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Abstract

Let K be a field and L : K[x] → K[x] be a linear operator act-
ing on the ring of polynomials in x over the field K. We provide a
method to find a suitable basis {bk(x)} of K[x] and a hypergeomet-
ric term ck such that y(x) =

∑∞
k=0 ckbk(x) is a formal series solution

to the equation L(y(x)) = 0. This method is applied to construct
hypergeometric representations of orthogonal polynomials from the
differential/difference equations or recurrence relations they satisfied.
Both the ordinary cases and the q-cases are considered.

AMS Classifications : 33C45, 33D45, 47E05.

Keywords : hypergeometric series, orthogonal polynomials, differential/difference
equations, three term recurrence relations

1. Introduction

A hypergeometric series
∑

k≥0 tk is a series in which the ratio of two consecu-
tive terms is a rational function of the summation index k. Consequently, tk
is called a hypergeometric term. When the series contains only finitely many
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non-zero summands, it is called a hypergeometric polynomial. Hypergeo-
metric series and polynomials appear frequently in the theory of orthogonal
polynomials. For instant, all orthogonal polynomials in the Askey-scheme
are hypergeometric polynomials or their q-analogue [7].

It is well-known that one can solve linear differential equations by means
of power series. Abramov and Petkovšek [2] considered general polynomial se-
quences besides the powers and presented an algorithm to find nice power se-
ries solutions of linear differential equations. Abramov, Paule and Petkovšek
[1] presented an algorithm for finding formal power series solutions and ba-
sic hypergeometric series solutions of q-difference equations. In this paper,
we provide a method to find hypergeometric series solutions to the equation
L(y(x)) = 0 where L : K[x] → K[x] is a linear operator acting on K[x], the
ring of polynomials in x over the field K. The key idea is to search for a
suitable basis {bk(x)} of K[x] such that the solution y(x) can be expressed
as
∑∞

k=0 ckbk(x) with ck being a hypergeometric term.

Our main motivation comes from finding the hypergeometric represen-
tations of orthogonal polynomials. As pointed by Koepf [10], starting from
the hypergeometric representations, one can compute the corresponding dif-
ferential/difference equations, the recurrence relations and the structure re-
lations. For more details, see Koepf’s book [9] which covers Zeilberger’s
and Petkovšek’s algorithms and many variants such as ℎ-hypergeometric se-
ries. Chen and the authors [5] used the extended Zeilberger’s algorithm to
provide a unified treatment of these tasks. Here we consider the inverse
problem, that is, finding hypergeometric representations from the differen-
tial/difference equations. We know that all orthogonal polynomials Pn(x) in
the Askey-scheme satisfy certain differential/difference equations. Rewriting
the equation as L(Pn(x)) = 0 with L being a linear operator, we see that
finding a hypergeometric representation is precisely finding a hypergeometric
polynomial solution to the equation L(y(x)) = 0.

Koepf and Schmersau [13] discussed the conversions between the differ-
ential/difference equations, the hypergeometric representations and the re-
currence relations for the continuous and discrete cases. Koepf and Masjed-
Jamei [12] provided generic hypergeometric polynomial solutions for the con-
tinuous case. Atakishiyev and Suslov [4] discussed difference equations on
the lattice with non-uniform steps [17]. Foupouagnigni [6] further studied the
difference equations satisfied by classical orthogonal polynomials and their
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modifications. Our approach provides a uniform and algorithmic treatment
for classical orthogonal polynomials. Moreover, in a similar way we can also
find the hypergeometric representations of orthogonal polynomials directly
from the three term recurrence relations.

The paper is organized as follows. In section 2, we provide a heuristic
method to find out suitable bases {bk(x)} of K[x] for a given linear operator
L, which satisfy

L(bk(x)) = Akbk(x) +Bkbk−ℎ(x), k = 0, 1, . . . , (1.1)

where Ak, Bk ∈ K and ℎ is a positive integer. For this purpose, we solve non-
linear equations to get the explicit bk(x) for small k and guess the general
form. Then in Section 3, we present an algorithm to check whether a given
basis {bk(x)} satisfies (1.1). Moreover, the algorithm computes Ak and Bk

for general k and thus leads to a formal series solution y(x) to the equation
L(y(x)) = 0. In Section 4, we apply the method to derive hypergeometric
representations of orthogonal polynomials from their differential/difference
equations. Finally in Section 5, we use the method to find hypergeometric
representations of orthogonal polynomials from their recurrence relations.
Both the ordinary cases and the q-cases are visited.

