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Abstract

Let G be a 2-tough graph on at least five vertices and let e1, e2 be any two edges of G. Katerinis
and Wang [6] showed that there exists a 2-factor in G including/excluding e1 and e2. In this paper,
we generalize their result by considering the existence of an f -factor including/excluding e1 and e2,
where f : V (G) → {1, 2}.
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1 Introduction

All graphs considered are simple and finite. We refer the reader to [1] for terminology and notations
not defined here.

Let G be a graph. The degree of a vertex v in G is denoted by degG(v). For any disjoint subsets
X, Y ⊆ V (G), EG(X, Y ) denotes the set of edges with one end in X and the other in Y . Set eG(X, Y ) =
|EG(X, Y )|.

For X ⊆ V (G), the neighbor set of X in G is defined to be the set of all vertices adjacent to vertices
in X; this set is denoted by NG(X). The subgraph induced by X, denoted by G[X], has vertex set X
and edge set {uv ∈ E(G) : u, v ∈ X}.

A cut or vertex cut of a connected graph G is a set of vertices whose removal renders G disconnected.
A k-vertex cut is a vertex cut with k elements. The connectivity of G, κ(G), is the minimum k for which
G has a k-vertex cut. Similarly, an edge cut and edge-connectivity of G

(
i.e., κ′(G)

)
are defined.

For an integer-valued function f defined on a finite set X, we put

f(X) =
∑

x∈X

f(x), f(∅) = 0.

Let f be an integer-valued function defined on the vertex set of a graph G. Then G has an f-factor
if there exists a spanning subgraph F of G such that degF (v) = f(v) for every vertex v ∈ V (G). In
particular, if f(v) = k for all v ∈ V (G), the spanning subgraph F is called a k-factor.

∗This work is supported by Natural Sciences and Engineering Research Council of Canada.
†Corresponding email: wzfapril@mail.nankai.edu.cn (Z. Wu)
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If G is not complete, the toughness t(G) is defined as

t(G) = min
S

{ |S|
c(G− S)

}
,

where the minimum is taken over all vertex cut S of G, and c(G−S) denotes the number of components
in G− S. For complete graph Kn, we set t(Kn) = ∞. A graph G is k-tough if t(G) ≥ k.

Chvátal introduced the concept of toughness in [3], and mainly studied the relations between tough-
ness and the existence of Hamiltonian cycles and k-factors. He conjectured that every k-tough graph
G (k ∈ Z+) has a k-factor if k|V (G)| is even. Enomoto, Jackson, Katerinis and Saito [4] confirmed
Chvátal’s conjecture and also proved that their result is sharp. Chen [2] showed a stronger result: for
any k-tough graph G and for every edge e of G, the graph G contains a k-factor F1 containing e and
another k-factor F2 excluding e. Katerinis and Wang [6] obtained the following result.

Theorem 1.1 (Katerinis and Wang, [6]). Let G be a 2-tough graph with at least five vertices, and let
e1, e2 be a pair of arbitrarily given edges of G. Then

(a) there exists a 2-factor in G including e1, e2;

(b) there exists a 2-factor in G excluding e1, e2;

(c) there exists a 2-factor in G including e1 and excluding e2.

Katerinis (1990) also proved a result related to the existence of f -factor in 2-tough graphs.

Theorem 1.2 (Katerinis, [5]). Let G be a 2-tough graph and f : V (G) → {1, 2} be a function such
that f

(
V (G)

)
is even. Then G has an f -factor.

Motivated by above theorems, we consider 2-tough graphs and f -factors with inclusion and/or ex-
clusion properties.

2 Preliminary Results

The following result shows the relation between toughness, connectivity and minimum degree.

Proposition 2.1 (Chvátal, [3]). For any non-complete graph G,

t(G) ≤ κ(G)
2

≤ δ(G)
2

.

A necessary and sufficient condition for a graph G to have an f -factor was obtained by Tutte [7] in
1952.

Theorem 2.1 (Tutte’s f -factor Theorem). Let G be a graph and f : V (G) → Z+, where Z+ is the set
of non-negative integers. Then G has an f -factor if and only if

qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

) ≤ f(S) (2.1)

for all disjoint subsets S, T ⊆ V (G), where qG(S, T ; f) denotes the number of components C of G−(S∪T )
such that eG

(
V (C), T

)
+f

(
V (C)

)
is odd. (Hereafter, we refer to these components as odd components.)

Moreover,
qG(S, T ; f) +

∑

x∈T

(
f(x)− degG−S(x)

)− f(S) ≡ f
(
V (G)

)
(mod 2). (2.2)

The following lemmas play important roles in the proofs of the main theorems.
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Lemma 2.1. Let G be a graph, e = ab be an edge of G and let G′ be the graph obtained from G by
inserting a new vertex u on the edge e.

For a given function f : V (G) → {1, 2}, define a function f ′ : V (G′) → {1, 2} as follows:

f ′(v) =

{
2, if v = u;
f(v), otherwise.

Then, for any pair of disjoint subsets S′, T ′ ⊆ V (G′),

qG′(S′, T ′; f ′) +
∑

x∈T ′

(
f ′(x)− degG′−S′(x)

)
= qG(S, T ; f) +

∑

x∈T

(
f(x)− degG−S(x)

)
+ 2ε (2.3)

where S = S′ − {u}, T = T ′ − {u} and ε = 0, 1. Moreover, if u 6∈ S′, then ε = 1 if and only if

(I) e ∈ E(G[S]) and u ∈ T ′; or

(II) e ∈ EG

(
V (C ′), S

)
and u ∈ T ′, where C ′ is an odd component of G′− (S′∪T ′) and V (C ′) induces

an even component of G− (S ∪ T ); or

(III) a ∈ C ′1, b ∈ C ′2 and u ∈ T ′, where C ′1, C
′
2 are two odd components of G′−(S′∪T ′) and V (C ′1∪C ′2)

induces an even component of G− (S ∪ T ).

