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Abstract. We present a method for proving q-series identities by combinatorial telescoping,
in the sense that one can transform a bijection or a classification of combinatorial objects
into a telescoping relation. We shall illustrate this method by giving a combinatorial proof
of Watson’s identity which implies the Rogers-Ramanujan identities.
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1 Introduction

The main objective of this paper is to present the method of combinatorial telescoping for
proving q-series identities. A benchmark of this approach is the classical identity of Watson
which implies the Rogers-Ramanujan identities.

There have been many combinatorial proofs of the Rogers-Ramanujan identities. Schur
[13] provided an involution for the following identity which is equivalent to the first Rogers-
Ramanujan identity:

∞∏

k=1

(1− qk)

(

1 +
∞∑

k=1

qk
2

(1− q)(1− q2) ⋅ ⋅ ⋅ (1− qk)

)

=
∞∑

k=−∞

(−1)kqk(5k−1)/2.

Andrews [1] proved the Rogers-Ramanujan identities by introducing the notion of k-partitions.
Garsia and Milne [9] gave a bijection by using the involution principle. Bressoud and Zeil-
berger [5,6] provided a different involution principle proof based on an algebraic proof due to
Bressoud [4]. Boulet and Pak [3] found a combinatorial proof which relies on the symmetry
properties of a generalization of Dyson’s rank.

Let us consider a summation of the following form

∞∑

k=0

(−1)kf(k). (1.1)
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Suppose that f(k) is a weighted count of a set Ak, that is,

f(k) =
∑

�∈Ak

w(�).

Motivated by the idea of creative telescoping of Zeilberger [16], we aim to find sets Bk and
Hk with a weight assignment w such that there is a weight preserving bijection

�k : Ak −→ Bk ∪Hk ∪Hk+1, (1.2)

where ∪ stands for disjoint union. Since �k and �k+1 are weight preserving, both �−1
k (Hk+1)

and �−1
k+1(Hk+1) have the same weight as Hk+1. Realizing that �−1

k (Hk+1) ⊆ Ak and

�−1
k+1(Hk+1) ⊆ Ak+1, they cancel each other in the sum (1.1). More precisely, if we set

g(k) =
∑

�∈Bk

w(�) and ℎ(k) =
∑

�∈Hk

w(�),

then the bijection (1.2) implies that

f(k) = g(k) + ℎ(k) + ℎ(k + 1). (1.3)

To see that the above equation is indeed a telescoping relation with respect to the sum (1.1),
let

f ′(k) = (−1)kf(k), g′(k) = (−1)kg(k), ℎ′(k) = (−1)kℎ(k).

Thus we have
f ′(k) = g′(k) + ℎ′(k)− ℎ′(k + 1). (1.4)

Just like the conditions for the creative telescoping, we suppose that H0 = ∅ and Hk vanishes
for sufficiently large k. Summing (1.4) over k, we deduce the following relation

∞∑

k=0

(−1)kf(k) =

∞∑

k=0

(−1)kg(k), (1.5)

which is often an identity we wish to establish.

The above approach to proving an identity like (1.5) is called combinatorial telescoping.

It can be seen that the bijections �k lead to a correspondence between A =
∞∪

k=0

Ak and

B =
∞∪

k=0

Bk after the cancelations of Hk’s. To be more specific, we can derive a bijection

� : A ∖
∞∪

k=0

�−1
k (Hk ∪Hk+1) −→ B

and an involution

 :

∞∪

k=0

�−1
k (Hk ∪Hk+1) −→

∞∪

k=0

�−1
k (Hk ∪Hk+1),
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given by �(�) = �k(�) if � ∈ Ak and

 (�) =

⎧

⎨

⎩

�−1
k−1�k(�), if � ∈ �−1

k (Hk),

�−1
k+1�k(�), if � ∈ �−1

k (Hk+1).

In the examples of this paper, the set Ak is of the following form

Ak =

∞∪

n=0

An,k.

Fix an integer n, for any nonnegative integer k, we can establish a bijection �n,k such that
the corresponding set Bn,k is related to An,k, An−1,k, . . . , An−r,k for an integer r. Let

Fn,k =
∑

�∈An,k

w(�)

be a weighted count of the set An,k, and let

Fn =

∞∑

k=0

(−1)kFn,k.

