Hypergeometric Series Solutions of Linear Operator Equations

Qing-Hu Hou
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
hou@nankai.edu.cn
Yan-Ping Mu^{1}
College of Science
Tianjin University of Technology, Tianjin 300384, P.R. China
yanping.mu@gmail.com

Abstract

Let K be a field and $L: K[x] \rightarrow K[x]$ be a linear operator acting on the ring of polynomials in x over the field K. We provide a method to find a suitable basis $\left\{b_{k}(x)\right\}$ of $K[x]$ and a hypergeometric term c_{k} such that $y(x)=\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ is a formal series solution to the equation $L(y(x))=0$. This method is applied to construct hypergeometric representations of orthogonal polynomials from the differential/difference equations or recurrence relations they satisfied. Both the ordinary cases and the q-cases are considered.

AMS Classifications: 33C45, 33D45, 47E05.
Keywords: hypergeometric series, orthogonal polynomials, differential/difference equations, three term recurrence relations

1. Introduction

A hypergeometric series $\sum_{k \geq 0} t_{k}$ is a series in which the ratio of two consecutive terms is a rational function of the summation index k. Consequently, t_{k} is called a hypergeometric term. When the series contains only finitely many

[^0]non-zero summands, it is called a hypergeometric polynomial. Hypergeometric series and polynomials appear frequently in the theory of orthogonal polynomials. For instant, all orthogonal polynomials in the Askey-scheme are hypergeometric polynomials or their q-analogue [7].

It is well-known that one can solve linear differential equations by means of power series. Abramov and Petkovšek [2] considered general polynomial sequences besides the powers and presented an algorithm to find nice power series solutions of linear differential equations. Abramov, Paule and Petkovšek [1] presented an algorithm for finding formal power series solutions and basic hypergeometric series solutions of q-difference equations. In this paper, we provide a method to find hypergeometric series solutions to the equation $L(y(x))=0$ where $L: K[x] \rightarrow K[x]$ is a linear operator acting on $K[x]$, the ring of polynomials in x over the field K. The key idea is to search for a suitable basis $\left\{b_{k}(x)\right\}$ of $K[x]$ such that the solution $y(x)$ can be expressed as $\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ with c_{k} being a hypergeometric term.

Our main motivation comes from finding the hypergeometric representations of orthogonal polynomials. As pointed by Koepf [10], starting from the hypergeometric representations, one can compute the corresponding differential/difference equations, the recurrence relations and the structure relations. For more details, see Koepf's book [9] which covers Zeilberger's and Petkovšek's algorithms and many variants such as h-hypergeometric series. Chen and the authors [5] used the extended Zeilberger's algorithm to provide a unified treatment of these tasks. Here we consider the inverse problem, that is, finding hypergeometric representations from the differential/difference equations. We know that all orthogonal polynomials $P_{n}(x)$ in the Askey-scheme satisfy certain differential/difference equations. Rewriting the equation as $L\left(P_{n}(x)\right)=0$ with L being a linear operator, we see that finding a hypergeometric representation is precisely finding a hypergeometric polynomial solution to the equation $L(y(x))=0$.

Koepf and Schmersau [13] discussed the conversions between the differential/difference equations, the hypergeometric representations and the recurrence relations for the continuous and discrete cases. Koepf and MasjedJamei [12] provided generic hypergeometric polynomial solutions for the continuous case. Atakishiyev and Suslov [4] discussed difference equations on the lattice with non-uniform steps [17]. Foupouagnigni [6] further studied the difference equations satisfied by classical orthogonal polynomials and their
modifications. Our approach provides a uniform and algorithmic treatment for classical orthogonal polynomials. Moreover, in a similar way we can also find the hypergeometric representations of orthogonal polynomials directly from the three term recurrence relations.

The paper is organized as follows. In section 2, we provide a heuristic method to find out suitable bases $\left\{b_{k}(x)\right\}$ of $K[x]$ for a given linear operator L, which satisfy

$$
\begin{equation*}
L\left(b_{k}(x)\right)=A_{k} b_{k}(x)+B_{k} b_{k-h}(x), \quad k=0,1, \ldots, \tag{1.1}
\end{equation*}
$$

where $A_{k}, B_{k} \in K$ and h is a positive integer. For this purpose, we solve nonlinear equations to get the explicit $b_{k}(x)$ for small k and guess the general form. Then in Section 3, we present an algorithm to check whether a given basis $\left\{b_{k}(x)\right\}$ satisfies (1.1). Moreover, the algorithm computes A_{k} and B_{k} for general k and thus leads to a formal series solution $y(x)$ to the equation $L(y(x))=0$. In Section 4, we apply the method to derive hypergeometric representations of orthogonal polynomials from their differential/difference equations. Finally in Section 5, we use the method to find hypergeometric representations of orthogonal polynomials from their recurrence relations. Both the ordinary cases and the q-cases are visited.

We have implemented the algorithms in Maple, which can be obtained from http://www.combinatorics.net.cn/homepage/hou/basis.html.

2. Searching for suitable bases

Let L be a linear operator acting on the ring $K[x]$ of polynomials in variable x over the field K. Denoting the set of nonnegative integers by \mathbb{N}, we aim to find a basis $\left\{b_{k}(x)\right\}$ of $K[x]$ such that

$$
\begin{equation*}
L\left(b_{k}(x)\right)=A_{k} b_{k}(x)+B_{k} b_{k-h}(x), \quad \forall k \in \mathbb{N}, \tag{2.1}
\end{equation*}
$$

where $A_{k}, B_{k} \in K$ and h is a fixed positive integer. Here and in the remainder part of the paper, we always set $b_{i}(x)=0$ for $i<0$.

