Behaving Sequences

Weidong Gao Jiangtao Peng Guoqing Wang Center for Combinatorics, LPMC, Nankai University, Tianjin, 300071, P.R. China

Abstract

Let S be a sequence over an additively written abelian group. We denote by h(S) the maximum of the multiplicities of S, and by $\sum(S)$ the set of all subsums of S. In this paper, we prove that if S has no zero-sum subsequence of length in [1, h(S)], then either $|\sum(S)| \ge 2|S| - 1$, or S has a very special structure which implies in particular that $\sum(S)$ is an interval. As easy consequences of this result, we deduce several well-known results on zero-sum sequences.

Keywords: Zero-sum-free sequence; Behaving sequence; Maximum of the multiplicities

1 Introduction

Let G be an additive abelian group and $S = g_1 \cdot \ldots \cdot g_r$ be a sequence over G. As usual, $|S| = r \in \mathbb{N}_0$ denotes the length of S, $\sigma(S) = g_1 + \cdots + g_r$ the sum of S, h(S)the maximum of the multiplicities of S and $\Sigma(S) = \{\sum_{i \in I} g_i : \emptyset \neq I \subset [1, r]\}$ the set of subsums of S. We say that S is a zero-sum sequence if $\sigma(S) = 0$, and S is called zero-sum-free if $0 \notin \Sigma(S)$.

The following theorem is a fundamental result in zero-sum theory, which has been used in many papers, see e.g., [5], [7], [8].

Theorem A ([1], [4], [17]) Let S be a sequence over a finite abelian group G. If $|S| \ge |G|$, then S has a zero-sum subsequence of length in [1, h(S)].

Theorem A was first proved in [17] for G a cyclic group of prime order. A slightly weaker version of Theorem A for cyclic G was given in [1], and an equivalent version of Theorem A for any abelian group can be found in [4].

Let G be a finite abelian group, and let S be the sequence consisting of all non-zero group elements. Then |S| = |G| - 1, and S has no nonempty zero-sum subsequence of

length 1 = h(S). This example shows that the conclusion of Theorem A is not true if we relax the restriction imposed on the length of S.

In the spirits of inverse additive number theory, we ask for the structure of a sequence S which has no zero-sum subsequence of length in [1, h(S)]. For that reason, we introduce the invariant $\rho(S)$ which is defined as the smallest length of a nonempty zero-sum subsequence of S. By definition, we set $\rho(S) = 0$ if S is zero-sum-free. We need the following definition (which is closely related to [9, Definition 5.1.3]).

Definition 1.1 Let S be a sequence over an abelian group G. We say that S is a strictly g-behaving sequence (strictly behaving for short) if $S = (n_1g) \cdot \ldots \cdot (n_rg)$ for some $g \in G$, where $n_i \in [1, \operatorname{ord}(g)]$ for every $i \in [1, r]$, $n_1 = 1$ and $n_t \leq \sum_{i=1}^{t-1} n_i$ for every $t \in [2, r]$.

Clearly, if S is a strictly g-behaving sequence, then $\sum(S) = \{g, 2g, \dots, Ng\}$ where $N = \min(\operatorname{ord}(g), \sum_{i=1}^{r} n_i)$. Also note that if $r \ge 2$ then g occurs at least twice in S.

Here are the main results of the present paper.

Theorem 1.2 Let S be a sequence over an abelian group. If $\rho(S) \notin [1, h(S)]$, then S is a strictly behaving sequence or $|\sum(S)| \ge \min(|\langle \operatorname{supp}(S) \rangle|, 2|S| - 1)$, where $\operatorname{supp}(S)$ denotes the set that consists of all distinct elements which occur in S.

If $0 \in \sum(S)$, Theorem 1.2 can be formulated as follows.

Theorem 1.3 Let S be a sequence over an abelian group with $0 \in \sum(S)$. Then $\rho(S) \in [1, h(S)]$ or $|\sum(S)| \ge \min(|\langle \operatorname{supp}(S) \rangle|, 2|S| - 1)$.

Corollary 1.4 Let S be a sequence over an abelian group with $|S| \ge \frac{|\langle \operatorname{supp}(S) \rangle|+1}{2}$ and $0 \in \sum(S)$. Then $\rho(S) \in [1, h(S)]$ or $\sum(S) = \langle \operatorname{supp}(S) \rangle$.

As easy consequences of Theorem 1.2, we shall deduce the following well-known results.

Corollary 1.5 ([16], [19], [9, Theorem 5.1.8]) Let S be a zero-sum-free sequence over a cyclic group of order $n \ge 2$ with $|S| > \frac{n}{2}$. Then there is an element $g \in G$ with $\operatorname{ord}(g) = n$ such that $S = (n_1g) \cdot \ldots \cdot (n_rg)$ with all $n_i \ge 1$ and $\sum_{i=1}^r n_i < n$.

