Eigenvalues and $[1, n]$-odd factors

Hongliang Lu ${ }^{\text {a }}$, Zefang $\mathrm{Wu}^{\text {a }}$, Xu Yang ${ }^{\text {a }}$
${ }^{a}$ Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P. R. China

Abstract

Amahashi [1] gave a sufficient and necessary condition for the existence of $[1, n]$-odd factor. In this paper, for the existence of $[1, n]$-odd factors, we obtain some sufficient conditions in terms of eigenvalues. Moreover, we construct some examples which show that those results are best possible.

Keywords: $[1, n]$-odd factor; eigenvalue; Laplacian eigenvalue.
AMS Classification: 05C50, 05C70, 15A18

1 Introduction

Throughout this paper, let G denote a simple graph of order v (the number of vertices) and size e (the number of edges). The eigenvalues of G are the eigenvalues λ_{i} of its adjacency matrix A, indexed so that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{v}$. If G is k-regular, then it is easy to see that $\lambda_{1}=k$ and also, $\lambda_{2}<k$ if and only if G is connected. Recall that the Laplacian matrix L, is related to the adjacency matrix A by $L=D-A$, where D is the diagonal matrix of the vertex degrees. The Laplacian matrix L is positive semidefinite with row sum 0 . Its eigenvalues will be denoted by $0=\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{v}$. For k-regular graphs, we have $\lambda_{i}+\mu_{i}=k$ for all $1 \leq i \leq v$.

We use [8] for terminologies and notations not defined here.
Let G be a graph. For two disjoint subsets S, T of $V(G)$, we use $e_{G}(S, T)$ to denote the number of edges with one end in S and the other in T, and $o(G-S)$ to denote

[^0]the number of components with odd number of vertices in $G-S$. Let \bar{G} denote the complement of a graph G.

Given an odd integer-valued function $f: V(G) \rightarrow\{1,3,5, \ldots$,$\} , a spanning sub-$ graph F of G is called a $(1, f)$-odd factor if

$$
d_{F}(x) \in\{1,3,5, \ldots, f(x)\} \text { for all } x \in V(F)
$$

Of course, if $f(x)=1$ for all vertices x , then a $(1, f)$-odd factor is a 1 -factor, i.e., a perfect matching. For an odd integer $n \geq 1$, if $f(x)=n$ for all $x \in V(G)$, then a $(1, f)$-odd factor is called a $[1, n]$-odd factor. So, a $[1, n]$-odd factor F satisfies

$$
d_{F}(x) \in\{1,3,5, \ldots, n\} \text { for all } x \in V(F)
$$

In [2], Brouwer and Haemers gave sufficient conditions for the existence of a 1factor in a graph in terms of its Laplacian eigenvalues and, for a regular graph, gave an improvement in terms of the third largest adjacency eigenvalue, λ_{3}. Cioabă and Gregory [3] also studied relations between 1-factors and eigenvalues in regular graphs. Later, Cioabǎ, Gregory and Haemers [4] found a best upper bound on λ_{3} that is sufficient to guarantee that a regular graph G of order v has a 1 -factor when v is even, and a matching of order $v-1$ when v is odd. Motivated by these results, in this paper, we relate the eigenvalues of a connected graph G to the existence of a $[1, n]$-odd factor. We give a sufficient condition in terms of Laplacian eigenvalues for the existence of $[1, n]$-odd factors of graphs, as well as sufficient conditions in terms of eigenvalues for the existence of $[1, n]$-odd factors of regular graphs.

The main tool in our proofs is the following theorem given by Amahashi [1]. It is a sufficient and necessary condition of $[1, n]$-odd factors in a multigraph. Here, a multigraph is a graph that has no loops but may have multiple edges.

Theorem 1.1 (Amahashi [1]) Let G be a multigraph and $n \geq 1$ be an odd integer. Then G has a $[1, n]$-odd factor if and only if

$$
o(G-S) \leq n|S| \text { for all } S \subseteq V(G)
$$

The set S in Theorem 1.1 may be taken to be empty. The theorem then implies the obvious necessary condition that each component of G have an even number of vertices. It is interesting to note that by taking n sufficiently large, the theorem implies an exercise in [7] which states that a graph with no odd components must contain a spanning subgraph whose vertex degrees are all odd.

