Singletons and Adjacencies of Set Partitions of Type B

William Y.C. Chen ${ }^{1}$ and David G.L. Wang ${ }^{2}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
${ }^{2}$ Beijing International Center for Mathematical Research
Peking University, Beijing 100871, P.R. China
${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ wgl@math.pku.edu.cn

Abstract

We show that the joint distribution of the number of singleton pairs and the number of adjacency pairs is symmetric over set partitions of type B_{n} without zero-block, in analogy with the result of Callan for ordinary partitions.

Keywords: set partition of type B, singleton, adjacency, symmetric distribution
AMS Classification: 05A15, 05A18, 20F55

1 Introduction

The main objective of this paper is to give a type B analogue of a property of set partitions discovered by Bernhart [1], that is, the number s_{n} of partitions of $[n]=$ $\{1,2, \ldots, n\}$ without singletons is equal to the number a_{n} of partitions of $[n]$ for which no block contains two adjacent elements i and $i+1$ modulo n. In fact, it is easy to show that s_{n} and a_{n} have the same formula by the principle of inclusion-exclusion. Bernhart gave a recursive proof of the fact that $s_{n}=a_{n}$ by showing that $s_{n}+s_{n+1}=B_{n}$ and $a_{n}+a_{n+1}=B_{n}$, where B_{n} denotes the Bell number, namely, the number of partitions of $[n]$. As noted by Bernhart, there may be no simple way to bring the set of partitions of $[n]$ without singletons and the set of partitions of $[n]$ without adjacencies into a one-to-one correspondence.

From a different perspective, Callan [4] found a bijection in terms of an algorithm that interchanges singletons and adjacencies. Indeed, Callan has established a stronger statement that the joint distribution of the number of singletons and the number of adjacencies is symmetric over the set of partitions of $[n]$. While the proof of Callan is purely combinatorial, we feel that there is still some truth in the remark of Bernhart.

The study of singletons and adjacencies of partitions goes back to Kreweras [9] for noncrossing partitions. Kreweras has shown that the number of noncrossing parti-
tions of $[n]$ without singletons equals the number of noncrossing partitions of $[n]$ without adjacencies. Bernhart [1] found a combinatorial proof of this assertion. Deutsch and Shapiro [6] considered noncrossing partitions of [n] without visible singletons and showed that such partitions are enumerated by the Fine number. Here a visible singleton of a partition means a singleton not covered by any arc in the linear representation. Canfield [5] has shown that the average number of singletons in a partition of $[n]$ is an increasing function of n. Biane [2] has derived a bivariate generating function for the number of partitions of $[n]$ containing a given number of blocks but no singletons. Knuth [8] proposed the problem of finding the generating function for the number of partitions of $[n]$ with a given number of blocks but no adjacencies. The generating function has been found by several problem solvers, see Lossers [10] for example. The sequence of the numbers s_{n} is listed as the entry A000296 in Sloane [12].

The lattice of ordinary set partitions can be regarded as the intersection lattice for the hyperplane arrangement corresponding to the root system of type A, see Björner and Brenti [3] or Humphreys [7]. Type B set partitions are a generalization of ordinary partitions from this point of view, see Reiner [11]. To be more precise, ordinary set partitions encode the intersections of hyperplanes in the hyperplane arrangement for the type A root system, while the intersections of subsets of hyperplanes from the type B hyperplane arrangement can be encoded by type B set partitions. A partition of type B_{n} is a partition π of the set

$$
[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}
$$

such that for any block B of π, $-B$ is also a block of π, and that π has at most one block, called the zero-block, which is of the form $\left\{i_{1}, i_{2}, \ldots, i_{k},-i_{1},-i_{2}, \ldots,-i_{k}\right\}$.

It is natural to ask whether there exists a type B analogue of Bernhart's theorem and a type B analogue of Callan's algorithm. We give the peeling and patching algorithm which implies the symmetric distribution of the number of singleton pairs and the number of adjacency pairs for type B partitions without zero-block. Moreover, we can transform the bijection into an involution.

2 The peeling and patching algorithm

In this section, we give a type B analogue of Callan's symmetric distribution of singletons and adjacencies over set partitions. We find that the algorithm of Callan can be extended into the type B case. This type B algorithm will be called the peeling and patching algorithm.

