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Abstract. Lexicographic product G◦H of two graphs G and H has vertex set V (G)×V (H)
and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and
v1v2 ∈ E(H). If every matching of G of size k can be extended to a perfect matching
in G, then G is called k-extendable. In this paper, we study matching extendability in
lexicographic product of graphs. The main result is that the lexicographic product of an
m-extendable graph and an n-extendable graph is (m + 1)(n + 1)-extendable. In fact, we
prove a slightly stronger result.
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1 Introduction

The graphs considered in this paper will be finite, undirected, simple and connected.

A matching in a graph G is a set of pairwise nonadjacent edges and a matching M is
called a perfect matching if V (M) = V (G). If every matching of size k can be extended to
a perfect matching in G, then G is called k-extendable. To avoid triviality, we require that
|V (G)| > 2k + 2 for k-extendable graphs. In particular, 0-extendable means there exists a
perfect matching in G.

A graph G is k-factor-critical, if it satisfies that G − S has a perfect matching for any
k-subset S of V (G). Clearly, a 2k-factor-critical graph is k-extendable, but the reverse
is not true (e.g., complete bipartite graphs). Note that if G is 2k-factor-critical, then all
graphs obtained by adding any number of edges to G are still k-extendable. In fact, adding
any number of edges to G being still k-extendable is sufficient and necessary condition for
G being 2k-factor-critical.

It is natural to study factor criticality and matching extendability of different types
of graph products, as such products contain a large number of perfect matchings. Our
motivation is from the study of Cayley graphs since graph products often form a ‘skeleton’
of Cayley graphs. Györi and Plummer [2] showed that the Cartesian product of an m-
extendable graph and an n-extendable graph is (m+n+1)-extendable. Györi and Imrich [3]
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proved that the strong product of an m-extendable graph and an n-extendable graph is
[(m + 1)(n + 1)]2-factor-critical. Here, for a real number x, [x]2 denotes the biggest even
integer not greater than x. In the same paper, they also conjectured that the factor-
criticality of strong product can be improved to [(m + 2)(n + 2)]2 − 2. Liu and Yu [5]
studied matching extension properties in Cartesian products and lexicographic products.
In particular, they investigated the matching extension from a prescribed vertex set in
lexicographic product of graphs. Readers can see [5] for more details. Wu, Yang and Yu [8]
investigated factor-criticality of the Cartesian product of an m-factor-critical and an n-
factor-critical graph. More research on graph products can be found in the book written
by Imrich and Klavžar [4].

In this paper, we investigate the factor-criticality and extendability in the lexicographic
product of an m-extendable graph and an n-extendable graph.

The lexicographic product G ◦H of two graphs G and H has vertex set V (G) × V (H)
and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and
v1v2 ∈ E(H). The strong product G£H of two graphs G and H has vertex set V (G)×V (H)
and two vertices (u1, v1) and (u2, v2) are adjacent if either u1 = u2 and v1v2 ∈ E(H), or
u1u2 ∈ E(G) and v1 = v2 , or u1u2 ∈ E(G) and v1v2 ∈ E(H). Note that G ◦Kn = G £ Kn

and G ◦ H � H ◦ G whenever G � H and neither of G and H is trivial. A lexicographic
product of graphs may not be commutative, even when both factors are connected. For
example, K2 ◦ P3 � P3 ◦K2.

Let T ⊆ V (G) be a given subset with |T | even. An edge set F ⊆ E(G) is called a T -join,
if

dF (x) ≡
{

1 (mod 2), if x ∈ T

0 (mod 2), if x /∈ T ,

where dF (x) denotes the number of edges incident with x in F .

For terminology and notation not defined in this paper, readers are referred to [6].

2 Main results and preliminaries

One of the main results of this paper is the following.

Theorem 2.1 Let G1 be m-extendable and G2 be n-extendable. Then their lexicographic
product G2◦G1 is 2(m+1)(n+1)-factor-critical. In particular, it is (m+1)(n+1)-extendable.

Remark. For n → ∞, Theorem 2.1 is close to be sharp. To see this, take an arbitrary
m-extendable graph G1 with |V (G1)| = 2m + 2 containing a vertex x of degree m + 1 (e.g.
Km+1,m+1 ) and an arbitrary n-extendable graph G2 with a vertex y of degree n + 1. Then
the degree of the vertex (x, y) in the lexicographic product G2◦G1 is 2(n+1)(m+1)+(m+1).
Clearly, if X contains all the neighbors of (x, y), then (G2 ◦G1)−X obviously does not have
a perfect matching. Since limn→∞

dG2◦G1
(x,y)

2(n+1)(m+1) = 0, we are nearly able to choose a vertex
set X to contain all neighbors of (x, y).
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In the special case G1 = K2 or G2 = K2, a higher factor-critical number can be proved.
With a similar discussion we see that the result is best possible.