2 Graphs

In this section, we investigate the relationship between the Laplacian eigenvalues of a graph G and its $[1, n]$-odd factors. For graphs, we will use an inequality for disconnected vertex sets in graphs, due to Haemers [5].

Two disjoint vertex sets A and B in a graph are called disconnected if there are no edges between A and B.

Lemma 2.1 (Haemers, [5]) If A and B are disconnected vertex sets of a graph with v vertices and Laplacian eigenvalues $0=\mu_{1} \leq \ldots \leq \mu_{v}$, then

$$
\frac{|A| \cdot|B|}{(v-|A|)(v-|B|)} \leq\left(\frac{\mu_{v}-\mu_{2}}{\mu_{v}+\mu_{2}}\right)^{2}
$$

For 1-factors, Brouwer and Haemers proved that:
Theorem 2.2 (Brouwer and Haemers, [2]) Let G be a graph with v vertices, and Laplacian eigenvalues $0=\mu_{1} \leq \ldots \leq \mu_{v}$. If v is even and $\mu_{v} \leq 2 \mu_{2}$, G has a 1 -factor.

Brouwer and Haemers also gave a technical lemma in the proof of Theorem 2.2.
Lemma 2.3 (Brouwer and Haemers, [2]) Let x_{1}, \ldots, x_{n} be n positive integers such that $\sum_{i=1}^{n} x_{i}=k \leq 2 n-1$. Then for every integer l, satisfying $0 \leq l \leq k$, there exists a set $I \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in I} x_{i}=l$.

We generalize the theorem above to $[1, n]$-odd factors, we have the following theorem. From now on, n will always be assumed to be a positive odd integer.

Theorem 2.4 Let G be a graph with v vertices, and Laplacian eigenvalues $0=\mu_{1} \leq$ $\ldots \leq \mu_{v}$. If v is even and $\mu_{v} \leq(n+1) \mu_{2}$, G has a $[1, n]$-odd factor.

Proof. Assume $G=(V, E)$ has no $[1, n]$-odd factor. By Theorem 1.1, there exists an s-vertex-set $S \subset V$, such that $q=o(G-S)>n s$. Since v is even, q and $n s$ have the same parity, hence $q \geq n s+2$. Then $v \geq(n+1) s+2$. There are two cases to consider.

Case 1. $v \leq 2 n s+s+3$.
Since $q=o(G-S) \geq n s+2$, and $|V(G-S)|=v-s \leq 2 n s+3<2 q$, it follows from Lemma 2.3 that there exists a pair of disconnected vertex sets A and B with $|A|=\left\lfloor\frac{v-s}{2}\right\rfloor$ and $|B|=\left\lceil\frac{v-s}{2}\right\rceil$. By Lemma 2.1, we have

$$
\left(\frac{\mu_{v}-\mu_{2}}{\mu_{v}+\mu_{2}}\right)^{2} \geq \frac{|A| \cdot|B|}{v s+|A| \cdot|B|} \geq \frac{(v-s)^{2}-1}{(v+s)^{2}-1} .
$$

Since $g(v)=\frac{(v-s)^{2}-1}{(v+s)^{2}-1}$ is an increasing function of v on $[(n+1) s+2,2 n s+s+3]$, it follows that

$$
\left(\frac{\mu_{v}-\mu_{2}}{\mu_{v}+\mu_{2}}\right)^{2} \geq g(v) \geq \frac{(n s+s+2-s)^{2}-1}{(n s+s+2+s)^{2}-1}>\left(\frac{n}{n+2}\right)^{2} .
$$

Therefore, $(n+1) \mu_{2}<\mu_{v}$, a contradiction.
Case 2. $v \geq 2 n s+s+4$.
We claim that G must have a pair of disconnected vertex sets A and B with $|A|+|B|=v-s$ and $\min \{|A|,|B|\} \geq n s+1$.

If $q \geq 2 n s+2$, let A be a union of $n s+1$ odd components of $G-S$ and B be the complement of A in the vertex set $G-S$, then $\min \{|A|,|B|\} \geq \min \{n s+1,(2 n s+$ $2)-(n s+1)\}=n s+1$. Thus in addition to the previous observation that $q \geq n s+2$, we may assume that $q \leq 2 n s+1$.

