The Method of Combinatorial Telescoping

William Y.C. Chen ${ }^{1}$, Qing-Hu Hou ${ }^{2}$ and Lisa H. Sun ${ }^{3}$
Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China
${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ hou@nankai.edu.cn, ${ }^{3}$ sunhui@nankai.edu.cn

Abstract

We present a method for proving q-series identities by combinatorial telescoping, in the sense that one can transform a bijection or a classification of combinatorial objects into a telescoping relation. We shall illustrate this method by giving a combinatorial proof of Watson's identity which implies the Rogers-Ramanujan identities.

Keywords. Watson's identity, Sylvester's identity, Rogers-Ramanujan identities, combinatorial telescoping

AMS Subject Classification. 05A17; 11P83

1 Introduction

The main objective of this paper is to present the method of combinatorial telescoping for proving q-series identities. A benchmark of this approach is the classical identity of Watson which implies the Rogers-Ramanujan identities.

There have been many combinatorial proofs of the Rogers-Ramanujan identities. Schur [13] provided an involution for the following identity which is equivalent to the first RogersRamanujan identity:

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)\left(1+\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k-1) / 2}
$$

Andrews [1] proved the Rogers-Ramanujan identities by introducing the notion of k-partitions. Garsia and Milne [9] gave a bijection by using the involution principle. Bressoud and Zeilberger $[5,6]$ provided a different involution principle proof based on an algebraic proof due to Bressoud [4]. Boulet and Pak [3] found a combinatorial proof which relies on the symmetry properties of a generalization of Dyson's rank.

Let us consider a summation of the following form

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} f(k) . \tag{1.1}
\end{equation*}
$$

Suppose that $f(k)$ is a weighted count of a set A_{k}, that is,

$$
f(k)=\sum_{\alpha \in A_{k}} w(\alpha)
$$

Motivated by the idea of creative telescoping of Zeilberger [16], we aim to find sets B_{k} and H_{k} with a weight assignment w such that there is a weight preserving bijection

$$
\begin{equation*}
\phi_{k}: A_{k} \longrightarrow B_{k} \cup H_{k} \cup H_{k+1} \tag{1.2}
\end{equation*}
$$

where \cup stands for disjoint union. Since ϕ_{k} and ϕ_{k+1} are weight preserving, both $\phi_{k}^{-1}\left(H_{k+1}\right)$ and $\phi_{k+1}^{-1}\left(H_{k+1}\right)$ have the same weight as H_{k+1}. Realizing that $\phi_{k}^{-1}\left(H_{k+1}\right) \subseteq A_{k}$ and $\phi_{k+1}^{-1}\left(H_{k+1}\right) \subseteq A_{k+1}$, they cancel each other in the sum (1.1). More precisely, if we set

$$
g(k)=\sum_{\alpha \in B_{k}} w(\alpha) \quad \text { and } \quad h(k)=\sum_{\alpha \in H_{k}} w(\alpha)
$$

then the bijection (1.2) implies that

$$
\begin{equation*}
f(k)=g(k)+h(k)+h(k+1) \tag{1.3}
\end{equation*}
$$

To see that the above equation is indeed a telescoping relation with respect to the sum (1.1), let

$$
f^{\prime}(k)=(-1)^{k} f(k), \quad g^{\prime}(k)=(-1)^{k} g(k), \quad h^{\prime}(k)=(-1)^{k} h(k)
$$

Thus we have

$$
\begin{equation*}
f^{\prime}(k)=g^{\prime}(k)+h^{\prime}(k)-h^{\prime}(k+1) \tag{1.4}
\end{equation*}
$$

Just like the conditions for the creative telescoping, we suppose that $H_{0}=\emptyset$ and H_{k} vanishes for sufficiently large k. Summing (1.4) over k, we deduce the following relation