We have implemented the algorithms in Maple, which can be obtained
from http://www.combinatorics.net.cn/homepage/hou/basis.html.

2. Searching for suitable bases

Let L be a linear operator acting on the ring K[x] of polynomials in variable
x over the field K. Denoting the set of nonnegative integers by ℕ, we aim to
find a basis {bk(x)} of K[x] such that

L(bk(x)) = Akbk(x) +Bkbk−ℎ(x), ∀ k ∈ ℕ, (2.1)

where Ak, Bk ∈ K and ℎ is a fixed positive integer. Here and in the remainder
part of the paper, we always set bi(x) = 0 for i < 0.

Without loss of generality, we assume that bk(x), k = 0, 1, . . . are monic
polynomials of degree k. For convenience, we further require that bk−1(x)
divides bk(x). Under these assumptions, we may write bk(x) as

bk(x) = (x− x1)(x− x2) ⋅ ⋅ ⋅ (x− xk), (2.2)
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where x1, . . . , xk ∈ K. A basis {bk(x)} of form (2.2) is called a suitable basis

(with respect to the operator L) if (2.1) holds.

Now fix a positive integer k and regard x1, . . . , xk as undeterminates. By
comparing the coefficients of powers of x on both sides of (2.1), we derive
that

Ak = [xk]L(bk(x)) and Bk = [xk−ℎ]
(

L(bk(x))− Akbk(x)
)

, (2.3)

where [xm]p(x) denotes the coefficient of xm in the polynomial p(x). Thus
Ak, Bk are expressed in terms of x1, . . . , xk. Substituting (2.3) into (2.1) and
equating each power of x of both sides, we obtain a system of polynomial
equations on x1, . . . , xk.

Starting from k = 1, we iteratively set up and solve the equations on
x1, . . . , xk until reaching a certain degree k0. In each iteration, we obtain
either the explicit values of xi or some relations among them. The number
of equations can be roughly estimated as follows. Suppose that the degree
of L(bk(x)) is less than or equal to k. Then (2.1) leads to k+1 equations on
x1, . . . , xk and Ak, Bk. Expressing Ak, Bk in terms of x1, . . . , xk by (2.3), we
still have k− 1 equations. All together there are 0+ 1+ ⋅ ⋅ ⋅+ (k0− 1) =

(

k0
2

)

equations on x1, . . . , xk0. Therefore when k0 is large enough, we will obtain
x1, . . . , xk0 explicitly. In fact, for all examples appearing in this paper, k0 = 5
is enough. Finally, we guess the general form of xk from the pattern, which
is often straightforward.

Example 2.1 Let L be given by

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x). (2.4)

Take ℎ = 1 and set b0(x) = 1, b1(x) = x− x1. For k = 1, (2.1) becomes

(n2 − 1)x− n2x1 = A1(x− x1) +B1. (2.5)

By (2.3), we derive that A1 = (n2 − 1) and B1 = −x1.

Now consider k = 2 and set b2(x) = (x−x1)(x−x2). Then (2.1) becomes

(n2 − 4)x2 − (n2 − 1)(x1 + x2)x+ 2 + n2x1x2

= A2(x− x1)(x− x2) +B2(x− x1),
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which leads to

A2 = n2 − 4, B2 = −3(x1 + x2), and x1x2 = 3x2
1 − 2.

Substituting (3x2
1 − 2)/x1 for x2 and solving the equations corresponding to

k = 3, we derive that x1 = x2 = x3 = 1 or x1 = x2 = x3 = −1. Continuing
this process, we obtain that x1 = ⋅ ⋅ ⋅ = xk0 = 1 or x1 = ⋅ ⋅ ⋅ = xk0 = −1 for
any k0 ≥ 3. This leads us to guess bk(x) = (x+ 1)kor bk(x) = (x− 1)k.

