 and 𝑛 ≥ 120𝑝2;
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(𝑖𝑖) There exists a subgroup of 𝐺 with index 𝑝 and the other prime divisor
of 𝑛(if exists) is larger than 6𝑝, 𝑝 ≥ 149 and 𝑛 ≥ 120𝑝2;

(𝑖𝑖𝑖) 𝐺 be a non-abelian group of order 𝑝𝑞 ≥ 10 where 𝑞 is a prime.

In this paper we shall determine 𝑐𝑟(𝐺) for all groups 𝐺 as stated in the
abstract by showing the following two results.

Theorem 1.2. Let 𝐺 be a finite nilpotent group of odd order and let 𝑝 be

the smallest prime dividing ∣𝐺∣. If ∣𝐺∣
𝑝 is a composite number then 𝑐𝑟(𝐺) =

∣𝐺∣/𝑝+ 𝑝− 2.

Theorem 1.3. Let 𝐺 be a finite non-abelian group of even order 𝑛 which
possesses a subgroup of index 2. Then,

(𝑖) if 𝑛 = 6 then 𝑐𝑟(𝐺) = 𝑐𝑟(𝑆3) = 4, where 𝑆3 denotes the symmetric
group of six elements;

(𝑖𝑖) 𝑐𝑟(𝐺) = 𝑛/2, otherwise.

Remark 1.4. The proofs of Theorem 1.2 and 1.3 will be heavily based on
the ideas contained in [10] and [11] respectively.

Remark 1.5. From Theorem 1.1, Theorem 1.2, Theorem 1.3, and the fact
that 𝑐𝑟(𝐺) has been determined for all finite abelian groups we know that,
the critical number 𝑐𝑟(𝐺) also has been determined for all finite nilpotent
groups and all finite groups of even order which possesses a subgroup of
index two. However, for finite groups which contains no subgroup with
index 𝑝 (𝑝 is the smallest prime divisor of the order of 𝐺), we even can’t
guess the exact value of 𝑐𝑟(𝐺).

2. Notation and Preliminary Lemmas

Lemma 2.1. ([12]) Let 𝐺 be a finite group. Let 𝐴 and 𝐵 be subsets of 𝐺
such that ∣𝐴∣ + ∣𝐵∣ > ∣𝐺∣. Then 𝐴 + 𝐵 = 𝐺, where 𝐴 + 𝐵 = {𝑎 + 𝑏∣𝑎 ∈
𝐴, 𝑏 ∈ 𝐵}.

M. B. Nathanson([12], Lemma 2.1) stated the conclusion of Lemma 2.1
for abelian groups, but the method used there does work for the nonabelian
groups. For convenience, we repeat the proof here.

Proof of Lemma 2.1. For 𝑔 ∈ 𝐺, let 𝑔 −𝐵 = {𝑔 − 𝑏 : 𝑏 ∈ 𝐵}. Since
∣𝐺∣ ≥ ∣𝐴 ∪ (𝑔 −𝐵)∣

= ∣𝐴∣+ ∣𝑔 −𝐵∣ − ∣𝐴 ∩ (𝑔 −𝐵)∣
= ∣𝐴∣+ ∣𝐵∣ − ∣𝐴 ∩ (𝑔 −𝐵)∣,

it follows that
∣𝐴 ∩ (𝑔 −𝐵)∣ ≥ ∣𝐴∣+ ∣𝐵∣ − ∣𝐺∣ ≥ 1,

and so there exist a element 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑔 = 𝑎 + 𝑏. This
completes the proof of the lemma. □
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Lemma 2.2. ([5]) Let 𝑝, 𝑞 be two primes and 𝐺 be a finite abelian group
of order 𝑝𝑞. Let 𝑆 be a subset of 𝐺 such that 0 /∈ 𝑆 and ∣𝑆∣ = 𝑝 + 𝑞 −
1. 𝑇ℎ𝑒𝑛

∑
(𝑆) = 𝐺.

Let 𝐺 be a finite group. Let 𝐵 ⊂ 𝐺 and 𝑥 ∈ 𝐺. As usual, we write
𝜆𝐵(𝑥) = ∣(𝐵 + 𝑥) ∖𝐵∣. For any 𝐵, 𝑥, Olson proved in [2]

(2.1) 𝜆𝐵(𝑥) = 𝜆𝐵(−𝑥)

and

(2.2) 𝜆𝐵(𝑥) = 𝜆𝐺∖𝐵(𝑥).

We use the following property which is implicit in [2]: Let 𝐺 be a finite
group. Let 𝑆 be a subset of 𝐺 such that 0 /∈ 𝑆. Put 𝐵 =

∑
(𝑆). For every

𝑦 ∈ 𝑆, we have

𝜆𝐵(𝑦) = ∣(∑(𝑆) + 𝑦) ∖∑(𝑆)∣
≤ ∣(∑(𝑆) + 𝑦) ∖ (∑(𝑆 ∖ 𝑦) + 𝑦)∣
= ∣∑(𝑆) ∖∑(𝑆 ∖ 𝑦)∣
= ∣∑(𝑆)∣ − ∣∑(𝑆 ∖ 𝑦)∣.