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} f(k)=\sum_{k=0}^{\infty}(-1)^{k} g(k) \tag{1.5}
\end{equation*}
$$

which is often an identity we wish to establish.
The above approach to proving an identity like (1.5) is called combinatorial telescoping. It can be seen that the bijections ϕ_{k} lead to a correspondence between $A=\bigcup_{k=0}^{\infty} A_{k}$ and $B=\bigcup_{k=0}^{\infty} B_{k}$ after the cancelations of H_{k} 's. To be more specific, we can derive a bijection

$$
\phi: A \backslash \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(H_{k} \cup H_{k+1}\right) \longrightarrow B
$$

and an involution

$$
\psi: \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(H_{k} \cup H_{k+1}\right) \longrightarrow \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(H_{k} \cup H_{k+1}\right),
$$

given by $\phi(\alpha)=\phi_{k}(\alpha)$ if $\alpha \in A_{k}$ and

$$
\psi(\alpha)= \begin{cases}\phi_{k-1}^{-1} \phi_{k}(\alpha), & \text { if } \alpha \in \phi_{k}^{-1}\left(H_{k}\right), \\ \phi_{k+1}^{-1} \phi_{k}(\alpha), & \text { if } \alpha \in \phi_{k}^{-1}\left(H_{k+1}\right) .\end{cases}
$$

In the examples of this paper, the set A_{k} is of the following form

$$
A_{k}=\bigcup_{n=0}^{\infty} A_{n, k} .
$$

Fix an integer n, for any nonnegative integer k, we can establish a bijection $\phi_{n, k}$ such that the corresponding set $B_{n, k}$ is related to $A_{n, k}, A_{n-1, k}, \ldots, A_{n-r, k}$ for an integer r. Let

$$
F_{n, k}=\sum_{\alpha \in A_{n, k}} w(\alpha)
$$

be a weighted count of the set $A_{n, k}$, and let

$$
F_{n}=\sum_{k=0}^{\infty}(-1)^{k} F_{n, k} .
$$

By (1.5), the bijections $\left\{\phi_{n, k}\right\}_{k=0}^{\infty}$ imply a recurrence relation of F_{n}, which leads to an explicit expression $u(n)$ for F_{n} by iteration. Finally, we deduce the following identity

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} f(k)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{n=0}^{\infty} F_{n, k}=\sum_{n=0}^{\infty} F_{n}=\sum_{n=0}^{\infty} u(n) . \tag{1.6}
\end{equation*}
$$

As a simple example, one can easily give a combinatorial telescoping proof of the classical identity of Gauss, see also, $[7,11,12]$:

$$
\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}0, & n \text { odd } \\
(1-q)\left(1-q^{3}\right) \cdots\left(1-q^{n-1}\right), & n \text { even }\end{cases}
$$

Let us consider the following reformulation

$$
\sum_{k=0}^{n}(-1)^{k} \frac{1}{(q ; q)_{k}(q ; q)_{n-k}}= \begin{cases}0, & n \text { odd } \tag{1.7}\\ \frac{1}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{n}\right)}, & n \text { even } .\end{cases}
$$

Let

$$
P_{n, k}=\left\{(\lambda, \mu): \lambda_{1} \leq k, \mu_{1} \leq n-k\right\},
$$

where λ and μ are partitions, and let

$$
H_{n, k}=\left\{(\lambda, \mu) \in P_{n, k}: m_{k}(\lambda)<m_{n-k}(\mu)\right\},
$$

where $m_{k}(\lambda)$ denotes the number of occurrences of the part k in λ and we adopt the convention that $m_{0}(\lambda)=+\infty$. By definition, $H_{n, k}=\emptyset$ for $k=0$ or $k>n$. For any integers $n \geq 1$ and $k \geq 0$, we shall construct a bijection

$$
\phi_{n, k}: P_{n, k} \longrightarrow\{0, n, 2 n, \ldots\} \times P_{n-2, k} \cup H_{n, k} \cup H_{n, k+1} .
$$

