Minimally Intersecting Set Partitions of Type B

William Y.C. Chen and David G.L. Wang Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China chen@nankai.edu.cn, wgl@cfc.nankai.edu.cn

Abstract

Motivated by Pittel's study of minimally intersecting set partitions, we investigate minimally intersecting set partitions of type B. We find a formula for the number of minimally intersecting r-tuples of B_n -partitions, as well as a formula for the number of minimally intersecting r-tuples of B_n -partitions without zero-block. As a consequence, it follows the formula of Benoumhani for the Dowling number in analogy to Dobiński's formula.

Keywords: minimally intersecting B_n -partitions, Dobiński's formula, the Dowling number

AMS Classification: 05A15, 05A18

1 Introduction

This paper is primarily concerned with the meet structure of the lattice of type B_n partitions of the set $[\pm n] = \{\pm 1, \pm 2, \dots, \pm n\}$, as well as of the meet-semilattice of type B_n partitions without zero-block. The lattice structure of type B_n set partitions has been studied by Reiner [8]. It can be regarded as a representation of the intersection lattice of the type B Coxeter arrangements, see Björner and Wachs [3], Björner and Brenti [2] and Humphreys [6].

We establish a formula for the number of B_n -partitions π' which minimally intersect a given B_n -partition π . Using the same technique, we derive a formula for the number of B_n -partitions π' without zero-block which minimally intersect a given B_n -partition π without zero-block. The ordinary case has been studied by Pittel [7]. In particular, if we take π to be the minimal B_n -partition, our formula reduces to a formula of Benoumhani [1] for the number of B_n -partitions (called the Dowling number, see Dowling [5]), which is analogous to Dobiński's formula for the number of partitions of a finite set.

In a more general setting, we derive two formulas for the number of minimally intersecting r-tuples of B_n -partitions and the number of minimally intersecting r-tuples of B_n -partitions without zero-block. Recall that Canfield [4] has found a relation

between the exponential generating function of the number of minimally intersecting r-tuples of partitions and the powers of the Bell numbers. We give a type B analogue of this relation.

Let us give an overview of relevant notation and terminology. A partition of a set S is a collection $\{B_1, B_2, \ldots, B_k\}$ of subsets of S such that $B_1 \cup B_2 \cup \cdots \cup B_k = S$ and $B_i \cap B_j = \emptyset$ for any $i \neq j$. A set partition of type B_n is a partition π of the set $[\pm n]$ into blocks satisfying the following conditions:

- (i) For any block B of π , its opposite -B obtained by negating all elements of B is also a block of π ;
- (ii) There is at most one zero-block, which is defined to be a block B such that B = -B.

We call $\pm B$ a block pair of π if B is a non-zero-block of π . For example,

$$\pi_1 = \{\{\pm 1, \pm 2, \pm 5, \pm 8, \pm 12\}, \pm \{3, 11\}, \pm \{4, -7, 9, 10\}, \pm \{6\}\}$$

is a B_{12} -partition consisting of 3 block pairs and the zero-block $\{\pm 1, \pm 2, \pm 5, \pm 8, \pm 12\}$.

The total number of partitions of the set $[n] = \{1, 2, ..., n\}$ is called the Bell number and is denoted by B_n , see Rota [11]. The type B analogue of the Bell numbers are the Dowling numbers $|\Pi_n^B|$, where Π_n^B denotes the set of B_n -partitions. The sequence $\{|\Pi_n^B|\}_{n\geq 0}$ is listed as A007405 in [12]:

Let π and π' be two partitions of the set [n]. We say that π refines π' if every block of π is contained in some block of π' . The refinement relation is a partial ordering of the set Π_n of all partitions of [n]. Define the meet, denoted $\pi \wedge \pi'$, to be the largest partition which refines both π and π' . Define their join, denoted $\pi \vee \pi'$, to be the smallest partition which is refined by both π and π' . The poset Π_n is a lattice with the minimum element $\hat{0} = \{\{1\}, \{2\}, \ldots, \{n\}\}$. We say that the partitions $\pi_1, \pi_2, \ldots, \pi_r$ intersect minimally if $\pi_1 \wedge \pi_2 \wedge \cdots \wedge \pi_r = \hat{0}$.

Pittel [7] has found a formula for the number of partitions minimally intersecting a given partition. He also computed the number of minimally intersecting r-tuples of partitions.

Theorem 1.1. Let π be a partition of [n], and let i_1, \ldots, i_k be the sizes of the blocks of π listed in any order. Then the number of partitions intersecting π minimally equals

$$N(\pi) = \mathbf{i}! \left[\mathbf{x}^{\mathbf{i}} \right] \exp \left(\prod_{\alpha \in [k]} (1 + x_{\alpha}) - 1 \right),$$

where $\mathbf{i}! = \prod_{\alpha \in [k]} i_{\alpha}!$ and $[\mathbf{x}^{\mathbf{i}}]$ stands for the coefficient of $\mathbf{x}^{\mathbf{i}} = \prod_{\alpha \in [k]} x_{\alpha}^{i_{\alpha}}$ of a power series in x_1, x_2, \ldots, x_k . Let $r \geq 2$. The number $N_{n,r}$ of minimally intersecting r-tuples $(\pi_1, \pi_2, \ldots, \pi_r)$ of partitions is given by

$$N_{n,r} = \frac{1}{e^r} \sum_{k_1, \dots, k_r > 0} \frac{(k_1 k_2 \dots k_r)_n}{k_1! k_2! \dots k_r!},$$

where the notation $(x)_n = x(x-1)\cdots(x-n+1)$ denotes the falling factorial.

By taking $\pi = \hat{0}$, the above formula reduces to Dobiński's formula

$$B_n = \frac{1}{e} \sum_{k>0} \frac{k^n}{k!},\tag{1.1}$$

see Rota [11]. Wilf has obtained the following alternative formula

$$N_{n,r} = \sum_{j=1}^{n} B_j^r s(n,j), \tag{1.2}$$

where s(n, j) is the Stirling number of the first kind. Denote the generating function of $N_{n,r}$ by

$$M_r(x) = \sum_{n>0} N_{n,r} \frac{x^n}{n!}.$$

Canfield [4] has established the following connection between $M_r(x)$ and the Bell numbers:

$$M_r(e^x - 1) = \sum_{n \ge 0} B_n^r \frac{x^n}{n!}.$$
 (1.3)

We shall give type B analogues of (1.2) and (1.3) based on type B partitions without zero block.

This paper is organized as follows. In Section 2, we give an expression for the number of B_n -partitions that minimally intersect a B_n -partition π of a given type, which contains Benoumhani's formula for the Dowling number as a special case. Moreover, we obtain a formula for the number of minimally intersecting r-tuples of B_n -partitions. In Section 3, we consider the enumeration of minimally intersecting r-tuples of B_n -partitions without zero-block, and give two formulas in analogy to (1.2), and (1.3).