3. Hypergeometric polynomial solutions

Once we have guessed the form of bk(x), we can then check whether {bk(x)}
forms a suitable basis, i.e., (2.1) holds for arbitrary non-negative integer k.

Theorem 3.1 Let L : K[x] → K[x] be a linear operator and {bk(x)} be a

suitable basis satisfying (2.1). Then for any k ∈ ℕ, L(bk(x))/bk−ℎ(x) is a

polynomial in x of degree no more than ℎ. Furthermore, we have

Ak = [xℎ]
L(bk(x))

bk−ℎ(x)
, and Bk = [x0]

(

L(bk(x))

bk−ℎ(x)
− Ak

bk(x)

bk−ℎ(x)

)

. (3.1)

Proof. Dividing both sides of (2.1) by bk−ℎ(x), we obtain

L(bk(x))

bk−ℎ(x)
= Ak

bk(x)

bk−ℎ(x)
+Bk.

Since bk(x)/bk−ℎ(x) is a polynomial of degree ℎ, we immediately derive that
L(bk(x))/bk−ℎ(x) is a polynomial of degree less than or equal to ℎ. Comparing
the coefficients of xℎ and x0, we obtain (3.1).

Theorem 3.1 provides us an algorithm to verify whether {bk(x)} forms a
suitable basis. Moreover, we solve out Ak and Bk simultaneously.

Algo-Verify

1. Check whether L(bk(x))/bk−ℎ(x) is a polynomial in x of degree no more
than ℎ. If not, return “{bk(x)} is not a suitable basis” and stop.
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2. Compute Ak, Bk according to (3.1).

3. Check whether
L(bk(x))

bk−ℎ(x)
= Ak

bk(x)

bk−ℎ(x)
+Bk (3.2)

holds for the above Ak, Bk. If yes, return Ak and Bk; otherwise, return
“{bk(x)} is not a suitable basis”.

Example 3.1 Let L be the operator given in Example 2.1:

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

For ℎ = 1, we guess that bk(x) = (x − 1)k. Applying Algo-Verify, we verify
that {bk(x)} is indeed a suitable basis with

Ak = n2 − k2 and Bk = k − 2k2.

Let L : K[x] → K[x] be a linear operator and {bk(x)} be a suitable basis.
As done by Abramov and Petkovšek [2], L can be extended to formal series
of the form

∑∞

k=0 ckbk(x) by setting

L

(

∞
∑

k=0

ckbk(x)

)

=

∞
∑

k=0

(ckAk + ck+ℎBk+ℎ)bk(x).

Suppose that {ck} is a sequence satisfying

ckAk + ck+ℎBk+ℎ = 0, ∀ k ∈ ℕ.

Then we immediately derive that
∑∞

k=0 ckbk(x) is a formal series solution
to the equation L(y(x)) = 0. When the series {ck} contains only finitely
many non-zero entries,

∑∞

k=0 ckbk(x) becomes a polynomial and hence is
a polynomial solution to the equation L(y(x)) = 0. We thus derive the
following theorem.

Theorem 3.2 Let L : K[x] → K[x] be a linear operator and {bk(x)} be a

suitable basis satisfying (2.1). Suppose that y(x) =
∑∞

k=0 ckbk(x) is a poly-

nomial solution to the equation L(y(x)) = 0. Then

ck+ℎBk+ℎ = −ckAk, ∀ k ∈ ℕ. (3.3)

Conversely, let c0, c1, . . . be a sequence satisfying (3.3) and containing only

finitely many non-zero entries. Then L(
∑∞

k=0 ckbk(x)) = 0.
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Let tk = ckbk(x). When Ak, Bk and xk are all rational functions of k,
tk is an ℎ-fold hypergeometric term defined by Koepf [8]. Especially when
ℎ = 1, tk becomes a hypergeometric term and y(x) =