Proof. Since degG′(u) = 2 = f ′(u) and degG′(x) = degG(x) for any vertex x ∈ V (G′) − {u},
f
(
V (G′)

) ≡ f
(
V (G)

)
(mod 2). It follows from (2.2) that to prove (2.3), it is enough to prove ε = 0, 1.

Note that

qG′(S′, T ′; f ′) +
∑

x∈T ′

(
f ′(x)− degG′−S′(x)

)

= qG′(S′, T ′; f ′) +
∑

x∈T ′

(
f ′(x)− degG′(x)

)
+ eG′(S′, T ′)

= qG′(S′, T ′; f ′) +
∑

x∈T

(
f(x)− degG(x)

)
+ eG′(S′, T ′).

In fact, the graph G′ can be viewed as a graph obtained from G by deleting the edge ab and adding
two adjacent edges ua, ub. Then

−1 ≤ eG′(S′, T ′)− eG(S, T ) ≤ 2.

There are four cases to consider.

Case 1. eG′(S′, T ′) = eG(S, T ) + 2. Then {ua, ub} ⊆ EG′(S′, T ′). So qG′(S′, T ′; f ′) = qG(S, T ; f)
and ε = 1. If u 6∈ S′, then e ∈ E(G[S]) (see Fig. 1).

Case 2. eG′(S′, T ′) = eG(S, T ) + 1. Then exactly one of {ua, ub} is in EG′(S′, T ′), and hence one
vertex of {a, b}, say b, is in a component of G′ − (S′ ∪ T ′). So qG′(S′, T ′; f ′) = qG(S, T ; f) − 1 or
qG′(S′, T ′; f ′) = qG(S, T ; f) + 1, and then ε = 0 or 1.

If u 6∈ S′, ε = 1 if and only if the component C ′ containing b is an odd component of G′ − (S′ ∪ T ′)
(see Fig. 2). Note that in this case, V (C ′) induces an even component of G− (S ∪ T ).

Case 3. eG′(S′, T ′) = eG(S, T ). Then ε = 0, 1, as 0 ≤ qG′(S′, T ′; f ′) − qG(S, T ; f) ≤ 2. If u 6∈ S′,
ε = 1 if and only if a and b are in two distinct odd components C ′1, C

′
2 of G′ − (S′ ∪ T ′) (see Fig. 3).

Now V (C ′1 ∪ C ′2) induces an even component of G− (S ∪ T ).
Case 4. eG′(S′, T ′) = eG(S, T )−1. Then the edge ab ∈ EG(S, T ) and vertex u 6∈ S′∪T ′. Since u has

only two neighbors a and b, vertex u induced a component of G′−(S′∪T ′). Moreover, vertex u induced
an odd component of G′ − (S′ ∪ T ′). Then qG′(S′, T ′; f ′) = qG(S, T ; f) + 1, and hence ε = 0.

Lemma 2.2. Let G be a graph, e = ab be an edge of G and G′ = G − {e}. Given a function
f : V (G) → {1, 2}, then, for any pair of disjoint subsets S, T ⊆ V (G),

qG′(S, T ; f) +
∑

x∈T

(
f(x)− degG′−S(x)

)
= qG(S, T ; f) +

∑

x∈T

(
f(x)− degG−S(x)

)
+ 2ε (2.4)

where ε = 0, 1. Moreover, ε = 1 if and only if
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u

Fig. 1: Location of e in G and that of a, b, u in (G′, S′, T ′) as in type (I)

(IV) e ∈ E(G[T ]); or

(V) e ∈ EG

(
V (C ′), T

)
, where C ′ is an odd component of G′ − (S ∪ T ) and V (C ′) induces an even

component of G− (S ∪ T ); or

(VI) e ∈ EG

(
V (C ′1), V (C ′2)

)
, where C ′1, C

′
2 are two odd components of G′ − (S ∪ T ) and V (C ′1 ∪ C ′2)

induces an even component of G− (S ∪ T ).

Proof. Since G′ = G− {e}, degG′(a) = degG(a)− 1 and degG′(b) = degG(b)− 1. Hence we have

qG′(S, T ; f) +
∑

x∈T

(
f(x)− degG′−S(x)

)
= qG′(S, T ; f)−

∑

x∈T

degG′−S(x) + f(T ).

According to the locations of a, b and T , there are three cases to consider.

Case 1. a, b ∈ T . Then qG′(S, T ; f) = qG(S, T ; f) and
∑

x∈T

degG′−S(x) =
∑

x∈T

degG−S(x) − 2. Thus,

ε = 1.
Case 2. Exactly one of {a, b}, say a, is in T . If b ∈ S, then

∑
x∈T

degG′−S(x) =
∑

x∈T

degG−S(x) and

qG(S, T ; 2) = qG′(S, T ; 2); if b /∈ S ∪ T , then
∑

x∈T

degG′−S(x) =
∑

x∈T

degG−S(x) − 1 and qG′(S, T ; f) −
qG(S, T ; f) = −1 or 1. Then ε = 0, 1. Moreover, ε = 1 if and only if qG′(S, T ; f) = qG(S, T ; f) + 1, i.e.,
b ∈ V (C ′), where C ′ is an odd component of G′ − (S ∪ T ). Clearly, V (C ′) induces an even component
of G− (S ∪ T ).

Case 3. {a, b}∩T = ∅. Then
∑

x∈T

degG′−S(x) =
∑

x∈T

degG−S(x) and qG′(S, T ; f)−qG(S, T ; f) = 0 or 2;

thus ε = 0, 1. Moreover, ε = 1 if and only if e ∈ EG

(
V (C ′1), V (C ′2)

)
, where C ′1, C

′
2 are two odd

components of G′ − (S ∪ T ), and V (C ′1 ∪ C ′2) induces an even component of G− (S ∪ T ).