2 Minimally intersecting B_n -partitions

The main objective of this section is to derive a formula for the number of minimally intersecting r-tuples of B_n -partitions. If $\pi \in \Pi_n^B$ has a zero-block $Z = \{\pm i_1, \pm i_2, \dots, \pm i_k\}$, we say that Z is of half-size k. The partition $\hat{0}^B = \{\{1\}, \{-1\}, \{2\}, \{-2\}, \dots, \{n\}, \{-n\}\}\}$

is called the minimal partition, and $\hat{1}^B = \{\{\pm 1, \pm 2, \dots, \pm n\}\}\$ is called the maximal partition. We say that $\pi_1, \pi_2, \dots, \pi_r$ are minimally intersecting if $\pi_1 \wedge \pi_2 \wedge \dots \wedge \pi_r = \hat{0}^B$.

Let $\mathbf{j} = (j_1, j_2, \dots, j_k)$ be a composition of n. Let π be a B_n -partition consisting of k block pairs and a zero-block of half-size i_0 . For the purpose of enumeration, we often assume that the block pairs of π are ordered subject to certain convention. We say that π is of type $(i_0; \mathbf{j})$ if the block pairs of π are ordered such that the i-th block pair is of length j_i .

We first consider the problem of counting the number of B_n -partitions with l block pairs which minimally intersects a given B_n -partition. As a special case, we are led to Benoumhani's formula for the Dowling number

$$\left|\Pi_n^B\right| = \frac{1}{\sqrt{e}} \sum_{k>0} \frac{(2k+1)^n}{(2k)!!},$$
 (2.1)

in analogy to Dobiński's formula (1.1). Next, we find a formula for the number of ordered pairs of minimally intersecting B_n -partitions. In general, we give a formula for the number of minimally intersecting r-tuples of B_n -partitions.

Theorem 2.1. Let π be a B_n -partition consisting of a zero-block of half-size i_0 (allowing $i_0 = 0$) and k block pairs of sizes i_1, i_2, \ldots, i_k ($k \ge 1$) listed in any order. For any $l \ge 1$, the number of B_n -partitions π' containing exactly l block pairs that intersect π minimally equals

$$N^{B}(\pi; l) = \frac{\mathbf{i}!}{(2l - 2i_{0})!!} \sum_{\mathbf{i}'} \left[\mathbf{x}^{\mathbf{i}'} \right] \left(\prod_{\alpha \in [k]} (1 + x_{\alpha})^{2} - 1 \right)^{l - i_{0}} \prod_{\alpha \in [k]} (1 + x_{\alpha})^{2i_{0}}, \qquad (2.2)$$

where \mathbf{i}' runs over all vectors $(i'_1, i'_2, \dots, i'_k)$ such that $i'_{\alpha} \in \{i_{\alpha}, i_{\alpha} - 1\}$ for any $\alpha \in [k]$, and $\mathbf{x}^{\mathbf{i}'} = \prod_{\alpha=1}^k x_{\alpha}^{i'_{\alpha}}$.

For example, Π_2^B contains 6 partitions:

$$\hat{0}^B$$
, $\hat{1}^B$, $\{\pm\{1\}, \{\pm2\}\}, \{\pm\{2\}, \{\pm1\}\}, \{\pm\{1,2\}\}, \{\pm\{1,-2\}\}.$

Let $\pi = \{\pm\{1\}, \{\pm 2\}\}$. We have $i_0 = 1$, k = 1, and $i_1 = 1$. For l = 1, by (2.2), $N^B(\pi; 1) = \sum_{i=0}^1 [x^i] (1+x)^2 = 3$. The three B_2 -partitions which contain exactly 1 block pair and intersect π minimally are $\{\pm\{2\}, \{\pm 1\}\}, \{\pm\{1,2\}\}, \text{ and } \{\pm\{1,-2\}\}$.

Proof of Theorem 2.1. Let Z_1 be the zero-block of π , and $\pm B_1, \pm B_2, \ldots, \pm B_k$ be the block pairs of π . Let Z_2 be the zero-block of π' , and $\pm B'_1, \pm B'_2, \ldots, \pm B'_l$ be the block pairs of π' . To ensure that π and π' are minimally intersected, it is necessary to characterize the intersecting relations for all pairs (B, B') where B is a block of π and B' is a block of π' .

First, we observe that the intersection $B \cap B'$ contains at most one element subject to the minimally intersecting property. In particular, $Z_1 \cap Z_2 = \emptyset$. If $B = Z_1$ and

 $B' \neq Z_2$, then the two intersections $Z_1 \cap B'$ and $Z_1 \cap (-B')$ are a pair of opposite subsets. This observation allows us to disregard $Z_1 \cap (-B')$ in our consideration. Since the cardinality of $B \cap B'$ is either zero or one, we can represent $B \cap B'$ by

$$F(k;l) \prod_{\beta \in [l]} (1 + z_1 w_\beta) \prod_{\alpha \in [k]} (1 + x_\alpha z_2),$$

where

$$F(k;l) = \prod_{\alpha \in [k], \beta \in [l]} (1 + x_{\alpha} y_{\beta})(1 + x_{\alpha} \bar{y}_{\beta}). \tag{2.3}$$

Here we use x_i (w_i , resp.) to represent one of the two blocks in the *i*-th block pair of π (π' , resp.), and we use y_i and \bar{y}_i to represent the two blocks in the *i*-th block pair of π' .

The above argument allows us to generate all B_n -partitions that minimally meet with π . Let us consider the generating function of such B_n -partitions. Set

$$\mathbf{x} = (x_1, x_2, \dots, x_k), \qquad \mathbf{i} = (i_1, i_2, \dots, i_k), \qquad \mathbf{x}^{\mathbf{i}} = \prod_{\alpha \in [k]} x_{\alpha}^{i_{\alpha}};$$

$$\mathbf{w} = (w_1, w_2, \dots, w_l), \qquad \mathbf{a} = (a_1, a_2, \dots, a_l), \qquad \mathbf{w}^{\mathbf{a}} = \prod_{\beta \in [l]} w_{\beta}^{a_{\beta}};$$

$$\mathbf{y} = (y_1, y_2, \dots, y_l), \qquad \mathbf{b} = (b_1, b_2, \dots, b_l), \qquad \mathbf{y}^{\mathbf{b}} = \prod_{\beta \in [l]} y_{\beta}^{b_{\beta}};$$

$$\bar{\mathbf{y}} = (\bar{y}_1, \bar{y}_2, \dots, \bar{y}_l), \qquad \mathbf{c} = (c_1, c_2, \dots, c_l), \qquad \bar{\mathbf{y}}^{\mathbf{c}} = \prod_{\beta \in [l]} \bar{y}_{\beta}^{c_{\beta}}.$$