Let V_{1}, \ldots, V_{q-1} be the vertex sets of $q-1$ of the q odd components of $G-S$, and let $V_{q}=V(G-S)-\bigcup_{i=1}^{q-1} V_{i}$. If the $V_{1}^{\prime}, \ldots, V_{q}^{\prime}$ are nonempty subsets of V_{1}, \ldots, V_{q}, then

$$
q \leq \sum_{i=1}^{q}\left|V_{i}^{\prime}\right| \leq \sum_{i=1}^{q}\left|V_{i}\right|=v-s
$$

Since $q \leq 2 n s+1$ and $v-s \geq 2 n s+4$, the subset V_{i}^{\prime} may be chosen such that $\sum_{i=1}^{q}\left|V_{i}^{\prime}\right|=2 n s+3$. As $2 q-1 \geq 2(n s+2)-1=2 n s+3$, it follows from Lemma 2.3 that there is a subset $I \subseteq[q]=\{1, \ldots, q\}$ such that $\sum_{i \in I}\left|V_{i}^{\prime}\right|=n s+1$. Let $J=[q]-I$, we have $\sum_{i \in J}\left|V_{i}^{\prime}\right|=(2 n s+3)-(n s+1)>n s+1$. Therefore, $A=\bigcup_{i \in I} V_{i}$ and $B=\bigcup_{i \in J} V_{i}$ are disconnected vertex sets with $|A|+|B|=v-s$ and $\min \{|A|,|B|\} \geq n s+1$.

So $|A| \cdot|B| \geq(n s+1)(v-s-n s-1)$. Then Lemma 2.1 implies

$$
\left(\frac{\mu_{v}-\mu_{2}}{\mu_{v}+\mu_{2}}\right)^{2} \geq \frac{|A| \cdot|B|}{v s+|A| \cdot|B|} \geq 1-\frac{v s}{v s+(n s+1)(v-s-n s-1)} .
$$

Let

$$
f(s)=\frac{v s+(n s+1)(v-s-n s-1)}{v s} .
$$

By use of $v \geq(2 n+1) s+4$, we have

$$
\begin{aligned}
f(s) & \geq 1+\left(n+\frac{1}{s}\right)\left(1-\frac{(n+1) s+1}{(2 n+1) s+4}\right) \\
& =1+\frac{(n s+1)(n s+3)}{(2 n+1) s^{2}+4 s} \\
& >1+\frac{n^{2}}{2 n+1} \\
& =\frac{(n+1)^{2}}{2 n+1} .
\end{aligned}
$$

Thus

$$
\left(\frac{\mu_{v}-\mu_{2}}{\mu_{v}+\mu_{2}}\right)^{2} \geq 1-\frac{1}{f(s)}>\left(\frac{n}{n+1}\right)^{2}>\left(\frac{n}{n+2}\right)^{2}
$$

and hence $(n+1) \mu_{2}<\mu_{v}$, which is a contradiction.
Remark. Theorem 2.4 is sharp. Consider a bipartite graph $K_{a, b}$ with $b>a$. Its Laplacian eigenvalues are $\mu_{1}=0, \mu_{2}=\cdots=\mu_{b}=a, \mu_{b+1}=\cdots=\mu_{v-1}=b, \mu_{v}=a+b$. When $b=a n, \mu_{v}=(n+1) \mu_{2}$ and $K_{a, a n}$ has a $[1, n]$-odd factor. When $b>a n$, $\mu_{v}>(n+1) \mu_{2}$ and $K_{a, b}$ has no $[1, n]$-odd factor.

3 Regular graphs

For regular graphs, we improve the result in the previous section.

Lemma 3.1 (Cioabǎ and Gregory, [3]) For every graph G,

$$
\lambda_{1}-\frac{2 e}{v} \geq \frac{(\Delta-\delta)^{2}}{4 v \Delta} .
$$

In particular, if $v \geq 4$ and $\delta \leq \Delta-1$, then

$$
\lambda_{1}-\frac{2 e}{v}>\frac{1}{v(\Delta+2)} .
$$

Brouwer, Haemers [2] and Cioabǎ, Gregory [3] studied the relationship between the existence of 1 -factors of a regular graph and its eigenvalue λ_{3}. Similarly, we investigate the existence of $[1, n]$-odd factors in terms of λ_{3}, by use of Lemma 3.1. First we'd like to give the following result as a special case.