By above analysis we get the following inequality

(2.3) ∣
∑

(𝑆)∣ ≥ ∣
∑

(𝑆 ∖ 𝑦)∣+ 𝜆𝐵(𝑦).

We also use the following result of Olson.

Lemma 2.3. ([4]) Let 𝐺 be a finite group and let 𝑆 be a generating subset
of 𝐺 such that 0 /∈ 𝑆. Let 𝐵 be a subset of 𝐺 such that ∣𝐵∣ ≤ ∣𝐺∣/2. Then
there is a 𝑥 ∈ 𝑆 such that

𝜆𝐵(𝑥) ≥ 𝑚𝑖𝑛((∣𝐵∣+ 1)/2, (∣𝑆 ∪ −𝑆∣+ 2)/4).

Lemma 2.4. Let 𝐺 be a finite group of odd order. Let 𝑆 be a subset of 𝐺
such that 𝑆 ∩ −𝑆 = ∅ and ∣𝑆∣ ≥ 3. Then ∣∑(𝑆)∣ ≥ 2∣𝑆∣.

Proof. We proceed by induction on ∣𝑆∣. For ∣𝑆∣ = 3, set 𝑆 = {𝑎, 𝑏, 𝑐}.
In order to prove ∣∑(𝑆)∣ ≥ 6, we distinguish three cases.

Case 1. 𝑎+𝑏 = 𝑐. We consider the sequence (𝑎, 𝑏, 𝑐, 𝑎+𝑐, 𝑐+𝑏, 𝑎+𝑏+𝑐).
If 𝑎 + 𝑐 = 𝑏, then 2𝑎 = 0, a contradiction. If 𝑐 + 𝑏 = 𝑎, then 2𝑏 = 0, a
contradiction. If 𝑐+𝑏 = 𝑎+𝑐, then 𝑏 = 𝑎, a contradiction. If 𝑐+𝑏 = 𝑎+𝑏+𝑐,
then 𝑏 = 𝑐, a contradiction. If 𝑏 = 𝑎+𝑏+𝑐, then 𝑎+𝑐 = 0, a contradiction.
By above analysis we have that {𝑎, 𝑏, 𝑐, 𝑎+ 𝑐, 𝑐+ 𝑏, 𝑎+ 𝑏+ 𝑐} is a set, then
∣∑(𝑆)∣ ≥ 6.

Case 2. 𝑎+ 𝑐 = 𝑏. The proof is similar to Case 1.

Case 3. 𝑏+ 𝑐 = 𝑎. The proof is similar to Case 1.
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Case 4. 𝑎 + 𝑏 ∕= 𝑐, 𝑎 + 𝑐 ∕= 𝑏, 𝑏 + 𝑐 ∕= 𝑎. Now we have that either
𝑎, 𝑏, 𝑐, 𝑎+ 𝑏, 𝑎+ 𝑐, 𝑏+ 𝑐 or 𝑎, 𝑏, 𝑐, 𝑎+ 𝑏, 𝑎+ 𝑐, 𝑎+ 𝑏+ 𝑐 are pairwise distinct.
This proves the lemma for ∣𝑆∣ = 3.

Now assume that the lemma is true for smaller ∣𝑆∣. Set 𝐵 =
∑

(𝑆).
Applying Lemma 2.3 to 𝐵 or 𝐺 ∖ 𝐵 and using (2.2), there exists a 𝑦 ∈ 𝑆
such that 𝜆𝐵(𝑦) ≥ 2. By (2.3), ∣𝐵∣ ≥ ∣∑(𝑆 ∖𝑦)∣+2 ≥ 2∣𝑆∣. This completes
the proof. □

Let 𝑋 be a subset of 𝐺 with cardinality 𝑘. Let {𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑘} be
an ordering of 𝑋. For 0 ≤ 𝑖 ≤ 𝑘, set 𝑋𝑖 = {𝑥𝑗 ∣1 ≤ 𝑗 ≤ 𝑖} and 𝐵𝑖 =∑

(𝑋𝑖). The ordering {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘} will be called a resolving sequence of
𝑋 if for all 𝑖, 𝜆𝐵𝑖(𝑥𝑖) = 𝑚𝑎𝑥{𝜆𝐵𝑖(𝑥𝑗); 1 ≤ 𝑗 ≤ 𝑖}. The critical index of
the resolving sequence is the maximal integer 𝑡 such that 𝑋𝑡−1 generates a
proper subgroup of 𝐺.

Clearly, every nonempty subset 𝑆 not containing 0 admits a resolving
sequence. Moreover, the critical index is ≥ 1.