Let j_0 be a nonnegative integer and $\mathbf{j} = (j_1, j_2, \dots, j_l)$ a composition of $n - j_0$. Denote by $N^B(\pi; j_0, \mathbf{j})$ the number of B_n -partitions π' of type $(j_0; \mathbf{j})$ such that π' meets π minimally. In the above notation, we have

$$N^{B}(\pi; j_0, \mathbf{j}) = c \cdot \sum_{\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{j}} \left[\mathbf{x}^{\mathbf{i}} z_1^{j_0} z_2^{j_0} \mathbf{w}^{\mathbf{a}} \mathbf{y}^{\mathbf{b}} \bar{\mathbf{y}}^{\mathbf{c}} \right] F(k; l) \prod_{\beta \in [l]} (1 + z_1 w_\beta) \prod_{\alpha \in [k]} (1 + x_\alpha z_2), \quad (2.4)$$

where $c = \mathbf{i}! \cdot (2i_0)!!/(2l)!!$. Denote by $\binom{S}{m}$ the collection of all m-subsets of S. Since

$$[z_1^{i_0}] \prod_{\beta \in [l]} (1 + z_1 w_\beta) = \sum_{Y \in \binom{[l]}{i_0}} \prod_{\beta \in Y} w_\beta,$$
 (2.5)

$$\left[z_{2}^{j_{0}}\right] \prod_{\alpha \in [k]} (1 + x_{\alpha} z_{2}) = \sum_{X \in \binom{[k]}{j_{0}}} \prod_{\alpha \in X} x_{\alpha}, \tag{2.6}$$

substituting (2.5) and (2.6) into (2.4), we obtain that

$$N^{B}(\pi; j_{0}, \mathbf{j}) = c \cdot \sum_{\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{j}} \left[\mathbf{x}^{\mathbf{i}} \mathbf{w}^{\mathbf{a}} \mathbf{y}^{\mathbf{b}} \bar{\mathbf{y}}^{\mathbf{c}} \right] \left(\sum_{Y \in {[l] \choose i_{0}}} \prod_{\beta \in Y} w_{\beta} \right) \left(\sum_{X \in {[k] \choose j_{0}}} \prod_{\alpha \in X} x_{\alpha} \right) F(k; l)$$

$$= c \cdot \sum_{X, Y, \mathbf{b}} \left[\mathbf{y}^{\mathbf{b}} \prod_{\alpha \in [k]} x_{\alpha}^{i_{\alpha} - \chi(\alpha \in X)} \prod_{\beta \in [l]} \bar{y}_{\beta}^{j_{\beta} - b_{\beta} - \chi(\beta \in Y)} \right] F(k; l),$$

where χ is the characteristic function defined by $\chi(P)=1$ if P is true, and $\chi(P)=0$ otherwise. Therefore

$$N^{B}(\pi; l) = \sum_{\substack{j_{0} + j_{1} + \dots + j_{l} = n \\ j_{0} \ge 0, j_{1}, \dots, j_{l} \ge 1}} N^{B}(\pi; j_{0}, \mathbf{j}) = c \cdot \sum_{j_{0}, X} \left[\prod_{\alpha} x_{\alpha}^{i_{\alpha} - \chi(\alpha \in X)} \right] \sum_{\substack{j_{0} + j_{1} + \dots + j_{l} = n \\ j_{1}, \dots, j_{l} \ge 1}} f(\mathbf{j}), \quad (2.7)$$

where

$$f(\mathbf{j}) = \sum_{Y, \mathbf{b}} \left[\mathbf{y}^{\mathbf{b}} \prod_{\beta} \bar{y}_{\beta}^{j_{\beta} - b_{\beta} - \chi(\beta \in Y)} \right] F(k; l).$$

In view of the expression (2.3), the total degree of x_{α} 's agrees with the sum of the total degrees of y_{β} 's and \bar{y}_{β} 's in F(k;l). In other words,

$$\sum_{\alpha \in [k]} i_{\alpha} - \chi(\alpha \in X) = \sum_{\beta \in [l]} b_{\beta} + (j_{\beta} - b_{\beta} - \chi(\beta \in Y)),$$

namely, $j_0 + j_1 + \cdots + j_l = n$. So we may drop this condition in the inner summation of (2.7). For any $A \subseteq [l]$, let

$$S(A) = \sum_{\substack{j_1, \dots, j_l \geq 0 \\ j_\beta = 0 \text{ if } \beta \not\in A}} f(\mathbf{j}) = \sum_Y \sum_{\substack{b_\gamma, j_\gamma \geq 0 \\ \gamma \in A}} \left[\prod_{\gamma \in A} y_\gamma^{b_\gamma} \bar{y}_\gamma^{j_\gamma - b_\gamma - \chi(\gamma \in Y)} \right] F(k; A),$$

where

$$F(k; A) = \prod_{\alpha \in [k], \gamma \in A} (1 + x_{\alpha} y_{\gamma}) (1 + x_{\alpha} \bar{y}_{\gamma}).$$

Since j_{γ} and b_{γ} run over all nonnegative integers, the exponent $j_{\gamma} - b_{\gamma} - \chi(\gamma \in Y)$ can considered as a summation index. It follows that

$$S(A) = \sum_{Y \in \binom{A}{i_0}} \sum_{b_{\gamma}, c_{\gamma} \ge 0, \ \gamma \in A} \left[\prod_{\gamma \in A} y_{\gamma}^{b_{\gamma}} \bar{y}_{\gamma}^{c_{\gamma}} \right] F(k; A) = \binom{|A|}{i_0} \prod_{\alpha \in [k]} (1 + x_{\alpha})^{2|A|}.$$

By the principle of inclusion-exclusion, we have

$$\sum_{j_1,\dots,j_l\geq 1} f(\mathbf{j}) = \sum_{A\subseteq[l]} (-1)^{l-|A|} S(A) = \sum_m \binom{l}{m} (-1)^{l-m} \binom{m}{i_0} \prod_{\alpha\in[k]} (1+x_\alpha)^{2m}$$
$$= \binom{l}{i_0} \prod_{\alpha\in[k]} (1+x_\alpha)^{2i_0} \left(\prod_{\alpha\in[k]} (1+x_\alpha)^2 - 1\right)^{l-i_0}.$$

Now, employing (2.7) we find that $N^B(\pi; l)$ equals

$$\frac{\mathbf{i}!}{(2l-2i_0)!!} \sum_{X \subseteq [k]} \left[\prod_{\alpha \in [k]} x_{\alpha}^{i_{\alpha} - \chi(\alpha \in X)} \right] \prod_{\alpha \in [k]} (1+x_{\alpha})^{2i_0} \left(\prod_{\alpha \in [k]} (1+x_{\alpha})^2 - 1 \right)^{l-i_0}, \quad (2.8)$$

which can be rewritten in the form of (2.2). This completes the proof.