Theorem 2.2 If G is an m-extendable graph of order 2p, then G ◦K2 is 2(m + 1)-factor-
critical and K2 ◦G is 2p-factor-critical.

From the above theorem, it seemed to suggest the following conjecture: if G1 is m-
extendable and G2 is n-extendable (m,n > 0), then their lexicographic product G2 ◦G1 is
(n + 1)|V (G1)|-factor-critical.

Favaron [1] and Yu [9] introduced the concept of k-factor-criticality, independently, and
studied the basic properties of k-factor-critical graphs. Several of these properties will be
used in our proofs, so we summarize them below.

Theorem 2.3 ( [1], [9]) Let G be a k-factor-critical graph with k > 2 and |V (G)| > k, then
G is also (k− 2)-factor-critical. Moreover, G is k-factor-critical if and only if co(G− S) 6
|S| − k for any S ⊆ V (G) with |S| > k, where co(G− S) is the number of odd components
in G− S.

Plummer [7] proved fundamental properties of k-extendable graphs and we summarize
them as follows.

Theorem 2.4 ( [7]) Let G be a k-extendable graph with k > 1 and |V (G)| > 2k. Then

(a) G is also (k − 1)-extendable;

(b) G is (k + 1)-connected;

(c) δ(G) > k + 1.

Győri and Imrich [3] considered the strong product of an m-extendable graph and an
n-extendable graph, and they gave the following result.

Theorem 2.5 ( [3]) Let G be a k-extendable graph. Then G£K2 is 2(k+1)-factor-critical.

In some special cases, applying properties of Hamilton cycles can lead to a shorter proof,
so we present a classical theorem of Dirac.

Theorem 2.6 (Dirac, 1952) Every graph with n > 3 vertices and minimum degree at least
n
2 has a Hamilton cycle.

Before giving the proofs of the main results, we need the following lemma which is used
in our proofs. Let Gu,v denote the subgraph of G ◦H induced by vertex set {(x, u), (x, v) :
x ∈ V (G)} for any uv ∈ E(H). Similarly, Hx,y is defined for any xy ∈ E(G). It is not
difficult to see that Gx,y ∼= G ◦K2 and Hx,y ∼= K2 ◦H.
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Lemma 2.7 Let G be m-extendable and H be Hamiltonian with even order, and X be an
arbitrary even subset of V (G ◦ H). If for any uv ∈ E(H), |X ∩ V (Gu,v)| 6 2m + 1, then
(G ◦H)−X has a perfect matching.

Proof. Let u1u2 . . . u2t be a Hamilton cycle of H. By assumption, |X ∩ V (Gu2i−1,u2i)| 6
2m + 1 for 1 6 i 6 t.

If |X ∩ V (Gu2i−1,u2i)| is even for 1 6 i 6 t, then by Theorems 2.2 and 2.3, there is a
perfect matching of (G ◦H)−X. If |X ∩ V (Gu2i−1,u2i)| is odd (we call such pair ‘odd’) for
some i, there must be another odd pair {u2j−1, u2j}. Choose such a j nearest to i along the
cycle in ‘clockwise’ order, then we get a path Pij on this cycle. Deal with other odd pairs
in the same way. Thus, the Hamilton cycle u1u2 . . . u2t−1u2t can be viewed as an ordered
components sequence, connected together in order. Each component is either an even path1

from one odd pair to another or an edge u2k−1u2k with |X ∩ V (Gu2k−1,u2k)| even and no
more than 2m + 1. If we can find a perfect matching of (G ◦ P ) − X for each such even
path P , we obtain a perfect matching of (G ◦ H) − X. Let P = u2i0−1u2i0 . . . u2j0−1u2j0 .
We will construct a set M of independent edges such that |(X ∪ V (M)) ∩ V (Gu2i−1,u2i)| is
even for all u2i−1u2i ∈ E(P ). Initially, let M = ∅. For each edge e = xy (considering each
edge once and only once) in P ,

(a) if e 6= u2i−1u2i for each i, 1 6 i 6 t, then there exists an edge e′ between Gx and
Gy such that both end vertices of e′ are not covered by X and M . Set M := M ∪ {e′};
(If no such e′ exists, Gx,y − X is disconnected. Note {(v, x), (v, y)} occurs in pair in a
component of Gx,y −X unless either (v, x) or (v, y) lies in X for any v ∈ V (G). However,
as |X ∪ V (Gu,v)| 6 2m + 1 for any uv ∈ E(G), V (Gx,y) ∩ X contains at most m pairs of
vertices {(v, x), (v, y)}. It contradicts to fact that G is (m + 1)-connected.)