Corollary 1.6 ([14], [15], [20]) Let S be a zero-sum-free sequence over an abelian group. If $\langle \operatorname{supp}(S) \rangle$ is not cyclic, then $|\sum(S)| \ge 2|S| - 1$.

Corollary 1.7 ([3]) Let S be a zero-sum-free sequence over an abelian group G. Then the following two inequalities hold:

(i) $|\sum(S)| \ge 2|S| - h(S)$.

(*ii*) $|\sum(S)| \ge |S| + |\operatorname{supp}(S)| - 1.$

Corollary 1.8 ([12]) Let S be a subset of an abelian group with $0 \notin S$. Then $|\sum(S)| \ge \min(|\langle S \rangle|, 2|S| - 1)$.

2 Proofs of Theorem 1.2, Theorem 1.3 and Corollaries 1.4–1.8

Let G be an additive abelian group. For a subset $G_0 \subset G$ we denote by $\langle G_0 \rangle$ the subgroup generated by G_0 . We fix the notation concerning sequences over G_0 (which is consistent with [6] and [10]). We write sequences multiplicatively and consider them as elements of the free abelian monoid $\mathcal{F}(G)$ over G. Thus we have all notions of abstract divisibility theory at our disposal. Let

$$S = g_1 \cdot \ldots \cdot g_r = \prod_{g \in G} g^{\mathsf{v}_g(S)} \in \mathcal{F}(G)$$

be a sequence over G. Then $\operatorname{supp}(S) = \{g \in G : \mathsf{v}_g(S) > 0\} \subset G$ denotes the support of S, $\mathsf{v}_g(S)$ is called the *multiplicity* of S, and $\mathsf{h}(S) = \max\{\mathsf{v}_g(S) : g \in G\}$ is the *maximum* of the multiplicities of S. We say that S is squarefree if $\mathsf{v}_g(S) \leq 1$ for all $g \in G$. For convenience, we set $\Sigma_0(S) = \Sigma(S) \cup \{0\}$, Whenever we write a sequence in the form as in Definition 1.1, say $S = (n_1g) \cdot \ldots \cdot (n_rg)$ for some $g \in G$, then we tacitly assume that $1 = n_1 \leq n_2 \leq \cdots \leq n_r$.

Now we collect some useful lemmas, after which we will prove Theorem 1.2 and Theorem 1.3.

Lemma 2.1 [18] Let A and B be two finite subsets of an abelian group with $A \cap (-B) = \{0\}$. Then, $|A + B| \ge |A| + |B| - 1$, where $A + B = \{c = a + b : a \in A, b \in B\}$.

Lemma 2.2 [13, Theorem 4.3] Let A and B be two finite nonempty subsets of an abelian group with $St(A + B) = \{0\}$. Then, $|A + B| \ge |A| + |B| - 1$, where St(A + B) denotes the maximal subgroup H of G such that A + B + H = A + B.

Lemma 2.3 Let S be a sequence over an abelian group. If $\rho(S) \notin [1, h(S)]$ then $|\sum_0 (S)| \ge |S| + 1$.

Proof. Let h = h(S). Note that since $\rho(S) \neq 1$, we have $0 \notin \operatorname{supp}(S)$. Since no element occurs more than h times in S, we can write S as a product of h squarefree sequences, say $S = S_1 \cdot \ldots \cdot S_h$. Put $A_i = \operatorname{supp}(S_i) \cup \{0\}$ for every $i \in [1, h]$. Clearly, $\sum_{i=1}^{h} A_i \subseteq \sum_0 (S)$. Since $\rho(S) \notin [1, h]$, it follows that for any $(a_1, \ldots, a_h) \in A_1 \times \cdots \times A_h$, $a_1 + \cdots + a_h = 0$ implies $(a_1, \ldots, a_h) = (0, \ldots, 0)$. Applying Lemma 2.1 recursively, we obtain $|\sum_0 (S)| \geq |\sum_{i=1}^{h} A_i| \geq |\sum_{i=1}^{h-1} A_i| + |A_h| - 1 \geq \cdots \geq \sum_{i=1}^{h} |A_i| - h + 1 = \sum_{i=1}^{h} (|S_i| + 1) - h + 1 = \sum_{i=1}^{h} |S_i| + 1 = |S| + 1$.

Lemma 2.4 Let $S = S_1S_2$ be a sequence over an abelian group such that $St(\sum(S)) = \{0\}$. Then $|\sum(S)| \ge |\sum(S_1)| + |\sum_0(S_2)| - 1$.

Proof. If $\rho(S) = 0$, then the conclusion follows from [10, Proposition 5.3.1].

If $\rho(S) > 0$, it follows from Lemma 2.2 that $|\sum(S)| = |\sum_0(S)| = |\sum_0(S_1)| + |\sum_0(S_2)| \ge |\sum_0(S_1)| + |\sum_0(S_2)| - 1 \ge |\sum(S_1)| + |\sum_0(S_2)| - 1$.

