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Abstract

Let S be a sequence over an additively written abelian group. We denote by
h(S) the maximum of the multiplicities of S, and by

∑
(S) the set of all subsums

of S. In this paper, we prove that if S has no zero-sum subsequence of length in
[1, h(S)], then either |

∑
(S)| ≥ 2|S| − 1, or S has a very special structure which

implies in particular that
∑

(S) is an interval. As easy consequences of this result,
we deduce several well-known results on zero-sum sequences.

Keywords: Zero-sum-free sequence; Behaving sequence; Maximum of the multiplici-
ties

1 Introduction

Let G be an additive abelian group and S = g1 · . . . · gr be a sequence over G. As
usual, |S| = r ∈ N0 denotes the length of S, σ(S) = g1 + · · · + gr the sum of S, h(S)
the maximum of the multiplicities of S and Σ(S) = {

∑
i∈I gi : ∅ 6= I ⊂ [1, r]} the set

of subsums of S. We say that S is a zero-sum sequence if σ(S) = 0, and S is called
zero-sum-free if 0 /∈ Σ(S).

The following theorem is a fundamental result in zero-sum theory, which has been
used in many papers, see e.g., [5], [7], [8].

Theorem A ([1], [4], [17]) Let S be a sequence over a finite abelian group G. If
|S| ≥ |G|, then S has a zero-sum subsequence of length in [1, h(S)].

Theorem A was first proved in [17] for G a cyclic group of prime order. A slightly
weaker version of Theorem A for cyclic G was given in [1], and an equivalent version of
Theorem A for any abelian group can be found in [4].

Let G be a finite abelian group, and let S be the sequence consisting of all non-zero
group elements. Then |S| = |G| − 1, and S has no nonempty zero-sum subsequence of
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length 1 = h(S). This example shows that the conclusion of Theorem A is not true if we
relax the restriction imposed on the length of S.

In the spirits of inverse additive number theory, we ask for the structure of a sequence
S which has no zero-sum subsequence of length in [1, h(S)]. For that reason, we intro-
duce the invariant ρ(S) which is defined as the smallest length of a nonempty zero-sum
subsequence of S. By definition, we set ρ(S) = 0 if S is zero-sum-free. We need the
following definition (which is closely related to [9, Definition 5.1.3]).

Definition 1.1 Let S be a sequence over an abelian group G. We say that S is a strictly
g-behaving sequence (strictly behaving for short) if S = (n1g) · . . . · (nrg) for some g ∈ G,

where ni ∈ [1, ord(g)] for every i ∈ [1, r], n1 = 1 and nt ≤
t−1∑
i=1

ni for every t ∈ [2, r].

Clearly, if S is a strictly g-behaving sequence, then
∑

(S) = {g, 2g, . . . , Ng} where

N = min(ord(g),
r∑

i=1

ni). Also note that if r ≥ 2 then g occurs at least twice in S.

Here are the main results of the present paper.

Theorem 1.2 Let S be a sequence over an abelian group. If ρ(S) /∈ [1, h(S)], then S
is a strictly behaving sequence or |

∑
(S)| ≥ min(|〈supp(S)〉|, 2|S| − 1), where supp(S)

denotes the set that consists of all distinct elements which occur in S.

If 0 ∈
∑

(S), Theorem 1.2 can be formulated as follows.

Theorem 1.3 Let S be a sequence over an abelian group with 0 ∈
∑

(S). Then ρ(S) ∈
[1, h(S)] or |

∑
(S)| ≥ min(|〈supp(S)〉|, 2|S| − 1).

Corollary 1.4 Let S be a sequence over an abelian group with |S| ≥ |〈supp(S)〉|+1
2

and
0 ∈

∑
(S). Then ρ(S) ∈ [1, h(S)] or

∑
(S) = 〈supp(S)〉.

As easy consequences of Theorem 1.2, we shall deduce the following well-known re-
sults.

Corollary 1.5 ([16], [19], [9, Theorem 5.1.8]) Let S be a zero-sum-free sequence over a
cyclic group of order n ≥ 2 with |S| > n

2
. Then there is an element g ∈ G with ord(g) = n

such that S = (n1g) · . . . · (nrg) with all ni ≥ 1 and
r∑

i=1

ni < n.
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Corollary 1.6 ([14], [15], [20]) Let S be a zero-sum-free sequence over an abelian group.
If 〈supp(S)〉 is not cyclic, then |

∑
(S)| ≥ 2|S| − 1.