We shall write 𝜆𝑖 = 𝜆𝐵𝑖(𝑥𝑖). By induction we have using (2.3) for all
1 ≤ 𝑗 ≤ 𝑘,

∣∑(𝑋)∣ ≥ 𝜆𝑘 + ⋅ ⋅ ⋅+ 𝜆𝑗 + ∣𝐵𝑗−1∣.
Put 𝛿(𝑚) = 0 if 𝑚 is odd and = 1 otherwise. If

∑
(𝑋) < 𝑛/2, by Lemma

2.3, 𝜆𝑖 ≥ (𝑖+ 1 + 𝛿(𝑖))/2 for all 𝑖 ≥ 𝑡. In particular for all 𝑠 ≥ 𝑡, we have

(2.4) ∣
∑

(𝑋)∣ ≥ (𝑘 + 𝑠+ 3)(𝑘 − 𝑠+ 1)/4− 1/2 + ∣𝐵𝑠−1∣.
Lemma 2.5. Let 𝐺 be a finite group of order 9, and let 𝐴,𝐵 be two subsets
of 𝐺.

(𝑖) If ∣𝐴∣ = 3 and 𝐴 is zero-sum free then ∣∑(𝐴)∣ ≥ 6.
(𝑖𝑖) If ∣𝐴∣ = 3 and 0 ∕∈ 𝐴 then ∣∑(𝐴)∣ ≥ 5.
(𝑖𝑖𝑖)If ∣𝐴∣ = 4 and 0 ∕∈ 𝐴 then ∣∑(𝐴)∣ ≥ 7.
(𝑖𝑣) If ∣𝐴∣ = 4 then ∣∑2(𝐴)∣ ≥ 5.
(𝑣) If ∣𝐴∣ = 4 and ∣𝐵∣ ≥ 2 then ∣𝐴+𝐵∣ ≥ 5.

Proof. By the basic knowledge of group theory we know that 𝐺 is abelian.
(𝑖) One can find a proof in [9].
(𝑖𝑖) Let 𝐴 = {𝑎1, 𝑎2, 𝑎3}. Assume to the contrary that

∣
∑

(𝐴)∣ ≤ 4.

It follows that ∣{𝑎1, 𝑎2, 𝑎3}∩{𝑎1+𝑎2, 𝑎1+𝑎3, 𝑎2+𝑎3}∣ ≥ 2. Without loss of
generality we may assume that 𝑎1 = 𝑎2 + 𝑎3 and 𝑎2 = 𝑎1 + 𝑎3. Therefore,
𝑎1 + 𝑎2 = 𝑎2 + 𝑎3 + 𝑎1 + 𝑎3. Hence, 2𝑎3 = 0. Thus, 𝑎3 = 0 for ∣𝐺∣ = 9, a
contradiction with 𝐴 ⊂ 𝐺 ∖ {0}.

(𝑖𝑖𝑖) Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. Assume to the contrary that

∣
∑

(𝐴)∣ ≤ 6.
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If 𝐴 is zero-sum free then 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 ∕∈ ∑
({𝑎1, 𝑎2, 𝑎3}). By (𝑖)

we obtain that ∣∑(𝐴)∣ ≥ ∣{𝑎1 + 𝑎2 + 𝑎3 + 𝑎4} ∪ ∑
({𝑎1, 𝑎2, 𝑎3})∣ = 1 +

∣∑({𝑎1, 𝑎2, 𝑎3})∣ ≥ 7, a contradiction. Hence,

0 ∈
∑

(𝐴).

Therefore,

∣
∑

(𝐴) ∖ {0}∣ ≤ 5.

This together with (𝑖) implies that
(*) 𝐴 contains no zero-sum free sequence of length 3.
By rearranging if necessary we may assume that 𝑎1 + 𝑎2 + 𝑎3 ∕= 0. By

(*) we may assume that 𝑎1 + 𝑎2 = 0 (by rearranging if necessary). Since
𝑎1 ∕= 𝑎2, either 𝑎1 + 𝑎3 + 𝑎4 ∕= 0 or 𝑎2 + 𝑎3 + 𝑎4 ∕= 0. Without loss
of generality we assume that 𝑎1 + 𝑎3 + 𝑎4 ∕= 0. It follows from (*) and
𝑎1 + 𝑎2 = 0 that 𝑎3 + 𝑎4 = 0. Now we have

𝐴 = {𝑎1,−𝑎1, 𝑎3,−𝑎3}.
Since {0} ∪ 𝐴 = {0, 𝑎1,−𝑎1, 𝑎3,−𝑎3} ⊂ ∑

(𝐴), by the contrary hypothesis
we infer that {𝑎1+𝑎3,−(𝑎1+𝑎3)}∩𝐴 ∕= ∅. By the symmetry of 𝐴 we may
assume that 𝑎1+𝑎3 ∈ 𝐴. Therefore, 𝑎1+𝑎3 = −𝑎1 or 𝑎1+𝑎3 = −𝑎3. Again
by the symmetry of 𝐴 we may assume that 𝑎1+𝑎3 = −𝑎1. Thus, 𝑎3 = −2𝑎1.
Now we have 𝐴 = {𝑎1,−𝑎1, 2𝑎1,−2𝑎1}. Since ∣𝐺∣ = 9 and 𝑎1 ∕= −2𝑎1, it
is easy to see that 0, 𝑎1,−𝑎1, 2𝑎1,−2𝑎1, 3𝑎1,−3𝑎1 are 7 distinct elements
from

∑
(𝐴), a contradiction.