Lemma 2.5 [10, Proposition 5.3.2] Let S be a zero-sum-free subset of an abelian group. Then $|\sum(S)| \ge 2|S| - 1$. In particular, if |S| = 3 and S contains no element of order two then $|\sum(S)| \ge 6$.

We also need the following technical result.

Lemma 2.6 Let S be a sequence over an abelian group such that every torsion element of S is of odd order. Then the following two statements hold.

(i) If h(S) = 1 and $|S| = \rho(S) = 3$ then $|\sum (S)| = 7$.

(ii) Suppose $S = a_1^2 \cdot a_2^2$ is not strictly behaving. If $\rho(S) \notin \{1,2\}$ then $|\sum(S)| \ge 7$. In particular, if $\rho(S) \notin \{1,2,3\}$ then $|\sum(S)| \ge 8$.

Proof. (i). Let $S = a \cdot b \cdot c$. Since $|S| = \rho(S) = 3$, S is its own unique nonempty zero-sum subsequence. It is easy to see that a, b, c, b+c(=-a), a+c(=-b), a+b(=-c), a+b+c(=0) are pairwise distinct elements of $\sum(S)$. Hence, $|\sum(S)| = 7$.

(ii). Assume first $\rho(S) \notin \{1, 2\}$. Since S is not strictly behaving and every torsion element in S is of odd order, then

$$a_1, 2a_1, a_2, a_2 + a_1, a_2 + 2a_1, 2a_2, 2a_2 + a_1$$

are pairwise distinct elements of $\sum(S)$. Moreover, if $\rho(S) \neq 3$, then $2a_2 + 2a_1$ is an element of $\sum(S)$ distinct from all of the elements listed above. This completes the proof. \Box

Lemma 2.7 Let $T = (n_1g) \cdot \ldots \cdot (n_kg)$ be a strictly g-behaving sequence with $\sum_{i=1}^k n_i < \operatorname{ord}(g)$. Let $m = 2k - |\sum(T)|$. If $m \in [2, k]$ then for every element $x \in \{g, 2g, \ldots, (m-1)g\}$, there exists a subsequence U of T such that |U| < h(T) and $\sigma(U) = x$.

Proof. Let $h_1 = \mathsf{v}_g(T)$ and $h_2 = \mathsf{v}_{2g}(T)$ and $h_3 = k - h_1 - h_2$. We have $|\sum(T)| = \sum_{i=1}^k n_i \ge h_1 + 2h_2 + 3h_3$, which implies $h_1 \ge h_3 + m \ge m$. The lemma follows. \Box

The following notation will be used often in the proof of Theorem 1.2. For $S \in \mathcal{F}(G)$ and $g \in G$, define

$$\lambda_S(g) = |\sum (S \cdot g) \setminus \sum (S)|.$$

Lemma 2.8 $\lambda_S(g) \leq \lambda_{Sg^{-1}}(g)$ for every g|S.

Proof. We have

$$\begin{split} \lambda_S(g) &= |\sum(S \cdot g) \setminus \sum(S)| \\ &= |(\sum(S) \cup g + \sum_0(S)) \setminus \sum(S)| \\ &= |(g + \sum_0(S)) \setminus \sum(S)| \\ &= |(g + \sum_0(S)) \setminus (\sum(Sg^{-1}) \cup g + \sum_0(Sg^{-1}))| \\ &\leq |(g + \sum_0(S)) \setminus (g + \sum_0(Sg^{-1}))| \\ &= |\sum_0(S) \setminus \sum_0(Sg^{-1})| \\ &\leq |\sum(S) \setminus \sum(Sg^{-1})| \\ &= \lambda_{Sg^{-1}}(g). \end{split}$$

Proof of Theorem 1.2. Let $H = \langle \operatorname{supp}(S) \rangle$. Assume that the theorem is false and let S be a minimal-length counterexample. Thus, $|\sum(S)| \leq \min(|H| - 1, 2|S| - 2)$. Let $S = a_1 \cdot \ldots \cdot a_r$, where r = |S|. Clearly, $r \geq 3$ and $0 \notin \operatorname{supp}(S)$.

Claim A. $\langle \operatorname{supp}(Sg^{-1}) \rangle = H$ for every g|S.