∑∞

k=0 tk becomes a
hypergeometric series. More precisely, suppose that

tk+ℎ

tk
= −Ak ⋅ bk+ℎ(x)

Bk+ℎ ⋅ bk(x)
=

(k + u1) ⋅ ⋅ ⋅ (k + ur)

(k + v1) ⋅ ⋅ ⋅ (k + vs)
z

Then

tkℎ+i = ti
(u1+i

ℎ
)k ⋅ ⋅ ⋅ (ur+i

ℎ
)k

(v1+i
ℎ

)k ⋅ ⋅ ⋅ (vs+i
ℎ

)k
(zℎr−s)k, i = 0, 1, . . . , ℎ− 1,

where (a)k = a(a+ 1) ⋅ ⋅ ⋅ (a+ k − 1) denotes the raising factorial. Therefore
we can express y(x) in terms of the standard notation of hypergeometric
series:

rFs

(

a1, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

∣

z

)

=
∞
∑

k=0

(a1)k ⋅ ⋅ ⋅ (ar)k
(b1)k ⋅ ⋅ ⋅ (bs)k

zk

k!
.

Example 3.2. Let n be a nonnegative integer and

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

As shown in Example 3.1, a suitable basis with respect to L is {(x − 1)k}
and the corresponding Ak = n2 − k2, Bk = k − 2k2. By direct computation,
we derive that

tk+1

tk
= − Ak

Bk+1
(x− 1) =

(k − n)(k + n)

(k + 1)(k + 1/2)
⋅ 1− x

2
,

and hence

y(x) = c ⋅ 2F1

(

−n, n

1/2

∣

∣

∣

∣

∣

1− x

2

)

is a polynomial solution to the equation L(y(x)) = 0. In fact, it is a multiple
of the Chebyshev polynomial of the first kind.

When Ak, Bk and xk are rational functions of qk, tk becomes the q-
analogue of ℎ-hypergeometric terms. In this case, we can express y(x) =
∑∞

k=0 tk in terms of the standard notation of q-hypergeometric series:

r�s

(

a1, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

∣

q; z

)

=
∞
∑

k=0

(a1; q)k ⋅ ⋅ ⋅ (ar; q)k
(b1; q)k ⋅ ⋅ ⋅ (bs; q)k

zk

(q; q)k

(

(−1)kq(
k

2
)
)s+1−r

,
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where (a; q)k = (1− a)(1− aq) ⋅ ⋅ ⋅ (1− aqk−1) is the q-shifted factorial.

Example 3.3. Let n be a nonnegative integer and L be given by

L(p(x)) = xp(qx) + (1− xqn)p(x)− p(x/q).

For ℎ = 1, we find a suitable basis {xk} and

− Ak

Bk+1
=

1− q−nqk

1− qqk
qkqn+1.

Therefore,

y(x) = c ⋅ 1�1

(

q−n

0

∣

∣

∣

∣

∣

q;−qn+1x

)

,

which is a multiple of the Stieltjes-Wigert polynomial.

4. Differential/difference equations

As we know, the classical orthogonal polynomials can be characterized by sat-
isfying a certain differential, difference or q-difference equation. Rewriting
the equation as an operator L acting on polynomials, we see that the or-
thogonal polynomials are precisely the polynomial solutions to the equation
L(y(x)) = 0. Therefore, we may use the above method to derive hyperge-
ometric representations of orthogonal polynomials from the corresponding
differential/difference equations. The method is feasible for all orthogonal
polynomials in the Askey-scheme. We take the Jacobi polynomials, the Hahn
polynomials, the Racah polynomials and the Askey-Wilson polynomials as
examples.

4.1. The differential cases. Consider the Jacobi polynomials. The corre-
sponding linear operator L is given by

L(p(x)) = (1−x2)p′′(x)+ (�−�− (�+�+2)x)p′(x)+n(n+�+�+1)p(x).

By the first few terms, we find two candidates for bk(x): (x−1)k and (x+1)k.
By Algo-Verify, both of them are suitable bases, leading to two representa-
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tions for Jacobi polynomials:

P (�,�)
n (x) =

(� + 1)n
n!

