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Abstract
For many molecular structure descriptors the Volkmann tree Vn,d is extremal among n-vertex
trees in which no vertex has degree greater than d . The definition of Volkman trees is provided
and exemplified. For this important class of (molecular) graphs, formulas for the Randić and
general Randić indices, Zagreb indices, and nullity are given, as well as an asymptotic expression
for energy.

1 The Volkmann trees

Let G be a finite and undirected simple graph, with vertex set V (G) and edge set E(G) .

By n is denoted the order (= number of vertices, |V (G)|) of G . If G is connected and

|E(G)| = |V (G)|− 1 , then G is said to be a tree. In this paper we outline properties of a

special type of trees which, for reasons explained later, are referred to as the Volkmann

trees .

The Volkmann tree Vn,d of order n and degree d is constructed as follows:

If n = 1, 2, . . . , d + 1 then Vn,d is the n-vertex star.

Let n > d + 1 . Define ni as

ni = 1 +
i∑

j=1

d(d− 1)j−1 for i = 1, 2, . . . .
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and choose k such that

nk−1 < n ≤ nk .

Then, calculate the parameters m and h from

m =

⌊
n− nk−1

d− 1

⌋

and

h = n− nk−1 − (d− 1)m .

The vertices of Vn,d are arranged into k + 1 levels. In level 0 there is one vertex,

labeled by v0,1 . In level i , i = 1, 2, . . . , k − 1 , there are d(d − 1)i−1 vertices, labeled by

vi,1, vi,2, . . . , vi,d(d−1)i−1 . These are connected (in that order) to the vertices in level i− 1 ,

so that d − 1 vertices from level i are adjacent to each vertex from level i − 1 . At level

k there are n − nk−1 vertices, labeled by vk,1, vk,2, . . . , vk,n−nk−1
. These are connected

(in that order) to the vertices in level k − 1 , so that d − 1 vertices from level k are

adjacent to vertices vk−1,1, vk−1,2, . . . , vk−1,m . The remaining h vertices at level k (if any)

are connected to the vertex vk−1,m+1 in level k − 1 .

Although the above specified construction of the Volkmann trees looks prohibitively

complicated, these trees have a quite “reasonable” structure. This is illustrated in Figs.

1 and 2.
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Fig. 1. The Volkmann tree V25,4 and the labeling of its vertices.



Fig. 2. The Volkmann trees Vn,4 for n = 3, 4, . . . , 19 .

2 Volkmann trees as extremal trees

Denote by T (n, d) the set of trees with n vertices in which no vertex has degree greater

than d . From a chemical point of view, the set T (n, 4) is of outstanding importance,

because this is just the set of the molecular graphs of all alkanes with n carbon atoms;

the elements of T (n, 4) are usually referred to as chemical trees .

A problem often encountered in chemical graph theory is to characterize the chemical

trees that are extremal with regard to some topological index TI . In a more formal way,

one looks for trees Tmin
n ∈ T (n, 4) and Tmax

n ∈ T (n, 4) , such that

TI(Tmin
n ) ≤ TI(Tn) ≤ TI(Tmax

n ) (2.1)



holds for all Tn ∈ T (n, 4) . In “pure” graph theory the restriction d = 4 sounds unnec-

essary, and there one looks for trees Tmin
n ∈ T (n, d) and Tmax

n ∈ T (n, d) , such that the

relations (2.1) hold for all Tn ∈ T (n, d) and for some particular value (or, if possible, for

all values) of the parameter d .

The n-vertex path Pn is element of any set T (n, d) . For countless topological indices

[1], Pn is one of the extremal graphs occurring in (2.1). For instance, Pn has maximal

Wiener index [2], Hosoya index [3], Schultz index [4], hyper-Wiener index [5], energy [3],

and Estrada index [6], as well as minimal Randić index [7], spectral radius [8], Laplacian

spectral radius [9], to mention just a few.

Finding the other extremal tree in (2.1) appears to be a much more difficult task.