Proof of Claim A. Suppose to the contrary that there exists g|S such that $\langle \operatorname{supp}(Sg^{-1})\rangle$ is a proper subgroup of H. Thus, $g \notin \langle \operatorname{supp}(Sg^{-1})\rangle$. Note that either $\rho(Sg^{-1}) \ge \rho(S) > h(S) \ge h(Sg^{-1})$ or $\rho(Sg^{-1}) = 0$ according to $0 \in \sum(S)$ or not. By Lemma 2.3, we have $|\sum_0 (Sg^{-1})| \ge |Sg^{-1}| + 1 = r$. It follows that

$$\begin{split} \sum_{0}(S)| &= |\sum_{0}(Sg^{-1}) \cup g + \sum_{0}(Sg^{-1})| \\ &= |\sum_{0}(Sg^{-1})| + |g + \sum_{0}(Sg^{-1})| \\ &= 2|\sum_{0}(Sg^{-1})| \\ &\ge 2r, \end{split}$$

a contradiction. This proves Claim A.

Now we distinguish two cases.

Case 1. There exists some $i \in [1, r]$ such that Sa_i^{-1} is strictly behaving.

We may assume that $Sa_r^{-1} = (n_1g) \cdot \ldots \cdot (n_{r-1}g)$ is strictly g-behaving for some g|S. Let $A_{r-1} = \sum (Sa_r^{-1})$. Since S is not strictly behaving, we have $a_r \notin A_{r-1}$. By Claim A, we have that $a_r \in H = \langle \operatorname{supp}(Sa_r^{-1}) \rangle = \langle g \rangle$, i.e., $a_r = n_rg$ with $n_r \in [1 + \sum_{i=1}^{r-1} n_i, \operatorname{ord}(g) - 1]$. Clearly, $A_{r-1} = \{g, 2g, \ldots, (\sum_{i=1}^{r-1} n_i)g\}$. Let $m = 2(r-1) - \sum_{i=1}^{r-1} n_i$. Since $n_rg, (n_r+1)g \in \sum (S) \setminus A_{r-1}$, we have $m = 2(r-1) - \sum_{i=1}^{r-1} n_i \geq |\sum (S)| - |A_{r-1}| \geq 2$. Therefore, $m \in [2, r-1]$.

Let

$$\ell = \operatorname{ord}(g) - n_r.$$

Suppose $m > \ell$. Applying Lemma 2.7 with $T = Sa_r^{-1}$, there exists a subsequence U of T such that $|U| < h(T) \le h(S)$ and $\sigma(U) = \ell g$. It follows that $\sigma(U \cdot a_r) = \ell g + n_r g = 0$ and $|U \cdot a_r| \le h(S)$, a contradiction. Hence,

 $m \leq \ell$.

It follows that A_{r-1} and $\{n_r g, (n_r+1)g, \ldots, (n_r+m)g\}$ are disjoint subsets of $\sum(S)$, which implies $|\sum(S)| \ge 2(r-1) - m + (m+1) = 2r - 1$, a contradiction. This proves the theorem for this case.

Case 2. The length of each strictly behaving subsequence of S is less than r-1.

Case 2 is harder than Case 1, and we shall devote most of the rest of this section to prove it. Choose an arbitrary element g of S. From the minimality of S and Claim A we obtain that $|\sum (Sg^{-1})| \ge \min(|H|, 2|Sg^{-1}| - 1) = 2|Sg^{-1}| - 1 = 2r - 3$. This together with $|\sum (S)| \le 2r - 2$ shows that

$$\lambda_{Sg^{-1}}(g) \le 1. \tag{1}$$

Now, by Lemma 2.8, we get

$$\lambda_S(g) \le 1 \tag{2}$$

for every g|S.

If $\lambda_S(g) = 0$ for every g|S, then $g + \sum(S) = \sum(S)$ for every g|S. This shows that $H + \sum(S) = \langle \sup p(S) \rangle + \sum(S) = \sum(S)$. It follows that $|\sum(S)| \ge |H|$, a contradiction. Therefore, $\lambda_S(f) = 1$ for some element f|S. By the minimality of S and Claim A, we

have that $|\sum (Sf^{-1})| \ge \min(|H|, 2|Sf^{-1}| - 1) = 2|Sf^{-1}| - 1 = 2r - 3$. It follows from Lemma 2.8 that $|\sum (S)| \ge |\sum (Sf^{-1})| + \lambda_S(f) \ge 2r - 2$, and thus

$$|\sum(S)| = 2r - 2.$$
 (3)

Claim B. $|\sum(S)| = |H| - 1.$

Proof of Claim B. Let a be an element of S such that $v_a(S) = h(S)$. Assume first that

$$\langle a \rangle = H.$$

By (2), we have that $\sum(S)$ is an arithmetic progression with difference a. Since $\rho(S) \notin [1, \mathbf{h}(S)]$ and $|S| \geq 3$, there exists an element b of $\operatorname{supp}(S)$ distinct from a and -a. By (2), $\lambda_S(b) \leq 1$, which implies $|\sum(S)| = |H| - 1$.