Let $(\lambda, \mu) \in P_{n, k}$. If $m_{k}(\lambda)<m_{n-k}(\mu)$, then $(\lambda, \mu) \in H_{n, k}$. In this case, $\phi_{n, k}((\lambda, \mu))=$ (λ, μ). If $m_{k}(\lambda) \geq m_{n-k}(\mu)$, we let $m_{n-k}(\mu)=t$. In this case, if $\mu_{t+1}=n-1-k$, we increase each of the first t parts of λ by one and decrease each of the first t parts of μ by one. It is easily seen that the resulting pair of partitions $\left(\lambda^{\prime}, \mu^{\prime}\right)$ belongs to $H_{n, k+1}$ and we set $\phi_{n, k}((\lambda, \mu))=\left(\lambda^{\prime}, \mu^{\prime}\right)$. Finally, if $\mu_{t+1} \leq n-2-k$, then we set

$$
\phi_{n, k}((\lambda, \mu))=(t n,(\hat{\lambda}, \hat{\mu})) \in\{0, n, 2 n, \ldots\} \times P_{n-2, k},
$$

where $\hat{\lambda}=\left(\lambda_{t+1}, \lambda_{t+2}, \ldots\right)$ and $\hat{\mu}=\left(\mu_{t+1}, \mu_{t+2}, \ldots\right)$ are the partitions obtained from λ and μ by removing the first t parts. Define the weight function w on $P_{n, k}$ and $\{0, n, 2 n, \ldots\} \times P_{n-2, k}$ as follows

$$
w(\lambda, \mu)=q^{|\lambda|+|\mu|}, \quad \text { and } \quad w(\operatorname{tn},(\lambda, \mu))=q^{t n+|\lambda|+|\mu|}
$$

where $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots$. It can be checked that $\phi_{n, k}$ is weight preserving. Hence we obtain the following recurrence relation

$$
\begin{equation*}
F_{n}(q)=\frac{1}{1-q^{n}} F_{n-2}(q) \tag{1.8}
\end{equation*}
$$

where $F_{n}(q)$ denotes the sum on the left hand side of (1.7). By iteration of (1.8), we arrive at (1.7).

It should be noted that the bijections $\phi_{n, k}$ lead to an involution on $P_{n, k}$, which can be considered as a variation of the involution given by Chen, Hou and Lascoux [7].

In Section 2, we use the idea of combinatorial telescoping to give a proof of Watson's identity [15] in the following form, see also [10, Section 2.7],

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} \frac{1-a q^{2 k}}{(q ; q)_{k}\left(a q^{k} ; q\right)_{\infty}} a^{2 k} q^{k(5 k-1) / 2}=\sum_{n=0}^{\infty} \frac{a^{n} q^{n^{2}}}{(q ; q)_{n}} \tag{1.9}
\end{equation*}
$$

where

$$
(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right), \quad \text { and } \quad(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

Setting $a=1$, Watson's identity reduces to Schur's identity [3]

$$
\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k-1) / 2}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}
$$

Applying Jacobi's triple product identity to the left hand side, we are led to the first RogersRamanujan identity. Similarly, setting $a=q$ in Watson's identity yields the second RogersRamanujan identity.

Here is a sketch of the proof. Assume that the k-th summand regardless of the sign on the left hand side of (1.9) is the weight of a set P_{k}. We further divide P_{k} into a disjoint union of subsets $P_{n, k}, n=0,1, \ldots$, by considering the expansion of the summand in the parameter a. For a positive integer n and a nonnegative integer k, we can construct a bijection

$$
\begin{equation*}
\phi_{n, k}: P_{n, k} \rightarrow\{n\} \times P_{n, k} \cup\{2 n-1\} \times P_{n-1, k} \cup H_{n, k} \cup H_{n, k+1} \tag{1.10}
\end{equation*}
$$

Let

$$
F_{n}(a, q)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{\alpha \in P_{n, k}} w(\alpha)
$$