(𝑖𝑣) Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. Assume to the contrary that ∣∑2(𝐴)∣ ≤ 4.
It follows that ∣{𝑎1 + 𝑎2, 𝑎1 + 𝑎3, 𝑎1 + 𝑎4} ∩ {𝑎2 + 𝑎3, 𝑎2 + 𝑎4, 𝑎3 + 𝑎4}∣ ≥ 2.
By rearranging if necessary we assume that 𝑎1+𝑎2 = 𝑎3+𝑎4 and 𝑎1+𝑎3 =
𝑎2+𝑎4. Thus, 𝑎1+𝑎2+𝑎1+𝑎3 = 𝑎3+𝑎4+𝑎2+𝑎4. It follows that 𝑎1 = 𝑎4,
a contradiction.

(𝑣) Let 𝐵 = {𝑏1, 𝑏2}. Assume to the contrary that ∣𝐴 + 𝐵∣ ≤ 4. It
follows that ∣𝐴 + 𝐵∣ = 4, and 𝑏1 + 𝐴 = 𝑏2 + 𝐴 = 𝐴 + 𝐵. Therefore,∑

𝑎∈𝐴(𝑏1 + 𝑎) =
∑

𝑎∈𝐴(𝑏2 + 𝑎). Hence, ∣𝐴∣𝑏1 +
∑

𝑎∈𝐴 𝑎 = ∣𝐴∣𝑏2 +
∑

𝑎∈𝐴 𝑎.
Thus, 4𝑏1 = 4𝑏2 and 𝑏1 = 𝑏2, a contradiction. □

Lemma 2.6. If ∣𝐺∣ = 27 then 𝑐𝑟(𝐺) = 10.

Proof. We only need to check the case that 𝐺 is non-abelian. Since 𝐺 is
a nilpotent group, 𝐺 possesses a normal subgroup 𝐾 of index 3. Suppose
𝐺/𝐾 = ⟨1 +𝐾⟩. Let 𝑥 ∈ 1 +𝐾 and 𝑇 = (𝐾 ∖ {0}) ∪ {𝑥}. It is easy to see
that −1 +𝐾 ∕⊂ ∑

(𝑇 ). This shows that 𝑐𝑟(𝐺) ≥ 10. So it suffices to prove
that 𝑐𝑟(𝐺) ≤ 10. Let 𝑆 ⊂ 𝐺 ∖ {0} and ∣𝑆∣ = 10. We want to show that∑

(𝑆) = 𝐺.
From the basic knowledge on 𝑝-groups (see [6]) we know that there exist

exactly four distinct maximal subgroups of𝐺 and each is a normal subgroup
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of order 9, and 𝐺 equals to the union of these maximal subgroups. Since
∣𝑆∣ = 10 = 2× 4 + 2, there exists a maximal subgroup 𝐻 of 𝐺 such that

∣𝑆 ∩𝐻∣ ≥ 3.

Now we fix 𝑎 ∈ 𝐺 ∖𝐻. Then, 𝐺 = 𝐻 ∪ (𝑎 +𝐻) ∪ (2𝑎 +𝐻). It suffices to
prove the following inclusions hold simultaneously:

𝐻 ⊂
∑

(𝑆), 𝑎+𝐻 ⊂
∑

(𝑆), 2𝑎+𝐻 ⊂
∑

(𝑆).

Let 𝐴 = (𝑎+𝐻) ∩ 𝑆 and 𝐵 = (2𝑎+𝐻) ∩ 𝑆. Suppose

𝐴 = {𝑎+ 𝑎1, ⋅ ⋅ ⋅ , 𝑎+ 𝑎𝑟}, 𝐵 = {2𝑎+ 𝑏1, ⋅ ⋅ ⋅ , 2𝑎+ 𝑏𝑡},
where 𝑟 ≥ 𝑡 ≥ 0, 𝑟 + 𝑡 = 10− ∣𝑆 ∩𝐻∣, and 𝑎𝑖, 𝑏𝑗 ∈ 𝐻.

Since 𝐻 is a normal subgroup of 𝐺, we also have that

𝑎+ 𝑎𝑖 = 𝑎′𝑖 + 𝑎, 2𝑎+ 𝑏𝑗 = 𝑏′𝑗 + 2𝑎,

where 𝑎′𝑖, 𝑏
′
𝑗 ∈ 𝐻.