(b) if e = u2i−1u2i for some i, 1 6 i 6 t, then set M := M .

Thus, it is not too hard to verify that |(X ∪ V (M))∩ V (Gu2i−1u2i)| is even and no more
than 2m + 2 for each u2i−1u2i ∈ E(P ). By Theorems 2.2 and 2.3, Gu2i−1u2i − (X ∪ V (M))
has a perfect matching. Therefore, the union of these perfect matchings together with M is
a perfect matching of (G ◦ P )−X and thus we obtain a perfect matching of (G ◦H)−X.

3 Proofs of the main results

Since Theorem 2.2 will be used in the proof of the main theorem several times, we ought to
prove it first.

3.1 Proof of Theorem 2.2

The first assertion follows from Theorem 2.5 and the fact that G ◦K2
∼= G £ K2. Next, we

prove the second part. Let V (K2) = {v1, v2}.
To the contrary, suppose K2 ◦ G is not 2p-factor-critical. Then by Theorem 2.3, there

exists a set S ⊆ V (K2 ◦G) with |S| > 2p such that co((K2 ◦G)− S) > |S| − 2p. By parity,
1We say a path p is even if |V (P )| is even; otherwise, it is odd.
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co((K2 ◦G)−S) > |S| − |V (G)|+ 2 > 2. Note that all components of (K2 ◦G)−S must lie
in the same ‘layer’ Gvi , i = 1 or 2, since it induces a complete bipartite graph between Gv1

and Gv2 in K2 ◦G, Gvi ⊆ S for some vi ∈ V (K2), say Gv1 . Thus, there exists S′ ⊆ V (Gv2)
such that S′ ⊆ S and co(Gv2 − S′) > |S′| + 2 > 2, therefore, G(∼= Gv2) has no perfect
matching, a contradiction to that G is m-extendable. This completes the proof.

3.2 Proof of Theorem 2.1

First, assume |V (G1)| > 2m + 4. We use induction on n. For the case n = 0, we show the
following claim.

Claim 1. If G1 is m-extendable and G2 is connected with a perfect matching, then
G2 ◦G1 is 2(m + 1)-factor-critical.

Proof. Fix a perfect matching {v1v2, . . . , v2t−1v2t} in G2. We show the claim by induc-
tion on t. The case t = 1 follows from Theorems 2.2 and 2.3. Assume that it holds for
smaller t. Extend {v1v2, . . . , v2t−1v2t} to a spanning tree of G2 and contract the edges
v1v2, . . . , v2t−1v2t. Then a spanning tree in G2 is transformed into a spanning tree of the
contracted graph and the new tree contains a vertex of degree one. Without loss of gen-
erality, assume that the vertex obtained from the contraction of v1v2 has degree one. It
implies that G2 − {v1, v2} is connected and has a perfect matching {v3v4, . . . , v2t−1v2t}.
In other words, it is 0-extendable. Since G2 is connected, we may assume that v1 has
a neighbor in {v3v4, . . . , v2t−1v2t}. Let X be an arbitrary vertex set in G2 ◦ G1 with
|X| = 2(m + 1). If |X ∩ V (Gv1,v2

1 )| is even, both ((G2 − {v1, v2}) ◦G1)−X and Gv1,v2
1 −X

have a perfect matching M1 and M2, respectively. Then M1 ∪ M2 is a perfect matching
of (G2 ◦ G1) − X. If |X ∩ V (Gv1,v2

1 )| is odd, we can pick an arbitrary vertex (u, v1) in
Gv1

1 − X. Since the vertex (u, v1) has at least |V (G1)| neighbors in G2 ◦ G1 − V (Gv1,v2
1 )

by the choice of v1 and the definition of the lexicographic graph, there exists a vertex
(u′, w) ∈ V (G2 ◦G1) − V (Gv1,v2

1 ) such that (u′, w) /∈ X and (u, v1)(u′, w) ∈ E(G2 ◦G1) as
|X ∩ V ((G2 − {v1, v2}) ◦ G1)| 6 2m + 1 < |V (G1)|. Then, Gv1,v2

1 − (X ∪ {(u, v1)}) has a
perfect matching M1 by Theorems 2.2 and 2.3, and ((G2−{v1, v2}) ◦G1)− (X ∪ {(u′, w)})
has a perfect matching M2 by the induction hypothesis. Then M1 ∪M2 ∪{(u, v1)(u′, w)} is
a perfect matching in G2 ◦G1 −X.