In the case of the Wiener index, a computer-aided search for such trees was conducted

in the 1990s [10]. However, it was the research group of Lutz Volkmann from Aachen,

Germany [11] which gave a complete characterization of this tree. The chemical relevance

of this result was then pointed out in [12]. Very soon after the publication of Volkmann’s

work [11], the same result was obtained also by Jelen and Triesch [13] (with giving due

credit to Volkmann et al. for priority).†

Using the notation introduced in the previous section, we thus have the following:

Theorem 2.1. Let W (G) be the Wiener index (= sum of distances between all pairs of

vertices) of the graph G . Then for any n ≥ 4 and d ≥ 3 ,

W (Vn,d) ≤ W (Tn) ≤ W (Pn)

holds for any tree Tn ∈ T (n, d) . Moreover,

W (Vn,d) < W (Tn) < W (Pn)

holds for any tree Tn ∈ T (n, d) \ {Pn, Vn,d} .

After the discovery of Theorem 2.1, the fact that TI(Vn,d) is extremal in the class

of trees T (n, d) was confirmed for several other topological indices TI . Simić and Tošić

[14] proved this for the spectral radius, confirming thus the earlier empirical findings

communicated in [12]. Recently Yu and Lu [15] did the same for the Laplacian spectral

radius, confirming the earlier empirical findings communicated in [16,17]. It was claimed

†It is remarkable that Professors Volkmann and Triesch work at the same Mathematics Department
and have offices quite close to each other.



(but not rigorously proven) that Volkmann trees are extremal also with regard to the

Estrada index [18]. Volkmann trees are found to be extremal also in the case of Randić

index [12] and eccentric connectivity index [19], but for these structure descriptors Vn,d

in not the unique extremal species.

The fact that Volkmann trees are not extremal for all topological indices – in particular

for energy and Hosoya index – was noticed already in [12] and finally settled by Heuberger

and Wagner [20–22].

From the material presented in this section it should be evident why Volkmann trees

deserve attention of scholars doing research in chemical graph theory. In what follows we

establish a few of their properties.

3 Randić and general Randić indices of Volkmann

trees

The Randić index R(G) of a graph G is defined as the sum of the terms 1/
√

dudv over

all edges uv of G , where du denotes the degree of u ∈ V (G) , i. e.,

R(G) =
∑

uv∈E(G)

1√
du dv

.

Historically, R(G) was introduced by Randić [23] in 1975 as one of the first molecular–

graph–based structure descriptors (cf. [1]). Since then it found countless applications

(see, e. g., [24–26]) and its theory became one of the most prolific areas of chemical

graph theory (see, e. g., [27, 28]). In this section we give the formula for calculating the

Randić index of the Volkmann trees.

Theorem 3.1. Let Vn,d be a Volkmann tree of order n and degree d .

(1) If n ≤ d + 1 , then R(Vn,d) =
√

n− 1 .

(2) If n > d + 1 , then

R(Vn,d) =
h√

h + 1
+

1√
d(h + 1)

+
md + nk−1 − 2m− 1√

d

+
n−md− nk−1 + 2m− h− 1

d
.

Proof. (1) If n ≤ d + 1 , then Vn,d is the n-vertex star. By definition,

R(Vn,d) =
∑

uv∈Vn,d

1√
dudv

=
n− 1√
n− 1

=
√

n− 1 .



(2) If n > d + 1 , then there are four types of edges e = uv in Vn,d , i. e., type 1:

du = 1 , dv = d ; type 2: du = d , dv = h + 1 ; type 3: du = 1 , dv = h + 1 ; and type

4: du = d, dv = d . In order to calculate the Randić index of Vn,d , we need to know the

number of edges of each type.

There are m(d−1) edges connecting vertex of degree 1 with vertex of degree d between

level k and level k − 1 , and there are also nk−1 −m − 1 such edges between level k − 1

and level k − 2 , thus the number of edges of type 1 is md + nk−1 − 2m− 1 .

Similarly, there is only 1 edge connecting vertex of degree h + 1 with vertex of degree

d . There are h edges connecting vertex of degree 1 with vertex of degree h + 1 . And

there are n−md− nk−1 + 2m− h− 1 edges connecting vertex of degree d with vertex of

degree d . Thus, by definition of the Randić index, R(Vn,d) can be immediately obtained,

as given in the theorem.