The bijections $\phi_{n, k}$ yield a recurrence relation

$$
F_{n}(a, q)=q^{n} F_{n}(a, q)+a q^{2 n-1} F_{n-1}(a, q), \quad n \geq 1
$$

By iteration, we find that $F_{n}(a, q)=a^{n} q^{n^{2}} /(q ; q)_{n}$, and hence (1.9) holds.
As another example, it can be seen that the method of combinatorial telescoping also applies to Sylvester's identity [14]

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} x^{k} \frac{1-x q^{2 k+1}}{(q ; q)_{k}\left(x q^{k+1} ; q\right)_{\infty}}=1 \tag{1.11}
\end{equation*}
$$

This identity has been investigated by Andrews $[1,2]$.

2 Watson's identity

In this section, we shall use Watson's identity as an example to illustrate the idea of combinatorial telescoping. Let us recall some definitions concerning partitions. A partition is a non-increasing finite sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$. The integers λ_{i} are called the parts of λ. The sum of parts and the number of parts are denoted by $|\lambda|=\lambda_{1}+\cdots+\lambda_{\ell}$ and $\ell(\lambda)=\ell$, respectively. The number of k-parts in λ is denoted by $m_{k}(\lambda)$. The special partition with no parts is denoted by \varnothing. We shall use diagrams to represent partitions and use columns instead of rows to represent parts.

Set

$$
\begin{equation*}
P_{k}=\left\{(\tau, \lambda, \mu): \tau=\left(k^{2 k}, k-1, \ldots, 2,1\right), \lambda_{\ell(\lambda)} \geq k, \lambda_{i} \neq 2 k, \mu_{1} \leq k\right\} \tag{2.1}
\end{equation*}
$$

where $k^{2 k}$ denotes $2 k$ occurrences of a part k. In other words, τ is a trapezoid partition with $|\tau|=k(5 k-1) / 2, \lambda$ is a partition with parts at least k but not equal to $2 k$, and μ is a partition with parts at most k. In particular, we have $P_{0}=\{(\varnothing, \lambda, \varnothing)\}$. It is clear that the k-th summand of the left hand side of (1.9) without sign can be viewed as the weight of P_{k}, that is,

$$
\sum_{(\tau, \lambda, \mu) \in P_{k}} a^{\ell(\lambda)+2 k} q^{|\tau|+|\lambda|+|\mu|}
$$

According to the exponent of a in the above definition, we divide P_{k} into a disjoint union of subsets

$$
\begin{equation*}
P_{n, k}=\left\{(\tau, \lambda, \mu) \in P_{k}: \ell(\lambda)=n-2 k\right\} \tag{2.2}
\end{equation*}
$$

with $P_{n, 0}=\left\{(\varnothing, \lambda, \varnothing) \in P_{0}: \ell(\lambda)=n\right\}$ and $P_{n, k}=\emptyset$ for $n<2 k$. The elements of $P_{n, k}$ are illustrated in Figure 2.1.

We have the following combinatorial telescoping relation for $P_{n, k}$.

Figure 2.1: The diagram $(\tau, \lambda, \mu) \in P_{n, k}$

Theorem 2.1 Let

$$
\begin{equation*}
H_{n, k}=\left\{(\tau, \lambda, \mu) \in P_{n, k}: m_{k}(\lambda)+2>m_{k}(\mu)\right\} . \tag{2.3}
\end{equation*}
$$

Then, for any positive integer n and any nonnegative integer k, there is a bijection

$$
\begin{equation*}
\phi_{n, k}: P_{n, k} \longrightarrow\{n\} \times P_{n, k} \cup\{2 n-1\} \times P_{n-1, k} \cup H_{n, k} \cup H_{n, k+1} . \tag{2.4}
\end{equation*}
$$

Proof. The bijection is essentially a classification of $P_{n, k}$ into four cases. Let (τ, λ, μ) be a 3-tuple of partitions in $P_{n, k}$.
Case 1. $m_{k}(\lambda)+2>m_{k}(\mu)$. In this case, $(\tau, \lambda, \mu) \in H_{n, k}$ and the image of (τ, λ, μ) is defined to be itself.

