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Abstract

Wang and Yeh proved that if P(x) is a polynomial with nonnegative and non-
decreasing coefficients, then P(x + d) is unimodal for any d > 0. A mode of a
unimodal polynomial f(z) = a9 + a1z + -+ + aypa™ is an index k such that ay is
the maximum coefficient. Suppose that M, (P,d) is the smallest mode of P(z + d),
and M*(P,d) the greatest mode. Wang and Yeh conjectured that if do > dy > 0,
then M. (P,dy1) > M.(P,d2) and M*(P,dy) > M*(P,d2). We give a proof of this
conjecture.

Keywords: unimodal polynomials, the smallest mode, the greatest mode.

1 Introduction

This paper is concerned with the modes of unimodal polynomials constructed from non-
negative and nondecreasing sequences. Recall that a sequence {a;}o<i<m is unimodal if
there exists an index 0 < k < m such that

ag < o S Op—1 S A 2 Qg1 2000 2 Gy

Such an index k is called a mode of the sequence. Note that a mode of a sequence may
not be unique. The sequence {a; }o<i<m is said to be spiral if

am < G0 < Gy S a1 <00 S appy, (1.1)
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where [%] stands for the largest integer not exceeding %. Clearly, the spiral property

implies unimodality. We say that a sequence {a; }o<ij<m is log-concave if for 1 < k < m—1,
ap > Qp1ap-1,

and it is ratio monotone if

a Qo [0 a _[(m—1
_m§m1§__'§mz§'”§m—2}§1 (1.2)
and a
Q a a;— -1
0 <« & << T o< i <1 (1.3)
Am—1 A —2 A —i a'm—[%]

It is easily checked that ratio monotonicity implies both log-concavity and the spiral
property.

Let P(x) = ap+ a1x + -+ - + a,;, 2™ be a polynomial with nonnegative coefficients. We
say that P(z) is unimodal if the sequence {a;}o<i<m is unimodal. A mode of {a; }o<i<m is
also called a mode of P(x). Similarly, we say that P(z) is log-concave or ratio monotone
if the sequence {a;}o<i<m is log-concave or ratio monotone.

Throughout this paper P(x) is assumed to be a polynomial with nonnegative and
nondecreasing coefficients. Boros and Moll [2] proved that P(z + 1), as a polynomial of
x, is unimodal. Alvarez et al. [1] showed that P(z + n) is also unimodal for any positive
integer n, and conjectured that P(z + d) is unimodal for any d > 0. Wang and Yeh [6]
confirmed this conjecture and studied the modes of P(x+d). Llamas and Martinez-Bernal
[5] obtained the log-concavity of P(xz+c¢) for ¢ > 1. Chen, Yang and Zhou [4] showed that
P(x + 1) is ratio monotone, which leads to an alternative proof of the ratio monotonicity
of the Boros-Moll polynomials [3].

Let M.(P,d) and M*(P,d) denote the smallest and the greatest mode of P(x + d)
respectively. Our main result is the following theorem, which was conjectured by Wang
and Yeh [6].

Theorem 1.1 Suppose that P(x) is a monic polynomial of degree m > 1 with nonnegative
and nondecreasing coefficients. Then for 0 < dy < dy, we have M,(P,dy) > M,(P,ds)
and M*(P, dl) Z M*(P, dQ)

NE

bk(l‘) =

From now on, we further assume that P(x) is monic, that is a,, = 1. For 0 < k <m,

let
AP 1.4
)@t (1.4)
J:

Therefore, by(x) is of degree m — k and b (0) = ax. For 1 < k < m, let
fr(@) = b1 (x) — bi(z), (1.5)

which is of degree m — k + 1. Let fkn) (x) denote the n-th derivative of fi(z).
Our proof of Theorem 1.1 relies on the fact that fi(x) has at most one real zero on

B

(0, +00). In fact, the derivative f,gn) (x) of order n < m — k has the same property. We
establish this property by induction on n.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2010), #R00 2



2 Proof of Theorem 1.1
To prove Theorem 1.1, we need the following three lemmas.
Lemma 2.1 For any 0 < k < m, we have bj,(x) = (k + 1)bg41(x).
Proof. Let B;j(x) denote the summand of by(z). It is readily checked that
B () = (k + 1) Bjpta(2).