2F1

(

−n, n + � + � + 1

�+ 1

∣

∣

∣

∣

∣

1− x

2

)

= (−1)n
(� + 1)n

n!
2F1

(

−n, n + � + � + 1

� + 1

∣

∣

∣

∣

∣

1 + x

2

)

.

The constant (�+1)n
n!

is determined by the condition P
(�,�)
n (1) =

(

n+�

n

)

and

(−1)n (�+1)n
n!

is determined by comparing the coefficient of xn.

In the special case when � = �, we find one more suitable basis {xk} with
ℎ = 2. This leads to another representation for ultraspherical polynomials:

P (�,�)
n (x) = cn ⋅ x�

2F1

(

−n+�
2

, n+1+�
2

+ �
1
2
+ �

∣

∣

∣

∣

∣

x2

)

,

where � = 0 for n even and � = 1 for n odd. Reversing the summation index,
we obtain a uniform representation

P (�,�)
n (x) =

(n + 2�+ 1)n
2nn!

xn
2F1

(

−n/2, (−n+ 1)/2

−n + 1
2
− �

∣

∣

∣

∣

∣

1

x2

)

.

4.2. The difference cases. Consider the Hahn polynomials Qn(x). The
corresponding linear operator L is given by

L(p(x)) = B(x)y(x+1)−(n(n+�+�+1)+B(x)+D(x))y(x)+D(x)y(x−1),

where B(x) = (x + � + 1)(x − N) and D(x) = x(x − � − N − 1). We find
four suitable bases:

{(x+�+1)k}, {(−1)k(−x+N +�+1)k}, {(x−N)k}, {(−1)k(−x)k}.

These bases lead to four hypergeometric representations of Hahn polynomi-
als. For example, taking bk(x) = (x+ � + 1)k, we derive

Qn(x) = cn ⋅ 3F2

(

−n, n + � + � + 1, x+ �+ 1

�+ 1, � + � +N + 2

∣

∣

∣

∣

∣

1

)

.
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4.3. Non-uniform lattice cases. In general, the classical orthogonal
polynomials Pn(x) on non-uniform lattices satisfy [16, Equation (3.15)]

�̃[x(s)]
Δ

Δx(s− 1/2)

[∇y(s)

∇x(s)

]

+
�̃ [x(s)]

2

[

Δy(s)

Δx(s)
+

∇y(s)

∇x(s)

]

+�y(s) = 0, (4.1)

where x(s) is the lattice function, y(s) = Pn(x(s)) and Δf(s) = f(s + 1)−
f(s),∇f(s) = f(s) − f(s − 1). Moreover, the lattice function x(s) has one
of the following forms:

x(s) = c1s
2 + c2s+ c3, or x(s) = c1q

s + c2q
−s + c3.

By linear transformation, we may assume without loss of generality that
x(s) = s(s+ �) or x(s) = qs + �q−s.

I. Lattice x(s) = s(s+�). In this case, Equation (4.1) is a linear difference
equation with respect to the variable s. Let L be a linear difference operator
which maps polynomials in variable s to rational functions of s (instead of
polynomials in s). We firstly use the fact that L(x(s)) is a polynomial in
x(s) to determine the parameter � and hence the lattice function x(s). Then
we apply our method to find out x1, . . . , xk such that

bk(s) = (x(s)− x1)(x(s)− x2) ⋅ ⋅ ⋅ (x(s)− xk)

satisfy
L(bk(s)) = Akbk(s) +Bkbk−ℎ(s).

Consequently, we obtain hypergeometric polynomial solutions to the equation
L(y(s)) = 0, which are precisely the hypergeometric representations of the
corresponding orthogonal polynomials.