Theorem 3.2 Let G be a connected k-regular graph of even order v, where k is even. If n is odd and $2 n \geq k$, G has a $[1, n]$-odd factor.

Proof. Suppose that G contains no $[1, n]$-odd factor. As in the proof of Theorem 2.4, there exists $S \subseteq V(G)$ with $|S|=s$ such that $G-S$ has $q \geq n s+2$ components of odd order, say G_{1}, \ldots, G_{q}. Since k is even, $e_{G}\left(V\left(G_{i}\right), S\right)=k\left|V\left(G_{i}\right)\right|-\sum_{x \in V\left(G_{i}\right)} d_{G_{i}}(x)$ is even for $i=1, \ldots, q$. Since G is k-regular, hence

$$
k|S| \geq \sum_{i=1}^{q} e_{G}\left(V\left(G_{i}\right), S\right) \geq 2 q \geq 2 n s+4 \geq k|S|+4
$$

a contradiction.

Theorem 3.3 Let G be a connected k-regular graph of even order $v, k \geq 3$, and eigenvalues $k=\lambda_{1} \geq \ldots \geq \lambda_{v}$. If one of the following conditions holds, G contains a [$1, n]$-odd factor:
(1) k is even, $\left\lceil\frac{k}{n}\right\rceil$ is even, and $\lambda_{3} \leq k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{k+1}+\frac{1}{(k+1)(k+2)}$;
(2) k is even, $\left\lceil\frac{k}{n}\right\rceil$ is odd, and $\lambda_{3} \leq k-\frac{\left\lceil\frac{k}{n}\right\rceil-1}{k+1}+\frac{1}{(k+1)(k+2)}$;
(3) k is odd, $\left\lceil\frac{k}{n}\right\rceil$ is even, and $\lambda_{3} \leq k-\frac{\left\lceil\frac{k}{n}\right\rceil-1}{k+2}+\frac{1}{(k+2)^{2}}$;
(4) k is odd, $\left\lceil\frac{k}{n}\right\rceil$ is odd, and $\lambda_{3} \leq k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{k+2}+\frac{1}{(k+2)^{2}}$.

Proof. Assume that G contains no $[1, n]$-odd factors. As seen earlier, because v is even, there exists $S \subseteq V(G)$ with $|S|=s$ such that $G-S$ has $q \geq n s+2$ components of odd order, say G_{1}, \ldots, G_{q}. For each subgraph $G_{i}(1 \leq i \leq q)$, let t_{i} be the number of edges between $V\left(G_{i}\right)$ and S, and let v_{i}, e_{i}, respectively, be the order and the size of G_{i}.

We claim that there are at least three odd components, say G_{1}, G_{2}, G_{3}, satisfying $t_{j}<\left\lceil\frac{k}{n}\right\rceil$ for all $1 \leq j \leq 3$. Otherwise, $e_{G}(V(G-S), S) \geq \sum_{i=1}^{q} t_{i} \geq\left\lceil\frac{k}{n}\right\rceil(q-2)+2 \geq$ $\left\lceil\frac{k}{n}\right\rceil(n|S|+2-2)+2>k|S|=\sum_{x \in S} d_{G}(x)$, a contradiction.

For each $1 \leq i \leq 3, t_{i}<\left\lceil\frac{k}{n}\right\rceil$. Since vertices in G_{i} are only adjacent to vertices in S or $V\left(G_{i}\right)$, we deduce that $2 e_{i}=k v_{i}-t_{i} \geq k v_{i}-\left\lceil\frac{k}{n}\right\rceil+1$ if k and $\left\lceil\frac{k}{n}\right\rceil$ are of different parities; and $2 e_{i}=k v_{i}-t_{i} \geq k v_{i}-\left\lceil\frac{k}{n}\right\rceil+2$ if k and $\left\lceil\frac{k}{n}\right\rceil$ are of the same parity. So,

$$
\frac{2 e_{i}}{v_{i}} \geq \begin{cases}k-\frac{\left\lceil\frac{k}{n}\right\rceil-1}{v_{i}} & \text { if } k,\left\lceil\frac{k}{n}\right\rceil \text { are of different parities; } \\ k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{v_{i}} & \text { if } k,\left\lceil\frac{k}{n}\right\rceil \text { are of the same parity }\end{cases}
$$