The formula (2.8) will also be used in the proof of Corollary 3.1. Summing (2.2) over $l \geq i_0$, we obtain the following formula.

Corollary 2.2. The number $N^B(\pi)$ of B_n -partitions that minimally intersect π is

$$N^{B}(\pi) = \frac{\mathbf{i}!}{\sqrt{e}} \sum_{\mathbf{i}'} \left[\mathbf{x}^{\mathbf{i}'} \right] F(\mathbf{x}), \tag{2.9}$$

where

$$F(\mathbf{x}) = \left(\prod_{\alpha \in [k]} (1 + x_{\alpha})^{2i_0}\right) \exp\left(\frac{1}{2} \prod_{\alpha \in [k]} (1 + x_{\alpha})^2\right). \tag{2.10}$$

Setting $\pi = \hat{0}^B$, (2.9) reduces to (2.1), since

$$N^{B}(\hat{0}^{B}) = \frac{1}{\sqrt{e}} \sum_{i_{\alpha}' \in \{0,1\}} \left[x_{1}^{i_{1}'} \cdots x_{n}^{i_{n}'} \right] \sum_{j \geq 0} \frac{1}{(2j)!!} \prod_{\alpha=1}^{n} (1 + x_{\alpha})^{2j}.$$

In fact, the number $N^B(\pi)$ can be expressed in terms of an infinite sum.

Corollary 2.3.

$$N^{B}(\pi) = \frac{1}{\sqrt{e}} \sum_{j>0} \frac{(2i_0 + 2j + 1)!^k}{(2j)!!} \prod_{\alpha \in [k]} \frac{1}{(2i_0 + 2j + 1 - i_\alpha)!}.$$
 (2.11)

Proof. From (2.10) it follows that

$$F(x) = \sum_{j \ge 0} \frac{1}{(2j)!!} \prod_{\alpha \in [k]} (1 + x_{\alpha})^{2(i_0 + j)}.$$

Hence

$$\begin{split} N^B(\pi) &= \frac{\mathbf{i}!}{\sqrt{e}} \sum_{j \geq 0} \frac{1}{(2j)!!} \prod_{\alpha \in [k]} \left(\binom{2(i_0 + j)}{i_\alpha} + \binom{2(i_0 + j)}{i_\alpha - 1} \right) \\ &= \frac{\mathbf{i}!}{\sqrt{e}} \sum_{j \geq 0} \frac{1}{(2j)!!} \prod_{\alpha \in [k]} \binom{2(i_0 + j) + 1}{i_\alpha}, \end{split}$$

which gives (2.11). This completes the proof.

Corollary 2.4. Let $N_{n,2}^B(i_0;k)$ denote the number of ordered pairs (π,π') of minimally intersecting B_n -partitions such that π consists of exactly k block pairs and a zero-block of half-size i_0 (allowing $i_0 = 0$). Then

$$N_{n,2}^{B}(i_0;k) = \frac{(2n)!!}{(2i_0)!!(2k)!!\sqrt{e}} \left[x^{n-i_0} \right] \sum_{j\geq 0} \frac{1}{(2j)!!} \left((1+x)^{2i_0+2j+1} - 1 \right)^k. \tag{2.12}$$

Proof. By a simple combinatorial argument we see that the number of B_n -partitions of type $(i_0; i_1, \ldots, i_k)$ equals

$$c = \binom{n}{i_0, i_1, \dots, i_k} \frac{2^{n-i_0-k}}{k!} = \frac{(2n)!!}{(2i_0)!!(2k)!!} \cdot \frac{1}{\mathbf{i}!}.$$

Thus by (2.9), we have

$$N_{n,2}^{B}(k) = \sum_{\substack{i_0 + i_1 + \dots + i_k = n \\ i_1, \dots, i_k \ge 1}} c \cdot N^{B}(\pi) = \frac{(2n)!!}{(2i_0)!!(2k)!!\sqrt{e}} \sum_{\substack{i_0 + i_1 + \dots + i_k = n \\ i_1, \dots, i_k \ge 1}} \sum_{\mathbf{i}'} \left[\mathbf{x}^{\mathbf{i}'} \right] F(\mathbf{x}). \quad (2.13)$$

For any $A \subseteq [k]$, consider

$$S(A) = \sum_{\substack{i_0 + i_1 + \dots + i_k = n \\ i_1, \dots, i_k \geq d \\ i_j = 0 \text{ if } i \neq d \\ i_j \neq 0}} \sum_{\mathbf{i}'} \left[\mathbf{x}^{\mathbf{i}'} \right] F(\mathbf{x}) = \sum_{\substack{i_0 + \sum_{\alpha \in A} i_\alpha = n \\ i_\alpha \geq 0, \, \alpha \in A}} \sum_{\mathbf{i}' \mid_A} \left[\mathbf{x}^{\mathbf{i}'} \big|_A \right] F\left(\mathbf{x} \big|_A\right),$$

where $\mathbf{x}|_A$ (resp. $\mathbf{i}'|_A$) denotes the vector obtained by removing all x_α (resp. i'_α) such that $\alpha \notin A$ from the vector \mathbf{x} (resp. \mathbf{i}'). Let t be the number of α 's such that $i'_\alpha = i_\alpha - 1$ in the inner summation. Noting that

$$F\left(\mathbf{x}\big|_{A}\right) = \left(\prod_{\alpha \in A} (1+x_{\alpha})^{2i_{0}}\right) \exp\left(\frac{1}{2}\prod_{\alpha \in A} (1+x_{\alpha})^{2}\right),$$

we can transform S(A) to

$$S(A) = \left(\sum_{t} {|A| \choose t} \left[x^{n-i_0-t}\right]\right) (1+x)^{2i_0|A|} \exp\left(\frac{1}{2}(1+x)^{2|A|}\right)$$
$$= \left[x^{n-i_0}\right] (1+x)^{(2i_0+1)|A|} \exp\left(\frac{1}{2}(1+x)^{2|A|}\right).$$

In view of the principle of inclusion-exclusion, we deduce from (2.13) that

$$N_{n,2}^B(k) = \frac{(2n)!!}{(2i_0)!!(2k)!!\sqrt{e}} \sum_{A \subset [k]} (-1)^{k-|A|} S(A),$$

which gives (2.12). This completes the proof.

Summing over $0 \le k \le n - i_0$ and $0 \le i_0 \le n$, we obtain the number of ordered pairs of minimally intersecting B_n -partitions.

Corollary 2.5. The number $N_{n,2}^B$ of ordered pairs (π, π') of minimally intersecting B_n -partitions is given by

$$N_{n,2}^{B} = \frac{2^{n}}{e} \sum_{k,l>0} \frac{(2kl+k+l)_{n}}{(2k)!!(2l)!!}.$$

For example, $N_{1,2}^B = 3$, $N_{2,2}^B = 23$, $N_{3,2}^B = 329$, $N_{4,2} = 6737$. In general, we have the following theorem, which is the main result of this paper.