Without loss of generality, we assume that $b_{k}(x), k=0,1, \ldots$ are monic polynomials of degree k. For convenience, we further require that $b_{k-1}(x)$ divides $b_{k}(x)$. Under these assumptions, we may write $b_{k}(x)$ as

$$
\begin{equation*}
b_{k}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{k}\right), \tag{2.2}
\end{equation*}
$$

where $x_{1}, \ldots, x_{k} \in K$. A basis $\left\{b_{k}(x)\right\}$ of form (2.2) is called a suitable basis (with respect to the operator L) if (2.1) holds.

Now fix a positive integer k and regard x_{1}, \ldots, x_{k} as undeterminates. By comparing the coefficients of powers of x on both sides of (2.1), we derive that

$$
\begin{equation*}
A_{k}=\left[x^{k}\right] L\left(b_{k}(x)\right) \quad \text { and } \quad B_{k}=\left[x^{k-h}\right]\left(L\left(b_{k}(x)\right)-A_{k} b_{k}(x)\right), \tag{2.3}
\end{equation*}
$$

where $\left[x^{m}\right] p(x)$ denotes the coefficient of x^{m} in the polynomial $p(x)$. Thus A_{k}, B_{k} are expressed in terms of x_{1}, \ldots, x_{k}. Substituting (2.3) into (2.1) and equating each power of x of both sides, we obtain a system of polynomial equations on x_{1}, \ldots, x_{k}.

Starting from $k=1$, we iteratively set up and solve the equations on x_{1}, \ldots, x_{k} until reaching a certain degree k_{0}. In each iteration, we obtain either the explicit values of x_{i} or some relations among them. The number of equations can be roughly estimated as follows. Suppose that the degree of $L\left(b_{k}(x)\right)$ is less than or equal to k. Then (2.1) leads to $k+1$ equations on x_{1}, \ldots, x_{k} and A_{k}, B_{k}. Expressing A_{k}, B_{k} in terms of x_{1}, \ldots, x_{k} by (2.3), we still have $k-1$ equations. All together there are $0+1+\cdots+\left(k_{0}-1\right)=\binom{k_{0}}{2}$ equations on $x_{1}, \ldots, x_{k_{0}}$. Therefore when k_{0} is large enough, we will obtain $x_{1}, \ldots, x_{k_{0}}$ explicitly. In fact, for all examples appearing in this paper, $k_{0}=5$ is enough. Finally, we guess the general form of x_{k} from the pattern, which is often straightforward.

Example 2.1 Let L be given by

$$
\begin{equation*}
L(p(x))=\left(1-x^{2}\right) p^{\prime \prime}(x)-x p^{\prime}(x)+n^{2} p(x) . \tag{2.4}
\end{equation*}
$$

Take $h=1$ and set $b_{0}(x)=1, b_{1}(x)=x-x_{1}$. For $k=1$, (2.1) becomes

$$
\begin{equation*}
\left(n^{2}-1\right) x-n^{2} x_{1}=A_{1}\left(x-x_{1}\right)+B_{1} . \tag{2.5}
\end{equation*}
$$

By (2.3), we derive that $A_{1}=\left(n^{2}-1\right)$ and $B_{1}=-x_{1}$.
Now consider $k=2$ and set $b_{2}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)$. Then (2.1) becomes

$$
\begin{aligned}
\left(n^{2}-4\right) x^{2}-\left(n^{2}-1\right)\left(x_{1}+x_{2}\right) x+2 & +n^{2} x_{1} x_{2} \\
& =A_{2}\left(x-x_{1}\right)\left(x-x_{2}\right)+B_{2}\left(x-x_{1}\right)
\end{aligned}
$$

which leads to

$$
A_{2}=n^{2}-4, \quad B_{2}=-3\left(x_{1}+x_{2}\right), \quad \text { and } \quad x_{1} x_{2}=3 x_{1}^{2}-2 .
$$

Substituting $\left(3 x_{1}^{2}-2\right) / x_{1}$ for x_{2} and solving the equations corresponding to $k=3$, we derive that $x_{1}=x_{2}=x_{3}=1$ or $x_{1}=x_{2}=x_{3}=-1$. Continuing this process, we obtain that $x_{1}=\cdots=x_{k_{0}}=1$ or $x_{1}=\cdots=x_{k_{0}}=-1$ for any $k_{0} \geq 3$. This leads us to guess $b_{k}(x)=(x+1)^{k}$ or $b_{k}(x)=(x-1)^{k}$.

3. Hypergeometric polynomial solutions

Once we have guessed the form of $b_{k}(x)$, we can then check whether $\left\{b_{k}(x)\right\}$ forms a suitable basis, i.e., (2.1) holds for arbitrary non-negative integer k.

Theorem 3.1 Let $L: K[x] \rightarrow K[x]$ be a linear operator and $\left\{b_{k}(x)\right\}$ be a suitable basis satisfying (2.1). Then for any $k \in \mathbb{N}, L\left(b_{k}(x)\right) / b_{k-h}(x)$ is a polynomial in x of degree no more than h. Furthermore, we have

$$
\begin{equation*}
A_{k}=\left[x^{h}\right] \frac{L\left(b_{k}(x)\right)}{b_{k-h}(x)}, \quad \text { and } \quad B_{k}=\left[x^{0}\right]\left(\frac{L\left(b_{k}(x)\right)}{b_{k-h}(x)}-A_{k} \frac{b_{k}(x)}{b_{k-h}(x)}\right) . \tag{3.1}
\end{equation*}
$$

Proof. Dividing both sides of (2.1) by $b_{k-h}(x)$, we obtain

$$
\frac{L\left(b_{k}(x)\right)}{b_{k-h}(x)}=A_{k} \frac{b_{k}(x)}{b_{k-h}(x)}+B_{k} .
$$

Since $b_{k}(x) / b_{k-h}(x)$ is a polynomial of degree h, we immediately derive that $L\left(b_{k}(x)\right) / b_{k-h}(x)$ is a polynomial of degree less than or equal to h. Comparing the coefficients of x^{h} and x^{0}, we obtain (3.1).