Lemma 2.3. Let G be a graph, and f a function from V (G) to {1, 2} with f
(
V (G)

) ≡ 0 (mod 2).
Suppose that there exists a pair of disjoint subsets S and T of V (G) such that

qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)− f(S) ≥ 2. (2.5)
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Fig. 2: Location of e in G and that of a, b, u in (G′, S′, T ′) as in type (II)

Then

(a) if S is minimal with respect to (2.5), then for any vertex u ∈ S, degG(u) ≥ f(u) + 2 ≥ 3;

(b) if T is minimal with respect to (2.5), then T is an independent set in G. Moreover, for any vertex
v ∈ T , f(v) = 2, and eG

({v}, V (C)
) 6= 0 implies that C is an odd component of G− (S ∪ T ) with

eG

({v}, V (C)
)

= 1.

Proof. Since f
(
V (G)

) ≡ 0 (mod 2), it follows from (2.2) that

qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)− f(S) ≡ 0 (mod 2).

(a) Since S is minimal with respect to (2.5), for any vertex u ∈ S, we have

qG(S − {u}, T ; f) +
∑

x∈T

(
f(x)− degG−(S−{u})(x)

)− f(S − {u}) ≤ 0. (2.6)

Combining (2.5) and (2.6), we have qG(S, T ; f)− qG(S −{u}, T ; f) + |NG(u)∩ T | − f(u) ≥ 2. Hence

degG(u) ≥ degG−(S∪T )(u)+ |NG(u)∩T | ≥ qG(S, T ; f)−qG(S−{u}, T ; f)+ |NG(u)∩T | ≥ f(u)+2 ≥ 3.

(b) Since T is minimal with respect to (2.5), for any vertex v ∈ T , we have

qG(S, T − {v}; f) +
∑

x∈T−{v}

(
f(x)− degG−S(x)

)− f(S) ≤ 0. (2.7)

Combining (2.5) and (2.7), we have qG(S, T ; f)− qG(S, T − {v}; f) +
(
f(v)− degG−S(v)

) ≥ 2. Thus

degG−S(v) ≤ qG(S, T ; f)− qG(S, T − {v}; f) + f(v)− 2 (2.8)
≤ degG−(S∪T )(v). (2.9)

Therefore, degG−S(v) = degG−(S∪T )(v), that is, |NG(v)∩T | = 0. Since v is an arbitrary vertex in T , T
is an independent set of G. Moreover, the inequalities in (2.5), (2.7), (2.8) and (2.9) become equalities
and thus degG−S(v) = degG−(S∪T )(v) implies that f(v) = 2 and qG(S, T ; f) − qG(S, T − {v}; f) =
degG−(S∪T )(v). Therefore, if v is adjacent to a component C, then C is an odd component of G−(S∪T )
and |NG(v) ∩ V (C)| = 1.
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Fig. 3: Location of e in G and that of a, b, u in (G′, S′, T ′) as in type (III)

3 Main Results

Suppose G is a non-complete 2-tough graph and e1 = a1b1, e2 = a2b2 are two edges of G. The graph
G1 is obtained from G by either subdivision (i.e., inserting a new vertex u1 on the edge e1) or deletion
of e1, and G2 is obtained from G1 by either subdivision (i.e., inserting a new vertex u2 on the edge
e2) or deletion of e2. Consider a function f : V (G) → {1, 2} with f

(
V (G)

) ≡ 0 (mod 2). If the
operation on ei is deletion, at least one of f(ai), f(bi) is equal to 1. Let f1, f2 be two functions defined
on V (G1), V (G2), respectively, with f1(v) = f2(v) = f(v) for v ∈ V (G), f1(u1) = 2 if the operation on
e1 is subdivision, f2(ui) = 2 if the operation on ei is subdivision for i = 1, 2. Let ε1, ε2 be two binary
variables, corresponding to ε in (2.3) or (2.4) when conducting operations on e1 and e2, respectively.

In this paper, we consider the existence of f -factor including/excluding the edges e1 and e2. In the
proofs of the main theorems, there are several similar arguments in the proofs and so we state the
common technique as a lemma below. For convenience, in the following lemma, when ui (i = 1, 2) is
mentioned, it means that the operation on ei is a subdivision.

Lemma 3.1. Let G,G1, G2, f, f1, f2 be defined as above. Suppose that G2 contains no f2-factor. Then

(1) there exists disjoint subsets S, T ⊆ V (G), S1, T1 ⊆ V (G1), S2, T2 ⊆ V (G2) with S = S1 = S2, T =
T1 − {u1}, T1 = T2 − {u2} satisfying

2− 2(ε1 + ε2) ≤ qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S), (3.10)

where r is the number of components of G− (S ∪ T ) which are joined to T , ε1 + ε2 ≥ 1 and T is
independent with f(x) = 2 for all x ∈ T ;

(2) if c
(
G− (S ∪ T )

)
= r and the inequality (3.10) becomes an equality, then for any component Ci

of G− (S ∪ T ), Ci containing a cut edge e implies |V (Ci)| = 2.

Proof. Since G2 has no f2-factors, by Tutte’s f -Factor Theorem, there exists a pair of disjoint subsets
S2, T2 of V (G2) such that

qG2(S2, T2; f2) +
∑

x∈T2

(
f2(x)− degG2−S2

(x)
)−

∑

x∈S2

f2(x) ≥ 2. (3.11)
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Furthermore, assume that S2 and T2 are minimal with respect to (3.11), respectively.
By Lemma 2.3, T2 is independent and ui /∈ S2 as degG2

(ui) = 2. Let S = S1 = S2, T1 = T2 − {u2}
and T = T1 − {u1}. For every vertex x ∈ T , as x ∈ T2, f(x) = f2(x) = 2 by Lemma 2.3 again.