Theorem 2.6. Let $r \geq 2$. The number of minimally intersecting r-tuples $(\pi_1, \pi_2, \dots, \pi_r)$ of B_n -partitions equals

$$N_{n,r}^{B} = \frac{2^{n}}{e^{r/2}} \sum_{l_{1}, l_{2}, \dots, l_{r}} \frac{(f_{r})_{n}}{(2l_{1})!!(2l_{2})!! \cdots (2l_{r})!!},$$
(2.14)

where

$$f_r = \frac{1}{2} \left(\prod_{t \in [r]} (2l_t + 1) - 1 \right).$$

Proof. For any $t \in [r]$, let i_t be an nonnegative integer and $\mathbf{j}_t = (j_{t,1}, j_{t,2}, \ldots, j_{t,k_t})$ be a composition of n. Let π_t be a B_n -partition of type $(i_t; \mathbf{j}_t)$. The condition that $\pi_1, \pi_2, \ldots, \pi_r$ are minimally intersecting leads us to consider the intersecting relations for all r-tuples (B_1, B_2, \ldots, B_r) where B_t is a block of π_t .

First, we observe that the intersection

$$B_1 \cap B_2 \cap \dots \cap B_r \tag{2.15}$$

contains at most one element because of the minimally intersecting requirement. In particular, (2.15) is empty when B_1, B_2, \ldots, B_r are all zero-blocks. We now consider the case that not all of B_1, B_2, \ldots, B_r are zero-blocks. In this case, there exists a number $t \in [r]$ such that B_1, \ldots, B_{t-1} are zero-blocks but B_t is a non-zero-block. This number t will play a key role in determining the intersection (2.15).

In fact, the partial intersection $B_1 \cap B_2 \cap \cdots \cap B_{t-1}$ is of the form $\{\pm i_1, \ldots, \pm i_j\}$. Thus for any non-zero-block B of π_t , the two intersections

$$B_1 \cap \cdots \cap B_{t-1} \cap B$$
 and $B_1 \cap \cdots \cap B_{t-1} \cap (-B)$

form a pair of opposite subsets. This observation allows us to consider B as a representative of the block pair $\pm B$. Since the cardinality of the intersection (2.15) is either zero or one, we can represent (2.15) by

$$f = 1 + z_1 \cdots z_{t-1} x_{t,\alpha_t} Y_{t+1} \cdots Y_r, \tag{2.16}$$

where

$$Y_p \in \{z_p, y_{p,1}, \bar{y}_{p,1}, \dots, y_{p,k_p}, \bar{y}_{p,k_p}\}$$

for $p \ge t + 1$. Here we use z_i to represent the zero-block of π_i , $x_{t,i}$ to represent one of the two blocks in the *i*-th block pair of π_t , $y_{p,i}$ and $\bar{y}_{p,i}$ to represent the two blocks in

the *i*-th block pair of π_p . Let

$$\mathbf{x}_{t} = (x_{t,1}, \dots, x_{t,k_{t}}), \quad \mathbf{a}_{t} = (a_{t,1}, \dots, a_{t,k_{t}}), \quad \mathbf{x}_{s}^{\mathbf{a}_{s}} = \prod_{i \in [k_{s}]} x_{s,i}^{a_{s,i}};$$

$$\mathbf{y}_{t} = (y_{t,1}, \dots, y_{t,k_{t}}), \quad \mathbf{b}_{t} = (b_{t,1}, \dots, b_{t,k_{t}}), \quad \mathbf{y}_{s}^{\mathbf{b}_{s}} = \prod_{i \in [k_{s}]} y_{s,i}^{b_{s,i}};$$

$$\bar{\mathbf{y}}_{t} = (\bar{y}_{t,1}, \dots, \bar{y}_{t,k_{t}}), \quad \mathbf{c}_{t} = (c_{t,1}, \dots, c_{t,k_{t}}), \quad \bar{\mathbf{y}}_{s}^{\mathbf{c}_{s}} = \prod_{i \in [k_{s}]} \bar{y}_{s,i}^{c_{s,i}}.$$

Denote by $N^B(\pi_1; i_2, \mathbf{j}_2; \dots; i_r, \mathbf{j}_r)$ the number of (r-1)-tuples (π_2, \dots, π_r) of B_n -partitions such that π_s $(2 \le s \le r)$ is of type (i_s, \mathbf{j}_s) and $\pi_1, \pi_2, \dots, \pi_r$ intersect minimally. In the notation of f in (2.16), we get

$$N^{B}(\pi_{1}; i_{2}, \mathbf{j}_{2}; \dots; i_{r}, \mathbf{j}_{r}) = c \left[\mathbf{x}_{1}^{\mathbf{j}_{1}} z_{1}^{i_{1}} \right] \sum_{\substack{\mathbf{a}_{s} + \mathbf{b}_{s} + \mathbf{c}_{s} = \mathbf{j}_{s} \\ 2 \leq s \leq r}} \left[\mathbf{x}_{s}^{\mathbf{a}_{s}} \mathbf{y}_{s}^{\mathbf{b}_{s}} \bar{\mathbf{y}}_{s}^{\mathbf{c}_{s}} z_{s}^{i_{s}} \right] F_{r}$$

where

$$c = \mathbf{j}_1! \cdot (2i_1)!! \prod_{2 \le s \le r} (2k_s)!!^{-1},$$

$$F_r = \prod_{t \in [r]} \prod_{\alpha_t \in [k_t]} \prod_{Y_p \in \left\{z_p, y_{p,1}, \bar{y}_{p,1}, \dots, y_{p,k_p}, \bar{y}_{p,k_p}\right\}} f$$

Now, let $N^B(\pi_1, k_2, ..., k_r)$ be the number of (r-1)-tuples $(\pi_2, ..., \pi_r)$ of B_n -partitions such that π_s contains exactly k_s block pairs and $\pi_1, \pi_2, ..., \pi_r$ intersect minimally. Then

$$N^{B}(\pi_{1}, k_{2}, \dots, k_{r}) = \sum_{\substack{i_{s} \geq 0, j_{s,1}, \dots, j_{s,k_{s}} \geq 1\\j_{s,1} + \dots + j_{s,k_{s}} + i_{s} = n}} N^{B}(\pi_{1}; i_{2}, \mathbf{j}_{2}; \dots; i_{r}, \mathbf{j}_{r})$$
(2.17)