Theorem 3.1 provides us an algorithm to verify whether $\left\{b_{k}(x)\right\}$ forms a suitable basis. Moreover, we solve out A_{k} and B_{k} simultaneously.

Algo-Verify

1. Check whether $L\left(b_{k}(x)\right) / b_{k-h}(x)$ is a polynomial in x of degree no more than h. If not, return " $\left\{b_{k}(x)\right\}$ is not a suitable basis" and stop.
2. Compute A_{k}, B_{k} according to (3.1).
3. Check whether

$$
\begin{equation*}
\frac{L\left(b_{k}(x)\right)}{b_{k-h}(x)}=A_{k} \frac{b_{k}(x)}{b_{k-h}(x)}+B_{k} \tag{3.2}
\end{equation*}
$$

holds for the above A_{k}, B_{k}. If yes, return A_{k} and B_{k}; otherwise, return " $\left\{b_{k}(x)\right\}$ is not a suitable basis".

Example 3.1 Let L be the operator given in Example 2.1:

$$
L(p(x))=\left(1-x^{2}\right) p^{\prime \prime}(x)-x p^{\prime}(x)+n^{2} p(x) .
$$

For $h=1$, we guess that $b_{k}(x)=(x-1)^{k}$. Applying Algo-Verify, we verify that $\left\{b_{k}(x)\right\}$ is indeed a suitable basis with

$$
A_{k}=n^{2}-k^{2} \quad \text { and } \quad B_{k}=k-2 k^{2}
$$

Let $L: K[x] \rightarrow K[x]$ be a linear operator and $\left\{b_{k}(x)\right\}$ be a suitable basis. As done by Abramov and Petkovšek [2], L can be extended to formal series of the form $\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ by setting

$$
L\left(\sum_{k=0}^{\infty} c_{k} b_{k}(x)\right)=\sum_{k=0}^{\infty}\left(c_{k} A_{k}+c_{k+h} B_{k+h}\right) b_{k}(x) .
$$

Suppose that $\left\{c_{k}\right\}$ is a sequence satisfying

$$
c_{k} A_{k}+c_{k+h} B_{k+h}=0, \quad \forall k \in \mathbb{N} .
$$

Then we immediately derive that $\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ is a formal series solution to the equation $L(y(x))=0$. When the series $\left\{c_{k}\right\}$ contains only finitely many non-zero entries, $\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ becomes a polynomial and hence is a polynomial solution to the equation $L(y(x))=0$. We thus derive the following theorem.

Theorem 3.2 Let $L: K[x] \rightarrow K[x]$ be a linear operator and $\left\{b_{k}(x)\right\}$ be a suitable basis satisfying (2.1). Suppose that $y(x)=\sum_{k=0}^{\infty} c_{k} b_{k}(x)$ is a polynomial solution to the equation $L(y(x))=0$. Then

$$
\begin{equation*}
c_{k+h} B_{k+h}=-c_{k} A_{k}, \quad \forall k \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

Conversely, let c_{0}, c_{1}, \ldots be a sequence satisfying (3.3) and containing only finitely many non-zero entries. Then $L\left(\sum_{k=0}^{\infty} c_{k} b_{k}(x)\right)=0$.

Let $t_{k}=c_{k} b_{k}(x)$. When A_{k}, B_{k} and x_{k} are all rational functions of k, t_{k} is an h-fold hypergeometric term defined by Koepf [8]. Especially when $h=1, t_{k}$ becomes a hypergeometric term and $y(x)=\sum_{k=0}^{\infty} t_{k}$ becomes a hypergeometric series. More precisely, suppose that

$$
\frac{t_{k+h}}{t_{k}}=-\frac{A_{k} \cdot b_{k+h}(x)}{B_{k+h} \cdot b_{k}(x)}=\frac{\left(k+u_{1}\right) \cdots\left(k+u_{r}\right)}{\left(k+v_{1}\right) \cdots\left(k+v_{s}\right)} z
$$

Then

$$
t_{k h+i}=t_{i} \frac{\left(\frac{u_{1}+i}{h}\right)_{k} \cdots\left(\frac{u_{r}+i}{h}\right)_{k}}{\left(\frac{v_{1}+i}{h}\right)_{k} \cdots\left(\frac{v_{s}+i}{h}\right)_{k}}\left(z h^{r-s}\right)^{k}, \quad i=0,1, \ldots, h-1,
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$ denotes the raising factorial. Therefore we can express $y(x)$ in terms of the standard notation of hypergeometric series:

$$
{ }_{r} F_{s}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{s}\right)_{k}} \frac{z^{k}}{k!} .
$$

Example 3.2. Let n be a nonnegative integer and

$$
L(p(x))=\left(1-x^{2}\right) p^{\prime \prime}(x)-x p^{\prime}(x)+n^{2} p(x) .
$$

As shown in Example 3.1, a suitable basis with respect to L is $\left\{(x-1)^{k}\right\}$ and the corresponding $A_{k}=n^{2}-k^{2}, B_{k}=k-2 k^{2}$. By direct computation, we derive that

$$
\frac{t_{k+1}}{t_{k}}=-\frac{A_{k}}{B_{k+1}}(x-1)=\frac{(k-n)(k+n)}{(k+1)(k+1 / 2)} \cdot \frac{1-x}{2},
$$

and hence

$$
y(x)=c \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
-n, n & 1-x \\
1 / 2 & \frac{1}{2}
\end{array}\right)
$$

is a polynomial solution to the equation $L(y(x))=0$. In fact, it is a multiple of the Chebyshev polynomial of the first kind.