Let us consider the Racah polynomials. The corresponding linear opera-
tor is given by

L(p(s)) = B(s)p(s+1)− (n(n+�+�+1)+B(s)+D(s))p(s)+D(s)p(s−1),

where

B(s) =
(s+ � + 1)(s+ � + � + 1)(s+  + 1)(s+  + � + 1)

(2s+  + � + 1)(2s+  + � + 2)
,

and

D(s) =
s(s− � +  + �)(s− � + )(s+ �)

(2s+  + �)(2s+  + � + 1)
.
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We see that L(s(s + �)) is a rational function of s whose denominator is
(2s +  + �)(2s +  + � + 1)(2s +  + � + 2). To ensure that L(s(s + �)) is
a polynomial, the numerator must equal to zero when we substitute s with
−( + �)/2. This leads to � =  + � + 1, and hence x(s) = s(s+  + � + 1).
We find four candidates for xk = x(sk)

sk = k+�−−�−1, sk = k−�−1, sk = k−1, or sk = k+�−−1.

The corresponding bk(s)’ are

(−1)k(−s + �−  − �)k(s + �+ 1)k, (−1)k(−s− �)k(s+  + 1)k

and

(−1)k(−s)k(s+  + � + 1)k, (−1)k(−s + � − )k(s+ � + � + 1)k.

Each of these bases leads to a hypergeometric representation of Racah poly-
nomials. For example, the first basis leads to

Rn(x(s)) = cn ⋅ 4F3

(

−n, n + �+ � + 1,−s+ �−  − �, s + � + 1
� + 1, �− � + 1, � + � −  + 1

∣

∣

∣

∣

1

)

.

II. Lattice x(s) = qs+�q−s. In this case, we write z = qs and x̃(z) = z+�/z.
Then Equation (4.1) becomes a q-difference equation with respect to the
variable z. Given a q-difference operator L, we search for

bk(z) = (x̃(z)− x1)(x̃(z)− x2) ⋅ ⋅ ⋅ (x̃(z)− xk)

such that
L(bk(z)) = Akbk(z) +Bkbk−ℎ(z).

Consequently, we will obtain q-hypergeometric polynomial solutions to the
equation L(y(z)) = 0, which are precisely the q-hypergeometric representa-
tions of the corresponding orthogonal polynomials.

Consider the Askey-Wilson polynomials. The linear operator is given by

L(p(z)) = A(z)p(zq)

− [q−n(1− qn)(1− abcdqn−1) + A(z) + A(z−1)]p(z) + A(z−1)p(z/q) (4.2)
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where

A(z) =
(1− az)(1− bz)(1 − cz)(1− dz)

(1− z2)(1− qz2)
.

The requirement that L(z + �/z) is a Laurent polynomial of z forces � = 1,
and hence x̃(z) = z + 1/z. We find four candidates for xk = x̃(zk)

zk = aqk−1, zk = bqk−1, zk = cqk−1, or zk = dqk−1,

which coincides with the symmetry of a, b, c, d in (4.2). Taking, for example,
zk = aqk−1, we have

bk(z) =
k
∏

j=1

(z − aqj−1)

(

1− 1

azqj−1

)

=
(−1)k

ak
q−(

k

2
)(az; q)k(a/z; q)k,

where (a; q)k = (1−a)(1−aq) ⋅ ⋅ ⋅ (1−aqk−1) is the q-shifted factorial. Finally,
we derive a q-hypergeometric representation of the Askey-Wilson polynomi-
als:

Pn(x̃(z)) = cn ⋅ 4�3

(

q−n, abcdqn−1, az, az−1

ab, ac, ad

∣

∣

∣

∣

q; q

)

.

5. Recurrence relations

An important characterization of the orthogonal polynomials is the three
term recurrence relations that they satisfy. Let Pn(x) be orthogonal polyno-
mials. Then there are constants �n, �n and n such that

xPn(x) = �nPn+1(x) + �nPn(x) + nPn−1(x). (5.1)

Koornwinder and Swarttouw [15] implemented the package rec2ortho to
recover the type of orthogonal polynomials from their three term recurrence
relations. The algorithm is based on case by case checking. Koepf pro-
vided algorithms [14] to find the corresponding differential/difference equa-
tions from the three term recurrence relations. Combining the method given
in Section 4 with Koepf’s algorithms, we can find out the hypergeometric
representations of Pn(x). Here we provide another approach, which solves
Equation (5.1) directly. This approach is feasible for almost all orthogonal
polynomials in the Askey-scheme.