Case 2. $m_{k}(\lambda)+2 \leq m_{k}(\mu)$ and $m_{2 k+1}(\lambda)=0$. Denote the set of 3-tuples (τ, λ, μ) in this case by $U_{n, k}$. Note that

$$
U_{n, 0}=\left\{(\varnothing, \lambda, \varnothing) \in P_{n, 0}: m_{1}(\lambda)=0\right\} .
$$

Since $m_{k}(\mu) \geq m_{k}(\lambda)+2$, we can remove $\left(m_{k}(\lambda)+2\right) k$-parts from μ to generate a partition μ^{\prime}. In the meantime, we change each k-part of λ into a $2 k$-part in order to obtain a partition λ^{\prime} whose minimal part is strictly greater than k.

Next, we decrease each part of λ^{\prime} by one in order to produce a partition $\lambda^{\prime \prime}$ whose minimal part is greater than or equal to k. Since λ contains no parts equal to $2 k+1$, we see that $\lambda^{\prime \prime}$ contains no parts equal to $2 k$. Thus we obtain a bijection $\varphi_{1}: U_{n, k} \rightarrow\{n\} \times P_{n, k}$ defined by $(\tau, \lambda, \mu) \mapsto\left(n,\left(\tau, \lambda^{\prime \prime}, \mu^{\prime}\right)\right)$. This case is illustrated by Figure 2.2.

Figure 2.2: The resulting partition under the bijection φ_{1}.
Case 3. $m_{k}(\lambda)+2 \leq m_{k}(\mu), m_{2 k+1}(\lambda)>0$ and $m_{k+1}(\lambda)+m_{2 k+2}(\lambda)=0$. Denote the set of 3 -tuples (τ, λ, μ) in this case by $V_{n, k}$. We remark that when $k=0$, one 1-part is regarded as a $(2 k+1)$-part and the other 1-parts are regarded as $(k+1)$-parts so that

$$
V_{n, 0}=\left\{(\varnothing, \lambda, \varnothing) \in P_{n, 0}: m_{1}(\lambda)=1 \text { and } m_{2}(\lambda)=0\right\} .
$$

Let $\lambda^{\prime}, \mu^{\prime}$ be given as in Case 2 . We can remove one $(2 k+1)$-part from λ^{\prime} and decrease each of the remaining parts by two in order to obtain $\lambda^{\prime \prime}$. This leads to a bijection $\varphi_{2}: V_{n, k} \rightarrow$ $\{2 n-1\} \times P_{n-1, k}$ as given by $(\tau, \lambda, \mu) \mapsto\left(2 n-1,\left(\tau, \lambda^{\prime \prime}, \mu^{\prime}\right)\right)$. See Figure 2.3 for an illustration.

Figure 2.3: The resulting partition under the bijection φ_{2}.

Case 4. $m_{k}(\lambda)+2 \leq m_{k}(\mu), m_{2 k+1}(\lambda)>0$ and $m_{k+1}(\lambda)+m_{2 k+2}(\lambda)>0$. Denote the set of 3 -tuples (τ, λ, μ) in this case by $W_{n, k}$. As in Case 3, we have

$$
W_{n, 0}=\left\{(\varnothing, \lambda, \varnothing) \in P_{n, 0}: m_{1}(\lambda)>0 \text { and } m_{1}(\lambda)+m_{2}(\lambda)>1\right\}
$$

Let $\lambda^{\prime}, \mu^{\prime}$ be given as in Case 2 . We can change each $(2 k+2)$-part of λ^{\prime} to a $(k+1)$-part and add $m_{2 k+2}\left(\lambda^{\prime}\right)(k+1)$-parts to μ^{\prime}. Denote the resulting partitions by $\lambda^{\prime \prime}$ and $\mu^{\prime \prime}$. Then we have

$$
\begin{equation*}
m_{k+1}\left(\lambda^{\prime \prime}\right)=m_{k+1}(\lambda)+m_{2 k+2}(\lambda)>0, \quad m_{k+1}\left(\mu^{\prime \prime}\right)=m_{2 k+2}(\lambda) \tag{2.5}
\end{equation*}
$$