When A_{k}, B_{k} and x_{k} are rational functions of q^{k}, t_{k} becomes the q analogue of h-hypergeometric terms. In this case, we can express $y(x)=$ $\sum_{k=0}^{\infty} t_{k}$ in terms of the standard notation of q-hypergeometric series:

$$
{ }_{r} \phi_{s}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} \right\rvert\, q ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k} \cdots\left(b_{s} ; q\right)_{k}} \frac{z^{k}}{(q ; q)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{s+1-r},
$$

where $(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$ is the q-shifted factorial.
Example 3.3. Let n be a nonnegative integer and L be given by

$$
L(p(x))=x p(q x)+\left(1-x q^{n}\right) p(x)-p(x / q) .
$$

For $h=1$, we find a suitable basis $\left\{x^{k}\right\}$ and

$$
-\frac{A_{k}}{B_{k+1}}=\frac{1-q^{-n} q^{k}}{1-q q^{k}} q^{k} q^{n+1} .
$$

Therefore,

$$
y(x)=c \cdot{ }_{1} \phi_{1}\left(\begin{array}{c|c}
q^{-n} & q ;-q^{n+1} x \\
0 &
\end{array}\right),
$$

which is a multiple of the Stieltjes-Wigert polynomial.

4. Differential/difference equations

As we know, the classical orthogonal polynomials can be characterized by satisfying a certain differential, difference or q-difference equation. Rewriting the equation as an operator L acting on polynomials, we see that the orthogonal polynomials are precisely the polynomial solutions to the equation $L(y(x))=0$. Therefore, we may use the above method to derive hypergeometric representations of orthogonal polynomials from the corresponding differential/difference equations. The method is feasible for all orthogonal polynomials in the Askey-scheme. We take the Jacobi polynomials, the Hahn polynomials, the Racah polynomials and the Askey-Wilson polynomials as examples.
4.1. The differential cases. Consider the Jacobi polynomials. The corresponding linear operator L is given by
$L(p(x))=\left(1-x^{2}\right) p^{\prime \prime}(x)+(\beta-\alpha-(\alpha+\beta+2) x) p^{\prime}(x)+n(n+\alpha+\beta+1) p(x)$.
By the first few terms, we find two candidates for $b_{k}(x):(x-1)^{k}$ and $(x+1)^{k}$. By Algo-Verify, both of them are suitable bases, leading to two representa-
tions for Jacobi polynomials:

$$
\left.\begin{array}{rl}
P_{n}^{(\alpha, \beta)}(x) & =\frac{(\alpha+1)_{n}}{n!}{ }_{2} F_{1}\left(\begin{array}{c|c}
-n, n+\alpha+\beta+1 & 1-x \\
\alpha+1
\end{array}\right) \\
& =(-1)^{n} \frac{(\beta+1)_{n}}{n!}{ }_{2} F_{1}\left(\begin{array}{c}
-n, n+\alpha+\beta+1 \\
\beta+1
\end{array}\right. \\
\frac{1+x}{2}
\end{array}\right) . ~ .
$$

The constant $\frac{(\alpha+1)_{n}}{n!}$ is determined by the condition $P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}$ and $(-1)^{n} \frac{(\beta+1)_{n}}{n!}$ is determined by comparing the coefficient of x^{n}.

In the special case when $\alpha=\beta$, we find one more suitable basis $\left\{x^{k}\right\}$ with $h=2$. This leads to another representation for ultraspherical polynomials:

$$
P_{n}^{(\alpha, \alpha)}(x)=c_{n} \cdot x^{\delta}{ }_{2} F_{1}\left(\begin{array}{c|c}
\frac{-n+\delta}{2}, \frac{n+1+\delta}{2}+\alpha & x^{2} \\
\frac{1}{2}+\delta
\end{array}\right)
$$

where $\delta=0$ for n even and $\delta=1$ for n odd. Reversing the summation index, we obtain a uniform representation

$$
P_{n}^{(\alpha, \alpha)}(x)=\frac{(n+2 \alpha+1)_{n}}{2^{n} n!} x^{n}{ }_{2} F_{1}\left(\begin{array}{c|c}
-n / 2,(-n+1) / 2 & 1 \\
-n+\frac{1}{2}-\alpha & \frac{x^{2}}{}
\end{array}\right) .
$$

4.2. The difference cases. Consider the Hahn polynomials $Q_{n}(x)$. The corresponding linear operator L is given by
$L(p(x))=B(x) y(x+1)-(n(n+\alpha+\beta+1)+B(x)+D(x)) y(x)+D(x) y(x-1)$,
where $B(x)=(x+\alpha+1)(x-N)$ and $D(x)=x(x-\beta-N-1)$. We find four suitable bases:
$\left\{(x+\alpha+1)_{k}\right\}, \quad\left\{(-1)^{k}(-x+N+\beta+1)_{k}\right\}, \quad\left\{(x-N)_{k}\right\}, \quad\left\{(-1)^{k}(-x)_{k}\right\}$.
These bases lead to four hypergeometric representations of Hahn polynomials. For example, taking $b_{k}(x)=(x+\alpha+1)_{k}$, we derive

$$
Q_{n}(x)=c_{n} \cdot{ }_{3} F_{2}\left(\begin{array}{c|c}
-n, n+\alpha+\beta+1, x+\alpha+1 & 1 \\
\alpha+1, \alpha+\beta+N+2 & 1
\end{array}\right)
$$