Corollary 1.7 ([3]) Let S be a zero-sum-free sequence over an abelian group G. Then
the following two inequalities hold :

(i) |
∑

(S)| ≥ 2|S| − h(S).

(ii) |
∑

(S)| ≥ |S|+ | supp(S)| − 1.

Corollary 1.8 ([12]) Let S be a subset of an abelian group with 0 /∈ S. Then |
∑

(S)| ≥
min(|〈S〉|, 2|S| − 1).

2 Proofs of Theorem 1.2, Theorem 1.3 and Corollar-

ies 1.4–1.8

Let G be an additive abelian group. For a subset G0 ⊂ G we denote by 〈G0〉 the subgroup
generated by G0. We fix the notation concerning sequences over G0 (which is consistent
with [6] and [10]). We write sequences multiplicatively and consider them as elements of
the free abelian monoid F(G) over G. Thus we have all notions of abstract divisibility
theory at our disposal. Let

S = g1 · . . . · gr =
∏
g∈G

gvg(S) ∈ F(G)

be a sequence over G. Then supp(S) = {g ∈ G : vg(S) > 0} ⊂ G denotes the support of
S, vg(S) is called the multiplicity of S, and h(S) = max{vg(S) : g ∈ G} is the maximum
of the multiplicities of S. We say that S is squarefree if vg(S) ≤ 1 for all g ∈ G. For
convenience, we set Σ0(S) = Σ(S) ∪ {0}, Whenever we write a sequence in the form as
in Definition 1.1, say S = (n1g) · . . . · (nrg) for some g ∈ G, then we tacitly assume that
1 = n1 ≤ n2 ≤ · · · ≤ nr.

Now we collect some useful lemmas, after which we will prove Theorem 1.2 and
Theorem 1.3.

Lemma 2.1 [18] Let A and B be two finite subsets of an abelian group with A∩ (−B) =
{0}. Then, |A + B| ≥ |A|+ |B| − 1, where A + B = {c = a + b : a ∈ A, b ∈ B}.

Lemma 2.2 [13, Theorem 4.3] Let A and B be two finite nonempty subsets of an abelian
group with St(A + B) = {0}. Then, |A + B| ≥ |A| + |B| − 1, where St(A + B) denotes
the maximal subgroup H of G such that A + B + H = A + B.
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Lemma 2.3 Let S be a sequence over an abelian group. If ρ(S) /∈ [1, h(S)] then |
∑

0(S)| ≥
|S|+ 1.

Proof. Let h = h(S). Note that since ρ(S) 6= 1, we have 0 /∈ supp(S). Since no
element occurs more than h times in S, we can write S as a product of h squarefree
sequences, say S = S1 · . . . · Sh. Put Ai = supp(Si) ∪ {0} for every i ∈ [1, h]. Clearly,
h∑

i=1

Ai ⊆
∑

0(S). Since ρ(S) /∈ [1, h], it follows that for any (a1, . . . , ah) ∈ A1 × · · · × Ah,

a1 + · · · + ah = 0 implies (a1, . . . , ah) = (0, . . . , 0). Applying Lemma 2.1 recursively, we

obtain |
∑

0(S)| ≥ |
h∑

i=1

Ai| ≥ |
h−1∑
i=1

Ai|+ |Ah| − 1 ≥ · · · ≥
h∑

i=1

|Ai| − h + 1 =
h∑

i=1

(|Si|+ 1)−

h + 1 =
h∑

i=1

|Si|+ 1 = |S|+ 1. 2

Lemma 2.4 Let S = S1S2 be a sequence over an abelian group such that St(
∑

(S)) =
{0}. Then |

∑
(S)| ≥ |

∑
(S1)|+ |

∑
0(S2)| − 1.

Proof. If ρ(S) = 0, then the conclusion follows from [10, Proposition 5.3.1].

If ρ(S) > 0, it follows from Lemma 2.2 that |
∑

(S)| = |
∑

0(S)| = |
∑

0(S1) +∑
0(S2)| ≥ |

∑
0(S1)|+ |

∑
0(S2)| − 1 ≥ |

∑
(S1)|+ |

∑
0(S2)| − 1. 2

Lemma 2.5 [10, Proposition 5.3.2] Let S be a zero-sum-free subset of an abelian group.
Then |

∑
(S)| ≥ 2|S| − 1. In particular, if |S| = 3 and S contains no element of order

two then |
∑

(S)| ≥ 6.