We distinguish three cases.
Case 1. ∣𝑆 ∩𝐻∣ ≥ 5. By Lemma 2.2 we get

𝐻 =
∑

(𝑆 ∩𝐻) ⊂
∑

(𝑆).

Since ∣𝑆 ∩𝐻∣ ≤ ∣𝐻 ∖ {0}∣ = 8, ∣𝑆 ∩ (𝐺 ∖𝐻)∣ ≥ 2. Therefore, (
∑

(𝑆 ∩ (𝐺 ∖
𝐻))) ∩ (𝑎+𝐻) ∕= ∅ and (

∑
(𝑆 ∩ (𝐺 ∖𝐻))) ∩ (2𝑎+𝐻) ∕= ∅. It follows from

𝐻 =
∑

(𝑆 ∩𝐻) that 𝑎+𝐻 ⊂ ∑
(𝑆) and 2𝑎+𝐻 ⊂ ∑

(𝑆).

Case 2. ∣𝑆 ∩𝐻∣ = 4. Now we have

𝑟 + 𝑡 = 6.

By Lemma 2.5(𝑖𝑖𝑖) we obtain that

∣
∑

(𝑆 ∩𝐻)∣ ≥ 7.

Subcase 2.1. 𝑟 = 𝑡 = 3. Note that (2𝑎+𝑏𝑖)+(𝑎+𝑎𝑖) = 𝑏′𝑖+2𝑎+𝑎+𝑎𝑖 =
𝑏′𝑖+3𝑎+𝑎𝑖 = ℎ+𝑎𝑖, where ℎ = 𝑏′𝑖+3𝑎 ∈ 𝐻. By Lemma 2.1

∑
(𝑆∩𝐻)+{ℎ+

𝑎1, ℎ+𝑎2, ℎ+𝑎3} = 𝐻. Therefore 𝐻 ⊂ ∑
(𝑆 ∩𝐻)+ (2𝑎+ 𝑏1)+𝐴 ⊂ ∑

(𝑆).
Again by Lemma 2.1 we have that 𝑎 +𝐻 ⊂ 𝐴 +

∑
(𝑆 ∩𝐻) ⊂ ∑

(𝑆) and
2𝑎+𝐻 ⊂ 𝐵 +

∑
(𝑆 ∩𝐻) ⊂ ∑

(𝑆).
Subcase 2.2. 𝑟 ≥ 4 and 𝑡 ≥ 1. Similar to Subcase 2.1 we know that

𝐻 ⊂ ∑
(𝑆) and 𝑎+𝐻 ⊂ ∑

(𝑆). Note that
∑

2(𝐴) ⊃ {𝑎+ 𝑎1 + 𝑎+ 𝑎2, 𝑎+
𝑎1 + 𝑎 + 𝑎3, 𝑎 + 𝑎1 + 𝑎 + 𝑎4}. Therefore,

∑
2(𝐴) = 2𝑎 + 𝐶 with 𝐶 ⊂ 𝐻

and ∣𝐶∣ ≥ 3. By Lemma 2.1, we have 2𝑎 + 𝐻 = 2𝑎 + 𝐶 +
∑

(𝑆 ∩ 𝐻) =∑
2(𝐴) +

∑
(𝑆 ∩𝐻) ⊂ ∑

(𝑆).
Subcase 2.3. 𝑟 = 6. Similarly to Subcase 2.2 one can prove that

𝑎 + 𝐻 ⊂ ∑
(𝑆) and 2𝑎 + 𝐻 ⊂ ∑

(𝑆). Since {𝑎 + 𝑎1 + 𝑎 + 𝑎2 + 𝑎 +
𝑎3, 𝑎 + 𝑎1 + 𝑎 + 𝑎2 + 𝑎 + 𝑎4, 𝑎 + 𝑎1 + 𝑎 + 𝑎2 + 𝑎 + 𝑎5} ⊂ ∑

3(𝐴), we infer
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that ∣∑3(𝐴)∣ ≥ 3. Note that
∑

3(𝐴) ⊂ 𝐻. By Lemma 2.1, we have
𝐻 =

∑
3(𝐴) +

∑
(𝑆 ∩𝐻) ⊂ ∑

(𝑆).

Case 3. ∣𝑆 ∩𝐻∣ = 3. By Lemma 2.5 we get

∣
∑

(𝑆 ∩𝐻)∣ ≥ 5.

In this case we have

𝑟 + 𝑡 = 7.