Let π be a B_{n}-partition. We call $\pm i$ a singleton pair of π if π contains a block $\{i\}$, and call $\pm(j, j+1)$ an adjacency pair of π if j and $j+1$ (modulo n) lie in the same block of π. Denote the number of singleton pairs (resp. adjacency pairs) of π by s_{π} (resp. a_{π}). For example, let $n=12$ and

$$
\begin{equation*}
\pi=\{ \pm\{1\}, \pm\{2\}, \pm\{3,11,12\}, \pm\{4,-7,9,10\}, \pm\{5,6,-8\}\} \tag{2.1}
\end{equation*}
$$

Then we have $s_{\pi}=2$ and $a_{\pi}=3$.
Denote by V_{n} the set of B_{n}-partitions without zero-block. The following theorem is the main result of this paper.

Theorem 2.1 The joint distribution of the number of singleton pairs and the number of adjacency pairs is symmetric over B_{n}-partitions without zero-block. In other words, let

$$
P_{n}(x, y)=\sum_{\pi \in V_{n}} x^{s_{\pi}} y^{a_{\pi}}
$$

then we have $P_{n}(x, y)=P_{n}(y, x)$.

For example, there are three B_{2}-partitions without zero-block:

$$
\{ \pm\{1\}, \pm\{2\}\}, \quad\{ \pm\{1,2\}\}, \quad\{ \pm\{1,-2\}\} .
$$

So $P_{2}(x, y)=x^{2}+y^{2}+1$. Moreover,

$$
\begin{aligned}
& P_{3}(x, y)=\left(x^{3}+y^{3}\right)+3 x y+3(x+y) \\
& P_{4}(x, y)=\left(x^{4}+y^{4}\right)+4\left(x^{2} y+x y^{2}\right)+8\left(x^{2}+y^{2}\right)+8 x y+4(x+y)+7 .
\end{aligned}
$$

Recall that Bernhart showed that the number of partitions of $[n]$ without singletons equals the number of partitions of $[n]$ without adjacencies. As a type B analogue of this result, we have the following consequence of Theorem 2.1.

Corollary 2.2 The number of B_{n}-partitions containing no zero-block and no singleton pairs equals the number of B_{n}-partitions containing no zero-block and no adjacency pairs.

To prove Theorem 2.1, we shall construct a map $\psi: V_{n} \rightarrow V_{n}$, called the peeling and patching algorithm, such that for any B_{n}-partition π without zero-block, $s_{\pi}=a_{\psi(\pi)}$ and $a_{\pi}=s_{\psi(\pi)}$. To describe this algorithm, we need a more general setting. Let

$$
S=\left\{ \pm t_{1}, \pm t_{2}, \ldots, \pm t_{r}\right\}
$$

be a subset of $[\pm n]$, where $0<t_{1}<t_{2}<\cdots<t_{r}$. Let π be a partition of S. We call π a symmetric partition if for any block B of $\pi,-B$ is also a block of π. Similarly, we call $\pm t_{i}$ a singleton pair of π if π contains a block $\left\{t_{i}\right\}$, and call $\pm\left(t_{j}, t_{j+1}\right)$ an adjacency pair of π if t_{j} and t_{j+1} are contained in the same block. Moreover, we identify t_{r+1} with t_{1}. We call $\pm t_{j}$ (resp. $\pm t_{j+1}$) a left-point-pair (resp. right-point-pair) if $\pm\left(t_{j}, t_{j+1}\right)$ is an adjacency pair. For example, for the case $r=1$, the partition $\pi=\left\{ \pm\left\{t_{1}\right\}\right\}$ contains exactly one singleton pair $\pm t_{1}$ and one adjacency pair $\pm\left(t_{1}, t_{1}\right)$.

The peeling and patching algorithm ψ consists of the peeling procedure α and the patching procedure β. For the peeling procedure, at each step we take out the singleton pairs and the left-point-pairs, until there exists neither singleton pairs nor adjacency pairs. Then we use the patching procedure. By interchanging the roles of singleton pairs and adjacency pairs, we put the singleton pairs and left-point-pairs back to the partition. It should be mentioned that the patching procedure is not exactly the reverse of the peeling procedure.