We also need the following technical result.

Lemma 2.6 Let S be a sequence over an abelian group such that every torsion element
of S is of odd order. Then the following two statements hold.

(i) If h(S) = 1 and |S| = ρ(S) = 3 then |
∑

(S)| = 7.

(ii) Suppose S = a2
1 · a2

2 is not strictly behaving. If ρ(S) /∈ {1, 2} then |
∑

(S)| ≥ 7. In
particular, if ρ(S) /∈ {1, 2, 3} then |

∑
(S)| ≥ 8.

Proof. (i). Let S = a·b·c. Since |S| = ρ(S) = 3, S is its own unique nonempty zero-sum
subsequence. It is easy to see that a, b, c, b+c(= −a), a+c(= −b), a+b(= −c), a+b+c(= 0)
are pairwise distinct elements of

∑
(S). Hence, |

∑
(S)| = 7.

(ii). Assume first ρ(S) /∈ {1, 2}. Since S is not strictly behaving and every torsion
element in S is of odd order, then

a1, 2a1, a2, a2 + a1, a2 + 2a1, 2a2, 2a2 + a1

4



are pairwise distinct elements of
∑

(S). Moreover, if ρ(S) 6= 3, then 2a2 + 2a1 is an
element of

∑
(S) distinct from all of the elements listed above. This completes the proof.

2

Lemma 2.7 Let T = (n1g) · . . . · (nkg) be a strictly g-behaving sequence with
k∑

i=1

ni <

ord(g). Let m = 2k − |
∑

(T )|. If m ∈ [2, k] then for every element x ∈ {g, 2g, . . . , (m−
1)g}, there exists a subsequence U of T such that |U | < h(T ) and σ(U) = x.

Proof. Let h1 = vg(T ) and h2 = v2g(T ) and h3 = k − h1 − h2. We have |
∑

(T )| =
k∑

i=1

ni ≥ h1 + 2h2 + 3h3, which implies h1 ≥ h3 + m ≥ m. The lemma follows. 2

The following notation will be used often in the proof of Theorem 1.2. For S ∈ F(G)
and g ∈ G, define

λS(g) = |
∑

(S · g) \
∑

(S)|.

Lemma 2.8 λS(g) ≤ λSg−1(g) for every g|S.

Proof. We have

λS(g) = |
∑

(S · g) \
∑

(S)|
= |(

∑
(S) ∪ g +

∑
0(S)) \

∑
(S)|

= |(g +
∑

0(S)) \
∑

(S)|
= |(g +

∑
0(S)) \ (

∑
(Sg−1) ∪ g +

∑
0(Sg−1))|

≤ |(g +
∑

0(S)) \ (g +
∑

0(Sg−1))|
= |

∑
0(S) \

∑
0(Sg−1)|

≤ |
∑

(S) \
∑

(Sg−1)|
= λSg−1(g).

2

Proof of Theorem 1.2. Let H = 〈supp(S)〉. Assume that the theorem is false and
let S be a minimal-length counterexample. Thus, |

∑
(S)| ≤ min(|H| − 1, 2|S| − 2). Let

S = a1 · . . . · ar, where r = |S|. Clearly, r ≥ 3 and 0 /∈ supp(S).

Claim A. 〈supp(Sg−1)〉 = H for every g|S.

Proof of Claim A. Suppose to the contrary that there exists g|S such that 〈supp(Sg−1)〉
is a proper subgroup of H. Thus, g /∈ 〈supp(Sg−1)〉. Note that either ρ(Sg−1) ≥ ρ(S) >
h(S) ≥ h(Sg−1) or ρ(Sg−1) = 0 according to 0 ∈

∑
(S) or not. By Lemma 2.3, we have

|
∑

0(Sg−1)| ≥ |Sg−1|+ 1 = r. It follows that

|
∑

0(S)| = |
∑

0(Sg−1) ∪ g +
∑

0(Sg−1)|
= |

∑
0(Sg−1)|+ |g +

∑
0(Sg−1)|

= 2|
∑

0(Sg−1)|
≥ 2r,
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a contradiction. This proves Claim A. 2

Now we distinguish two cases.

Case 1. There exists some i ∈ [1, r] such that Sa−1
i is strictly behaving.