By (1.5), the bijections {�n,k}
∞
k=0 imply a recurrence relation of Fn, which leads to an explicit

expression u(n) for Fn by iteration. Finally, we deduce the following identity

∞∑

k=0

(−1)kf(k) =

∞∑

k=0

(−1)k
∞∑

n=0

Fn,k =

∞∑

n=0

Fn =

∞∑

n=0

u(n). (1.6)

As a simple example, one can easily give a combinatorial telescoping proof of the classical
identity of Gauss, see also, [7, 11,12]:

n∑

k=0

(−1)k
[
n

k

]

=

{

0, n odd,

(1− q)(1− q3) ⋅ ⋅ ⋅ (1− qn−1), n even.

Let us consider the following reformulation

n∑

k=0

(−1)k
1

(q; q)k(q; q)n−k
=

⎧

⎨

⎩

0, n odd,

1

(1− q2)(1 − q4) ⋅ ⋅ ⋅ (1− qn)
, n even.

(1.7)

Let
Pn,k = {(�, �) : �1 ≤ k, �1 ≤ n− k},

where � and � are partitions, and let

Hn,k = {(�, �) ∈ Pn,k : mk(�) < mn−k(�)},

wheremk(�) denotes the number of occurrences of the part k in � and we adopt the convention
that m0(�) = +∞. By definition, Hn,k = ∅ for k = 0 or k > n. For any integers n ≥ 1 and
k ≥ 0, we shall construct a bijection

�n,k : Pn,k −→ {0, n, 2n, . . .} × Pn−2,k ∪Hn,k ∪Hn,k+1.
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Let (�, �) ∈ Pn,k. If mk(�) < mn−k(�), then (�, �) ∈ Hn,k. In this case, �n,k
(
(�, �)

)
=

(�, �). If mk(�) ≥ mn−k(�), we let mn−k(�) = t. In this case, if �t+1 = n − 1 − k, we
increase each of the first t parts of � by one and decrease each of the first t parts of � by
one. It is easily seen that the resulting pair of partitions (�′, �′) belongs to Hn,k+1 and we
set �n,k

(
(�, �)

)
= (�′, �′). Finally, if �t+1 ≤ n− 2− k, then we set

�n,k
(
(�, �)

)
=
(
tn, (�̂, �̂)

)
∈ {0, n, 2n, . . .} × Pn−2,k,

where �̂ = (�t+1, �t+2, . . .) and �̂ = (�t+1, �t+2, . . .) are the partitions obtained from � and �
by removing the first t parts. Define the weight function w on Pn,k and {0, n, 2n, . . .}×Pn−2,k

as follows
w(�, �) = q∣�∣+∣�∣, and w(tn, (�, �)) = qtn+∣�∣+∣�∣,

where ∣�∣ = �1 + �2 + ⋅ ⋅ ⋅ . It can be checked that �n,k is weight preserving. Hence we obtain
the following recurrence relation

Fn(q) =
1

1− qn
Fn−2(q), (1.8)

where Fn(q) denotes the sum on the left hand side of (1.7). By iteration of (1.8), we arrive
at (1.7).

It should be noted that the bijections �n,k lead to an involution on Pn,k, which can be
considered as a variation of the involution given by Chen, Hou and Lascoux [7].

In Section 2, we use the idea of combinatorial telescoping to give a proof of Watson’s
identity [15] in the following form, see also [10, Section 2.7],

∞∑

k=0

(−1)k
1− aq2k

(q; q)k(aqk; q)∞
a2kqk(5k−1)/2 =

∞∑

n=0

anqn
2

(q; q)n
, (1.9)

where

(a; q)k = (1− a)(1 − aq) ⋅ ⋅ ⋅ (1− aqk−1), and (a; q)∞ =

∞∏

i=0

(1− aqi).

Setting a = 1, Watson’s identity reduces to Schur’s identity [3]

1

(q; q)∞

∞∑

k=−∞

(−1)kqk(5k−1)/2 =

∞∑

n=0

qn
2

(q; q)n
.

Applying Jacobi’s triple product identity to the left hand side, we are led to the first Rogers-
Ramanujan identity. Similarly, setting a = q in Watson’s identity yields the second Rogers-
Ramanujan identity.