The peeling procedure α. Given a type B partition π without zero-block, let $\pi_{0}=\pi$. We extract the set S_{1} of singleton pairs and the set L_{1} of left-point-pairs (of adjacency pairs) from π_{0}. Let π_{1} be the remaining partition of the set $[\pm n] \backslash\left(S_{1} \cup L_{1}\right)$. Note that π_{1} is again a type B partition without zero-block. So we can extract the set S_{2} of singleton pairs and the set L_{2} of left-point-pairs from π_{1}. Denote by π_{2} the remaining partition. Repeating this process, we eventually obtain a partition π_{k} that has neither singleton pairs nor adjacency pairs. It should noticed that π_{k} may be the empty partition.

For example, consider the partition π in (2.1), that is,

$$
\pi=\{ \pm\{1\}, \pm\{2\}, \pm\{3,11,12\}, \pm\{4,-7,9,10\}, \pm\{5,6,-8\}\}
$$

The peeling procedure is illustrated by Table 2.1. In this example, we have $k=4$.

j	S_{j}	L_{j}	π_{j}
1	$\pm 1, \pm 2$	$\pm 5, \pm 9, \pm 11$	$\pm\{3,12\}, \pm\{4,-7,10\}, \pm\{6,-8\}$
2	\emptyset	± 12	$\pm\{3\}, \pm\{4,-7,10\}, \pm\{6,-8\}$
3	± 3	\emptyset	$\pm\{4,-7,10\}, \pm\{6,-8\}$
4	\emptyset	± 10	$\pm\{4,-7\}, \pm\{6,-8\}$

Table 2.1: The peeling procedure.
The patching procedure β. Let $\sigma_{k}=\pi_{k}$. We shall interchange the roles of the singleton-sets and the adjacency-sets in the process to reconstruct a type B partition. For each i from k to 1 , we put the elements of S_{i} and L_{i} back into the partition σ_{i}, so that S_{i} (resp. L_{i}) is the right-point-set (resp. singleton-set) of the resulting partition σ_{i-1}.

To be more precise, we start the patching procedure by putting the elements of S_{k} and L_{k} back to σ_{k} in such a way that the resulting partition σ_{k-1} contains S_{k} (resp. L_{k}) as its right-point-set (resp. singleton-set). The existence of such a partition σ_{k-1} will be confirmed later. Next, in the same manner we put the elements of S_{k-1} and L_{k-1} back into σ_{k-1} to get σ_{k-2}. Repeating this process, we finally arrive at a type B partition σ_{0}, which is defined to be the output of the patching procedure.

Now let us describe the process of constructing σ_{k-1} in detail. In the case that S_{k} is empty, we define σ_{k-1} to be the partition obtained by adding to σ_{k} the singleton
blocks that each singleton block consists of a number in L_{k}. Suppose that S_{k} is not empty. Let

$$
T_{k-1}=\left\{ \pm t_{1}, \pm t_{2}, \ldots, \pm t_{r}\right\}
$$

be the underlying set of π_{k-1}, where $0<t_{1}<t_{2}<\cdots<t_{r}$. Consider another extremal case that σ_{k} is empty. Since S_{k} is not empty, it follows from the last step of the peeling procedure that L_{k} is empty. In this case, we define σ_{k-1} to be the partition $\left\{ \pm\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}\right\}$.

Now we can assume that both S_{k} and σ_{k} are not empty. According to the adjacent relation imposed on the set T_{k-1}, we can uniquely decompose the set $S_{k}\left(\subset T_{k-1}\right)$ into maximal subsets of consecutive elements, which are of the following form

$$
\begin{equation*}
\left\{ \pm t_{i+1}, \pm t_{i+2}, \ldots, \pm t_{i+h}\right\} \tag{2.2}
\end{equation*}
$$

In other words, the element $t_{i} \in T_{k-1}$ does not appear in S_{k} since σ_{k} is not empty. On the other hand, $t_{i} \notin L_{k}$ by the definition of L_{k}. Thus t_{i} is contained in σ_{k}. This observation allows us to put the elements $t_{i+1}, t_{i+2}, \ldots, t_{i+h}$ into the block of σ_{k} that contains t_{i}. Accordingly, we put the elements $-t_{i+1},-t_{i+2}, \ldots,-t_{i+h}$ into the block that contains $-t_{i}$. After having processed all maximal subsets of consecutive elements of S_{k}, we put each element in L_{k} as a singleton block into the partition σ_{k}. The resulting partition is defined to be σ_{k-1}. Since σ_{k} contains neither singleton pairs nor adjacency pairs, it is easy to check that L_{k} (resp. S_{k}) is the set of singleton pairs (right-point-pairs) of σ_{k-1}.