4.3. Non-uniform lattice cases. In general, the classical orthogonal polynomials $P_{n}(x)$ on non-uniform lattices satisfy [16, Equation (3.15)]

$$
\begin{equation*}
\tilde{\sigma}[x(s)] \frac{\Delta}{\Delta x(s-1 / 2)}\left[\frac{\nabla y(s)}{\nabla x(s)}\right]+\frac{\tilde{\tau}[x(s)]}{2}\left[\frac{\Delta y(s)}{\Delta x(s)}+\frac{\nabla y(s)}{\nabla x(s)}\right]+\lambda y(s)=0 \tag{4.1}
\end{equation*}
$$

where $x(s)$ is the lattice function, $y(s)=P_{n}(x(s))$ and $\Delta f(s)=f(s+1)-$ $f(s), \nabla f(s)=f(s)-f(s-1)$. Moreover, the lattice function $x(s)$ has one of the following forms:

$$
x(s)=c_{1} s^{2}+c_{2} s+c_{3}, \quad \text { or } \quad x(s)=c_{1} q^{s}+c_{2} q^{-s}+c_{3} .
$$

By linear transformation, we may assume without loss of generality that $x(s)=s(s+\mu)$ or $x(s)=q^{s}+\mu q^{-s}$.
I. Lattice $x(s)=s(s+\mu)$. In this case, Equation (4.1) is a linear difference equation with respect to the variable s. Let L be a linear difference operator which maps polynomials in variable s to rational functions of s (instead of polynomials in s). We firstly use the fact that $L(x(s))$ is a polynomial in $x(s)$ to determine the parameter μ and hence the lattice function $x(s)$. Then we apply our method to find out x_{1}, \ldots, x_{k} such that

$$
b_{k}(s)=\left(x(s)-x_{1}\right)\left(x(s)-x_{2}\right) \cdots\left(x(s)-x_{k}\right)
$$

satisfy

$$
L\left(b_{k}(s)\right)=A_{k} b_{k}(s)+B_{k} b_{k-h}(s) .
$$

Consequently, we obtain hypergeometric polynomial solutions to the equation $L(y(s))=0$, which are precisely the hypergeometric representations of the corresponding orthogonal polynomials.

Let us consider the Racah polynomials. The corresponding linear operator is given by
$L(p(s))=B(s) p(s+1)-(n(n+\alpha+\beta+1)+B(s)+D(s)) p(s)+D(s) p(s-1)$,
where

$$
B(s)=\frac{(s+\alpha+1)(s+\beta+\delta+1)(s+\gamma+1)(s+\gamma+\delta+1)}{(2 s+\gamma+\delta+1)(2 s+\gamma+\delta+2)}
$$

and

$$
D(s)=\frac{s(s-\alpha+\gamma+\delta)(s-\beta+\gamma)(s+\delta)}{(2 s+\gamma+\delta)(2 s+\gamma+\delta+1)}
$$

We see that $L(s(s+\mu))$ is a rational function of s whose denominator is $(2 s+\gamma+\delta)(2 s+\gamma+\delta+1)(2 s+\gamma+\delta+2)$. To ensure that $L(s(s+\mu))$ is a polynomial, the numerator must equal to zero when we substitute s with $-(\gamma+\delta) / 2$. This leads to $\mu=\gamma+\delta+1$, and hence $x(s)=s(s+\gamma+\delta+1)$. We find four candidates for $x_{k}=x\left(s_{k}\right)$
$s_{k}=k+\alpha-\gamma-\delta-1, \quad s_{k}=k-\delta-1, \quad s_{k}=k-1, \quad$ or $\quad s_{k}=k+\beta-\gamma-1$.
The corresponding $b_{k}(s)^{\prime}$ are

$$
(-1)^{k}(-s+\alpha-\gamma-\delta)_{k}(s+\alpha+1)_{k}, \quad(-1)^{k}(-s-\delta)_{k}(s+\gamma+1)_{k}
$$

and

$$
(-1)^{k}(-s)_{k}(s+\gamma+\delta+1)_{k}, \quad(-1)^{k}(-s+\beta-\gamma)_{k}(s+\beta+\delta+1)_{k} .
$$

Each of these bases leads to a hypergeometric representation of Racah polynomials. For example, the first basis leads to

$$
R_{n}(x(s))=c_{n} \cdot{ }_{4} F_{3}\left(\left.\begin{array}{c|c}
-n, n+\alpha+\beta+1,-s+\alpha-\gamma-\delta, s+\alpha+1 \\
\alpha+1, \alpha-\delta+1, \alpha+\beta-\gamma+1
\end{array} \right\rvert\, 1\right)
$$

II. Lattice $x(s)=q^{s}+\mu q^{-s}$. In this case, we write $z=q^{s}$ and $\tilde{x}(z)=z+\mu / z$. Then Equation (4.1) becomes a q-difference equation with respect to the variable z. Given a q-difference operator L, we search for

$$
b_{k}(z)=\left(\tilde{x}(z)-x_{1}\right)\left(\tilde{x}(z)-x_{2}\right) \cdots\left(\tilde{x}(z)-x_{k}\right)
$$

such that

$$
L\left(b_{k}(z)\right)=A_{k} b_{k}(z)+B_{k} b_{k-h}(z) .
$$

Consequently, we will obtain q-hypergeometric polynomial solutions to the equation $L(y(z))=0$, which are precisely the q-hypergeometric representations of the corresponding orthogonal polynomials.