Here is a sketch of the proof. Assume that the k-th summand regardless of the sign on
the left hand side of (1.9) is the weight of a set Pk. We further divide Pk into a disjoint union
of subsets Pn,k, n = 0, 1, . . ., by considering the expansion of the summand in the parameter
a. For a positive integer n and a nonnegative integer k, we can construct a bijection

�n,k : Pn,k → {n} × Pn,k ∪ {2n− 1} × Pn−1,k ∪Hn,k ∪Hn,k+1. (1.10)
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Let

Fn(a, q) =
∞∑

k=0

(−1)k
∑

�∈Pn,k

w(�).

The bijections �n,k yield a recurrence relation

Fn(a, q) = qnFn(a, q) + aq2n−1Fn−1(a, q), n ≥ 1.

By iteration, we find that Fn(a, q) = anqn
2

/(q; q)n, and hence (1.9) holds.

As another example, it can be seen that the method of combinatorial telescoping also
applies to Sylvester’s identity [14]

∞∑

k=0

(−1)kqk(3k+1)/2xk
1− xq2k+1

(q; q)k(xqk+1; q)∞
= 1. (1.11)

This identity has been investigated by Andrews [1, 2].

2 Watson’s identity

In this section, we shall use Watson’s identity as an example to illustrate the idea of com-
binatorial telescoping. Let us recall some definitions concerning partitions. A partition is a
non-increasing finite sequence of positive integers � = (�1, . . . , �ℓ). The integers �i are called
the parts of �. The sum of parts and the number of parts are denoted by ∣�∣ = �1 + ⋅ ⋅ ⋅+ �ℓ
and ℓ(�) = ℓ, respectively. The number of k-parts in � is denoted by mk(�). The special
partition with no parts is denoted by ∅. We shall use diagrams to represent partitions and
use columns instead of rows to represent parts.

Set

Pk = {(�, �, �) : � = (k2k, k − 1, . . . , 2, 1), �ℓ(�) ≥ k, �i ∕= 2k, �1 ≤ k}, (2.1)

where k2k denotes 2k occurrences of a part k. In other words, � is a trapezoid partition
with ∣� ∣ = k(5k − 1)/2, � is a partition with parts at least k but not equal to 2k, and � is a
partition with parts at most k. In particular, we have P0 = {(∅, �,∅)}. It is clear that the
k-th summand of the left hand side of (1.9) without sign can be viewed as the weight of Pk,
that is,

∑

(�, �, �)∈Pk

aℓ(�)+2kq∣� ∣+∣�∣+∣�∣.

According to the exponent of a in the above definition, we divide Pk into a disjoint union
of subsets

Pn,k = {(�, �, �) ∈ Pk : ℓ(�) = n− 2k}, (2.2)

with Pn,0 = {(∅, �,∅) ∈ P0 : ℓ(�) = n} and Pn,k = ∅ for n < 2k. The elements of Pn,k are
illustrated in Figure 2.1.

We have the following combinatorial telescoping relation for Pn,k.
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n

k �

︸ ︷︷ ︸

� ≥ k but without 2k

�

Figure 2.1: The diagram (�, �, �) ∈ Pn,k

Theorem 2.1 Let

Hn,k = {(�, �, �) ∈ Pn,k : mk(�) + 2 > mk(�)}. (2.3)

Then, for any positive integer n and any nonnegative integer k, there is a bijection

�n,k : Pn,k −→ {n} × Pn,k ∪ {2n − 1} × Pn−1,k ∪Hn,k ∪Hn,k+1. (2.4)

Proof. The bijection is essentially a classification of Pn,k into four cases. Let (�, �, �) be a
3-tuple of partitions in Pn,k.

Case 1. mk(�)+2 > mk(�). In this case, (�, �, �) ∈ Hn,k and the image of (�, �, �) is defined
to be itself.

Case 2. mk(�) + 2 ≤ mk(�) and m2k+1(�) = 0. Denote the set of 3-tuples (�, �, �) in this
case by Un,k. Note that

Un,0 = {(∅, �,∅) ∈ Pn,0 : m1(�) = 0}.

Since mk(�) ≥ mk(�) + 2, we can remove (mk(�) + 2) k-parts from � to generate a partition
�′. In the meantime, we change each k-part of � into a 2k-part in order to obtain a partition
�′ whose minimal part is strictly greater than k.

Next, we decrease each part of �′ by one in order to produce a partition �′′ whose minimal
part is greater than or equal to k. Since � contains no parts equal to 2k + 1, we see that �′′

contains no parts equal to 2k. Thus we obtain a bijection '1 : Un,k → {n} × Pn,k defined by
(�, �, �) 7→ (n, (�, �′′, �′)). This case is illustrated by Figure 2.2.

k �′′ �′

k k n− 2k

Figure 2.2: The resulting partition under the bijection '1.