Claim 1. T is an independent set in G.
Note that T2 is independent, so we only need to consider whether ei lies in G[T ] (i = 1, 2). If the

operation on ei is deletion, then there are at least one of f(ai) and f(bi), say f(ai), to be 1. Thus
f2(ai) = f(ai) = 1. By Lemma 2.3, ai /∈ T2. Then ai /∈ T and hence ei /∈ G[T ]. Now, consider
the case that at least one operation, say on e2, is a subdivision. Assume T is not independent in G,
and {a2, b2} ⊆ T . As T2 is independent in G2, u2 6∈ S2 ∪ T2 and so {u2} is an even component of
G2− (S2 ∪T2), a contradiction to the fact that a2 is only adjacent to odd components of G2− (S2 ∪T2)
(Lemma 2.3 (b)).

By Lemmas 2.1 and 2.2, we have

qG1(S1, T1; f1) +
∑

x∈T1

(
f1(x)− degG1−S1

(x)
)

= qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)
+ 2ε1;

qG2(S2, T2; f2) +
∑

x∈T2

(
f2(x)− degG2−S2

(x)
)

= qG1(S1, T1; f1) +
∑

x∈T1

(
f1(x)− degG1−S1

(x)
)

+ 2ε2.

Thus

qG2(S2, T2; f2)+
∑

x∈T2

(
f2(x)−degG2−S2

(x)
)

= qG(S, T ; f)+
∑

x∈T

(
f(x)−degG−S(x)

)
+2(ε1+ε2). (3.12)

By (3.11) and (3.12), we have

qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)−
∑

x∈S

f(x) ≥ 2− 2(ε1 + ε2). (3.13)

As G is 2-tough, by Theorem 1.2, G has an f -factor and so

qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)−
∑

x∈S

f(x) ≤ 0.

Hence ε1 + ε2 ≥ 1, i.e., ε1 + ε2 = 1 or 2, and at least one of ε1, ε2 equals to 1.
Let H = G − (S ∪ T ). Assume C1, C2, . . . , Ct are the components of H. Let V1 = {v ∈ V (H) :

|NG(v) ∩ T | = 1} and V2 = {v ∈ V (H) : |NG(v) ∩ T | ≥ 2}. Suppose that C1, C2, . . . , Cl are the
components containing a vertex in V1. Arbitrarily choose xi ∈ V (Ci) for which xi ∈ V1 for i = 1, . . . , l,
and set X = {x1, x2, . . . , xl}. Let Y = NG(T ) ∩ V (H)−X.

By the definitions of V1 and V2, we have

|V1|+ 2|V2| ≤ eG

(
T, V (H)

)
. (3.14)

Thus |V1| + |V2| ≤ eG

(
T, V (H)

) − |V2|, and |Y | = |NG(T ) ∩ V (H)| − |X| = |V1| + |V2| − |X| ≤
eG

(
T, V (H)

)− |V2| − |X|.
Clearly,

|V2|+ |X| ≥ r, (3.15)

where r is the number of components of G− (S ∪ T ) which are joined to T . So |Y | ≤ eG

(
T, V (H)

)− r,
and then |S|+ |Y | ≤ |S|+ eG

(
T, V (H)

)− r.
By the choice of Y , c

(
G−(S∪Y )

) ≥ |T |+c
(
G−(S∪T )

)−r. Assume |S|+|Y | < 2c
(
G−(S∪Y )

)
. Then

c
(
G−(S∪Y )

) ≤ 1, otherwise, S∪Y is a vertex cut of G, contradicting the fact that G is 2-tough. Indeed,
c
(
G − (S ∪ Y )

)
= 1, otherwise |S| + |Y | < 0, a contradiction. Since |S| + |Y | < 2c

(
G − (S ∪ Y )

)
= 2,

so |S| + |Y | ≤ 1; moreover |S| ≤ 1 and |T | ≤ c
(
G − (S ∪ Y )

)
= 1. If |T | = 1, say T = {x}, then

degG−S(x) ≤ |Y | + 1 ≤ 2 by the definition of Y . On the other hand, since G is non-complete and
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2-tough, δ(G) ≥ 2t(G) ≥ 4. Then, degG−S(x) ≥ 3 as |S| ≤ 1, a contradiction. Now we may assume
T = ∅. Since at least one of εi (i = 1, 2) is equal to 1, G2 is obtained by at least one operation
on ei (i = 1, 2) whose location is of type II or type III or type VI. Thus, {e1, e2} is an edge cut in
G− S. Since G is 2-tough, it is 4-connected. So G− S is 3-connected and 3-edge-connected. But now,
(G− S)− {e1, e2} is disconnected, a contradiction.

So we may assume

|S|+ |Y | ≥ 2c
(
G− (S ∪ Y )

)
(3.16)

≥ 2|T |+ 2c
(
G− (S ∪ T )

)− 2r. (3.17)

Then |S| + eG

(
T, V (H)

) − r ≥ |S| + |Y | ≥ 2|T | + 2c
(
G − (S ∪ T )

) − 2r, i.e., eG

(
T, V (H)

) ≥ 2|T | +
2c

(
G− (S ∪ T )

)− r − |S|.
Therefore

2− 2(ε1 + ε2) ≤ qG(S, T ; f) +
∑

x∈T

(
f(x)− degG−S(x)

)− f(S)

= qG(S, T ; f) + f(T )−
∑

x∈T

degG−S−T (x)− f(S)

= qG(S, T ; f) + 2|T | − eG

(
T, V (H)

)− f(S)

≤ qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S).