Consider the Askey-Wilson polynomials. The linear operator is given by

$$
\begin{align*}
& L(p(z))=A(z) p(z q) \\
& -\left[q^{-n}\left(1-q^{n}\right)\left(1-a b c d q^{n-1}\right)+A(z)+A\left(z^{-1}\right)\right] p(z)+A\left(z^{-1}\right) p(z / q) \tag{4.2}
\end{align*}
$$

where

$$
A(z)=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}
$$

The requirement that $L(z+\mu / z)$ is a Laurent polynomial of z forces $\mu=1$, and hence $\tilde{x}(z)=z+1 / z$. We find four candidates for $x_{k}=\tilde{x}\left(z_{k}\right)$

$$
z_{k}=a q^{k-1}, \quad z_{k}=b q^{k-1}, \quad z_{k}=c q^{k-1}, \quad \text { or } \quad z_{k}=d q^{k-1}
$$

which coincides with the symmetry of a, b, c, d in (4.2). Taking, for example, $z_{k}=a q^{k-1}$, we have

$$
b_{k}(z)=\prod_{j=1}^{k}\left(z-a q^{j-1}\right)\left(1-\frac{1}{a z q^{j-1}}\right)=\frac{(-1)^{k}}{a^{k}} q^{-\binom{k}{2}}(a z ; q)_{k}(a / z ; q)_{k},
$$

where $(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$ is the q-shifted factorial. Finally, we derive a q-hypergeometric representation of the Askey-Wilson polynomials:

$$
P_{n}(\tilde{x}(z))=c_{n} \cdot{ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-n}, a b c d q^{n-1}, a z, a z^{-1} \\
a b, a c, a d
\end{array} \right\rvert\, q ; q\right) .
$$

5. Recurrence relations

An important characterization of the orthogonal polynomials is the three term recurrence relations that they satisfy. Let $P_{n}(x)$ be orthogonal polynomials. Then there are constants α_{n}, β_{n} and γ_{n} such that

$$
\begin{equation*}
x P_{n}(x)=\alpha_{n} P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x) . \tag{5.1}
\end{equation*}
$$

Koornwinder and Swarttouw [15] implemented the package rec2ortho to recover the type of orthogonal polynomials from their three term recurrence relations. The algorithm is based on case by case checking. Koepf provided algorithms [14] to find the corresponding differential/difference equations from the three term recurrence relations. Combining the method given in Section 4 with Koepf's algorithms, we can find out the hypergeometric representations of $P_{n}(x)$. Here we provide another approach, which solves Equation (5.1) directly. This approach is feasible for almost all orthogonal polynomials in the Askey-scheme.
5.1. The ordinary cases. We firstly consider the ordinary cases in which α_{n}, β_{n} and γ_{n} are rational functions of n. Notice that $P_{n}(x)$ is not a polynomial in the variable n so that we can not apply Theorem 3.2. Fortunately, we have

Theorem 5.1 Let $L: K[x] \rightarrow K[x]$ be a linear operator of the form

$$
L(p(x))=\sum_{i=u}^{v} a_{i}(x) p(x+i)
$$

where u, v are integers and $a_{i}(x)$ are rational functions of x. Let $\left\{b_{k}(x)\right\}$ be a suitable basis with respect to L. Assume further that for each $n \in \mathbb{N}$, there exists $k_{n} \in \mathbb{N}$ such that $b_{k}(n)=0$ for all $k>k_{n}$. Suppose that c_{0}, c_{1}, \ldots is a sequence satisfying $c_{k} A_{k}+c_{k+h} B_{k+h}=0$. Then

$$
\sum_{i=u}^{v} a_{i}(n) y(n+i)=0, \quad \forall n \geq-u
$$

where $y(n)=\sum_{k=0}^{\infty} c_{k} b_{k}(n)$.
Proof. For each $n \geq-u$, let $K=\max \left\{k_{n}+h, k_{n+u}, k_{n+u+1}, \ldots, k_{n+v}\right\}$. Then

$$
\begin{aligned}
\sum_{i=u}^{v} a_{i}(n) y(n+i) & =\sum_{i=u}^{v} a_{i}(n) \sum_{k=0}^{K} c_{k} b_{k}(n+i) \\
& =\left.\sum_{k=0}^{K} c_{k} L\left(b_{k}(x)\right)\right|_{x=n} \\
& =\sum_{k=0}^{K} c_{k}\left(A_{k} b_{k}(n)+B_{k} b_{k-h}(n)\right) \\
& =\sum_{k=K-h+1}^{K} c_{k} A_{k} b_{k}(n)=0
\end{aligned}
$$

as desired.
We see that all ordinary orthogonal polynomials in the Askey-scheme are of the form $P_{n}=a_{n} \sum_{k=0}^{\infty} c_{k} b_{k}(n)$ with a_{n} being a hypergeometric term of n and $b_{k}(n)$ being a polynomial in n which satisfies $b_{k}(n)=0$ for $k>n$.