Now remove one $(k+1)$-part and one $(2 k+1)$-part from $\lambda^{\prime \prime}$ to obtain $\lambda^{\prime \prime \prime}$. By (2.5), we find

$$
m_{k+1}\left(\lambda^{\prime \prime \prime}\right)=m_{k+1}\left(\lambda^{\prime \prime}\right)-1 \geq m_{k+1}\left(\mu^{\prime \prime}\right)-1
$$

Moreover, it is clear that

$$
|\lambda|+|\mu|=2 k+(k+1)+(2 k+1)+\left|\lambda^{\prime \prime \prime}\right|+\left|\mu^{\prime \prime}\right|
$$

Let τ^{\prime} be the trapezoid partition of size $k+1$. So we obtain a bijection $\varphi_{3}: W_{n, k} \rightarrow H_{n, k+1}$ defined by $(\tau, \lambda, \mu) \mapsto\left(\tau^{\prime}, \lambda^{\prime \prime \prime}, \mu^{\prime \prime}\right)$. This case is illustrated in Figure 2.4.

Figure 2.4: The resulting partition under the bijection φ_{3}.

Assign a weight function w on $P_{n, k},\{n\} \times P_{n, k}$ and $\{2 n-1\} \times P_{n-1, k}$ as follows:

$$
\begin{aligned}
& w(\tau, \lambda, \mu)=a^{n} q^{|\tau|+|\lambda|+|\mu|} \\
& w(n,(\tau, \lambda, \mu))=q^{n} \cdot a^{n} q^{|\tau|+|\lambda|+|\mu|} \\
& w(2 n-1,(\tau, \lambda, \mu))=a q^{2 n-1} \cdot a^{n-1} q^{|\tau|+|\lambda|+|\mu|}
\end{aligned}
$$

Observe that the bijections φ_{1}, φ_{2} and φ_{3} are weight preserving. In addition, $H_{n, 0}=\emptyset$ and $H_{n, k}=\emptyset$ for $k>\frac{n}{2}$. Thus the bijections $\phi_{n, k}$ immediately lead to a recurrence relation of $F_{n}(a, q)$ defined as follows.

Corollary 2.2 Let

$$
\begin{equation*}
F_{n}(a, q)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{(\tau, \lambda, \mu) \in P_{n, k}} a^{n} q^{|\tau|+|\lambda|+|\mu|} \tag{2.6}
\end{equation*}
$$

Then, for any positive integer n, we have

$$
\begin{equation*}
F_{n}(a, q)=q^{n} F_{n}(a, q)+a q^{2 n-1} F_{n-1}(a, q) \tag{2.7}
\end{equation*}
$$

Since $F_{0}(a, q)=1$, by iteration we find that

$$
F_{n}(a, q)=\frac{a q^{2 n-1}}{1-q^{n}} F_{n-1}(a, q)=\frac{a^{2} q^{4 n-4}}{\left(1-q^{n}\right)\left(1-q^{n-1}\right)} F_{n-2}(a, q)=\cdots=\frac{a^{n} q^{n^{2}}}{(q ; q)_{n}}
$$

Summing over n, we arrive at Watson's identity (1.9).