This completes the proof of assertion (1).
Next, suppose that c

(
G−(S∪T )

)
= r and 2−2(ε1+ε2) = qG(S, T ; f)+r−2c

(
G−(S∪T )

)
+|S|−f(S).

Then all inequalities above (in the proof) become equalities. So c
(
G−(S∪Y )

)
= |T |+c

(
G−(S∪T )

)−r =
|T |. By (3.17), |S|+ |Y | = 2c

(
G− (S ∪ Y )

)
= 2|T |. Moreover, the following assertions hold:

(a) for any v ∈ V (H), |NG(v) ∩ T | ≤ 2 (by (3.14));

(b) if Cj (1 ≤ j ≤ t) contains a vertex in V1, then Cj contains no vertex in V2; if Cj contains a vertex
in V2, then |V2 ∩ V (Cj)| = 1 (by (3.15)).

Consider an arbitrary component Ci of G− (S ∪ T ).

Claim 2. Either |NG(v) ∩ T | = 1 for any v ∈ V (Ci) or |V (Ci)| = 1, eG

(
V (Ci), T

)
= 2.

As c
(
G− (S ∪ T )

)
= r, eG

(
V (Ci), T

) 6= 0; that is, Ci contains at least one vertex either in V1 or V2.
If Ci contains a vertex in V2, then |V (Ci)| = 1 by (a), (b) and the fact that c

(
G− (S ∪Y )

)
= |T |. Next

assume that Ci contains a vertex in V1. According to (a), for any v ∈ V (Ci), |NG(v) ∩ T | ≤ 1. Let
Wi = {v ∈ V (Ci) : |NG(v)∩T | = 0}. If Wi = ∅, we are done. Otherwise, since c

(
G−(S∪Y )

)
= |T |, Wi

is joined to xi ∈ X ∩V (Ci). Thus, G− (S ∪Y ∪{xi}) contains at least c
(
G− (S ∪Y )

)
+1 components.

As |S|+ |Y | = 2c
(
G−(S∪Y )

)
, we have |S|+ |Y |+ |{xi}| = 2c

(
G−(S∪Y )

)
+1 < 2c(G−(

S∪Y ∪{xi})
)
,

contradicting the 2-toughness of G.

We continue to prove assertion (2) by contradiction. Suppose Ci contains an edge e = ab such that
Ci−e is disconnected, but |V (Ci)| > 2. Then there exists a vertex v0 different from a, b. Without loss of
generality, we may assume v0 is not adjacent to a, because e = ab is a cut edge of Ci. Now |V (Ci)| ≥ 2,
and by Claim 2, |NG(v)∩T | = 1 for any v ∈ V (Ci). Thus eG(a, T ) = 1 and eG(v0, T ) = 1. Select xi = a.
(This is possible because vertices of X are choosen arbitrarily at the beginning.) Since a ∈ X, a /∈ Y .
Then c

(
G− ((S ∪Y )−{v0})

)
= c

(
G− (S ∪Y )

)
= |T | for av0 /∈ E(G). As |S|+ |Y | = 2c

(
G− (S ∪Y )

)
,

2c
(
G− ((S ∪Y )−{v0})

)
= 2c

(
G− (S ∪Y )

)
= |S ∪Y | > |(S ∪Y )−{v0}|, contradicting the 2-toughness

of G. This completes the proof.

Now we are ready to state and prove our main theorems. The first result shows the existence of
f -factors including two edges.
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Theorem 3.1. Let G be a 2-tough graph on at least five vertices and let f be a function with f :
V (G) → {1, 2} such that f

(
V (G)

) ≡ 0 (mod 2). If e1 = a1b1, e2 = a2b2 are two edges of G with
f(ai) = 2 and f(bi) = 2 (i = 1, 2), then G has an f -factor containing e1 and e2.

Proof. If G is a complete graph on at least five vertices, the assertion is trivial. Now, we may assume
that G is non-complete. For convenience of applying Lemma 2.1, we consider the operations on e1, e2

consecutively.

Let G1 be the graph obtained from G by subdivision of e1 (inserting a new vertex u1 on the edge
e1), and let G2 be the graph obtained from G1 by subdivision of e2 (inserting a new vertex u2 on the
edge e2). Define two functions f1 : V (G1) → {1, 2}, f2 : V (G2) → {1, 2} as follows:

f1(v) =

{
2, if v = u1;
f(v), if v ∈ V (G);

and

f2(v) =

{
2, if v = u2;
f1(v), if v ∈ V (G1).

Then G has an f -factor containing e1 and e2 if and only if G2 contains an f2-factor.
Suppose that G2 contains no f2-factors. Then, by Lemma 3.1, there exist S, T ⊆ V (G), Si, Ti ⊆

V (Gi) (i = 1, 2) satisfying S = S1 = S2, T = T1 − {u1}, T1 = T2 − {u2} and

2− 2(ε1 + ε2) ≤ qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S), (3.18)

where r is the number of components of G − (S ∪ T ) which are joined to T , ε1 + ε2 ≥ 1 and T is an
independent set of G with f(x) = 2 for all x ∈ T .