We claim that the condition $j_{s,1} + \cdots + j_{s,k_s} + i_s = n$ can be dropped in the above summation. In fact, the factor f in (2.16) contributes to x_1 or z_1 at most once with respect to the degree, and the contribution of f to x_1 or z_1 equals the contribution of f to \mathbf{x}_s , \mathbf{y}_s , $\mathbf{\bar{y}}_s$, or z_s , for any $2 \leq s \leq r$. Therefore the sum of the degrees of \mathbf{x}_s , \mathbf{y}_s , $\mathbf{\bar{y}}_s$, and z_s , equals the sum of the degrees of x_1 and x_2 , that is, for any $x_1 \leq s \leq r$,

$$i_s + j_{s,1} + \dots + j_{s,k_s} = i_1 + j_{1,1} + \dots + j_{1,k_1} = n$$
 (2.18)

Hence we can ignore the conditions (2.18) in (2.17). This implies that

$$N^B(\pi_1, k_2, \dots, k_r) = c \left[\mathbf{x}_1^{\mathbf{j}_1} z_1^{i_1} \right] \sum_{i_s > 0, \, \mathbf{a}_s + \mathbf{b}_s + \mathbf{c}_s > \mathbf{1}} \left[\mathbf{x}_s^{\mathbf{a}_s} \mathbf{y}_s^{\mathbf{b}_s} \bar{\mathbf{y}}_s^{\mathbf{c}_s} z_s^{i_s} \right] F_r.$$

where $\mathbf{a}_s + \mathbf{b}_s + \mathbf{c}_s \geq \mathbf{1}$ indicates that $a_{s,h_s} + b_{s,h_s} + c_{s,h_s} \geq 1$ for any $1 \leq h_s \leq k_s$. We will compute $\sum \left[\mathbf{x}_s^{\mathbf{a}_s} \mathbf{y}_s^{\mathbf{b}_s} \bar{\mathbf{y}}_s^{\mathbf{c}_s} z_s^{i_s}\right] F_r$ for $s = 2, 3, \dots, r$ by the following procedure. First, for s = 2, we have

$$\sum_{i_2 \ge 0, \, \mathbf{a}_2 + \mathbf{b}_2 + \mathbf{c}_2 \ge 1} \left[\mathbf{x}_2^{\mathbf{a}_2} \mathbf{y}_2^{\mathbf{b}_2} \bar{\mathbf{y}}_2^{\mathbf{c}_2} z_2^{i_2} \right] F_r = \sum_{l_2} \binom{k_2}{l_2} (-1)^{k_2 - l_2} F_{r,2},$$

where

$$F_{r,2} = \prod_{\alpha_1, Y_p} (1 + x_1^{\alpha_1} Y_3 \cdots Y_r)^{2l_2 + 1} \prod_{Y_p} (1 + z_1 Y_3 \cdots Y_r)^{l_2} \prod_{t \ge 3, \alpha_t, Y_p} (1 + z_1 z_3 \cdots z_{t-1} x_t^{\alpha_t} Y_{t+1} \cdots Y_r).$$

So $N^B(\pi_1, k_2, \dots, k_r)$ equals

$$c\left[\mathbf{x}_{1}^{\mathbf{j}_{1}}z_{1}^{i_{1}}\right]\sum_{l_{2}} {k_{2} \choose l_{2}} (-1)^{k_{2}-l_{2}} \sum_{\substack{i_{s}\geq0,\,\mathbf{a}_{s}+\mathbf{b}_{s}+\mathbf{c}_{s}\geq1\\2\leq c,\,\mathbf{r},\,\mathbf{r}}} \left[\mathbf{x}_{s}^{\mathbf{a}_{s}}\mathbf{y}_{s}^{\mathbf{b}_{s}}\bar{\mathbf{y}}_{s}^{\mathbf{c}_{s}}z_{s}^{i_{s}}\right] F_{r,2}. \tag{2.19}$$

To compute the inner summation, let

$$g_s = \frac{1}{2} \left(\prod_{2 \le i \le s} (2l_i + 1) - 1 \right).$$

For any $s \geq 2$, it is clear that

$$(2l_{s+1}+1)g_s + l_{s+1} = g_{s+1}.$$

Starting with (2.19), we can continue the above procedure to deduce that for $2 \le h \le r - 1$,

$$N^{B}(\pi_{1}, k_{2}, \dots, k_{r}) = c \left[\mathbf{x}_{1}^{\mathbf{j}_{1}} z_{1}^{i_{1}} \right] \sum_{l_{2}, \dots, l_{h}} \prod_{2 \leq i \leq h} {k_{i} \choose l_{i}} (-1)^{k_{i} - l_{i}} \sum_{\substack{i_{s} \geq 0, \, \mathbf{a}_{s} + \mathbf{b}_{s} + \mathbf{c}_{s} \geq 1 \\ h + 1 \leq s \leq r}} \left[\mathbf{x}_{s}^{\mathbf{a}_{s}} \mathbf{y}_{s}^{\mathbf{b}_{s}} \bar{\mathbf{y}}_{s}^{\mathbf{c}_{s}} z_{s}^{i_{s}} \right] F_{r,h},$$

where

$$F_{r,h} = \prod_{\alpha_1, Y_p} (1 + x_1^{\alpha_1} Y_{h+1} \cdots Y_r)^{\prod_{2 \le i \le h} (2l_i + 1)} \prod_{Y_p} (1 + z_1 Y_{h+1} \cdots Y_r)^{g_h} \cdot \prod_{t \ge h+1, \alpha_t, Y_p} (1 + z_1 z_{h+1} \cdots z_{t-1} x_t^{\alpha_t} Y_{t+1} \cdots Y_r).$$

In particular, for h = r - 1, we have

$$N^{B}(\pi_{1}, k_{2}, \dots, k_{r}) = c \left[\mathbf{x}_{1}^{\mathbf{j}_{1}} z_{1}^{i_{1}} \right] \sum_{l_{2}, \dots, l_{r-1}} \left(\prod_{2 \leq i \leq r-1} {k_{i} \choose l_{i}} (-1)^{k_{i}-l_{i}} \right) G$$
 (2.20)

where

$$G = \sum_{\mathbf{a}_r + \mathbf{b}_r + \mathbf{c}_r \ge 1} \left[\mathbf{x}_r^{\mathbf{a}_r} \mathbf{y}_r^{\mathbf{b}_r} \bar{\mathbf{y}}_r^{\mathbf{c}_r} \right] \prod_{\alpha_1, Y_p} (1 + x_1^{\alpha_1})^{\prod_{2 \le i \le r-1} (2l_i + 1)} \prod_{Y_p} (1 + z_1)^{g_{r-1}} \prod_{\alpha_r} (1 + z_1 x_r^{\alpha_r})$$

$$= \sum_{l_r} {k_r \choose l_r} (-1)^{k_r - l_r} (1 + z_1)^{g_r} \prod_{\alpha_1} (1 + x_1^{\alpha_1})^{\prod_{2 \le i \le r} (2l_i + 1)}.$$