Now assume that $\langle a \rangle$ is a proper subgroup of H. Then we have a decomposition of $\sum(S) = \bigcup_{i=0}^{r_a} C_i^a$, where $C_0^a, C_1^a, \ldots, C_{r_a}^a$ are subsets of pairwise distinct cosets modulo $\langle a \rangle$ and $C_0^a \subseteq \langle a \rangle$. Since $\operatorname{supp}(S) \not\subseteq \langle a \rangle$, it follows that $\sum(S) \setminus \langle a \rangle \neq \emptyset$, and so $r_a \ge 1$. Note that

$$\begin{aligned} |(a+\sum(S))\setminus\sum(S)| &= |(\bigcup_{\substack{i=0\\r_a}}^{r_a}(a+C_i^a))\setminus(\bigcup_{i=0}^{r_a}C_i^a)| \\ &= |\bigcup_{\substack{i=0\\i=0}}^{r_a}((a+C_i^a)\setminus C_i^a)| \\ &= \sum_{i=0}^{r_a}|(a+C_i^a)\setminus C_i^a|. \end{aligned}$$

By (2), $|(a + \sum(S)) \setminus \sum(S)| \leq |\sum(S \cdot a) \setminus \sum(S)| = \lambda_S(a) \leq 1$. Therefore, we conclude that a is a torsion element, and there exists at most one index i of $[0, r_a]$ such that $|C_i^a| < \operatorname{ord}(a)$. In other words, there exists $k \in [0, r_a]$ such that C_i^a is a complete coset of $\langle a \rangle$ for every $i \in [0, r_a] \setminus \{k\}$. Denote by ϕ_a the canonical epimorphism of H onto $H/\langle a \rangle$.

We claim that

 $|C_k^a| \ge 2.$

Assume $k \neq 0$. Taking an element $x \in C_k^a$, there is a subsequence W of S such that $x = \sigma(W)$. If a|W, since $x \neq a$, then $x - a = \sigma(Wa^{-1}) \in C_k^a$. Otherwise, $x + a = \sigma(Wa) \in C_k^a$. Hence, $|C_k^a| \geq 2$. Assume k = 0 and $0 \in \sum(S)$ then $\{0, a\} \subseteq C_0^a$. Otherwise, $0 \notin \sum(S)$. By Lemma 2.5, $\mathsf{v}_a(S) = \mathsf{h}(S) \geq 2$ and $\{a, 2a\} \subseteq C_k^a$. This proves that $|C_k^a| \geq 2$. Therefore,

$$|C_i^a| \ge 2 \tag{4}$$

for every $i \in [0, r_a]$.

By (2) and (4), we conclude that

$$\phi_a(g) + \phi_a(\sum(S)) = \phi_a(\sum(S)) \tag{5}$$

for every g|S, or equivalently, $g + \sum(S) + \langle a \rangle = \sum(S) + \langle a \rangle$. Therefore, $\langle \operatorname{supp}(S) \rangle + \sum(S) + \langle a \rangle = \sum(S) + \langle a \rangle$, which implies

$$\sum(S) + \langle a \rangle = H.$$

Choose b|S such that $b \notin \langle a \rangle$. By (5), there exists $t \in [0, r_a] \setminus \{k\}$ such that $\phi_a(b) + \phi_a(C_t^a) = \phi_a(C_k^a)$. Therefore, $(b + C_t^a) \cap C_i^a = \emptyset$ for every $i \in [0, r_a] \setminus \{k\}$. Hence,

$$\begin{aligned} |(b + C_t^a) \setminus C_k^a| &= |(b + C_t^a) \setminus \sum(S)| \\ &\leq |(b + \sum(S)) \setminus \sum(S)| \\ &\leq |\sum(S \cdot b) \setminus \sum(S)| \\ &= \lambda_S(b) \\ &\leq 1. \end{aligned}$$

It follows from $|C_t^a| = \operatorname{ord}(a)$ and $|C_k^a| \leq \operatorname{ord}(a)$ that $|C_k^a| \in {\operatorname{ord}(a) - 1, \operatorname{ord}(a)}$. Note that

$$\begin{split} |\sum(S) + \langle a \rangle| &= |\bigcup_{i=0}^{l^a} (C_i^a + \langle a \rangle)| \\ &= \sum_{i=0}^{r_a} |C_i^a + \langle a \rangle| \\ &= |C_k^a + \langle a \rangle| + \sum_{i \in [0, r_a] \setminus \{k\}} |C_i^a + \langle a \rangle| \\ &\leq |C_k^a| + 1 + \sum_{i \in [0, r_a] \setminus \{k\}} |C_i^a| \\ &= |\sum(S)| + 1. \end{split}$$

Therefore, $|\sum(S)| \ge |\sum(S) + \langle a \rangle| - 1 = |H| - 1$. Hence, $\sum(S) = |H| - 1$. This proves Claim B.