If ε1 + ε2 = 1, i.e., either ε1 = 1, ε2 = 0 or ε1 = 0, ε2 = 1, then by Lemma 2.1, there exists exactly
one edge ei (i = 1 or 2) whose location together with ui in (Gi, Si, Ti) is of type I, or II, or III. Since
qG(S, T ; f) + r − 2c

(
G − (S ∪ T )

)
+ |S| − f(S) ≤ 0, the inequality in (3.18) becomes an equality, and

then f(S) = |S|, i.e., f(x) = 1 for all x ∈ S. Now {a1, a2, b1, b2} ∩ S = ∅. So, the location cannot
be of type I or II and it must be of type III. As qG(S, T ; f) = c

(
G − (S ∪ T )

)
= r, G − (S ∪ T ) has

no even components. But a location of type III requires an even component, so the operation on the
edge which is located as in type III is conducted in step two. That is, the locations of a2, b2, u2 in
(G2, S2, T2) are of type III. The first step (i.e., subdivision of e1) produces an even component required
in step two. As a1, b1 /∈ S, we deduce that u1 ∈ T1 and e1 ∈ EG

(
V (Codd), V (Ceven)

)
, where Codd is an

odd component of G1 − (S1 ∪ T1) and Ceven is an even component of G1 − (S1 ∪ T1). Moreover, Ceven

is the very component to which e2 belongs. That is, e2 ∈ E(Ceven).
Since e1 ∈ EG

(
V (Codd), V (Ceven)

)
, C ′0 = Codd ∪ Ceven ∪ {e1} corresponds to an odd component of

G− (S ∪ T ) and e1 is a cut edge of C ′0. As e1, e2 ∈ E(C ′0), so |V (C ′0)| > 2, a contradiction to Lemma
3.1 (2).

If ε1 + ε2 = 2, then ai, bi, ui in (Gi, Si, Ti) (i = 1, 2) are located as in type I, or II, or III. Note that
the operation on an edge e = ab (i.e., subdividing e = ab by a vertex u) does not produce an even
component in the new graph when vertices a, b, u are located as in type I, or II, or III; and the original
graph contains at least one even component when a, b, u are located as in type II or III.

(1) If both locations are of type I, then {a1, a2, b1, b2} ⊆ S. Since f(ai) = f(bi) = 2 for i = 1, 2, so
we have

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −3,

a contradiction to (3.18).
(2) If two locations are of types I and II (or types I and III), respectively, then there exists exactly

one edge ei (i = 1 or 2) lying in G[S] and thus |S| − f(S) ≤ −2. Assume e1 ∈ E(G[S]), then
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c
(
G − (S ∪ T )

)
= c

(
G1 − (S1 ∪ T1)

)
and qG(S, T ; f) = qG1(S1, T1; f1). Since the location of type II

(or type III) requires an even component in G1 − (S1 ∪ T1), we have qG(S, T ; f) − c
(
G − (S ∪ T )

)
=

qG1(S1, T1; f1)− c
(
G1 − (S1 ∪ T1)

) ≤ −1. Therefore,

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −1− 2 = −3,

a contradiction to (3.18).
The case of e2 ∈ E(G[S]) can be discussed similarly.
(3) If both locations are of type II, then G − (S ∪ T ) has at least two even components and

{a1, a2, b1, b2} ∩ S 6= ∅. Therefore,

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −2− 1 = −3,

a contradiction to (3.18).
(4) If two locations are of types II and III, respectively, then G − (S ∪ T ) has at least two even

components and {a1, a2, b1, b2} ∩ S 6= ∅. We obtain a contradiction similarly as in (3).
(5) If both locations are of type III, note that each of the two operations requires an even component

as type III requires, so G− (S ∪T ) contains at least two even components and thus qG(S, T ; f)− c(G−
S − T ) ≤ −2. If qG(S, T ; f)− c

(
G− (S ∪ T )

)
< −2 or r < c

(
G− (S ∪ T )

)
, then

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −3,

a contradiction to (3.18). Finally, we may assume qG(S, T ; f) + 2 = c
(
G − (S ∪ T )

)
= r. Again, the

inequality (3.18) becomes an equality and f(x) = 1 for any x ∈ S. Suppose e1 ∈ E(C ′0). Since the
locations of a1, b1, u1 in (G1, S1, T1) are of type III, e1 = a1b1 is a cut edge of C ′0, where C ′0 is an
even component of G − (S ∪ T ) and V (C ′0) induces two odd components in G1 − (S1 ∪ T1). Since
f(a1) = f(b1) = 2, there exists a vertex v ∈ V (C ′0) distinct from a1 and b1, or |V (C ′0)| ≥ 3. But by
Lemma 3.1 (2), |V (C ′0)| = 2, a contradiction.

The next theorem shows the existence of f -factors excluding two edges under the condition of 2-
toughness.

Theorem 3.2. Let G be a 2-tough graph on at least five vertices, and f a function with f : V (G) →
{1, 2} and f

(
V (G)

) ≡ 0 (mod 2). If e = a1b1, e = a2b2 are two distinct edges of G with f(ai) =
f(bi) = 1 (i = 1, 2) or f(a1) = f(a2) = 1, f(bi) ∈ {1, 2} and f(b1) 6= f(b2), then G contains an f -factor
excluding e1 and e2.

Proof. Similarly, we only need to consider the case that G is non-complete. For convenience of applying
Lemma 2.2, we consider the operations on e1, e2 consecutively.

Let G1 = G − {e1} and G2 = G1 − {e2}. Suppose that G2 contains no f -factors. Since f(ai) = 1
(i = 1, 2), then by Lemma 3.1, there exist S, T ⊆ V (G) and Si, Ti ⊆ V (Gi) (i = 1, 2) such that
S = S1 = S2, T = T1 = T2 and

2− 2(ε1 + ε2) ≤ qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S), (3.19)

where r denotes the number of components of G− (S ∪ T ) which are joined to T , ε1 + ε2 ≥ 1, and T is
independent in G with f(x) = 2 for all x ∈ T .

There are two cases to consider according to the values of ε1 + ε2. Note that the operation on an
edge e = ab (i.e., deleting e) does not produce an even component in the new graph when vertices a,
b are located as in type IV, or V, or VI; and the original graph contains at least one even component
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when a, b are located as in type V or VI.