For example, Table 2.2 is an illustration of the patching procedure for the partition generated in Table 2.1. In the last step, putting S_{1} and L_{1} back to σ_{1}, we finally obtain

j	S_{j}	L_{j}	σ_{j}
4	\emptyset	± 10	$\pm\{4,-7\}, \pm\{6,-8\}$
3	± 3	\emptyset	$\pm\{4,-7\}, \pm\{6,-8\}, \pm\{10\}$
2	\emptyset	± 12	$\pm\{4,-7\}, \pm\{6,-8\}, \pm\{3,10\}$
1	$\pm 1, \pm 2$	$\pm 5, \pm 9, \pm 11$	$\pm\{4,-7\}, \pm\{6,-8\}, \pm\{3,10\}, \pm\{12\}$

Table 2.2: The patching procedure.

$$
\begin{equation*}
\sigma_{0}=\{ \pm\{1,2,12\}, \pm\{3,10\}, \pm\{4,-7\}, \pm\{5\}, \pm\{6,-8\}, \pm\{9\}, \pm\{11\}\} \tag{2.3}
\end{equation*}
$$

The peeling and patching algorithm ψ is defined by

$$
\psi(\pi)=\beta(\alpha(\pi))
$$

for any B_{n}-partition π without zero-block. Keep in mind that the roles of singleton pairs and adjacency pairs are interchanged in the patching procedure. We are now ready to give a proof of Theorem 2.1.

Proof of Theorem 2.1. We proceed to show that the peeling and patching algorithm ψ gives a bijection on B_{n}-partitions without zero-block, which interchanges the number of singleton pairs and the number of adjacency pairs.

It is easy to see that the inverse algorithm can be described as follows. In fact, the inverse algorithm of ψ is the composition of another peeling procedure and another patching procedure. To be precise, let σ be the input partition. Let $\sigma_{0}=\sigma$. We first peel the singleton pairs and right-point-pairs at each step, until we obtain a partition σ_{k} which has neither singleton pairs nor adjacency pairs. As the second step, based on the partition $\pi_{k}=\sigma_{k}$, we recursively put back the elements that have been taken out before. Meanwhile, we also interchange the roles of the singleton-sets and right-point-sets. Finally, we get a type B partition, as the output of the inverse algorithm. Therefore, ψ is a bijection which induces a bijection on B_{n}-partitions without zeroblock.

An illustration of the peeling and patching algorithm is given by the partition (2.1), Table 2.1, Table 2.2, and (2.3). To conclude this section, we give the generating function for the number s_{n}^{B} of B_{n}-partitions without zero-block and singleton pairs, that is,

$$
\begin{equation*}
\sum_{n \geq 0} s_{n}^{B} \frac{x^{n}}{n!}=\exp \left(\sinh (x) e^{x}-x\right) \tag{2.4}
\end{equation*}
$$

In fact, by the principle of inclusion-exclusion, we obtain

$$
\begin{equation*}
s_{n}^{B}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \sum_{j=0}^{k} 2^{k-j} S(k, j), \tag{2.5}
\end{equation*}
$$

where $S(k, j)$ is the Stirling number of the second kind. Note that $2^{k-j} S(k, j)$ is the number of partitions in V_{k} with $2 j$ blocks. The formula (2.4) can be easily derived from (2.5).

3 From bijection to involution

The bijection given in the previous section is not an involution although it interchanges the number of singleton pairs and the number of adjacency pairs. In this section, we show that the peeling and patching algorithm can be turned into an involution. Such an involution for ordinary partitions has been given by Callan [4].