It follows from (3) and Claim B that

$$r = \frac{|H| + 1}{2},\tag{6}$$

$$|H| \equiv 1 \pmod{2} \tag{7}$$

and

$$\operatorname{St}(\sum(S)) = \{0\}.$$
(8)

By (2) and (8), we have that

$$\lambda_S(g) = 1 \tag{9}$$

for every g|S.

We show next that

$$\mathsf{h}(S) \ge 2. \tag{10}$$

Assume to the contrary that, a_1, \ldots, a_r are pairwise distinct. Take an arbitrary element $g \in H$. Since |H| is odd, there exists at most one index $i \in [1, r]$ such that $2a_i = g$. By rearranging if necessary we assume that $2a_j \neq g$ holds for every $j \in [2, r]$. Consider two subsets $\{0, a_1, \ldots, a_r\}$ and $\{g - a_2, \ldots, g - a_r\}$ of H. Since $|\{0, a_1, \ldots, a_r\}| + |\{g - a_2, \ldots, g - a_i\}| = 2r = |H| + 1$, the two subsets cannot be disjoint. Therefore, $g - a_i = 0$ or $g - a_i = a_j$ for some $i \in [2, r]$ and some $j \in [1, r] \setminus \{i\}$. So, $g = a_i$ or $g = a_i + a_j$. It follows that $\sum(S) = H$, a contradiction. This proves (10).

Claim C. $|\sum(T)| < |\langle \operatorname{supp}(T) \rangle|$ for any nonempty proper subsequence T of S.

Proof of Claim C. Suppose to the contrary that there exists a nonempty proper subsequence T of S such that $|\sum(T)| = |\langle \operatorname{supp}(T) \rangle|$. Then $0 \in \sum(S)$ and $\sum(S) = \sum_0(T) + \sum_0(ST^{-1})$, which implies $\langle \operatorname{supp}(T) \rangle \subseteq \operatorname{St}(\sum(S))$, a contradiction with (8). This proves Claim C.

By (10), $\rho(S) \notin \{1, 2\}$. We claim that

Claim D. $|\operatorname{supp}(S)| \ge 3$.

Proof of Claim D. Suppose to the contrary that $|\operatorname{supp}(S)| = 2$. We may rewrite $S = a_1^{\gamma} \cdot a_2^{\beta}$ where $\gamma \geq \beta \geq 2$.

Suppose $\beta \geq 3$. Then $\rho(S) \notin [1,3]$ and $Sa_1^{-2} \cdot a_2^{-2}$ is not strictly behaving. It follows from the minimality of S and Claim C that $|\sum (Sa_1^{-2} \cdot a_2^{-2})| \geq 2|Sa_1^{-2} \cdot a_2^{-2}| - 1 = 2r - 9$. By (7), we have $\rho(a_1^2 \cdot a_2^2) = 0$. By Lemma 2.6 (ii), $|\sum_0 (a_1^2 \cdot a_2^2)| \geq 9$. It follows from Lemma 2.4 that $|\sum (S)| \geq |\sum (Sa_1^{-2} \cdot a_2^{-2})| + |\sum_0 (a_1^2 \cdot a_2^2)| - 1 \geq 2r - 1$, a contradiction. Hence,

 $\beta = 2.$

Let $X_0 = \{a_1, 2a_1, \ldots, \gamma a_1\}$, $X_1 = a_2 + \{0, a_1, \ldots, \gamma a_1\}$ and $X_2 = 2a_2 + \{0, a_1, \ldots, (\gamma - 1)a_1\}$. It is easy to see that X_0, X_1 and X_2 are subsets of $\sum(S)$. Also, $X_0 \cap X_1 = \emptyset$ and $X_1 \cap X_2 = \emptyset$. We show next that

$$|X_0 \cap X_2| \le \gamma - 2.$$

The argument is as follows. If $2a_2 + (\gamma - 1)a_1 \in X_0$, then by $\rho(S) \notin [1, \gamma]$ we derive that $2a_2 + (\gamma - 1)a_1 = \gamma a_1$. Hence $2a_2 = a_1$ and S is a_2 -strictly behaving, a contradiction. Therefore,

$$2a_2 + (\gamma - 1)a_1 \in X_2 \setminus X_0.$$

If $2a_2 + (\gamma - 2)a_1 \in X_0$, then by $\rho(S) \notin [1, \gamma]$ we derive that $2a_2 + (\gamma - 2)a_1 \in \{\gamma a_1, (\gamma - 1)a_1\}$. Therefore, $2a_1 = 2a_2$ or $a_1 = 2a_2$. If $2a_1 = 2a_2$, then by (7) we get $a_1 = a_2$, a contradiction. Hence, $a_1 = 2a_2$ and S is a_2 -strictly behaving, also a contradiction. Therefore,

$$2a_2 + (\gamma - 2)a_1 \in X_2 \setminus X_0.$$

This proves $|X_0 \cap X_2| \leq \gamma - 2$. Now we have

$$\begin{split} |\sum(S)| &\geq |X_0 \cup X_1 \cup X_2| \\ &= |X_1| + |X_0 \cup X_2| \\ &= |X_1| + |X_0| + |X_2| - |X_0 \cap X_2| \\ &\geq (\gamma + 1) + \gamma + \gamma - (\gamma - 2) \\ &= 2\gamma + 3 \\ &= 2r - 1, \end{split}$$

a contradiction. This proves Claim D.