3 Sylvester's identity

In this section, we describe the approach of combinatorial telescoping for Sylvester's identity (1.11). Define

$$
Q_{n, k}=\left\{(\tau, \lambda): \tau=\left(k^{k+1}, k-1, \ldots, 2,1\right), \lambda_{i} \neq 2 k+1, m_{>k}(\lambda)=n-k\right\}
$$

where $m_{>k}(\lambda)$ denotes the number of parts of λ which are greater than k. See Figure 3.1 for an illustration. In particular, we have

$$
Q_{n, 0}=\left\{(\varnothing, \lambda): \lambda_{i} \neq 1, \ell(\lambda)=n\right\} .
$$

Figure 3.1: The diagram of $(\tau, \lambda) \in Q_{n, k}$.
Let

$$
H_{n, k}=\left\{(\tau, \lambda) \in Q_{n, k}: m_{k+1}(\lambda) \geq m_{k}(\lambda)\right\} .
$$

Then, for each positive integer n and each nonnegative integer k, we have a bijection

$$
\phi_{n, k}: Q_{n, k} \longrightarrow\{n\} \times Q_{n, k} \cup H_{n, k} \cup H_{n, k+1},
$$

which is a classification of $Q_{n, k}$ into three cases. Let $(\tau, \lambda) \in Q_{n, k}$.

Case 1. $m_{k+1}(\lambda) \geq m_{k}(\lambda)$. In this case, $(\tau, \lambda) \in H_{n, k}$ and the image of (τ, λ) under $\phi_{n, k}$ is defined to be itself.

Case 2. $m_{k+1}(\lambda)<m_{k}(\lambda)$ and $m_{2 k+2}(\lambda)=0$. Denote the set of pairs (τ, λ) in this case by $U_{n, k}$. We remove one k-part from λ. Then, for each $(k+1)$-part of λ, we can add it to a k-part to form a $(2 k+1)$-part. Finally, we decrease each part greater than $k+1$ by one to generate a partition λ^{\prime}. Since $m_{2 k+2}(\lambda)=0$, we see that $\left(\tau, \lambda^{\prime}\right) \in Q_{n, k}$. So we obtain a bijection $\varphi_{1}: U_{n, k} \rightarrow\{n\} \times Q_{n, k}$ given by $(\tau, \lambda) \mapsto\left(n,\left(\tau, \lambda^{\prime}\right)\right)$.
Case 3. $m_{k+1}(\lambda)<m_{k}(\lambda)$ and $m_{2 k+2}(\lambda)>0$. Denote the set of pairs (τ, λ) in this case by $V_{n, k}$. We first remove one k-part and one $(2 k+2)$-part from λ and add them to τ to form a partition τ^{\prime}. Here τ^{\prime} is a trapezoid partition of size $k+1$. Then for each $(k+1)$-part of λ we combine it with a k-part to form a $(2 k+1)$-part. Finally we decompose each $(2 k+3)$-part of λ into a $(k+1)$-part and a $(k+2)$-part to form a partition λ^{\prime}. Since $m_{2 k+3}\left(\lambda^{\prime}\right)=0$, we obtain a bijection $\varphi_{2}: V_{n, k} \rightarrow H_{n, k+1}$ defined by $(\tau, \lambda) \mapsto\left(\tau^{\prime}, \lambda^{\prime}\right)$.

It is not difficult to see that Sylvester's identity follows from the bijections $\phi_{n, k}$. Let

$$
I_{n}(q)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{(\tau, \lambda) \in Q_{n, k}} q^{|\tau|+|\lambda|}
$$

Noting that $H_{n, 0}=\emptyset$ because of the definition $m_{0}(\lambda)=+\infty$, the bijections $\phi_{n, k}$ lead to the recurrence relation

$$
I_{n}(q)=q^{n} I_{n}(q)
$$

which implies that $I_{n}(q)=0$ for $n \geq 1$. Clearly $I_{0}(q)=1$, and hence Sylvester's identity holds.