Case 3. mk(�) + 2 ≤ mk(�), m2k+1(�) > 0 and mk+1(�) +m2k+2(�) = 0. Denote the set of
3-tuples (�, �, �) in this case by Vn,k. We remark that when k = 0, one 1-part is regarded as
a (2k + 1)-part and the other 1-parts are regarded as (k + 1)-parts so that

Vn,0 = {(∅, �,∅) ∈ Pn,0 : m1(�) = 1 and m2(�) = 0}.
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Let �′, �′ be given as in Case 2. We can remove one (2k + 1)-part from �′ and decrease each
of the remaining parts by two in order to obtain �′′. This leads to a bijection '2 : Vn,k →
{2n−1}×Pn−1,k as given by (�, �, �) 7→ (2n−1, (�, �′′, �′)). See Figure 2.3 for an illustration.

k �′′ �′

n− 2k − 12k + 1

Figure 2.3: The resulting partition under the bijection '2.

Case 4. mk(�) + 2 ≤ mk(�), m2k+1(�) > 0 and mk+1(�) +m2k+2(�) > 0. Denote the set of
3-tuples (�, �, �) in this case by Wn,k. As in Case 3, we have

Wn,0 = {(∅, �,∅) ∈ Pn,0 : m1(�) > 0 and m1(�) +m2(�) > 1}.

Let �′, �′ be given as in Case 2. We can change each (2k+2)-part of �′ to a (k+1)-part and
add m2k+2(�

′) (k + 1)-parts to �′. Denote the resulting partitions by �′′ and �′′. Then we
have

mk+1(�
′′) = mk+1(�) +m2k+2(�) > 0, mk+1(�

′′) = m2k+2(�). (2.5)

Now remove one (k + 1)-part and one (2k + 1)-part from �′′ to obtain �′′′. By (2.5), we find

mk+1(�
′′′) = mk+1(�

′′)− 1 ≥ mk+1(�
′′)− 1.

Moreover, it is clear that

∣�∣+ ∣�∣ = 2k + (k + 1) + (2k + 1) + ∣�′′′∣+ ∣�′′∣.

Let � ′ be the trapezoid partition of size k + 1. So we obtain a bijection '3 : Wn,k → Hn,k+1

defined by (�, �, �) 7→ (� ′, �′′′, �′′). This case is illustrated in Figure 2.4.

n

k + 1 �′′′

︸ ︷︷ ︸

� ′ ≥ k + 1 and without 2k + 2

�′′

Figure 2.4: The resulting partition under the bijection '3.

Assign a weight function w on Pn,k, {n} × Pn,k and {2n − 1} × Pn−1,k as follows:

w
(
�, �, �

)
= anq∣� ∣+∣�∣+∣�∣,

w
(
n, (�, �, �)

)
= qn ⋅ anq∣� ∣+∣�∣+∣�∣,

w
(
2n− 1, (�, �, �)

)
= aq2n−1 ⋅ an−1q∣� ∣+∣�∣+∣�∣.
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Observe that the bijections '1, '2 and '3 are weight preserving. In addition, Hn,0 = ∅ and
Hn,k = ∅ for k > n

2 . Thus the bijections �n,k immediately lead to a recurrence relation of
Fn(a, q) defined as follows.

Corollary 2.2 Let

Fn(a, q) =

∞∑

k=0

(−1)k
∑

(�,�,�)∈Pn,k

anq∣� ∣+∣�∣+∣�∣. (2.6)

Then, for any positive integer n, we have

Fn(a, q) = qnFn(a, q) + aq2n−1Fn−1(a, q). (2.7)

Since F0(a, q) = 1, by iteration we find that

Fn(a, q) =
aq2n−1

1− qn
Fn−1(a, q) =

a2q4n−4

(1− qn)(1− qn−1)
Fn−2(a, q) = ⋅ ⋅ ⋅ =

anqn
2

(q; q)n
.

Summing over n, we arrive at Watson’s identity (1.9).