Note that $\left\lceil\frac{k}{n}\right\rceil \geq 2$. Otherwise $n \geq k$, so G is itself a $[1, n]$-odd factor if k is odd and, by Theorem 3.2, contains a $[1, n]$-odd factor if k is even. This contradicts our assumption at the beginning. Also, $v_{i}\left(v_{i}-1\right) \geq 2 e_{i} \geq k v_{i}-\left\lceil\frac{k}{n}\right\rceil+1 \geq k v_{i}-k+1$. Then $v_{i} \geq k+1$ if k is even and $v_{i} \geq k+2$ if k is odd.

According to the parity of k and $\left\lceil\frac{k}{n}\right\rceil$, there are four cases together. Here, we only argue about the case that k is even and $\left\lceil\frac{k}{n}\right\rceil$ is even. Other cases can be dealt with along the same line. Since $k \equiv 0(\bmod 2)$, then $\left\lceil\frac{k}{n}\right\rceil>2$; otherwise, G contains a [$1, n]$-odd factor by Theorem 3.2. By Lemma 3.1,
$\lambda_{1}\left(G_{i}\right)>\frac{2 e_{i}}{v_{i}}+\frac{1}{v_{i}(\Delta+2)} \geq k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{v_{i}}+\frac{1}{v_{i}(\Delta+2)} \geq k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{k+1}+\frac{1}{(k+1)(k+2)}$.
It follows from interlacing theorem [6], that

$$
\lambda_{3}(G) \geq \lambda_{3}\left(G_{1} \cup G_{2} \cup G_{3}\right) \geq \min _{1 \leq i \leq 3} \lambda_{1}\left(G_{i}\right)>k-\frac{\left\lceil\frac{k}{n}\right\rceil-2}{k+1}+\frac{1}{(k+1)(k+2)},
$$

a contradiction. This completes the proof.
Remark. Let k be an odd integer and n an integer with $k=a n+b$, where $a \geq 4$ is even and $0<b<n$. Let $H=\overline{M_{(k-a+3) / 2}} \vee \overline{C_{a-1}}$, where $M_{(k-a+3) / 2}$ denotes a 1-factor on $k-a+3$ vertices, and the join $H_{1} \vee H_{2}$ denotes the graph with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1} \vee H_{2}\right)=E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup\left\{x y: x \in V\left(H_{1}\right), y \in\right.$ $\left.V\left(H_{2}\right)\right\}$. Take k copies of H, add an $(a-1)$-vertex-set S and join each vertex of S to a vertex of degree $k-1$ in each H. Then we obtain a new graph G on $k^{2}+2 k+a-1$
vertices. G is k-regular and has no $[1, n]$-odd factors, for $|V(H)|=k+2 \equiv 1(\bmod 2)$ and $o(G-S)=k=a n+b>n(a-1)=n|S|$. Moreover,

$$
\begin{aligned}
\lambda_{3}(G) \geq \lambda_{1}(H) & =\frac{1}{2}\left(k-3+\sqrt{(k+3)^{2}-4(a-1)}\right) \\
& =k-\frac{a-1}{k+2}+\frac{1}{(k+2)^{2}}+O\left(k^{-2}\right)
\end{aligned}
$$

It implies that there exist k-regular graphs with no $[1, n]$-odd factor for k and $\left\lceil\frac{k}{n}\right\rceil$ odd, even if λ_{3} is arbitrarily close to the value given in Theorem 3.3. The upper bound of λ_{3} given in Theorem 3.3 is best possible up to order $O\left(k^{-2}\right)$. Similarly, we can construct graphs for other cases.

In fact, we can restrict on studying a more general eigenvalue λ rather than λ_{3}. Thus, we obtain two results as follows.

Theorem 3.4 Let G be a connected k-regular graph of even order v with $k \equiv 0$ $(\bmod 4)$. If $\lambda_{k} \leq k-\frac{2}{k+1}+\frac{1}{(k+1)(k+2)}$, G has a $[1, n]$-odd factor for $n=\frac{k}{2}-1$.