The general Randić index is defined as [27]

Rα(G) =
∑

uv∈E(G)

(du dv)
α

where α is some real number. Evidently, the ordinary Randić index is the special case

of the general Randić index for α = −1/2 . Repeating the reasoning from the proof of

Theorem 3.1 we obtain:

Theorem 3.2. Let Vn,d be a Volkmann tree of order n and degree d .

(1) If n ≤ d + 1 , then Rα(Vn,d) = (n− 1)α+1 .

(2) If n > d + 1 , then

Rα(Vn,d) = h(h + 1)α + [d(h + 1)]α + (md + nk−1 − 2m− 1) dα

+ (n−md− nk−1 + 2m− h− 1) d2α .

4 Zagreb indices of Volkmann trees

The first and second Zagreb indices of a graph G are defined as [1]

M1(G) =
∑

v∈V (G)

(dv)
2 and M2(G) =

∑

uv∈E(G)

du dv .

The Volkmann tree Vn,h has n1 vertices of degree 1, nd vertices of degree d and, if

h > 0 , one vertex of degree h + 1 . Suppose first that h > 0 . Then

n1 + nd + 1 = n and n1 + d nd + (h + 1) = 2(n− 1)



from which follows

n1 = n− 1− n− h− 2

d− 1
and nd =

n− h− 2

d− 1
. (4.2)

If h = 0 then instead of Eqs. (4.2) we get

n1 = n− n− 2

d− 1
and nd =

n− 2

d− 1
.

By means of these formulas we obtain

Theorem 4.1. Let Vn,d be a Volkmann tree of order n and degree d .

(1) If n ≤ d + 1 , then M1(Vn,d) = n(n− 1) .

(2) If n > d + 1 and h = 0 , then

M1(Vn,d) = n− n− 2

d− 1
+

n− 2

d− 1
d2 .

(3) If n > d + 1 and h > 0 , then

M1(Vn,d) = n− 1− n− h− 2

d− 1
+

n− h− 2

d− 1
d2 + (h + 1)2 .

Comparing the definitions of the general Randić index and the second Zagreb index,

it is seen that M2(G) ≡ Rα(G) for α = 1 . In view of this, from Theorem 3.2 directly

follows:

Theorem 4.2. Let Vn,d be a Volkmann tree of order n and degree d .

(1) If n ≤ d + 1 , then M2(Vn,d) = (n− 1)2 .

(2) If n > d + 1 , then

M2(Vn,d) = h(h + 1) + d(h + 1) + (md + nk−1 − 2m− 1) d

+ (n−md− nk−1 + 2m− h− 1) d2 .

5 Asymptotic behavior of the energy of Volkmann

trees

From now on the vertices of the graph G will be labeled by v1, v2, . . . , vn . Then the

adjacency matrix A(G) of G is the square matrix of order n , whose (i, j)-entry is equal



to 1 if the vertices vi and vj are adjacent, and is equal to zero otherwise. The character-

istic polynomial of the adjacency matrix, φ(G, x) = det(x In −A(G)) , is said to be the

characteristic polynomial of the graph G . The eigenvalues of a graph G are defined as

the eigenvalues of its adjacency matrix, and so these are just the roots of the equation

φ(G, x) = 0 . Denote them by λ1, λ2, . . . , λn , and as a whole they form the spectrum of

G , denoted by Spec(G) . Then the energy of G is defined as

E(G) =
n∑

i=1

|λi| .

For details on graph energy see [29,30].

Let m(G, k) be the number of matchings of size k of G . Then, if G is a tree,

φ(G, x) =
∑

k≥0

(−1)k m(G, k) xn−2k

and

E(G) =
2

π

∫ +∞

0

1

x2
ln

[
1 +

∑

k≥1

m(G, k) x2k

]
dx .

The matching polynomial is defined as [31]

M(T, x) =
∑

k

m(T, k) xk .