Subcase 3.1. 𝑟 = 4 and 𝑡 = 3. Note that 𝐴+𝐵 = {𝑎′1 + 𝑎, 𝑎′2 + 𝑎, 𝑎′3 +
𝑎, 𝑎′4 + 𝑎} + {2𝑎 + 𝑏1, 2𝑎 + 𝑏2, 2𝑎 + 𝑏3} = {𝑎′1 + 3𝑎, 𝑎′2 + 3𝑎, 𝑎′3 + 3𝑎, 𝑎′4 +
3𝑎} + {𝑏1, 𝑏2, 𝑏3} ⊂ 𝐻. Since 3𝑎 ∈ 𝐻, by Lemma 2.5(𝑣), ∣𝐴 + 𝐵∣ ≥ 5. It
follows from Lemma 2.1 that 𝐻 = (𝐴+𝐵)+

∑
(𝑆∩𝐻) ⊂ ∑

(𝑆). Note that
𝑎+𝑎𝑖+(2𝑎+𝑏1)+(𝑎+𝑎𝑗) = 𝑎+𝑎𝑖+(𝑏′1+2𝑎)+(𝑎+𝑎𝑗) = 𝑎+𝑎𝑖+(𝑏′1+3𝑎+𝑎𝑗) =
𝑎+𝑏′1+3𝑎+𝑎𝑖+𝑎𝑗 . Therefore, 𝑎+𝑏′1+3𝑎+

∑
2{𝑎1, 𝑎2, 𝑎3, 𝑎4} ⊂ ∑

3(𝐴∪𝐵).
By Lemma 2.5(𝑖𝑣), ∣∑2{𝑎1, 𝑎2, 𝑎3, 𝑎4}∣ ≥ 5. It follows from Lemma 2.1
that 𝑎+𝐻 = 𝑎+ 𝑏′1+3𝑎+

∑
2(𝐴)+

∑
(𝑆∩𝐻) ⊂ ∑

3(𝐴∪𝐵)+
∑

(𝑆∩𝐻) ⊂∑
(𝑆). Note that 2𝑎 + 𝑏𝑖 + (𝑎 + 𝑎𝑘) + (2𝑎 + 𝑏𝑗) = 2𝑎 + 𝑏𝑖 + (𝑎′𝑘 + 𝑎) +

(2𝑎 + 𝑏𝑗) = 2𝑎 + 𝑎′𝑘 + 3𝑎 + 𝑏𝑗 + 𝑏𝑖 = 2𝑎 + 3𝑎 + 𝑎′𝑘 + 𝑏𝑗 + 𝑏𝑖. Therefore,
2𝑎 + 3𝑎 + {𝑎′1, 𝑎′2, 𝑎′3, 𝑎′4} +

∑
2{𝑏1, 𝑏2, 𝑏3} ⊂ ∑

3(𝐴 ∪ 𝐵). By Lemma 2.5,
∣{𝑎′1, 𝑎′2, 𝑎′3, 𝑎′4} +

∑
2{𝑏1, 𝑏2, 𝑏3}∣ ≥ 5. Again by Lemma 2.1 we have 2𝑎 +

𝐻 = 2𝑎+ 3𝑎+ {𝑎′1 + 𝑎′2 + 𝑎′3 + 𝑎′4}+
∑

2{𝑏1, 𝑏2, 𝑏3}+
∑

(𝑆 ∩𝐻) ⊂ ∑
(𝑆).

Subcase 3.2. 𝑟 = 5 and 𝑡 = 2. Similarly to above one can prove that
𝐻 ⊂ ∑

(𝑆) and 𝑎+𝐻 ⊂ ∑
(𝑆). Since 𝐴+(2𝑎+𝑏1)+(2𝑎+𝑏2) ⊂ 2𝑎+𝐻, by

Lemma 2.1 we infer that 2𝑎+𝐻 = 𝐴+(2𝑎+ 𝑏1)+ (2𝑎+ 𝑏2)+
∑

(𝑆 ∩𝐻) ⊂∑
(𝑆).
Subcase 3.3. 𝑟 = 6 and 𝑡 = 1. Similarly to above one can prove that

𝐻 ⊂ ∑
(𝑆) and 𝑎+𝐻 ⊂ ∑

(𝑆). Note that {𝑎+𝑎1}+{𝑎+𝑎2, ⋅ ⋅ ⋅ , 𝑎+𝑎6} ⊂∑
2(𝐴). Therefore, ∣

∑
2(𝐴)∣ ≥ 5. Now by Lemma 2.1 and

∑
2(𝐴) ⊂ 2𝑎+𝐻

we obtain that 2𝑎+𝐻 =
∑

2(𝐴) +
∑

(𝑆 ∩𝐻) ⊂ ∑
(𝑆).