12



5.1. The ordinary cases. We firstly consider the ordinary cases in which
�n, �n and n are rational functions of n. Notice that Pn(x) is not a polyno-
mial in the variable n so that we can not apply Theorem 3.2. Fortunately,
we have

Theorem 5.1 Let L : K[x] → K[x] be a linear operator of the form

L(p(x)) =
v
∑

i=u

ai(x)p(x+ i),

where u, v are integers and ai(x) are rational functions of x. Let {bk(x)} be

a suitable basis with respect to L. Assume further that for each n ∈ ℕ, there

exists kn ∈ ℕ such that bk(n) = 0 for all k > kn. Suppose that c0, c1, . . . is a

sequence satisfying ckAk + ck+ℎBk+ℎ = 0. Then

v
∑

i=u

ai(n)y(n+ i) = 0, ∀n ≥ −u,

where y(n) =
∑∞

k=0 ckbk(n).

Proof. For each n ≥ −u, let K = max{kn+ ℎ, kn+u, kn+u+1, . . . , kn+v}. Then
v
∑

i=u

ai(n)y(n+ i) =

v
∑

i=u

ai(n)

K
∑

k=0

ckbk(n+ i)

=
K
∑

k=0

ckL(bk(x))∣x=n

=

K
∑

k=0

ck(Akbk(n) +Bkbk−ℎ(n))

=

K
∑

k=K−ℎ+1

ckAkbk(n) = 0,

as desired.

We see that all ordinary orthogonal polynomials in the Askey-scheme are
of the form Pn = an

∑∞

k=0 ckbk(n) with an being a hypergeometric term of
n and bk(n) being a polynomial in n which satisfies bk(n) = 0 for k > n.

13



Therefore, we can recover Pn from Equation (5.1) by searching for the basis
{bk(n)}. Suppose that an+1/an = r(n), a rational function of n. Then
{bk(n)} is a suitable basis with respect to the linear operator L defined by

L(p(n)) = �nr(n)p(n+ 1) + (�n − x)p(n) +
n

r(n− 1)
p(n− 1). (5.2)

Suppose that we are given Equation (5.1). We aim to find an r(n) such
that the operator L given by (5.2) has a suitable basis. Let

r(n) =
f(n)

g(n)

u(n+ 1)/v(n+ 1)

u(n)/v(n)

be its rational normal form [3]. We restrict ourself on those r(n) with u(n) =
v(n) = 1. Let D(n) be the least common denominator of �n, �n and n. By
the condition that L(1) is a constant, we derive that

(D(n)�n)f(n)f(n− 1) +D(n)(�n − x)f(n− 1)g(n) + (D(n)n)g(n)g(n− 1)

is divisible by D(n)f(n− 1)g(n). Therefore,

f(n− 1) ∣ (D(n)n)g(n)g(n− 1) and g(n) ∣ (D(n)�n)f(n)f(n− 1).

From the definition of rational normal form, we know that gcd(f(n), g(n +
ℎ)) = 1 for any integer ℎ. Therefore f(n−1) ∣ (D(n)n) and g(n) ∣ (D(n)�n).
Thus r(n) can be chosen by the following algorithm.

Algo-Ratio

1. Choose a monic factor f(n) of D(n)n and a monic factor g(n) of
D(n)�n.

2. Set r(n) = �f(n+ 1)/g(n).

3. Solve � by the condition that L(1) is a constant.

Once r(n) is chosen, we can then search for a suitable basis with respect
to the linear operator L given by (5.2), and hence obtain the explicit formula
of Pn(x). There are two cases.

14



1. L maps polynomials in n to polynomials in n. Then we set

bk(n) = (n− x1)(n− x2) ⋅ ⋅ ⋅ (n− xk).

2. L maps polynomials in n to rational functions of n. We firstly find �
such that L(n(n + �)) is a polynomial in n and then set

bk(n) = (u(n)− u1)(u(n)− u2) ⋅ ⋅ ⋅ (u(n)− uk),

where u(n) = n(n + �).