Since the number of B_n -partitions of type \mathbf{j}_1 equals

$$c' = \binom{n}{i_1} \binom{n-i_1}{\mathbf{j}_1} \frac{2^{n-i_1-k_1}}{k_1!} = \frac{(2n)!!}{(2i_1)!!(2k_1)!!\mathbf{j}_1!},$$

by (2.20), we obtain

$$N_{n,r}^{B} = \sum_{\substack{j_{1,1},\dots,j_{1,k_{1}} \geq 1\\i_{1}+j_{1,1}+\dots+j_{1,k_{1}}=n}} c' \sum_{k_{2},\dots,k_{r}} N^{B}(\pi_{1}, k_{2}, \dots, k_{r})$$

$$= (2n)!! \sum_{\substack{k_{2},\dots,k_{r}\\l_{2},\dots,l_{r}}} \left(\prod_{2 \leq s \leq r} {k_{s} \choose l_{s}} \frac{(-1)^{k_{s}-l_{s}}}{(2k_{s})!!} \right) \sum_{i_{1},k_{1}} \frac{1}{(2k_{1})!!} \left[z_{1}^{i_{1}} \right] (1+z_{1})^{g_{r}} H \qquad (2.21)$$

where

$$H = \sum_{\substack{i_1+j_1, 1+\dots+j_{1,k_1}=n\\j_{1,1}, j_{1,2}, \dots, j_{1,k_1} \ge 1}} \left[\mathbf{x}_1^{\mathbf{j}_1}\right] \prod_{\alpha_1} (1+x_1^{\alpha_1})^{\prod_{2 \le i \le r} (2l_i+1)}$$
$$= \sum_{l_1} \binom{k_1}{l_1} (-1)^{k_1-l_1} \left[x^{n-i_1}\right] (1+x)^{l_1 \prod_{2 \le i \le r} (2l_i+1)}.$$

Using the identity

$$\sum_{k} {k \choose l} \frac{(-1)^{k-l}}{(2k)!!} = \frac{e^{-1/2}}{(2l)!!},\tag{2.22}$$

we can simplify the summation over $k_1, k_2, \ldots, k_r \geq 0$ in (2.21) to deduce that

$$N_{n,r}^{B} = (2n)!! \sum_{\substack{k_1, k_2, \dots, k_r \\ l_1, l_2, \dots, l_r}} \left(\prod_{t \in [r]} {k_t \choose l_t} \frac{(-1)^{k_t - l_t}}{(2k_t)!!} \right) \sum_{i_1} \left[x^{n - i_1} z_1^{i_1} \right] (1 + z_1)^{g_r} (1 + x)^{l_1 \prod_{2 \le i \le r} (2l_i + 1)}$$

$$= \frac{(2n)!!}{e^{r/2}} \sum_{l_1, l_2, \dots, l_r} \frac{1}{(2l_1)!! (2l_2)!! \cdots (2l_r)!!} \left[x^n \right] (1 + x)^{g_r + l_1 \prod_{2 \le i \le r} (2l_i + 1)}. \tag{2.23}$$

To further simplify the above summation, we observe that

$$g_r + l_1 \prod_{2 \le i \le r} (2l_i + 1) = \frac{1}{2} \left(\prod_{t \in [r]} (2l_t + 1) - 1 \right).$$
 (2.24)

Substituting (2.24) into (2.23), we arrive at (2.14). This completes the proof.

For example, we have $N_{1,r} = 2^r - 1$ and $N_{2,3}^B = 187$.

3 Minimally intersecting B_n -partitions without zeroblock

In this section, we investigate the meet-semilattice of B_n -partitions without zero-block. Note that the minimal B_n -partition without zero-block is $\hat{0}^B$. Inspecting the proof of Theorem 2.1, we can restrict our attention to the set of B_n -partitions without zero-block by setting $i_0 = 0$ and $X = \emptyset$ in (2.8).

Corollary 3.1. Let π be a B_n -partition consisting of k block pairs of sizes i_1, i_2, \ldots, i_k listed in any order. For a given $l \geq 1$, the number $N^D(\pi; l)$ of B_n -partitions π' consisting of l block pairs, which intersects π minimally, is equal to

$$N^{D}(\pi;l) = \frac{\mathbf{i}!}{(2l)!!} \left[\mathbf{x}^{\mathbf{i}} \right] \left(\prod_{\alpha \in [k]} (1+x_{\alpha})^{2} - 1 \right)^{l}.$$
 (3.1)

The total number of B_n -partitions without zero-block that intersect π minimally is given by

$$N^{D}(\pi) = \frac{\mathbf{i}!}{\sqrt{e}} \left[\mathbf{x}^{\mathbf{i}} \right] \exp \left(\frac{1}{2} \prod_{\alpha \in [k]} (1 + x_{\alpha})^{2} \right).$$
 (3.2)

For example, let n=3, $\pi=\{\pm\{2\},\pm\{1,-3\}\}$ and l=2. Then (3.1) yields $N^D(\pi;2)=5$. In fact, the B_n -partitions consisting of 2 block pairs which intersect π minimally are exactly the 5 partitions consisting of two block pairs except for π itself.

Let N_n be the number of B_n -partitions without zero-block. Taking $\pi = \hat{0}^B$ in (3.2), we obtain the following formula.

Corollary 3.2. We have

$$N_n = \frac{1}{\sqrt{e}} \sum_{k>0} \frac{(2k)^n}{(2k)!!}.$$
(3.3)

Let $N_n(k)$ denote the number of B_n -partitions containing k block pairs but no zero-block. It should be noted that the formula (3.3) can be easily deduced from the relation

$$N_n(k) = 2^{n-k} S(n,k),$$

where S(n, k) are the Stirling numbers of the second kind, and the following identity on the Bell polynomials [9, 10]:

$$\sum_{k=0}^{n} S(n,k)x^{k} = \frac{1}{e^{x}} \sum_{k>0} \frac{k^{n}}{k!} x^{k}.$$

The sequence $\{N_n\}_{n\geq 0}$ is A004211 in [12]:

$$1, 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, \dots$$

The proof of Corollary 2.4 implies the following corollary.

Corollary 3.3. Let $N_{n,2}^D(k)$ denote the number of ordered pairs (π, π') of minimally intersecting B_n -partitions without zero-block such that π consists of exactly k block pairs. Then

$$N_{n,2}^D(k) = \frac{(2n)!!}{(2k)!!\sqrt{e}} \left[x^n \right] \sum_{j>0} \frac{1}{(2j)!!} \left[(1+x)^{2j} - 1 \right]^k.$$

The number $N_{n,2}^D$ of ordered pairs (π, π') of minimally intersecting B_n -partitions without zero-block is given by

$$N_{n,2}^{D} = \frac{2^{n}}{e} \sum_{k,l>0} \frac{(2kl)_{n}}{(2k)!!(2l)!!}.$$

For example, $N_{1,2}^D = 1$, $N_{2,2}^D = 7$, $N_{3,2}^D = 75$. The following theorem is an analogue of Theorem 2.6 with respect to the meet-semilattice of B_n -partitions without zero-block.