We may assume that Sa−1
r = (n1g) · . . . · (nr−1g) is strictly g-behaving for some g|S.

Let Ar−1 =
∑

(Sa−1
r ). Since S is not strictly behaving, we have ar /∈ Ar−1. By Claim A,

we have that ar ∈ H = 〈supp(Sa−1
r )〉 = 〈g〉, i.e., ar = nrg with nr ∈ [1+

r−1∑
i=1

ni, ord(g)−1].

Clearly, Ar−1 = {g, 2g, . . . , (
r−1∑
i=1

ni)g}. Let m = 2(r − 1) −
r−1∑
i=1

ni. Since nrg, (nr + 1)g ∈∑
(S) \ Ar−1, we have m = 2(r − 1)−

r−1∑
i=1

ni ≥ |
∑

(S)| − |Ar−1| ≥ 2. Therefore,

m ∈ [2, r − 1].

Let
` = ord(g)− nr.

Suppose m > `. Applying Lemma 2.7 with T = Sa−1
r , there exists a subsequence U

of T such that |U | < h(T ) ≤ h(S) and σ(U) = `g. It follows that σ(U ·ar) = `g+nrg = 0
and |U · ar| ≤ h(S), a contradiction. Hence,

m ≤ `.

It follows that Ar−1 and {nrg, (nr + 1)g, . . . , (nr + m)g} are disjoint subsets of
∑

(S),
which implies |

∑
(S)| ≥ 2(r − 1)−m + (m + 1) = 2r − 1, a contradiction. This proves

the theorem for this case.

Case 2. The length of each strictly behaving subsequence of S is less than r − 1.

Case 2 is harder than Case 1, and we shall devote most of the rest of this section to
prove it. Choose an arbitrary element g of S. From the minimality of S and Claim A we
obtain that |

∑
(Sg−1)| ≥ min(|H|, 2|Sg−1| − 1) = 2|Sg−1| − 1 = 2r − 3. This together

with |
∑

(S)| ≤ 2r − 2 shows that

λSg−1(g) ≤ 1. (1)

Now, by Lemma 2.8, we get

λS(g) ≤ 1 (2)

for every g|S.

If λS(g) = 0 for every g|S, then g +
∑

(S) =
∑

(S) for every g|S. This shows that
H +

∑
(S) = 〈supp(S)〉+

∑
(S) =

∑
(S). It follows that |

∑
(S)| ≥ |H|, a contradiction.

Therefore, λS(f) = 1 for some element f |S. By the minimality of S and Claim A, we
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have that |
∑

(Sf−1)| ≥ min(|H|, 2|Sf−1| − 1) = 2|Sf−1| − 1 = 2r − 3. It follows from
Lemma 2.8 that |

∑
(S)| ≥ |

∑
(Sf−1)|+ λS(f) ≥ 2r − 2, and thus

|
∑

(S)| = 2r − 2. (3)

Claim B. |
∑

(S)| = |H| − 1.

Proof of Claim B. Let a be an element of S such that va(S) = h(S). Assume first
that

〈a〉 = H.

By (2), we have that
∑

(S) is an arithmetic progression with difference a. Since ρ(S) /∈
[1, h(S)] and |S| ≥ 3, there exists an element b of supp(S) distinct from a and −a. By
(2), λS(b) ≤ 1, which implies |

∑
(S)| = |H| − 1.

Now assume that 〈a〉 is a proper subgroup of H. Then we have a decomposition of∑
(S) =

ra⋃
i=0

Ca
i , where Ca

0 , Ca
1 , . . . , Ca

ra
are subsets of pairwise distinct cosets modulo 〈a〉

and Ca
0 ⊆ 〈a〉. Since supp(S) 6⊆ 〈a〉, it follows that

∑
(S) \ 〈a〉 6= ∅, and so ra ≥ 1. Note

that

|(a +
∑

(S)) \
∑

(S)| = |(
ra⋃

i=0

(a + Ca
i )) \ (

ra⋃
i=0

Ca
i )|

= |
ra⋃

i=0

((a + Ca
i ) \ Ca

i )|

=
ra∑

i=0

|(a + Ca
i ) \ Ca

i |.

By (2), |(a +
∑

(S)) \
∑

(S)| ≤ |
∑

(S · a) \
∑

(S)| = λS(a) ≤ 1. Therefore, we conclude
that a is a torsion element, and there exists at most one index i of [0, ra] such that
|Ca

i | < ord(a). In other words, there exists k ∈ [0, ra] such that Ca
i is a complete coset of

〈a〉 for every i ∈ [0, ra] \ {k}. Denote by φa the canonical epimorphism of H onto H/〈a〉.