By (10) and Claim D, we have

 $r \geq 4.$

Claim E. There exists a squarefree subsequence U|S of length three such that either $|SU^{-1}| = 1$ or SU^{-1} is not strictly behaving.

Proof of Claim E. Suppose that Claim E is false. By (10) and Claim D, we may assume that a_{r-2}, a_{r-1}, a_r are pairwise distinct and $\mathsf{v}_{a_{r-2}}(S) \ge 2$. Let $U_1 = a_{r-2}a_{r-1}a_r$. Then $|SU_1^{-1}| \ge 2$ and $SU_1^{-1} = (n_1g) \cdot \ldots \cdot (n_{r-3}g)$ is strictly g-behaving. By Claim C, $\sum_{i=1}^{r-3} n_i < \operatorname{ord}(g)$. Let $A_{r-3} = \{g, 2g, \ldots, (\sum_{i=1}^{r-3} n_i)g\}$. By the choice of U_1 we have that $a_{r-2} = n_{r-2}g$

with $n_{r-2} \le \sum_{i=1}^{r-3} n_i$.

Suppose $\langle g \rangle \neq H$. By Claim C, we have $\operatorname{ord}(g) \geq 1 + \sum_{i=1}^{r-2} n_i \geq r-1$. It follows from Claim B and (7) that $|\sum(S)| \geq 3 \operatorname{ord}(g) - 1 \geq 3(r-1) - 1 \geq 2r - 1$, a contradiction. Hence,

 $\langle g \rangle = H.$

By Lemma 2.8, Claim B and (9),

$$|\sum(Sc^{-1})| \le |\sum(S)| - \lambda_S(c) = \operatorname{ord}(g) - 2$$
 (11)

for every c|S.

Since $\langle g \rangle = H$, $a_i = n_i g$ for i = r - 1, r. We may assume that $n_r > n_{r-1}$. Recalling that the maximal length of strictly behaving subsequence of S is less than r - 1, it follows from $\rho(S) \notin \{1, 2\}$ that

$$\sum_{i=1}^{r-2} n_i < n_{r-1} < n_r < \operatorname{ord}(g) - 1.$$

If $n_{r-1} = 1 + \sum_{i=1}^{r-2} n_i$ then $\sum (Sa_r^{-1}) = \{g, 2g, \dots, (\sum_{i=1}^{r-1} n_i)g\}$. It follows from (11)

that $\sum_{i=1}^{r-1} n_i \leq \operatorname{ord}(g) - 2$. Since $a_r \notin \{g, -g\}$, it is easy to see that $\lambda_{Sa_r^{-1}}(a_r) \geq 2$, a contradiction with (1). Hence,

$$n_{r-1} > 1 + \sum_{i=1}^{r-2} n_i$$

By (6), we have $\sum_{i=1}^{r-2} n_i \ge r-2 = \frac{\operatorname{ord}(g)-3}{2}$, which implies $\operatorname{ord}(g) - n_r \le \operatorname{ord}(g) - (3 + \sum_{i=1}^{r-2} n_i) \le \sum_{i=1}^{r-2} n_i$. It follows that

$$\sum (Sa_{r-1}^{-1}) = \{n_r g, (n_r+1)g, \dots, \operatorname{ord}(g)g\} \cup \{g, 2g, \dots, (\sum_{i=1}^{r-2} n_i)g\}.$$

Hence, $\{(n_{r-1}-1)g, n_{r-1}g\} \subseteq \sum(S) \setminus \sum(Sa_{r-1}^{-1})$. This gives us that $\lambda_{Sa_{r-1}^{-1}}(a_{r-1}) \ge 2$, a contradiction with (1). This proves Claim E.

Now we choose a squarefree subsequence U of S as in Claim E. It follows from the minimality of S and Claim C that $|\sum(SU^{-1})| \ge 2|SU^{-1}| - 1$. It follows from (7), Lemma 2.4, Lemma 2.5 and Lemma 2.6 (i) that $|\sum(S)| \ge |\sum(SU^{-1})| + |\sum_0(U)| - 1 \ge 2|S| - 1$, a contradiction. This completes the proof of Theorem 1.2 given Case 2, thereby finishing the proof of Theorem 1.2.