By the method given in Sections 2 and 3, we can find a formal series solution
y(n) =

∑∞

k=0 ckbk(n) to the equation L(y(n)) = 0. Finally, we have

Pn(x) = a0

(

n−1
∏

k=0

r(k)

)

y(n).

Example 5.1. Consider the example given in [11, Section 8]. Suppose that

Pn+1(x) + (n− x)Pn(x) + �n2Pn−1(x) = 0.

We aim to find an explicit formula of Pn.

By Algo-Ratio, we find that

r(n) =
−1 ±

√
1− 4�

2
(n+ 1).

For convenience, we write u2 = 1 − 4� and hence � = (1 − u2)/4 and
r(n) = (u− 1)(n+ 1)/2. Thus the linear operator L is given by

L(p(n)) =
u− 1

2
(n+ 1)p(n+ 1) + (n− x)p(n)− u+ 1

2
np(n− 1).

We find two suitable bases: bk(n) = (−1)k(−n)k or bk(n) = (n + 1)k. Only
the first one satisfies bk(n) = 0 for k large enough. Thus we finally derive
that

Pn(x) = a0

(

u− 1

2

)n

n! 2F1

(

−n, (−2x+ u− 1)/2u
1

∣

∣

∣

∣

2u

u− 1

)

, u ∕= 0,
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and

Pn(x) = a0
(−1)nn!

2n
1F1

(

−n
1

∣

∣

∣

∣

2x+ 1

)

, u = 0.

Example 5.2. Consider the Jacobi polynomials which satisfy

xPn(x) = �nPn+1(x) + �nPn(x) + nPn−1(x),

where

�n =
2(n+ 1)(n+ � + � + 1)

(2n+ � + � + 1)(2n+ � + � + 2)
, �n =

�2 − �2

(2n+ � + �)(2n+ � + � + 2)
,

and

n =
2(n+ �)(n+ �)

(2n+ � + �)(2n+ � + � + 1)
.

One choice for r(n) is

r(n) = (n + �+ 1)/(n+ 1).

Now define

L(p(n)) = r(n)�np(n+ 1) + (�n − x)p(n) +
n

r(n− 1)
p(n− 1).

We see that L(n) is a rational function of n. By the requirement that L(n(n+
�)) is a polynomial in n, we find that � = � + � + 1. Setting

bk(n) = (u(n)− u1) ⋅ ⋅ ⋅ (u(n)− uk),

with u(n) = n(n+�+ � +1), we find a suitable basis with uk = (k− 1)(�+
� + k). By Algo-Verify, we obtain

P (�,�)
n (x) = a0

(�+ 1)n
n!

2F1

(

−n, n + � + � + 1
� + 1

∣

∣

∣

∣

1− x

2

)

.

5.2. The q-cases. Now consider the q-cases, in which the �n, �n and n in
Equation (5.1) are rational functions of qn. We write t = q−n so that �n, �n

and n become �(t), �(t) and (t) which are rational functions of t. Similar
to the ordinary case, we choose a suitable rational function r(t) and define
the q-difference operator L as follows

L(p(t)) = �(t)r(t)p(t/q) + (�(t)− x)p(t) +
(t)

r(tq)
p(tq).
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Then by finding suitable bases with respect to L, we will derive the q-
hypergeometric representations of the orthogonal polynomials Pn(x).

Example 5.3. Consider the Al-Salam-Chihara polynomials whose three
term recurrence relation is given by

2xQn(x) = Qn+1(x) + (a+ b)qnQn(x) + (1− qn)(1− abqn−1)Qn−1(x).

One choice for r(t) is (t− ab)/at and hence

L(p(t)) =
t− ab

2at
p(t/q) +

(

a + b

2t
− x

)

p(t) +
a(t− 1)

2t
p(tq).

We find a suitable basis bk(t) = (t−1)(t−q−1) ⋅ ⋅ ⋅ (t−q−k+1). By Algo-Verify

we finally obtain

Qn(x) = a0
(ab; q)n

an
3�2

(

q−n, aei�, ae−i�

ab, 0

∣

∣

∣

∣

q; q

)

, x = cos �.
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