If ε1 + ε2 = 1, then 2 − 2(ε1 + ε2) = qG(S, T ; f) + r − 2c
(
G − (S ∪ T )

)
+ |S| − f(S) = 0 and there

exists exactly one edge ei (i = 1 or 2) whose location is of type V or VI. Here no edge of ei is located
as in type IV for f(a1) = f(a2) = 1. Since qG(S, T ; f) = c

(
G− (S ∪ T )

)
= r, G− (S ∪ T ) contains no

even components. But type V or VI requires an even component. So the location of e2 is of type V
or VI; and the first step (i.e., deletion of e1) produces an even component which the operation on e2

requires. It is not hard to see that either e1 ∈ EG

(
V (Codd), V (Ceven)

)
or e1 ∈ EG

(
V (Ceven), T

)
, where

Codd (resp. Ceven) is an odd (resp. even) component of G1 − (S1 ∪ T1). Moreover, Ceven is the very
component that operation on e2 requires, and hence a2 ∈ Ceven.

If e1 ∈ EG

(
V (Codd), V (Ceven)

)
, then C ′0 = Codd∪Ceven∪{e1} is an odd component of G−(S∪T ) and

e1 is a cut edge of C ′0. If e1 ∈ EG

(
V (Ceven), T

)
, then f(b1) = 2 and C ′0 = Ceven is an odd component

of G− (S ∪ T ). As f(b2) 6= f(b1), b2 ∈ V (C ′0) and the location of e2 must be of type VI. Hence e2 is a
cut edge of C ′0. In both cases, C ′0 contains a cut edge and |V (C ′0)| ≥ 3, a contradiction to Lemma 3.1 (2).

Next consider the case ε1 + ε2 = 2. If the location of ei = aibi is of type IV, then ai, bi ∈ T and
thus f(ai) = f(bi) = 2, which is impossible. Thus the locations of both e1 and e2 are of types V or VI.
Furthermore, operation on the edge which is located as in type V happens at most once, because f(b1) 6=
f(b2). Since both types V and VI require even components, the operations on e1 and e2 require even
components. Then G−(S∪T ) has at least two even components. Thus qG(S, T ; f)−c

(
G−(S∪T )

) ≤ −2.
If qG(S, T ; f)− c

(
G− (S ∪ T )

)
< −2 or r < c

(
G− (S ∪ T )

)
, then

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −3,

a contradiction to (3.19). Suppose qG(S, T ; f)+2 = c(G−S−T ) = r. Similar to the discussion of case
ε1 + ε2 = 1 above, the inequality (3.19) becomes an equality. Without loss of generality, assume that
the location of e1 is of type VI and f(b1) = 1. Suppose e1 ∈ E(C ′0), where C ′0 is an even component of
G− (S ∪T ). So V (C ′0) induces two odd components of G1− (S1 ∪T1) and e1 is a cut edge of C ′0. Since
f(a1) = f(b1) = 1, there is a vertex v ∈ V (C ′0) distinct from a1 and b1, or |V (C ′0)| ≥ 3, a contradiction
to Lemma 3.1 (2).

Remark 1. The condition that f(ai) = 1 (i = 1, 2) and at least one of f(b1) and f(b2) equal to 1 in
Theorem 3.2 is best possible, as there exists a class of 2-tough graphs in which after deletion of e1 and
e2 the resulting graph does not have f -factors, when at least one end of ei (i = 1, 2) equal to 2. For
example, in Fig. 4, let G = S ∪ T ∪ {x, y}, where T is an independent set, |S| = 2|T | with every vertex
s ∈ S being adjacent to every vertex of V (G) − s and ax, by ∈ E(G), and let f(t) = 2 for all t ∈ T ,
f(s) = 1 for all s ∈ S and f(x) = f(y) = 1. Then G contains no f -factors excluding edges ax, by. For
another example, in Fig. 5, G = S ∪ T ∪ {x, y}, where T is an independent set, |S| = 2|T | − 1 with
every vertex s ∈ S being adjacent to all vertices of G − s and ax, ay, by ∈ E(G), and let f(s) = 1 for
every vertex s ∈ S, and for every vertex t ∈ T , f(t) = 2, and f(x) = 1, f(y) = 2. Of course, G contains
no f -factors excluding ax and by.

Our final result deals with the existence of f -factors including an edge and excluding another edge.
Theorem 3.3. Let G be a 2-tough graph on at least five vertices, and f a function with f : V (G) →
{1, 2} and f

(
V (G)

) ≡ 0 (mod 2). If e = a1b1, e = a2b2 are two edges of G with f(a2) = f(b2) = 2 and
at least one of {f(a1), f(b1)} is equal to 1, then G has an f -factor F excluding e1 and including e2.

Proof. The assertion clearly holds for the case that G is a non-complete graph on at least five vertices.
From now on, we consider the case that G is non-complete. For convenience of applying Lemmas 2.1
and 2.2, we consider the operations on e1 and e2 consecutively.

Let G1 be the graph obtained from G by deletion of e1, and let G2 be the graph obtained from G1

by subdivision of e2 (inserting a new vertex u2 on the edge e2). Define a function f2 : V (G2) → {1, 2}
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x y

a

b

S T

|S| = 2|T |
f(x) = 1, f(y) = 1

Fig. 4: A graph has no {1, 2}-factors excluding edges ax, by

x y

a
b

S T

|S| = 2|T | − 1
f(x) = 1, f(y) = 2

Fig. 5: A graph has no {1, 2}-factors excluding edges ax, by

as follows:

f2(v) =

{
2, if v = u2;
f(v), if v ∈ V (G1) = V (G).