Therefore, we can recover P_{n} from Equation (5.1) by searching for the basis $\left\{b_{k}(n)\right\}$. Suppose that $a_{n+1} / a_{n}=r(n)$, a rational function of n. Then $\left\{b_{k}(n)\right\}$ is a suitable basis with respect to the linear operator L defined by

$$
\begin{equation*}
L(p(n))=\alpha_{n} r(n) p(n+1)+\left(\beta_{n}-x\right) p(n)+\frac{\gamma_{n}}{r(n-1)} p(n-1) . \tag{5.2}
\end{equation*}
$$

Suppose that we are given Equation (5.1). We aim to find an $r(n)$ such that the operator L given by (5.2) has a suitable basis. Let

$$
r(n)=\frac{f(n)}{g(n)} \frac{u(n+1) / v(n+1)}{u(n) / v(n)}
$$

be its rational normal form [3]. We restrict ourself on those $r(n)$ with $u(n)=$ $v(n)=1$. Let $D(n)$ be the least common denominator of α_{n}, β_{n} and γ_{n}. By the condition that $L(1)$ is a constant, we derive that
$\left(D(n) \alpha_{n}\right) f(n) f(n-1)+D(n)\left(\beta_{n}-x\right) f(n-1) g(n)+\left(D(n) \gamma_{n}\right) g(n) g(n-1)$
is divisible by $D(n) f(n-1) g(n)$. Therefore,

$$
f(n-1) \mid\left(D(n) \gamma_{n}\right) g(n) g(n-1) \quad \text { and } \quad g(n) \mid\left(D(n) \alpha_{n}\right) f(n) f(n-1) .
$$

From the definition of rational normal form, we know that $\operatorname{gcd}(f(n), g(n+$ $h))=1$ for any integer h. Therefore $f(n-1) \mid\left(D(n) \gamma_{n}\right)$ and $g(n) \mid\left(D(n) \alpha_{n}\right)$. Thus $r(n)$ can be chosen by the following algorithm.

Algo-Ratio

1. Choose a monic factor $f(n)$ of $D(n) \gamma_{n}$ and a monic factor $g(n)$ of $D(n) \alpha_{n}$.
2. Set $r(n)=\lambda f(n+1) / g(n)$.
3. Solve λ by the condition that $L(1)$ is a constant.

Once $r(n)$ is chosen, we can then search for a suitable basis with respect to the linear operator L given by (5.2), and hence obtain the explicit formula of $P_{n}(x)$. There are two cases.

1. L maps polynomials in n to polynomials in n. Then we set

$$
b_{k}(n)=\left(n-x_{1}\right)\left(n-x_{2}\right) \cdots\left(n-x_{k}\right) .
$$

2. L maps polynomials in n to rational functions of n. We firstly find μ such that $L(n(n+\mu))$ is a polynomial in n and then set

$$
b_{k}(n)=\left(u(n)-u_{1}\right)\left(u(n)-u_{2}\right) \cdots\left(u(n)-u_{k}\right),
$$

where $u(n)=n(n+\mu)$.
By the method given in Sections 2 and 3, we can find a formal series solution $y(n)=\sum_{k=0}^{\infty} c_{k} b_{k}(n)$ to the equation $L(y(n))=0$. Finally, we have

$$
P_{n}(x)=a_{0}\left(\prod_{k=0}^{n-1} r(k)\right) y(n)
$$

Example 5.1. Consider the example given in [11, Section 8]. Suppose that

$$
P_{n+1}(x)+(n-x) P_{n}(x)+\alpha n^{2} P_{n-1}(x)=0 .
$$

We aim to find an explicit formula of P_{n}.
By Algo-Ratio, we find that

$$
r(n)=\frac{-1 \pm \sqrt{1-4 \alpha}}{2}(n+1) .
$$

For convenience, we write $u^{2}=1-4 \alpha$ and hence $\alpha=\left(1-u^{2}\right) / 4$ and $r(n)=(u-1)(n+1) / 2$. Thus the linear operator L is given by

$$
L(p(n))=\frac{u-1}{2}(n+1) p(n+1)+(n-x) p(n)-\frac{u+1}{2} n p(n-1) .
$$

We find two suitable bases: $b_{k}(n)=(-1)^{k}(-n)_{k}$ or $b_{k}(n)=(n+1)_{k}$. Only the first one satisfies $b_{k}(n)=0$ for k large enough. Thus we finally derive that

$$
P_{n}(x)=a_{0}\left(\frac{u-1}{2}\right)^{n} n!{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n,(-2 x+u-1) / 2 u \\
1
\end{array} \right\rvert\, \frac{2 u}{u-1}\right), \quad u \neq 0
$$

and

$$
P_{n}(x)=a_{0} \frac{(-1)^{n} n!}{2^{n}}{ }_{1} F_{1}\left(\begin{array}{c|c}
-n & 2 x+1 \\
1
\end{array}\right), \quad u=0 .
$$

Example 5.2. Consider the Jacobi polynomials which satisfy

$$
x P_{n}(x)=\alpha_{n} P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x),
$$

where
$\alpha_{n}=\frac{2(n+1)(n+\alpha+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)}, \quad \beta_{n}=\frac{\beta^{2}-\alpha^{2}}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)}$,
and

$$
\gamma_{n}=\frac{2(n+\alpha)(n+\beta)}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+1)}
$$

One choice for $r(n)$ is

$$
r(n)=(n+\alpha+1) /(n+1)
$$

Now define

$$
L(p(n))=r(n) \alpha_{n} p(n+1)+\left(\beta_{n}-x\right) p(n)+\frac{\gamma_{n}}{r(n-1)} p(n-1)
$$