Remark 2.9 The following example shows that the conclusion of Theorem 1.2 is, in a certain sense, best possible. Let G be an abelian group, and let $g \in G \setminus \{0\}$. Let $S = g^h \cdot (kg)$ where $2 \le h + 1 \le k \le \operatorname{ord}(g) - h$. It is easy to check that S is not strictly behaving, $\rho(S) \notin [1, h]$ and $|\sum(S)| = 2|S| - 1$.

Proof of Theorem 1.3. Let r = |S|. If S is not strictly behaving, the conclusion follows immediately from Theorem 1.2. Hence, we may assume that $S = (n_1g) \dots (n_rg)$ is strictly g-behaving for some $g \neq 0$. Since $0 \in \sum(S)$, we have that $\sum_{i=1}^r n_i \ge \operatorname{ord}(g)$, which implies $\langle \operatorname{supp}(S) \rangle = \langle g \rangle = \sum(S)$.

Proof of Corollary 1.4. Assume $\rho(S) \notin [1, h(S)]$. By Theorem 1.3, we have that $|\sum(S)| \ge \min(|\langle \operatorname{supp}(S) \rangle|, 2|S| - 1) = |\langle \operatorname{supp}(S) \rangle|$.

Proof of Corollary 1.5. Let r = |S|. Since $\rho(S) = 0$ and r > n/2 we infer that $\langle \operatorname{supp}(S) \rangle = C_n$. Note that $|\sum(S)| \le n - 1 \le \min(|C_n| - 1, 2r - 2)$. By Theorem 1.2 $S = (n_1g) \cdot \ldots \cdot (n_rg)$ is strictly g-behaving for some $g \in C_n$. Now the corollary follows from the obvious fact that $\sum_{i=1}^r n_i < \operatorname{ord}(g)$.

Proof of Corollary 1.6. Since $\langle \operatorname{supp}(S) \rangle$ is not cyclic, then S is not strictly behaving. It follows from $\rho(S) = 0$ and Theorem 1.2 that $|\sum(S)| \ge \min(|\langle \operatorname{supp}(S) \rangle|, 2|S| - 1) = 2|S| - 1$.

Proof of Corollary 1.7. By Theorem 1.2, we need only to consider the case that $S = (n_1g) \cdot \ldots \cdot (n_rg)$ is strictly g-behaving for some $g \in G$. Now we have $|\sum_{i=1}^r n_i \ge \mathsf{v}_g(S) + 2(|S| - \mathsf{v}_g(S)) = 2|S| - \mathsf{v}_g(S) \ge 2|S| - \mathsf{h}(S)$.

Proof of Corollary 1.8. We may assume that $|S| \ge 2$. Since h(S) = 1, we have that S is not strictly behaving. From $0 \notin S$ we know that $\rho(S) \notin [1, h(S)]$. It follows from Theorem 1.2 that $|\sum(S)| \ge \min(|\langle S \rangle|, 2|S| - 1)$.

Acknowledgement. We would like to thank the referees for their helpful suggestions. This work has been supported by NSFC with project no.10971108.

References

- [1] N. Alon, Subset sums, J. Number Theory 27 (1987) 196–205.
- [2] M. DeVos, L. Goddyn, B. Mohar, A generalization of Kneser's addition theorem, Adv. Math. 220 (2009) 1531–1548.
- [3] M. Freeze, W.W. Smith, Sumsets of zerofree sequence, Arab. J. Sci. Eng. Sect. C Theme 26 (2001) 97–105.
- [4] W.D. Gao, Addition theorems for finite abelian groups, J. Number Theory 53 (1995) 241–246.
- [5] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100–103.
- [6] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006) 337–369.
- [7] W.D. Gao, I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006) 26–32.
- [8] W.D. Gao, J.J. Zhuang, Sequences not containing long zero-sum subsequences, Eur. J. Comb. 26 (2005) 1053–1059.
- [9] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86.

- [10] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006.
- [11] D.J. Grynkiewicz, O. Ordaz, M.T. Varela, F. Villarroel, On Erdős-Ginzburg-Ziv inverse theorems, Acta Arith. 129 (2007) 307–318.
- [12] Y.O. Hamidoune, Adding distinct congruence classes, Combin. Probab. Comput. 7 (1998) 81–87.
- [13] M.B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer, New York.
- [14] J.E. Olson, E.T. White, Sums from a sequence of group elements, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, 1977, pp. 215–222.
- [15] A. Pixton, Sequences with small subsum sets, J. Number Theory 129 (2009) 806–817.
- [16] S. Savchev, F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math. 307 (2007) 2671–2679.
- [17] Z. Shan, A conjecture in elementary number theory, Adv. Math. (Beijing) 12 (1983) 299–301.
- [18] P. Scherk, Distinct elements in a set of sums, Am. Math. Mon. 62 (1955) 46–47.
- [19] P.Z. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A 114 (2007) 1545–1551.
- [20] P.Z. Yuan, Subsequence sums of a zero-sumfree sequence, Eur. J. Combin. 30 (2009) 439–446.