For any $i \in[n]$, we define the complement of i to be $n+1-i$. The complement of $-i$ is defined to be $-(n+1-i)$. This notion can be extended to any symmetric partition π of $[\pm n]$ by taking the complement of each element in the partition. The complement of π is denoted by $\omega(\pi)$. It is clear that ω is an involution. Assume that σ_{0} is given by (2.3). We have

$$
\begin{equation*}
\omega\left(\sigma_{0}\right)=\{ \pm\{1,11,12\}, \pm\{2\}, \pm\{3,10\}, \pm\{4\}, \pm\{5,-7\}, \pm\{6,-9\}, \pm\{8\}\} \tag{3.1}
\end{equation*}
$$

In light of the complementation operation, we get an involution based on the peeling and patching algorithm.

Theorem 3.1 The mapping $\omega \circ \psi$ is an involution on B_{n}-partitions without zero-block, which interchanges the number of singleton pairs and the number of adjacency pairs.

The proof is straightforward and hence is omitted. We give an example to demonstrate that $\omega \circ \psi$ is involution, that is,

$$
\begin{equation*}
\omega(\psi(\pi))=\psi^{-1}(\omega(\pi)) . \tag{3.2}
\end{equation*}
$$

Consider the partition π in (2.1). In this case, the left hand side of (3.2) is $\omega\left(\sigma_{0}\right)$, which is computed as in (3.1). On the other hand,

$$
\omega(\pi)=\{ \pm\{1,2,10\}, \pm\{3,4,-6,9\}, \pm\{5,-7,-8\}, \pm\{11\}, \pm\{12\}\}
$$

Applying the procedure β^{-1}, we obtain Table 3.3, where R_{j} (resp. S_{j}) denotes the set of right-point-pairs (singleton pairs). Next, by the procedure α^{-1}, we get Table 3.4. Finally, putting R_{1} and S_{1} back to π_{1}, we obtain the partition π_{0} which is in agreement with (3.1).

j	R_{j}	S_{j}	σ_{j}
1	$\pm 2, \pm 4, \pm 8$	$\pm 11, \pm 12$	$\pm\{1,10\}, \pm\{3,-6,9\}, \pm\{5,-7\}$
2	± 1	\emptyset	$\pm\{10\}, \pm\{3,-6,9\}, \pm\{5,-7\}$
3	\emptyset	± 10	$\pm\{3,-6,9\}, \pm\{5,-7\}$
4	± 3	\emptyset	$\pm\{5,-7\}, \pm\{6,-9\}$

Table 3.3: The procedure β^{-1}.

j	R_{j}	S_{j}	π_{j}
4	± 3	\emptyset	$\pm\{5,-7\}, \pm\{6,-9\}$
3	\emptyset	± 10	$\pm\{3\}, \pm\{5,-7\}, \pm\{6,-9\}$
2	± 1	\emptyset	$\pm\{3,10\}, \pm\{5,-7\}, \pm\{6,-9\}$
1	$\pm 2, \pm 4, \pm 8$	$\pm 11, \pm 12$	$\pm\{1\}, \pm\{3,10\}, \pm\{5,-7\}, \pm\{6,-9\}$

Table 3.4: The procedure α^{-1}.
Acknowledgments. We wish to thank the referees for valuable comments leading to an improvement of an earlier version. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] F.R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204 (1999), 73-112.
[2] P. Biane, Some properties of crossings and partitions, Discrete Math. 175 (1997), 41-53.
[3] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2005.
[4] D. Callan, On conjugates for set partitions and integer compositions, arXiv: math.CO/0508052.
[5] E.R. Canfield, Engel's inequality for Bell numbers, J. Combin. Theory Ser. A 72 (1995), 184-187.
[6] E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math. 241 (2001), 241-265.
[7] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, No. 29, Cambridge Univ. Press, 1992.
[8] D. Knuth, Problem 11151, Amer. Math. Monthly 112 (2005), 367.
[9] G. Kreweras, Sur les partitions non croisees d'un cycle, Discrete Math. 1 (1972), 333350.
[10] O.P. Lossers, Solution to Problem 11151, Amer. Math. Monthly 114 (2007), 265-266.
[11] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195-222.
[12] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences.