We claim that
|Ca

k | ≥ 2.

Assume k 6= 0. Taking an element x ∈ Ca
k , there is a subsequence W of S such that

x = σ(W ). If a|W , since x 6= a, then x − a = σ(Wa−1) ∈ Ca
k . Otherwise, x + a =

σ(Wa) ∈ Ca
k . Hence, |Ca

k | ≥ 2. Assume k = 0 and 0 ∈
∑

(S) then {0, a} ⊆ Ca
0 .

Otherwise, 0 6∈
∑

(S). By Lemma 2.5, va(S) = h(S) ≥ 2 and {a, 2a} ⊆ Ca
k . This proves

that |Ca
k | ≥ 2. Therefore,

|Ca
i | ≥ 2 (4)

for every i ∈ [0, ra].

By (2) and (4), we conclude that

φa(g) + φa(
∑

(S)) = φa(
∑

(S)) (5)
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for every g|S, or equivalently, g +
∑

(S) + 〈a〉 =
∑

(S) + 〈a〉. Therefore, 〈supp(S)〉 +∑
(S) + 〈a〉 =

∑
(S) + 〈a〉, which implies∑

(S) + 〈a〉 = H.

Choose b|S such that b /∈ 〈a〉. By (5), there exists t ∈ [0, ra] \ {k} such that φa(b) +
φa(C

a
t ) = φa(C

a
k ). Therefore, (b + Ca

t ) ∩ Ca
i = ∅ for every i ∈ [0, ra] \ {k}. Hence,

|(b + Ca
t ) \ Ca

k | = |(b + Ca
t ) \

∑
(S)|

≤ |(b +
∑

(S)) \
∑

(S)|
≤ |

∑
(S · b) \

∑
(S)|

= λS(b)
≤ 1.

It follows from |Ca
t | = ord(a) and |Ca

k | ≤ ord(a) that |Ca
k | ∈ {ord(a) − 1, ord(a)}. Note

that

|
∑

(S) + 〈a〉| = |
ra⋃

i=0

(Ca
i + 〈a〉)|

=
ra∑

i=0

|Ca
i + 〈a〉|

= |Ca
k + 〈a〉|+

∑
i∈[0,ra]\{k}

|Ca
i + 〈a〉|

≤ |Ca
k |+ 1 +

∑
i∈[0,ra]\{k}

|Ca
i |

= |
∑

(S)|+ 1.

Therefore, |
∑

(S)| ≥ |
∑

(S) + 〈a〉| − 1 = |H| − 1. Hence,
∑

(S) = |H| − 1. This proves
Claim B. 2

It follows from (3) and Claim B that

r =
|H|+ 1

2
, (6)

|H| ≡ 1 (mod 2) (7)

and
St(

∑
(S)) = {0}. (8)

By (2) and (8), we have that
λS(g) = 1 (9)

for every g|S.

We show next that

h(S) ≥ 2. (10)
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Assume to the contrary that, a1, . . . , ar are pairwise distinct. Take an arbitrary
element g ∈ H. Since |H| is odd, there exists at most one index i ∈ [1, r] such that
2ai = g. By rearranging if necessary we assume that 2aj 6= g holds for every j ∈ [2, r].
Consider two subsets {0, a1, . . . , ar} and {g−a2, . . . , g−ar} of H. Since |{0, a1, . . . , ar}|+
|{g − a2, . . . , g − ar}| = 2r = |H| + 1, the two subsets cannot be disjoint. Therefore,
g − ai = 0 or g − ai = aj for some i ∈ [2, r] and some j ∈ [1, r] \ {i}. So, g = ai or
g = ai + aj. It follows that

∑
(S) = H, a contradiction. This proves (10).

Claim C. |
∑

(T )| < |〈supp(T )〉| for any nonempty proper subsequence T of S.

Proof of Claim C. Suppose to the contrary that there exists a nonempty proper
subsequence T of S such that |

∑
(T )| = |〈supp(T )〉|. Then 0 ∈

∑
(S) and

∑
(S) =∑

0(T ) +
∑

0(ST−1), which implies 〈supp(T )〉 ⊆ St(
∑

(S)), a contradiction with (8).
This proves Claim C. 2

By (10), ρ(S) 6∈ {1, 2}. We claim that

Claim D. | supp(S)| ≥ 3.