Proof. Assume that G has no $[1, n]$-odd factors. As seen earlier, because v is even, there exists $S \subseteq V(G)$ with $|S|=s$ such that $G-S$ has $q \geq n s+2$ components of odd order, say G_{1}, \ldots, G_{q}. Let t_{i} denote the number of edges in G between S and $V\left(G_{i}\right)$, and let v_{i} and e_{i} be the number of vertices and edges of G_{i}, respectively. Because vertices in G_{i} are adjacent only to vertices in G_{i} or S, we deduce that $2 e_{i}=k v_{i}-t_{i}=k\left(v_{i}-1\right)+k-t_{i}$. Since v_{i} is odd and $k=2 n+2$ is even, it is easy to see t_{i} is even. That is, $t_{i} \geq 2$ is even.

The sum of the degrees of the vertices in S is at least the number of edges between S and $\cup_{i=1}^{q} V\left(G_{i}\right)$. Then clearly $k s \geq \sum_{i=1}^{q} t_{i}$. If $s=1$, we have $k \geq \sum_{i=1}^{n+2} t_{i} \geq$ $2(n+2)>k$ by $t_{i} \geq 2$, a contradiction. So $s \geq 2$. Suppose that $t_{1} \leq t_{2} \leq \cdots \leq t_{q}$.

Claim. $\quad t_{2 n+2} \leq 2$.
Otherwise, suppose that $t_{2 n+2}>2$. Since t_{i} is even, so $t_{2 n+2} \geq 4$. Then

$$
\begin{aligned}
\sum_{i=1}^{q} t_{i} & =\sum_{i=1}^{2 n+1} t_{i}+\sum_{i=2 n+2}^{q} t_{i} \\
& \geq 2(2 n+1)+4(n s+2-(2 n+1)) \\
& =4 n s-4 n+6>(2 n+2) s=k s
\end{aligned}
$$

a contradiction. This completes the claim.
For $1 \leq i \leq 2 n+2, t_{i}=2$. Since $v_{i}\left(v_{i}-1\right) \geq 2 e_{i}=k v_{i}-t_{i}=k v_{i}-2$, then $v_{i} \geq k+1-\frac{2}{v_{i}}$. Hence, $v_{i} \geq k+1$ and the average degree $\overline{d_{i}}$ of G_{i} satisfies $\overline{d_{i}}=\frac{2 e_{i}}{v_{i}}=k-\frac{2}{v_{i}}$.

Let l_{i} denote the largest eigenvalue of G_{i} for $i \in\{1,2, \ldots, 2 n+2\}$. Suppose $l_{1} \geq l_{2} \geq \cdots \geq l_{2 n+2}$. Then, by interlacing in $G_{1} \cup \cdots \cup G_{2 n+2}$, it follows that $\lambda_{2 n+2} \geq l_{2 n+2}$.

Thus, according to Lemma 3.1, $\lambda_{2 n+2} \geq l_{2 n+2}>\overline{d_{2 n+2}}+\frac{1}{v_{2 n+2}(k+2)} \geq k-\frac{2}{k+1}+$ $\frac{1}{(k+1)(k+2)}$. This is a contradiction.

Remark. Let $k=2 n+2$ and $H=\overline{K_{2}} \vee K_{k-1}$. Take k copies of H. Add a two-vertex-set S and join each vertex of S to a vertex of degree $k-1$ in each H. This is a connected k-regular graph denoted by G. As H is of odd order, $o(G-S)=k=$ $2 n+2>2 n=n|S|$ and then G has no $[1, n]$-odd factors. Moreover, $\lambda_{2 n+2}(G) \geq \lambda_{1}(H)=\frac{1}{2}\left(k-2+\sqrt{(k+2)^{2}-8}\right)=k-\frac{2}{k+1}+\frac{1}{(k+1)(k+2)}+O\left(k^{-2}\right)$.

So the bound of Theorem 3.4 is sharp up to $O\left(k^{-2}\right)$.
For k even and $k \geq 2 n+4$ or k odd, we obtain the following result similar to Theorem 3.4.