Subcase 3.4. 𝑟 = 7 and 𝑡 = 0. Similarly to above one can prove
𝑎 + 𝐻 ⊂ ∑

(𝑆) and 2𝑎 + 𝐻 ⊂ ∑
(𝑆). Note that (𝑎 + 𝑎1) + (𝑎 + 𝑎2) +

{(𝑎 + 𝑎3), ⋅ ⋅ ⋅ , (𝑎 + 𝑎7)} ⊂ ∑
3(𝐴) ⊂ 𝐻. Therefore, ∣∑3(𝐴)∣ ≥ 5. Again

by Lemma 2.1, 𝐻 =
∑

3(𝐴) +
∑

(𝑆 ∩𝐻) ⊂ ∑
(𝑆). □

3. The Proofs of The Main Results

Proof of Theorem 1.2.
Set ∣𝐺∣ = 𝑛. Since 𝐺 is a nilpotent group, 𝐺 possesses a normal subgroup

𝐾 of index 𝑝. Suppose 𝐺/𝐾 = ⟨1 + 𝐾⟩. Let 𝐵 be any subset of 𝑝 − 2
elements in 1 +𝐾 and 𝑇 = (𝐾 ∖ {0})∪𝐵. It is easy to see that −1 +𝐾 ∕⊂∑

(𝑇 ). This shows that 𝑐𝑟(𝐺) ≥ 𝑛/𝑝 + 𝑝 − 2. So it suffices to prove that
𝑐𝑟(𝐺) ≤ 𝑛/𝑝+ 𝑝− 2.
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Let 𝑆 be any subset of 𝐺 ∖ {0} with cardinality ∣𝑆∣ = 𝑛/𝑝 + 𝑝 − 2.
We need to show

∑
(𝑆) = 𝐺. We proceed by induction on the number of

prime divisors of 𝑛 (counted with multiplicity). By the hypothesis we know
that 𝑛 = 27 or 𝑛 ≥ 45. By Lemma 2.6 we may assume that 𝑛 ≥ 45. Set
𝑘(𝑛) = (𝑛/𝑝+𝑝−2)/2. We shall write sometimes 𝑘 instead of 𝑘(𝑛). Clearly
we may partition 𝑆 = 𝑋 ∪𝑌 so that ∣𝑋∣ = ∣𝑌 ∣ = 𝑘, 𝑋 ∩−𝑋 = 𝑌 ∩−𝑌 = ∅
and ∣∑(𝑋)∣ ≤ ∣∑(𝑌 )∣.

The result holds by Lemma 2.1 if ∣∑(𝑋)∣ > 𝑛/2. Suppose the contrary.
Since n is odd, we have

(3.1) ∣
∑

(𝑋)∣ ≤ (𝑛− 1)/2.

Let {𝑥𝑖; 1 ≤ 𝑖 ≤ 𝑘} be a resolving sequence for 𝑋 with critical index 𝑡.
By Lemma 2.4 and note that 𝑛 ≥ 45, in a similar way to the proof of

Theorem 3.1 in [10] we can prove that

(3.2) 𝑡 ≥ 𝑛/𝑝2 + 𝑝.

Let 𝐻 be the proper subgroup generate by 𝑋𝑡−1. Let 𝑝
′ be the smallest

prime divisor of 𝑛/𝑝. By (3.2), ∣𝐻 ∩ 𝑆∣ ≥ 𝑛/(𝑝𝑝′) + 𝑝′ − 1. If 𝑛/𝑝 is
the product of more than two primes, then by the induction hypothesis,∑

(𝑆 ∩𝐻) = 𝐻. If 𝑛/𝑝 is the product of two primes, then by Theorem 1.1
and Lemma 2.2,

∑
(𝑆 ∩𝐻) = 𝐻.

Since ∣𝐻∣ > 𝑛/(𝑝𝑝′), we see easily that 𝑞 = ∣𝐺/𝐻∣ is a prime. Since 𝐺
is nilpotent, 𝐻 is a normal subgroup of 𝐺. Clearly ∣𝑆 ∖ 𝐻∣ ≥ 𝑞 − 1. Let
𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑞−1 be distinct elements from 𝑆 ∖𝐻. We denote by 𝑎𝑖 the image
of 𝑎𝑖 in 𝐺/𝐻 under the canonical morphism.

By the Cauchy-Davenport Theorem(cf.[12]), {0, 𝑎̄1}+ ⋅ ⋅ ⋅+ {0, 𝑎̄𝑞−1} =
𝐺/𝐻. It follows that

∑
(𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑞−1) +𝐻 = 𝐺. The theorem now follows

since
∑

(𝑆 ∩𝐻) = 𝐻. □

Proof of Theorem 1.3.
Since 𝐺 possesses a subgroup of index 2, in a similar way to the proof

of Theorem 1.2 we can show that 𝑐𝑟(𝐺) ≥ 𝑛/2. So, it suffices to prove that
𝑐𝑟(𝐺) ≤ 𝑛/2. In a similar way to the proof of Lemma 2.6 we can checked
the theorem for 𝑛 ≤ 14(one can find the structures of nonabelian groups
for the case in [6]). Now assume that 𝑛 ≥ 16. Let 𝑆 be a subset of 𝐺 ∖ {0}
of size 𝑛/2. Let 𝑇 = 𝑆 ∪ {0}.