In [22] Heuberger and Wagner determined the asymptotic behavior of the energy of

a kind of special trees. These trees are similar, but not identical to Volkmann trees.

Here we show that similar methods can be used to obtain the asymptotic behavior of the

energy of Volkmann trees.

In order to state our result, we use the notion of complete d-ary trees: The complete

d-ary tree of height h − 1 is denoted by Cd
h , i. e., Cd

1 is a single vertex and Cd
h has d

branches Cd
h−1, . . . , C

d
h−1 (see Fig. 3).

(a) (b) (c)

Fig. 3. Complete d-ary trees; (a) Cd
1 for all d , (b) C3

2 , (c) C2
3 .



It is convenient to set Cd
0 to be the empty graph. Then Vn,d can be decomposed as

shown in Fig. 4, where Bi,j ∈ {Cd−1
k−i , C

d−1
k−i−1} for 0 ≤ i ≤ k − 1 .

r r r0 1 k-1

B BB BB B0,1 0,d-1 1,1 1,d-1 k,1 k,d-1

Fig. 4. Decomposition of the Volkmann tree.

Theorem 5.1. The energy of Vn,d is asymptotically equal to

E(Vn,d) = αd−1 n + O(log n)

where

αd−1 = 2
√

d− 1(d− 2)2




∑
j≥1

j≡0(mod2)

(d− 1)−j(cot
π

2j
− 1) +

∑
j≥1

j≡1(mod2)

(d− 1)−j(csc
π

2j
− 1)




is a constant that only depends on d .

In order to prove this theorem, we need the following lemma from [22]:

Lemma 5.2. The energy of a complete d-ary tree Cd
h satisfies

E(Cd
h) = αd|Cd

h|+ O(1)

where |Cd
h| denotes the number of vertices of Cd

h and

αd = 2
√

d(d− 1)2




∑
j≥1

j≡0(mod2)

d−j(cot
π

2j
− 1) +

∑
j≥1

j≡1(mod2)

d−j(csc
π

2j
− 1)




is a constant that only depends on d .



Now, we are able to prove our main asymptotic result.

Proof of Theorem 5.1. Using the decomposition of Vn,d as shown in Fig. 4, we

note that
(

d−1∏
j=1

M(B0,j, x)

)(
k−2∏
i=1

d−2∏
j=1

M(Bi,j, x)

)(
d−1∏
j=1

M(Bk−1,j, x)

)
≤ M(Vn,d, x)

≤
(

d−1∏
j=1

M(B0,j, x)

)(
k−2∏
i=1

d−2∏
j=1

(Bi,j, x)

)(
d−1∏
j=1

M(Bk−1,j, x)

)
(1 + x)dk

for arbitrary x > 0 , since every matching in the union
⋃

i

⋃
j Bi,j is also a matching in

Vn,d , whereas every matching of Vn,d consists of a matching in
⋃

i

⋃
j Bi,j and a subset of

the remaining ≤ dk edges. Since

φ(T, x) =
∑

k≥0

(−1)km(T, k) xn−2k = xn M(T,−x−2),

this implies that

d−1∑
j=1

E(B0,j) +
k−2∑
i=1

d−2∑
j=1

E(Bi,j) +
d−1∑
j=1

E(Bk−1,j) ≤ E(Vn,d)

≤
d−1∑
j=1

E(B0,j) +
k−2∑
i=1

d−2∑
j=1

E(Bi,j) +
d−1∑
j=1

E(Bk−1,j) +
2

π
dk

∫ ∞

0

x−2 log(1 + x2)dx .

Since
∫∞
0

x−2 log(1 + x2)dx = π , this implies that

E(Vn,d) =
d−1∑
j=1

E(B0,j) +
k−2∑
i=1

d−2∑
j=1

E(Bi,j) +
d−1∑
j=1

E(Bk−1,j) + O(k)

=
d−1∑
j=1

(αd−1|B0,j|+ O(1)) +
k−2∑
i=1

d−2∑
j=1

(αd−1|Bi,j|+ O(1))

+
d−1∑
j=1

(αd−1|Bk−1,j|+ O(1)) + O(k)

= αd−1

(
d−1∑
j=1

|B0,j|+
k−2∑
i=1

d−2∑
j=1

|Bi,j|+
d−1∑
j=1

|Bk−1,j|
)

+ O(k)

= αd−1(|Vn,d| − k) + O(k) = αd−1 n + O(k) .