Theorem 3.4. For $r \geq 2$, the number of minimally intersecting r-tuples $(\pi_1, \pi_2, \dots, \pi_r)$ of B_n -partitions without zero-block equals

$$N_{n,r}^{D} = \frac{2^{n}}{e^{r/2}} \sum_{k_{1},k_{2},\dots,k_{r}} \frac{(2^{r-1}k_{1}k_{2}\cdots k_{r})_{n}}{(2k_{1})!!(2k_{2})!!\cdots(2k_{r})!!}.$$
(3.4)

Proof. Let $1 \leq t \leq r$. Let $\mathbf{j}_t = (j_{t,1}, j_{t,2}, \dots, j_{t,k_t})$ be a composition of n. Assume that π_t is of type $(0; \mathbf{j}_t)$. Let $N^D(\pi_1, \mathbf{j}_2, \dots, \mathbf{j}_r)$ be the number of (r-1)-tuples (π_2, \dots, π_r) of such B_n -partitions such that $(\pi_1, \pi_2, \dots, \pi_r)$ is minimally intersecting. By the argument in the proof of Theorem 2.1, we find

$$N^{D}(\pi_{1}, \mathbf{j}_{2}, \dots, \mathbf{j}_{r}) = c \cdot \left[\mathbf{x}^{\mathbf{j}_{1}}\right] \sum_{\mathbf{b}_{s} + \mathbf{c}_{s} = \mathbf{j}_{s}} \left[\mathbf{y}_{2}^{\mathbf{b}_{2}} \bar{\mathbf{y}}_{2}^{\mathbf{c}_{2}} \cdots \mathbf{y}_{r}^{\mathbf{b}_{r}} \bar{\mathbf{y}}_{r}^{\mathbf{c}_{r}}\right] f(\mathbf{j}), \tag{3.5}$$

where

$$c = \mathbf{j}_1! \prod_{2 \le s \le r} (2k_s)!!^{-1},$$

$$f(\mathbf{j}) = \prod_{\substack{\alpha \in [k_1] \\ Y_s \in \{y_{s,1}, \bar{y}_{s,1}, \dots, y_{s,k_s}, \bar{y}_{s,k_s}\}}} (1 + x_\alpha Y_2 Y_3 \cdots Y_r).$$

Let $N^D(\pi_1, k_2, ..., k_r)$ be the number of (r-1)-tuples $(\pi_2, ..., \pi_r)$ of B_n -partitions such that π_s consists of k_s block pairs, and $\pi_1, \pi_2, ..., \pi_r$ are minimally intersecting. It follows from (3.5) that

$$N^{D}(\pi_{1}, k_{2}, \dots, k_{r}) = c \cdot \left[\mathbf{x}^{\mathbf{j}_{1}}\right] \sum_{\mathbf{b}_{s} + \mathbf{c}_{s} = \mathbf{j}_{s} \geq 1} \left[\mathbf{y}_{2}^{\mathbf{b}_{2}} \cdots \bar{\mathbf{y}}_{r}^{\mathbf{c}_{r}}\right] f(\mathbf{j})$$

$$= \mathbf{j}_{1}! \sum_{l_{2}, \dots, l_{r}} \left(\left[\mathbf{x}^{\mathbf{j}_{1}}\right] \prod_{\alpha \in [k_{1}]} (1 + x_{\alpha})^{2^{r-1}l_{2} \cdots l_{r}}\right) \prod_{2 \leq s \leq r} {k_{s} \choose l_{s}} \frac{(-1)^{k_{s} - l_{s}}}{(2k_{s})!!}.$$

Consequently,

$$N_{n,r}^{D} = \sum_{k_1} \frac{1}{(2k_1)!!} \sum_{\substack{j_{1,1} + \dots + j_{1,k_1} = n \\ j_{1,1}, \dots, j_{1,k_1} \ge 1}} \frac{2^n n!}{\mathbf{j}_1!} \sum_{k_2, \dots, k_r} N^D(\pi_1, k_2, \dots, k_r)$$

$$= (2n)!! \sum_{\substack{k_1, k_2, \dots, k_r \\ l_1, l_2, \dots, l_r}} \prod_{1 \le s \le r} {k_s \choose l_s} \frac{(-1)^{k_s - l_s}}{(2k_s)!!} [x^n] (1+x)^{2^{r-1} l_1 l_2 \dots l_r}.$$

Applying (2.22), we can restate the above formula in the form of (3.4). This completes the proof.

For example, when n = 2 and r = 3, by (3.4) we find that $N_{2,3}^D = 25$. In fact, there are 3 B_2 -partitions without zero-block, that is,

$$0^B$$
, $\pi_1 = \{\pm\{1,2\}\}\$, $\pi_2 = \{\pm\{1,-2\}\}\$.

Among all $3^3 = 27$ 3-tuples of B_2 -partitions without zero-block, only (π_1, π_1, π_1) and (π_2, π_2, π_2) are not minimally intersecting.

Corollary 3.5. We have

$$N_{n,r}^{D} = \sum_{j=1}^{n} N_{j}^{r} 2^{n-j} s(n,j), \tag{3.6}$$

where s(n, j) are the Stirling numbers of the first kind. Moreover,

$$M_r^D \left(\frac{e^{2x} - 1}{2} \right) = \sum_{n \ge 0} N_n^r \frac{x^n}{n!},\tag{3.7}$$

where

$$M_r^D(x) = \sum_{n>0} N_{n,r}^D \frac{x^n}{n!}.$$

The formula (3.6) can be considered as a type B analogue of Wilf's formula (1.2), whereas (3.7) is analogous to Canfield's formula (1.3).

Acknowledgments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

- [1] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., 159 (1996) 13–33.
- [2] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, 2005, Springer Science+Business Media, Inc.
- [3] A. Björner and M.L. Wachs, Geometrically constructed bases for homology of partitions lattices of types A, B and D, Electron. J. Combin., 11 (2004) #R3.
- [4] E.R. Canfield, Meet and join within the lattice of set partitions, Electron. J. Combin., 8 (2001) #R15.
- [5] T.A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B, 14 (1973) 61–86.
- [6] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, Cambridge, 1990.
- [7] B. Pittel, Where the typical set partitions meet and join, Electron. J. Combin., 7 (2000) #R5.
- [8] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math., 177 (1997) 195–222.
- [9] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1980.
- [10] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
- [11] G.C. Rota, The number of partitions of a set, Amer. Math. Monthly, 71 (1964) 498–504.
- [12] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.