Proof of Claim D. Suppose to the contrary that | supp(S)| = 2. We may rewrite
S = aγ

1 · a
β
2 where γ ≥ β ≥ 2.

Suppose β ≥ 3. Then ρ(S) /∈ [1, 3] and Sa−2
1 · a−2

2 is not strictly behaving. It follows
from the minimality of S and Claim C that |

∑
(Sa−2

1 ·a−2
2 )| ≥ 2|Sa−2

1 ·a−2
2 |− 1 = 2r− 9.

By (7), we have ρ(a2
1 · a2

2) = 0. By Lemma 2.6 (ii), |
∑

0(a
2
1 · a2

2)| ≥ 9. It follows from
Lemma 2.4 that |

∑
(S)| ≥ |

∑
(Sa−2

1 · a−2
2 )|+ |

∑
0(a

2
1 · a2

2)| − 1 ≥ 2r− 1, a contradiction.
Hence,

β = 2.

Let X0 = {a1, 2a1, . . . , γa1}, X1 = a2+{0, a1, . . . , γa1} and X2 = 2a2+{0, a1, . . . , (γ−
1)a1}. It is easy to see that X0, X1 and X2 are subsets of

∑
(S). Also, X0 ∩X1 = ∅ and

X1 ∩X2 = ∅. We show next that

|X0 ∩X2| ≤ γ − 2.

The argument is as follows. If 2a2 + (γ − 1)a1 ∈ X0, then by ρ(S) 6∈ [1, γ] we derive that
2a2 + (γ − 1)a1 = γa1. Hence 2a2 = a1 and S is a2-strictly behaving, a contradiction.
Therefore,

2a2 + (γ − 1)a1 ∈ X2 \X0.

If 2a2 + (γ− 2)a1 ∈ X0, then by ρ(S) 6∈ [1, γ] we derive that 2a2 + (γ− 2)a1 ∈ {γa1, (γ−
1)a1}. Therefore, 2a1 = 2a2 or a1 = 2a2. If 2a1 = 2a2, then by (7) we get a1 = a2,
a contradiction. Hence, a1 = 2a2 and S is a2-strictly behaving, also a contradiction.
Therefore,

2a2 + (γ − 2)a1 ∈ X2 \X0.
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This proves |X0 ∩X2| ≤ γ − 2. Now we have

|
∑

(S)| ≥ |X0 ∪X1 ∪X2|
= |X1|+ |X0 ∪X2|
= |X1|+ |X0|+ |X2| − |X0 ∩X2|
≥ (γ + 1) + γ + γ − (γ − 2)
= 2γ + 3
= 2r − 1,

a contradiction. This proves Claim D. 2

By (10) and Claim D, we have
r ≥ 4.

Claim E. There exists a squarefree subsequence U |S of length three such that either
|SU−1| = 1 or SU−1 is not strictly behaving.

Proof of Claim E. Suppose that Claim E is false. By (10) and Claim D, we may
assume that ar−2, ar−1, ar are pairwise distinct and var−2(S) ≥ 2. Let U1 = ar−2ar−1ar.
Then |SU−1

1 | ≥ 2 and SU−1
1 = (n1g) · . . . · (nr−3g) is strictly g-behaving. By Claim C,

r−3∑
i=1

ni < ord(g). Let Ar−3 = {g, 2g, . . . , (
r−3∑
i=1

ni)g}. By the choice of U1 we have that

ar−2 = nr−2g

with nr−2 ≤
r−3∑
i=1

ni.

Suppose 〈g〉 6= H. By Claim C, we have ord(g) ≥ 1 +
r−2∑
i=1

ni ≥ r − 1. It follows from

Claim B and (7) that |
∑

(S)| ≥ 3 ord(g) − 1 ≥ 3(r − 1) − 1 ≥ 2r − 1, a contradiction.
Hence,

〈g〉 = H.

By Lemma 2.8, Claim B and (9),

|
∑

(Sc−1)| ≤ |
∑

(S)| − λS(c) = ord(g)− 2 (11)

for every c|S.