It is not difficult to see that k = O(log n) by the definition of the Volkmann tree, and so

we finally have E(Vn,d) = αd−1 n + O(log n) , which completes the proof.



6 The nullity of the Volkmann tree

The nullity of a graph G , denoted by n0(G) , is the multiplicity of the eigenvalue zero

[32, 33]. We can get the nullity of a tree as follows [33]: Choose any leaf (= vertex of

degree 1) of the tree, delete the leaf and its parent, repeat this operation until there

remain only isolated vertices. Then the number of isolated vertices equals the nullity of

the tree. The operation also finds a maximum matching, so we call the deleted vertices

to be matched, and call the remaining vertices to be exposed.

We now use the decomposition of the Volkmann tree again, but with more details.

Namely, we determine the explicit number of Bi,j which equals to Cd−1
k−i for each vertex

ri .

Lemma 6.1. Denote the number of Bi,j which equal to Cd−1
k−i by ai , then

a0 =

⌈
n− nk−1

(d− 1)k−1

⌉
− 1

a1 =

⌈
n− nk−1 − a0(d− 1)k−1

(d− 1)k−2

⌉
− 1

· · · · · ·
ai =

⌈
n− nk−1 − a0(d− 1)k−1 − a1(d− 1)k−2 − · · · − ai−1(d− 1)k−i

(d− 1)k−i−1

⌉
− 1

· · · · · ·
ak−1 = n− nk−1 − a0(d− 1)k−1 − a1(d− 1)k−2 − · · · − ak−2(d− 1) .

Proof. The number of the vertices on level k of the Volkmann tree is n− nk−1 , and the

number of the vertices of level k of a complete d − 1-ary tree is (d − 1)k−1 , and so, for

vertex r0 , the number of branches equal to Cd−1
k is

⌊
n− nk−1

(d− 1)k−1

⌋
, when

n− nk−1

(d− 1)k−1
is not

an integer. Note that if
n− nk−1

(d− 1)k−1
is an integer, then r0 has actually

n− nk−1

(d− 1)k−1
branches

equal to Cd−1
k , but we will regard the root of any of Cd−1

k as r1 , so there are
n− nk−1

(d− 1)k−1
−1

fragments B0,j which equals to Cd−1
k . From the above, a0 =

⌈
n− nk−1

(d− 1)k−1

⌉
− 1 . Other

a′is can be calculated similarly.

Next, we calculate the nullity of a complete d− 1-ary tree of height h− 1 .



Lemma 6.2.

n0(C
d−1
h ) =





(d− 1)h−1 − 1

d
for h even

(d− 1)h−1 + 1

d
for h odd

Proof. When we delete a leaf vertex on level k , at the same time, we delete its parent on

level k−1 , there are d−2 isolated vertices left. Since there are (d−1)k−2 vertices on level

k−1 , we can delete (d−1)k−2 leaf vertices on level k , and hence there are (d−2)(d−1)k−2

isolated vertices left together with a Cd−1
k−2 . Similarly, when we delete the (d− 1)i−2 leaf

vertices on level i and their parents on level i−1 , there are (d−2)(d−1)i−2 new isolated

vertices left together with a Cd−1
i−2 , where 2 ≤ i ≤ k and i ≡ k(mod 2) . Obviously,

n0(C
d−1
0 ) = 0 and n0(C

d−1
1 ) = 1 . By adding the number of the new isolated vertices left

after every deletion, we are done.

Therefore, for a Volkmann tree, we can calculate its nullity as follows.

For r0 , we consider the subtree consisting of r0 and its branches, denoted by T0 .

Denote the roots of the branches by t01 , t02 , . . . , t0d−1
, respectively. We delete the leaf

vertices and their parents repeatedly.