To conclude this paper, we notice that both Watson's identity and Sylvester's identity can be verified by employing the q-Zeilberger algorithm for infinite q-series developed by Chen, Hou and Mu [8]. Let

$$
f(a)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(1-a q^{2 k}\right)}{(q ; q)_{k}\left(a q^{k} ; q\right)_{\infty}} a^{2 k} q^{k(5 k-1) / 2}
$$

Denote the k-th summand of $f(a)$ by $F_{k}(a)$. The q-Zeilberger algorithm gives that

$$
\begin{equation*}
F_{k}(a)-F_{k}(a q)-a q F_{k}\left(a q^{2}\right)=H_{k+1}(a)-H_{k}(a) \tag{3.1}
\end{equation*}
$$

where

$$
H_{k}(a)=(-1)^{k} \frac{\left(-1-q^{k}+a q^{2 k}\right)}{(q ; q)_{k-1}\left(a q^{k} ; q\right)_{\infty}} a^{2 k} q^{k(5 k-1) / 2}
$$

Summing (3.1) over k, we find that

$$
f(a)=f(a q)+a q f\left(a q^{2}\right)
$$

Extracting the coefficients of a^{n} leads to the same recurrence relation as (2.7). It is easily checked that the right hand side of (1.9) satisfies the same recursion. By Theorem 3.1 of Chen, Hou and $\mathrm{Mu}[8]$, one sees that (1.9) holds for any a provided that it is valid for the trivial case $a=0$. Similarly, let

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} x^{k} \frac{1-x q^{2 k+1}}{(q ; q)_{k}\left(x q^{k+1} ; q\right)_{\infty}}
$$

The q-Zeilberger algorithm gives that

$$
\begin{equation*}
F_{k}(x)-F_{k}(x q)=H_{k+1}(x)-H_{k}(x) \tag{3.2}
\end{equation*}
$$

where $F_{k}(x)$ is the k-th summand of $f(x)$ and

$$
\begin{equation*}
H_{k}(x)=(-1)^{k+1} \frac{q^{k(3 k+1) / 2} x^{k}}{(q ; q)_{k-1}\left(x q^{k+1} ; q\right)_{\infty}} \tag{3.3}
\end{equation*}
$$

Summing (3.2) over k, we deduce that $f(x)=f(x q)$, which implies $f(x)=1$.

Acknowledgments. We wish to thank the referees for helpful comments. This work was supported by the National Science Foundation, the PCSIRT project, the Project NCET-09-0479, and the Fundamental Research Funds for Universities of the Ministry of Education of China.

References

[1] G.E. Andrews, Partially ordered sets and the Rogers-Ramanujan identities, Aequationes Math. 12 (1975) 94-107.
[2] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 1976.
[3] C. Boulet and I. Pak, A combinatorial proof of the Rogers-Ramanujan and Schur identities, J. Combin. Theory, Ser. A 113 (2006) 1019-1030.
[4] D.M. Bressoud, An easy proof of the Rogers-Ramanujan identities, J. Number Theory 16 (1983) 235-241.
[5] D.M. Bressoud and D. Zeilberger, A short Rogers-Ramanujan bijection, Discrete Math. 38 (1982) 313-315.
[6] D.M. Bressoud and D. Zeilberger, Generalized Rogers-Ramanujan bijections, Adv. Math. 78 (1989) 42-75.
[7] W.Y.C. Chen, Q.-H. Hou and A. Lascoux, An involution for the Gauss identity, J. Combin. Theory, Ser. A 102 (2003) 309-320.
[8] W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu, Nonterminating basic hypergeometric series and the q-Zeilberger algorithm, Proc. Edinb. Math. Soc. 51 (2008) 609-633.
[9] A.M. Garsia and S.C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory, Ser. A 31 (1981) 289-339.
[10] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Ed., Cambridge University Press, Cambridge, MA, 2004.
[11] J.Y. Lee, A combinatorial proof for an identity of Gauss, Ramanujan J. 21 (2010) 65-69.
[12] I. Pak, The nature of partition bijections I. Involutions, Adv. Appl. Math. 33 (2004) 263-289.
[13] I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006) 5-75.
[14] J.J. Sylvester, A constructive theory of partitions, arranged in three acts, an interact, and an exodion, Amer. J. Math. 5 (1882) 251-330.
[15] G.N. Watson, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (1929) 4-9.
[16] D. Zeilberger, The method of creatvie telescoping, J. Symbolic Comput. 11 (1991) 195204.