The result immediately follows.
Lemma 2.2 Forn >1 and 1 <k <m, we have

£ (@) = (k41— Dbrnr (2) — (k + n)nbisn(2),
where (m); =m(m —1)---(m —j+1).
Proof. Use induction on n. For n = 1, we have

f (@) = /(x) = kb = (k+ Dbera.

Assume that the lemma holds for n = 7, namely,

£ (@) = (k45 = D)besa (@) = (k + 5)jber (@).

Therefore,

(@) = (k+ g — Dby i (2) = (k+ 5);0 ()

= (k+J) (k47 = 1)jbraj(x) = (K +7 + 1)k +5)ibrejar ()

= (k4 7)jsibesi(x) — (K +J + 1) j51bkr 11 ().

This completes the proof.

(2.1)

Lemma 2.3 For1 <k <m and 0 <n <m—k, the polynomial f,g") () has at most one
real zero on the interval (0,+00). In particular, fy(x) has at most one real zero on the

interval (0, +00).

Proof. Use induction on n from m — k to 0. First, we consider the case n = m — k. Recall

that . .
HOESS (k ! 1) ajal =y (‘,7{) aja’ ",
j=k—1 =k

Thus fi(z) is a polynomial of degree m — k + 1. Note that

K ) = (m—k+ 1>!(kT1)amw+ [(’Z__ f)m - (Z?)m] (m =Rt
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Clearly, f,gmfk)(:c) has at most one real zero xy on (0,4+00). So the lemma is true for
n=m—k.

Suppose that the lemma holds for n = j, where m — k > j > 1. We proceed to show
that fé] _1)(1‘) has at most one real zero on (0, +o00). From the inductive hypothesis it

follows that f,gj)(a;) has at most one real zero on (0, +00). In light of (2.1), it is easy to
verify that f)(400) > 0 and

F(0) = (k +J = Djass1 = (k+ j)jare; < 0.

It follows that the polynomial f,gj _1)(x) is decreasing up to certain point and becomes
increasing on the interval (0, +o0c). Again by (2.1) we find fé]_l)(%—oo) > (0 and

FIV0) = (k+§ — 2)j-1ap4j-2 — (k+j — 1)j_1apsj-1 < 0.

So we conclude that f,gj “Y(z) has at most one real zero on (0, +00). This completes the
proof. |
Proof of Theorem 1.1. In view of (1.4), we have

m m

P(x+d) = Zak(m + d)*

k=0 k=0

I
S
e
=
8
B

Let us first prove that M*(P,dy) > M*(P,dy). Suppose that M*(P,dy) = k. If k =m,
then the inequality M*(P,d;) > M*(P,dy) holds. For the case 0 < k < m, it suffices
to verify that bg(dy) > bgy1(d2). By Lemma 2.2, fry1(z) has at most one real zero on
(0,400). Note that

fe41(0) <0 and  frgq(400) > 0.
From M*(P,d;) = k it follows that bg(dy) > bry1(dy), that is fry1(di) > 0. Therefore,
fk+1(d2) > 0, that iS, bk(dg) > bk+1(d2).

Similarly, it can be seen that M, (P,d;) > M.(P,dy). Suppose that M, (P,ds) = k. If
k = 0, then we have M,(P,dy) > M.(P,dy). If 0 < k < m, it is necessary to show that
bp—1(d1) < bg(dy). Again, by Lemma 2.2, we know that fi(z) has at most one real zero
on (0,400). From M, (P, dy) = k, it follows that by_1(ds) < bx(dz), that is fx(d2) < 0. By
the boundary conditions

fr(0) <0 and  fi(4+o00) >0,
we obtain fi(d;) < 0, that is bx_1(d1) < bg(dy). This completes the proof. |
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