Finally, if r0 is deleted, namely, for some t0j
, t0j

was exposed in the branch containing

it, but matched with r0 in T0 . So the number of exposed vertices in T0 is by one less than

the sum of the number of exposed vertices in the branches of r0 , and hence b0 = −1 . To

be this case, there must be a branch equal to Cd−1
k , if k is odd, Cd−1

k−1 , if k is even, which

is equivalent to d− 1 ≥ a0 ≥ 1 , if k is odd, and 0 ≤ a0 ≤ d− 2 , if k is even. Once r0 is

deleted, we can delete T0 from the decomposition, and then consider the remainder of the

tree similarly. The only thing that needs to be noticed is that the number of branches of

ri is d− 2 for 1 ≤ i ≤ k − 2 , and so the range of ai is a bit different.

If all t0j
are matched in their own branches, then r0 becomes an isolated vertex in T0 ,

also a leaf vertex in Vn,d . So we can match r0 with r1 (delete r0 and r1). In this case,

the number of exposed vertices in T0

⋃
T1 is exactly the sum of the number of exposed

vertices in the branches of r0 and r1 . Namely, b0 + b1 = 0 . To be this case there must be

no branch equal to Cd−1
k , if k is odd, Cd−1

k−1 , if k is even, which is equivalent to a0 = 0 , if

k is odd, and a0 = d− 1 , if k is even. Once r0 and r1 are deleted, we can delete T0 and

T1 from the decomposition, and then consider the remainder of the tree similarly. Again,



pay attention to the range of ai for 2 ≤ i ≤ k − 2 .

From the above discussion, we can give recursive expressions for the case k is even as

follows. (The case k is odd is similar.)

Lemma 6.3.
k−1∑
i=0

bi can be calculated recursively as follows:

b0 + b1 + · · ·+ bk−1 =

{ −1 + b1 + · · ·+ bk−1 0 ≤ a0 ≤ d− 2

b2 + · · ·+ bk−1 a0 = d− 1

b1 + · · ·+ bk−1 =

{ −1 + b2 + · · ·+ bk−1 1 ≤ a1 ≤ d− 2

b3 + · · ·+ bk−1 a1 = 0

b2 + · · ·+ bk−1 =

{ −1 + b3 + · · ·+ bk−1 0 ≤ a2 ≤ d− 3

b4 + · · ·+ bk−1 a2 = d− 2
· · · · · ·

b2i−1 + · · ·+ bk−1 =

{ −1 + b2i + · · ·+ bk−1 1 ≤ a2i−1 ≤ d− 2

b2i+1 + · · ·+ bk−1 a2i−1 = 0

b2i + · · ·+ bk−1 =

{ −1 + b2i+1 + · · ·+ bk−1 0 ≤ a2i ≤ d− 3

b2i+2 + · · ·+ bk−1 a2i = d− 2
· · · · · ·

bk−2 + bk−1 =

{ −1 + bk−1 0 ≤ ak−2 ≤ d− 3

0 ak−2 = d− 2

bk−1 =

{ −1 ak−1 ≥ 1

1 ak−1 = 0

We thus arrive at:

Theorem 6.4. The nullity n0(Vn,d) of the Volkmann tree Vn,d is given by

n0(Vn,d) = a0 n0(C
d−1
k ) + (d− 1− a0 + a1)n0 (Cd−1

k−1)

+ (d− 2− a1 + a2)n0 (Cd−1
k−2) + · · ·+ (d− 2− ai−1 + ai)n0 (Cd−1

k−i )

+ · · ·+ (d− 2− ak−2 + ak−1)n0 (Cd−1
1 ) + b0 + b1 + · · ·+ bk−1

where ai , n0(C
d−1
h ) and

k−1∑
i=0

bi are given in Lemmas 6.1, 6.2, and 6.3, respectively.
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[23] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975)

6609–6615.

[24] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research,

Academic Press, New York, 1976.

[25] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure–Activity Analysis , Wiley,

New York, 1986.

[26] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms:

Recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827–3858.



[27] X. Li, I. Gutman, Mathematical Aspects of Randić–type Molecular Structure De-
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