We see that $L(n)$ is a rational function of n. By the requirement that $L(n(n+$ $\mu)$) is a polynomial in n, we find that $\mu=\alpha+\beta+1$. Setting

$$
b_{k}(n)=\left(u(n)-u_{1}\right) \cdots\left(u(n)-u_{k}\right),
$$

with $u(n)=n(n+\alpha+\beta+1)$, we find a suitable basis with $u_{k}=(k-1)(\alpha+$ $\beta+k$). By Algo-Verify, we obtain

$$
P_{n}^{(\alpha, \beta)}(x)=a_{0} \frac{(\alpha+1)_{n}}{n!}{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
-n, n+\alpha+\beta+1 \\
\alpha+1
\end{array} \right\rvert\, \frac{1-x}{2}\right) .
$$

5.2. The q-cases. Now consider the q-cases, in which the α_{n}, β_{n} and γ_{n} in Equation (5.1) are rational functions of q^{n}. We write $t=q^{-n}$ so that α_{n}, β_{n} and γ_{n} become $\alpha(t), \beta(t)$ and $\gamma(t)$ which are rational functions of t. Similar to the ordinary case, we choose a suitable rational function $r(t)$ and define the q-difference operator L as follows

$$
L(p(t))=\alpha(t) r(t) p(t / q)+(\beta(t)-x) p(t)+\frac{\gamma(t)}{r(t q)} p(t q)
$$

Then by finding suitable bases with respect to L, we will derive the q hypergeometric representations of the orthogonal polynomials $P_{n}(x)$.
Example 5.3. Consider the Al-Salam-Chihara polynomials whose three term recurrence relation is given by

$$
2 x Q_{n}(x)=Q_{n+1}(x)+(a+b) q^{n} Q_{n}(x)+\left(1-q^{n}\right)\left(1-a b q^{n-1}\right) Q_{n-1}(x)
$$

One choice for $r(t)$ is $(t-a b) / a t$ and hence

$$
L(p(t))=\frac{t-a b}{2 a t} p(t / q)+\left(\frac{a+b}{2 t}-x\right) p(t)+\frac{a(t-1)}{2 t} p(t q) .
$$

We find a suitable basis $b_{k}(t)=(t-1)\left(t-q^{-1}\right) \cdots\left(t-q^{-k+1}\right)$. By Algo-Verify we finally obtain

$$
Q_{n}(x)=a_{0} \frac{(a b ; q)_{n}}{a^{n}}{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, a e^{i \theta}, a e^{-i \theta} \\
a b, 0
\end{array} \right\rvert\, q ; q\right), \quad x=\cos \theta .
$$

Acknowledgments. We are grateful to the reviewer for valuable comments, especially the suggestion on the choice of $r(n)$ in Section 5 . This work was supported by the PCSIRT Project of the Ministry of Education and the National Natural Science Foundation of China (Projects 10731040 and 10826038).

References

[1] S.A. Abramov, P. Paule, and M. Petkovšek, q-Hypergeometric solutions of q-difference equations, Discrete Math. 180 (1998) 3-22.
[2] S.A. Abramov and M. Petkovšek, Special formal series solutions of linear operator equations, Discrete Math. 210 (2000) 3-25.
[3] S.A. Abramov and M. Petkovšek, Rational normal forms and minimal decompositions of hypergeometric terms, J. Symbolic Comput. 33 (2002) 521-543.
[4] N.M. Atakishiyev and S.K. Suslov, Difference hypergeometric functions, in: Progress in Approximation Theory: An International Perspective (A.A. Gonchar and E.B. Saff, eds.), Springer Series in Computational Mathematics, Vol. 19, Springer-Verlag, 1992, pp. 1-35.
[5] W.Y.C. Chen, Q.-H. Hou, and Y.-P. Mu, The extended Zeilberger's algorithm with parameters, preprint.
[6] M. Foupouagnigni, On difference equations for orthogonal polynomials on nonuniform lattices, J. Difference Equ. Appl., 14 (2008) 127-174.
[7] R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05, Delft University of Technology, Faculty TWI, 1994.
[8] W. Koepf, Algorithms for m-fold hypergeometric summation, J. Symbolic Comput. 20 (1995) 399-417.
[9] W. Koepf, Hypergeometric Summation, An Algorithmic Approach to Summation and Special Function Identities, Advanced Lectures in Mathematics, Vieweg, Braunschweig/Wiesbaden, 1998.
[10] W. Koepf, Orthogonal polynomials and computer algebra, In: R.P. Gilbert et al. Eds., Recent Developments in Complex Analysis and Computer Algebra, Kluwer, 1999, 205-234.
[11] W. Koepf, Computer algebra methods for orthogonal polynomials, Plenary talk at the International Conference on Difference Equations, Special Functions and Applications, Munich, Germany, 25-30 July 2005, Jim Cushing, Saber Elyadi, Ruppert Lasser, Vassilis Papageorgiou, Andreas Ruffing, Walter van Assche (Eds), World Scientific, 2007, 325-343.
[12] W. Koepf and M. Masjed-Jamei, A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it, Integral Transforms and Special Functions 17 (2006) 559-576.
[13] W. Koepf and D. Schmersau, Representations of orthogonal polynomials, J. Comput. Appl. Math. 90 (1998) 57-94.
[14] W. Koepf and D. Schmersau, Recurrence equations and their classical orthogonal polynomial solutions, Appl. Math. Comput. 128 (2002) 303327.
[15] T.H. Koornwinder and R. Swarttouw, http://staff.science.uva.nl /~ thk/art/software/rec2ortho/
[16] A.F. Nikiforov, S.K. Suslov, and V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, Berlin Heidelberg, 1991.
[17] A.F. Nikiforov and V.B. Uvarov, Classical orthogonal polynomials of a dicrete variable on non-uniform lattices, Preprint No. 17, Keldysh Inst. Appl. Math., Moscow, 1983 (in Russian).

[^0]: ${ }^{1}$ Corresponding author