3 Sylvester’s identity

In this section, we describe the approach of combinatorial telescoping for Sylvester’s identity
(1.11). Define

Qn,k = {(�, �) : � = (kk+1, k − 1, . . . , 2, 1), �i ∕= 2k + 1,m>k(�) = n− k},

where m>k(�) denotes the number of parts of � which are greater than k. See Figure 3.1 for
an illustration. In particular, we have

Qn,0 = {(∅, �) : �i ∕= 1, ℓ(�) = n}.

n

k �

�

︸ ︷︷ ︸

Figure 3.1: The diagram of (�, �) ∈ Qn,k.

Let
Hn,k = {(�, �) ∈ Qn,k : mk+1(�) ≥ mk(�)}.

Then, for each positive integer n and each nonnegative integer k, we have a bijection

�n,k : Qn,k −→ {n} ×Qn,k ∪Hn,k ∪Hn,k+1,

which is a classification of Qn,k into three cases. Let (�, �) ∈ Qn,k.
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Case 1. mk+1(�) ≥ mk(�). In this case, (�, �) ∈ Hn,k and the image of (�, �) under �n,k is
defined to be itself.

Case 2. mk+1(�) < mk(�) and m2k+2(�) = 0. Denote the set of pairs (�, �) in this case
by Un,k. We remove one k-part from �. Then, for each (k + 1)-part of �, we can add it to
a k-part to form a (2k + 1)-part. Finally, we decrease each part greater than k + 1 by one
to generate a partition �′. Since m2k+2(�) = 0, we see that (�, �′) ∈ Qn,k. So we obtain a
bijection '1 : Un,k → {n} ×Qn,k given by (�, �) 7→ (n, (�, �′)).

Case 3. mk+1(�) < mk(�) and m2k+2(�) > 0. Denote the set of pairs (�, �) in this case by
Vn,k. We first remove one k-part and one (2k + 2)-part from � and add them to � to form a
partition � ′. Here � ′ is a trapezoid partition of size k+1. Then for each (k+1)-part of � we
combine it with a k-part to form a (2k + 1)-part. Finally we decompose each (2k + 3)-part
of � into a (k + 1)-part and a (k + 2)-part to form a partition �′. Since m2k+3(�

′) = 0, we
obtain a bijection '2 : Vn,k → Hn,k+1 defined by (�, �) 7→ (� ′, �′).

It is not difficult to see that Sylvester’s identity follows from the bijections �n,k. Let

In(q) =

∞∑

k=0

(−1)k
∑

(�,�)∈Qn,k

q∣� ∣+∣�∣.

Noting that Hn,0 = ∅ because of the definition m0(�) = +∞, the bijections �n,k lead to the
recurrence relation

In(q) = qnIn(q),

which implies that In(q) = 0 for n ≥ 1. Clearly I0(q) = 1, and hence Sylvester’s identity
holds.

To conclude this paper, we notice that both Watson’s identity and Sylvester’s identity can
be verified by employing the q-Zeilberger algorithm for infinite q-series developed by Chen,
Hou and Mu [8]. Let

f(a) =

∞∑

k=0

(−1)k
(1− aq2k)

(q; q)k(aqk; q)∞
a2kqk(5k−1)/2.

Denote the k-th summand of f(a) by Fk(a). The q-Zeilberger algorithm gives that

Fk(a)− Fk(aq)− aqFk(aq
2) = Hk+1(a)−Hk(a), (3.1)

where

Hk(a) = (−1)k
(−1− qk + aq2k)

(q; q)k−1(aqk; q)∞
a2kqk(5k−1)/2.

Summing (3.1) over k, we find that

f(a) = f(aq) + aqf(aq2).

Extracting the coefficients of an leads to the same recurrence relation as (2.7). It is easily
checked that the right hand side of (1.9) satisfies the same recursion. By Theorem 3.1 of
Chen, Hou and Mu [8], one sees that (1.9) holds for any a provided that it is valid for the
trivial case a = 0. Similarly, let

f(x) =

∞∑

k=0

(−1)kqk(3k+1)/2xk
1− xq2k+1

(q; q)k(xqk+1; q)∞
.
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The q-Zeilberger algorithm gives that

Fk(x)− Fk(xq) = Hk+1(x)−Hk(x), (3.2)

where Fk(x) is the k-th summand of f(x) and

Hk(x) = (−1)k+1 qk(3k+1)/2xk

(q; q)k−1(xqk+1; q)∞
. (3.3)

Summing (3.2) over k, we deduce that f(x) = f(xq), which implies f(x) = 1.
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