Now fix a subgroup 𝐻 of index 2. Then, for any 𝑔 ∈ 𝐺, 𝐻 + 2𝑔 = 𝐻,
so that 2𝑔 ∈ 𝐻. Also the sets 𝑇 and 𝑔 − 𝑇 cannot be disjoint, because of
their sizes, so 𝑔 has a representation as 𝑡1 + 𝑡2 with 𝑡𝑖 ∈ 𝑇 . If 𝑔 /∈ 𝐻, since
2𝑔 ∈ 𝐻, it means that 𝑡1 ∕= 𝑡2 in its representation 𝑔 = 𝑡1 + 𝑡2. Tossing
away 0, if it is one of 𝑡𝑖’s, we have express 𝑔 as a subset sum in 𝑆.
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So from now on, we assume 𝑔 ∈ 𝐻, and split the proof into three cases
according to 𝑘 =: ∣𝑇 ∩𝐻∣.

Case 1. 𝑘 ≥ (𝑛/2)− 1. obviously.
Case 2. 3 ≤ 𝑘 ≤ (𝑛/2) − 2. Consider the collection of sums ℎ + 𝑗 with

ℎ ∈ 𝑇 ∩𝐻 and 𝑗 ∈ 𝑇 ∩ (𝐺 ∖𝐻). These 𝑘(∣𝑇 ∣ − 𝑘) sums belong to 𝐺 ∖𝐻,
so some element 𝑣 occurs in this collection with multiplicity at least

⌈𝑘(∣𝑇 ∣−𝑘)
∣𝐺∖𝐻∣ ⌉ = ⌈𝑘(𝑛/2+1−𝑘)

𝑛/2 ⌉ ≥ ⌈ 3(𝑛/2−2)
𝑛/2 ⌉ = 3.

In other words, we can write 𝑣 = ℎ𝑖 + 𝑗𝑖, for 𝑖 = 1, 2, 3, such that
the ℎ𝑖(𝑟𝑒𝑠𝑝., 𝑗𝑖) are distinct elements of 𝑇 ∩𝐻(𝑟𝑒𝑠𝑝., 𝑇 ∩ (𝐺 ∖𝐻)). Since
𝑔 − 𝑣 /∈ 𝐻, and since as above 𝑇 and (𝑔 − 𝑣) − 𝑇 are not disjoint, we can
write 𝑔−𝑣 = ℎ+ 𝑗 or 𝑔−𝑣 = 𝑗′+ℎ′ with ℎ, ℎ′ ∈ 𝐻 and 𝑗, 𝑗′ ∈ 𝑇 ∩ (𝐺∖𝐻).
Pick 𝑖 so that ℎ𝑖 ∕= ℎ and 𝑗𝑖 ∕= 𝑗 or ℎ𝑖 ∕= ℎ′ and 𝑗𝑖 ∕= 𝑗′(which is possible
since there are three choice for 𝑖). Then we have 𝑔 = ℎ + 𝑗 + ℎ𝑖 + 𝑗𝑖 or
𝑔 = 𝑗′ + ℎ′ + ℎ𝑖 + 𝑗𝑖, which is a sum of distinct elements of 𝑇 . Omitting 0
as one of the terms, if present, gives a subset from 𝑆.

Case 3. 𝑘 ≤ 2. Now 𝑇 contains 𝐺 ∖ 𝐻, with the possible exception of
a single element 𝑟. Fix 𝑣 ∈ 𝑇 ∖ 𝐻. The 𝑛

2 (𝑛/2 − 1)2 sums 𝑥1 + 𝑥2 + 𝑥3

with 𝑥1, 𝑥2 ∈ 𝐺 ∖ (𝐻 ∪ {𝑟}) and 𝑥3 ∈ 𝐺 ∖ 𝐻. In particular, 𝑔 − 𝑣 can be
represented (𝑛/2− 1)2 ways as such a sum. Exactly 𝑛/2− 1 of these sums
have 𝑥1 = 𝑥2, 𝑛/2 − 1 have 𝑥2 = 𝑥3, and 𝑛/2 − 1 have 𝑥1 = 𝑥3. Also,
𝑛/2− 1 of these sums have 𝑥1 = 𝑣, 𝑛/2− 1 sums have 𝑥2 = 𝑣, and 𝑛/2− 1
sums have 𝑥3 = 𝑣. Similar 𝑛/2− 1 of these sums have 𝑥3 = 𝑟. There exists
a form 𝑔 − 𝑣 = 𝑣 + 𝑣 + 𝑥3. Thus there remain at least

(𝑛/2)2 − 7(𝑛/2− 1) + 1 = (𝑛−2)(𝑛−16)
4 + 1 > 0.

sums 𝑥1+𝑥2+𝑥3 equaling 𝑔−𝑣 with distinct 𝑥𝑖 ∈ 𝐺∖𝐻 not equal either
𝑣 or 𝑟. So there exists a subset sum representation 𝑔 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑣.
This completes the proof of the theorem. □
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