Now, assume n > 1. Let X be an arbitrary subset of V (G2 ◦ G1) with |X| = 2(m +
1)(n + 1). We consider two cases based on |X ∩ V (Gv,v′

1 )|.
Case 1. There exists an edge v1v2 ∈ E(G2) for which |X ∩ V (Gv1,v2

1 )| > 2(m + 1).

Take 2m+2 vertices, say X1 = {x1, · · · , x2m+2}, in X ∩V (Gv1,v2
1 ), then Gv1,v2

1 −X1 has
a perfect matching M . Consider the edges y1z1, . . . , ypzp of M such that zi ∈ X −X1 and
yi /∈ X −X1. Note that every vertex yi has at least n|V (G1)| (> (2m + 2)n) neighbors in
(G2◦G1)−V (Gv1,v2

1 ). Let C1, . . . , Ck (note that k > 1 implies n = 1) denote the components
of G2−{v1, v2}. Clearly, each Cj (1 6 j 6 k) has a perfect matching. Note that when n = 1,
as G2 is 1-extendable, both v1 and v2 are adjacent to vertices in Cj for all 1 6 j 6 k, and
hence each yi has at least 2m+2 neighbors in Cj ◦G1 for all 1 6 j 6 k. Since |Gv1,v2

1 ∩X| >
2m+2+p, then |(V (G2◦G1)−V (Gv1,v2

1 ))∩X| 6 (2m+2)n−p. Therefore, there exist vertices
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w1, . . . , wp ∈ V (G2 ◦G1)− V (Gv1,v2
1 )−X such that yiwi ∈ E(G2 ◦G1) for i = 1, . . . , p, and

|(X ∪{w1, . . . , wp})∩Cj | is even for all 1 6 j 6 k. By the induction hypothesis, there exists
a perfect matching M ′

j in (Cj ◦G1)−X ∪{w1, . . . , wp}. If M0 denotes the set of edges of M

with both end-vertices in X, then
⋃k

j=1 M ′
j∪(M−M0)∪{y1w1, . . . , ypwp}−{y1z1, . . . , ypzp}

is a perfect matching of (G2 ◦G1)−X.

Case 2. For every edge vivj ∈ E(G2), we have |X ∩ V (Gvi,vj

1 )| 6 2m + 1.

Since G2 is n-extendable, it has a perfect matching denoted by {v1v2, . . . , v2t−1v2t}.
Contracting each edge v2i−1v2i of G2 to a vertex wi, we obtain a new graph G′

2 with the
vertex set {w1, . . . , wt}. Let I0 denote the set of indices i such that |X ∩ V (Gv2i−1,v2i

1 )| is
odd, T = {wi | i ∈ I0}. Without loss of generality, we assume T 6= ∅ and thus |T | is even.

Our proof relies on the existence of a T -join, which can be stated as the following claim.

Claim 2. There exists a T -join F of G′
2 satisfying:

dF (wi) + dX(wi) 6 |V (G1)| for all 1 6 i 6 t, (∗)

where dF (wi) denotes the degree of wi in F and dX(wi) = |X∩V (Gv2i−1,v2i

1 )|, for wi ∈ V (G′
2).

Proof. Starting with the empty forest, we construct a T -join F step by step, such that it
always satisfies the property (∗). Set I := I0 at first.