Then G has an f -factor containing e2 and excluding e1 if and only if G2 contains an f2-factor.
Suppose that G2 contains no f2-factors, then by Lemma 3.1, there exist S, T ⊆ V (G) and Si, Ti ⊆

V (Gi) (i = 1, 2) such that S = S1 = S2, T = T1 = T2 − {u2} and

2− 2(ε1 + ε2) ≤ qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S), (3.20)

where r denotes the number of components of G− (S ∪ T ) which are joined to T , ε1 + ε2 ≥ 1 and T is
independent in G with f(x) = 2 for all x ∈ T .

If ε1 + ε2 = 1, then the inequality (3.20) becomes an equality, and either the location of e1 is of
one of types IV–VI or the location of e2 is of one of types I – III. Moreover f(S) = |S|, i.e., f(x) = 1
for all x ∈ S. So {a2, b2} ∩ S = ∅. Since T is independent, {a1, b1} * T ; so this location is not
of type I, II, IV. As qG(S, T ; f) = c

(
G − (S ∪ T )

)
= r, G − (S ∪ T ) contains no even components.

However the types V and VI require even components and both types can only occur in the step one
(deletion of e1 from G), so the location must be type III and it occurs in the step two. That is, the
locations of a2, b2, u in (G2, S2, T2) are of type III; and deletion of e1 produces an even component that
type III requires. So we see that either e1 ∈ EG

(
V (Codd), V (Ceven)

)
or e1 ∈ EG

(
T, V (Ceven)

)
, where

Codd is an odd component of G1 − (S1 ∪ T1), and Ceven is an even component of G1 − (S1 ∪ T1). More-
over, in both cases, Ceven is the very component operation on e2 requires. In other words, e2 ∈ E(Ceven).
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Now Ceven is an even component of G1 − (S1 ∪ T1), and Ceven − {e2} corresponds to two odd com-
ponents of G2− (S2 ∪T2). Moreover, C ′0 = Codd ∪Ceven ∪{e1} (or C ′0 = Ceven) is an odd component of
G− (S∪T ) and e2 is a cut edge of C ′0. Since |NG(a2)∩T | = 1 and u2 ∈ T2, we have |NG2(a2)∩T2| = 2.
As f(a2) = 2, the odd component of G2 − (S2 ∪ T2) that contains a2 is not a singleton. Therefore
|V (C ′0)| ≥ 3. But by Lemma 3.1 (2), |V (C ′0)| = 2, a contradiction.

If ε1 + ε2 = 2, then the location of e1 is of type V or VI, and the location of e2 is of type I or II or
III. As T is independent, type IV never occur.

As argued above, the operation on an edge e = ab does not produce an even component in the
new graph when the location of a, b is of one of types I–VI; and the original graph requires an even
component when the locations of a, b are of type II, or III, or V, or VI.

(1) If the two locations are of types V and I respectively, then e2 lies in G[S] and thus |S|−f(S) ≤ −2.
Since deletion of e1 requires an even component in G − (S ∪ T ), qG(S, T ; f) − c

(
G − (S ∪ T )

) ≤ −1.
Therefore

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| − f(S) ≤ −1− 2 = −3,

a contradiction to (3.20).
(2) If the two locations are of types VI and I respectively, then {a2, b2} ⊆ S and G− (S∪T ) contains

at least one even component as type VI requires. Therefore,

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −1− 2 = −3,

a contradiction to (3.20).
(3) If the two locations are of types II and V (or types II and VI) respectively, then |{a2, b2}∩S| = 1.

Since both locations of types II and V (or types II and VI) require even components but produce none,
we have

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −2− 1 = −3,

a contradiction to (3.20).
(4) If the two locations are of types V and III (or types VI and III) respectively, then G−(S∪T ) has at

least two even components. Thus qG(S, T ; f)−c
(
G−(S∪T )

) ≤ −2. If qG(S, T ; f)−c
(
G−(S∪T )

)
< −2

or r < c
(
G− (S ∪ T )

)
, then

qG(S, T ; f) + r − 2c
(
G− (S ∪ T )

)
+ |S| −

∑

x∈S

f(x) ≤ −3,

a contradiction to (3.20). Now we may assume qG(S, T ; f) + 2 = c
(
G − (S ∪ T )

)
= r. As discussed

in the case ε1 + ε2 = 1, the inequality (3.20) becomes an equality. Suppose e2 ∈ E(C ′0). Then e2 is a
cut edge of C ′0. Note that deletion of e1 produces no even component because the location of e1 is of
type V or type VI. It follows from the location of e2 being of type III that C ′0 is an even component of
G − (S ∪ T ) and V (C ′0) induces two odd components of G2 − (S2 ∪ T2). Since f(a2) = f(b2) = 2, by
parity argument, we see that there exists a vertex v ∈ V (C ′0) distinct from a2 and b2, or |V (C ′0)| ≥ 3.
On the other hand, |V (C ′0)| = 2 by Lemma 3.1 (2) and the fact that e2 is a cut edge of C ′0.

This completes the proof.

Remark 2. The condition that at least one of f(a1) and f(b1) is equal to 1 in Theorem 3.3 is necessary.
For instance, let G be a graph with vertex-set S ∪ T ∪ {x, y}, where |S| = 2|T | − 2 and |T | ≥ 4, and
G[T ] has only one edge e1 = a1b1. Moreover, every vertex of S is adjacent to all other vertices of G,
each of {x, y} has only one neighbor in T , and their neighbors are distinct (see Fig. 6). Select an edge
e2 = a2b2 from G[S] and let f(v) = 2 for all v ∈ T ∪ {x, y, a2, b2}, and f(v) = 1 for all v ∈ S −{a2, b2}.
Then G contains no f -factors excluding e1 and including e2.

Acknowledgments. The authors are indebted to the anonymous referee for the valuable sugges-
tions.
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Fig. 6: A graph has no {1, 2}-factors including e2 and excluding e1
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