Since 〈g〉 = H, ai = nig for i = r − 1, r. We may assume that nr > nr−1. Recalling
that the maximal length of strictly behaving subsequence of S is less than r−1, it follows
from ρ(S) 6∈ {1, 2} that

r−2∑
i=1

ni < nr−1 < nr < ord(g)− 1.
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If nr−1 = 1 +
r−2∑
i=1

ni then
∑

(Sa−1
r ) = {g, 2g, . . . , (

r−1∑
i=1

ni)g}. It follows from (11)

that
r−1∑
i=1

ni ≤ ord(g) − 2. Since ar /∈ {g,−g}, it is easy to see that λSa−1
r

(ar) ≥ 2, a

contradiction with (1). Hence,

nr−1 > 1 +
r−2∑
i=1

ni.

By (6), we have
r−2∑
i=1

ni ≥ r − 2 = ord(g)−3
2

, which implies ord(g)− nr ≤ ord(g)− (3 +

r−2∑
i=1

ni) ≤
r−2∑
i=1

ni. It follows that

∑
(Sa−1

r−1) = {nrg, (nr + 1)g, . . . , ord(g)g} ∪ {g, 2g, . . . , (
r−2∑
i=1

ni)g}.

Hence, {(nr−1 − 1)g, nr−1g} ⊆
∑

(S) \
∑

(Sa−1
r−1). This gives us that λSa−1

r−1
(ar−1) ≥ 2, a

contradiction with (1). This proves Claim E. 2

Now we choose a squarefree subsequence U of S as in Claim E. It follows from the
minimality of S and Claim C that |

∑
(SU−1)| ≥ 2|SU−1|−1. It follows from (7), Lemma

2.4, Lemma 2.5 and Lemma 2.6 (i) that |
∑

(S)| ≥ |
∑

(SU−1)|+ |
∑

0(U)|−1 ≥ 2|S|−1,
a contradiction. This completes the proof of Theorem 1.2 given Case 2, thereby finishing
the proof of Theorem 1.2. 2

Remark 2.9 The following example shows that the conclusion of Theorem 1.2 is, in
a certain sense, best possible. Let G be an abelian group, and let g ∈ G \ {0}. Let
S = gh · (kg) where 2 ≤ h + 1 ≤ k ≤ ord(g)− h. It is easy to check that S is not strictly
behaving, ρ(S) /∈ [1, h] and |

∑
(S)| = 2|S| − 1.

Proof of Theorem 1.3. Let r = |S|. If S is not strictly behaving, the conclusion
follows immediately from Theorem 1.2. Hence, we may assume that S = (n1g) · . . . · (nrg)

is strictly g-behaving for some g 6= 0. Since 0 ∈
∑

(S), we have that
r∑

i=1

ni ≥ ord(g),

which implies 〈supp(S)〉 = 〈g〉 =
∑

(S). 2

Proof of Corollary 1.4. Assume ρ(S) /∈ [1, h(S)]. By Theorem 1.3, we have that
|
∑

(S)| ≥ min(|〈supp(S)〉|, 2|S| − 1) = |〈supp(S)〉|. 2

Proof of Corollary 1.5. Let r = |S|. Since ρ(S) = 0 and r > n/2 we infer that
〈supp(S)〉 = Cn. Note that |

∑
(S)| ≤ n − 1 ≤ min(|Cn| − 1, 2r − 2). By Theorem 1.2

S = (n1g) · . . . · (nrg) is strictly g-behaving for some g ∈ Cn. Now the corollary follows

from the obvious fact that
r∑

i=1

ni < ord(g). 2
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Proof of Corollary 1.6. Since 〈supp(S)〉 is not cyclic, then S is not strictly behav-
ing. It follows from ρ(S) = 0 and Theorem 1.2 that |

∑
(S)| ≥ min(|〈supp(S)〉|, 2|S| −

1) = 2|S| − 1. 2

Proof of Corollary 1.7. By Theorem 1.2, we need only to consider the case that
S = (n1g) · . . . · (nrg) is strictly g-behaving for some g ∈ G. Now we have |

∑
(S)| =

r∑
i=1

ni ≥ vg(S) + 2(|S| − vg(S)) = 2|S| − vg(S) ≥ 2|S| − h(S). 2

Proof of Corollary 1.8. We may assume that |S| ≥ 2. Since h(S) = 1, we have
that S is not strictly behaving. From 0 /∈ S we know that ρ(S) /∈ [1, h(S)]. It follows
from Theorem 1.2 that |

∑
(S)| ≥ min(|〈S〉|, 2|S| − 1). 2
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