Suppose that a forest F has been chosen already. Let A denote the set of vertices wi in
G′

2 satisfying dF (wi)+dX(wi) = |V (G1)| already and |A| = a. If I 6= ∅, let i, j ∈ I. Suppose
there exists a path P from wi to wj avoiding A. If there exists some vertex wk ∈ T ∩ V (P )
different from wi, wj satisfying dF (wk)+dX(wk) = |V (G1)|−1, let wk be the vertex nearest
to wi in P . Clearly, wk ∈ I. Let P ′ be the subgraph of P from wi to wk, and set
F := E(F )4E(P ′), where4 denotes symmetric difference, and I := I\{i, k}. If there exists
no such a vertex wk, then set F := E(F )4E(P ) and I := I\{i, j}. If F contains an Eulerian
subgraph, then delete its edges from F . Clearly, the new constructed subgraph F is a forest
satisfying (∗), and if wi is an endvertex of P , dF (wi)+dX(wi) 6 |V (G1)|−1+1 = |V (G1)|; if
wi is an interval vertex of P , then dF (wi)+dX(wi) 6 |V (G1)|−2+2 = |V (G1)|, and nothing
changes for the vertices in A. Repeating this process until I = ∅. By the construction of
F , we know that (∗) is satisfied and T -join is preserved.

The problem becomes to show the existence of P stated above. We consider two subcases
based on a = |A|.

Subcase 2.1. a 6 n.

Then G2−∪wi∈A{v2i−1, v2i} is (n−a)-extendable and (n−a+1)-connected. So, G′
2−A

is connected, too. Thus, there is a path Pij from wi to wj avoiding A.

Subcase 2.2. a > n + 1.

Note that dF (wi) > 3 for wi ∈ A by the definition of A and assumption that dX(wi) 6
2m+1 < 2m+4 6 |V (G1)|. Moreover, |T | 6 2(m+1)(n+1) and the number of leaves in F is
at most |T |−2 by the construction of F . So, F has at most 2(m+1)(n+1)−∑

wi∈A dX(wi)−2
leaves.

On the other hand, we know that any nonempty forest F ⊆ V (G′) has leaves no less

6



than ∑
wi∈V (F )(dF (wi)− 2) >

∑
wi∈A(dF (wi)− 2)

= a(|V (G1)| − 2)−∑
wi∈A dX(wi)

> (n + 1)(2m + 2)−∑
wi∈A dX(wi)

> 2(m + 1)(n + 1)− 2−∑
wi∈A dX(wi),

a contradiction. This completes the proof of Claim 2.

Now we return to the proof of Case 2. Our aim is to construct a set M of |E(F )|
independent edges in (G2 ◦G1)−X step by step. For any edge wiwj ∈ E(F ), we take one
and only one edge e between V (Gv2i−1,v2i

1 ) and V (Gv2j−1,v2j

1 ) such that e is not covered by X
and M constructed already, and put e into M . Suppose wiwj ∈ E(F ) ⊆ E(G′

2) is the next
edge to consider. The vertex set X ∩ V (Gv2i−1,v2i

1 ) (resp. X ∩ V (Gv2j−1,v2j

1 ) ) together with
the already chosen edges of M cover a set of no more than |V (G1)| − 1 (resp. |V (G1)| − 1)
vertices by (∗). Since the edges between G

v2i−1,v2i

1 and G
v2j−1,v2j

1 together with the vertices
constitute a complete bipartite graph, there always exists an edge e with one endvertex in
G

v2i−1,v2i

1 − (X ∪ V (M)) and the other in G
v2j−1,v2j

1 − (X ∪ V (M)). Then add the edge e to
M .

Since F is a T -join of G′
2, then |X ∩ V (Gv2i−1,v2i

1 )| + |V (M) ∩ V (Gv2i−1,v2i

1 )| is even.
By (∗) and the construction of G′

2, |X ∩ V (Gv2i−1,v2i

1 )|+ |V (M) ∩ V (Gv2i−1,v2i

1 )| 6 |V (G1)|.
Then, G

v2i−1,v2i

1 −X − V (M) has a perfect matching Mi for each i. Hence, M ∪⋃t
i=1 Mi is

the desired perfect matching of (G2 ◦G1)−X.

Finally, we deal with the case of |V (G1)| = 2m+2. We prove the assertion by induction
on m. When m = 0, it holds by Theorem 2.2. Suppose it holds for smaller m. If there is an
edge u1u2 ∈ E(G1) for which |X ∩V (Gu1,u2

2 )| > 2(n+1), then it is similar to the discussion
as in Case 1, we can obtain a perfect matching of (G2 ◦ G1) −X. Assume for every edge
uiuj ∈ E(G1), we have |X ∩ V (Gui,uj

2 )| 6 2n + 1.

Since G1 is m-extendable, by Theorem 2.4, δ(G1) > m + 1. Then G1 is Hamiltonian by
Theorem 2.6. Hence, by Lemma 2.7, (G2 ◦G1)−X has a perfect matching. This completes
the proof.
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