Theorem 3.5 Let G be a connected k-regular graph of even order v, and eigenvalues $k=\lambda_{1} \geq \ldots \geq \lambda_{v}$. If one of the following conditions holds, G contains $a[1, n]$-odd factor:
(1) when k is even, $n \geq 3$ and $k \geq 2 n+4, \lambda_{n+2} \leq k-1+\frac{2 n+3}{k+1}+\frac{1}{(k+1)(k+2)}$;
(2) when k is odd, $\lambda_{n+2} \leq k-1+\frac{n+3}{k+2}+\frac{1}{(k+2)^{2}}$.

Proof. When k is odd, G has a $[1, n]$-odd factor if $k \leq n$ or, by Theorem 3.3 (4), if $n=1$. Thus, in part (2) it may be assumed that $n \geq 2$ and $k \geq n+2$.

Assume that G has no $[1, n]$-odd factors. As seen earlier, because v is even, there exists S with $|S|=s$ such that $G-S$ has $q \geq n s+2$ components of odd order, say G_{1}, \ldots, G_{q}. Let t_{i} denote the number of edges in G between S and $V\left(G_{i}\right)$, and let v_{i} and e_{i} be the number of vertices and edges of G_{i}, respectively. Because vertices in G_{i} are adjacent only to vertices in G_{i} or S, we deduce that $2 e_{i}=k v_{i}-t_{i}=k\left(v_{i}-1\right)+k-t_{i}$. Since v_{i} is odd, it is easy to see $k-t_{i}$ is even. That is, t_{i} has the same parity with k for each $i \in\{1,2, \ldots, q\}$. Without loss of generality, we suppose $t_{1} \leq \ldots \leq t_{q}$.

The sum of the degrees of the vertices in S is at least the number of edges between S and $\cup_{i=1}^{q} V\left(G_{i}\right)$. Then clearly $k s \geq \sum_{i=1}^{q} t_{i}, s \geq 1$ and $t_{i} \geq 1$. Hence $t_{i}<k$ for at least $(n-1) s+3$ values of i.

Claim. If k is odd, then $t_{n+2} \leq k-(n+1)$; else if k is even, then $t_{n+2} \leq k-(2 n+2)$.

Conversely, suppose the claim doesn't hold. Firstly we consider that k is odd. Then we have $t_{n+2} \geq k-n+1$. Note that $t_{i} \geq 1$. Then, since t_{n+2}, k and n are all odd, we have

$$
\begin{aligned}
k s & \geq \sum_{i=1}^{n+2} t_{i}+\sum_{i=n+3}^{q} t_{i} \\
& \geq k+2+(n s-n)(k-n+1)
\end{aligned}
$$

If $s=1$, then $k \geq k+2$, a contradiction. So we say $s \geq 2$. Then we have $k(n-1)<$ $n(n-1)$, so $k<n$, a contradiction. Now we consider that k is even. Since t_{n+2}, k and $2 n$ are even, by assumption, we have $t_{n+2} \geq k-2 n$. Since $t_{i} \geq 2$ by parity, then

$$
\begin{aligned}
k s & \geq \sum_{i=1}^{n+2} t_{i}+\sum_{i=n+3}^{q} t_{i} \\
& \geq k+2+(n s-n)(k-2 n)
\end{aligned}
$$

If $s=1$, clearly, we obtain a contradiction. So we say $s \geq 2$. Then we have $k>n(k-2 n)$ and $2 n^{2}>k(n-1)$. Note $k \geq 2 n+4$ and $n \geq 3$, a contradiction. This completes the claim.

Thus, the average degree $\overline{d_{i}}(1 \leq i \leq n+2)$ of G_{i} satisfies the following inequality

$$
\overline{d_{i}}=\frac{2 e_{i}}{v_{i}} \geq \begin{cases}k-\frac{k-2 n-2}{v_{i}} & \text { if } k \text { is even } \\ k-\frac{k-n-1}{v_{i}} & \text { if } k \text { is odd }\end{cases}
$$

Let l_{i} denote the largest eigenvalue of G_{i} for $i \in\{1,2, \ldots, n+2\}$. Suppose $l_{1} \geq l_{2} \geq \cdots \geq l_{n+2}$. Then, by interlacing in $G_{1} \cup \cdots \cup G_{n+2}$, it follows that $\lambda_{n+2} \geq l_{n+2}$. Now, since

$$
v_{n+2}\left(v_{n+2}-1\right) \geq 2 e_{n+2}=k v_{n+2}-t_{n+2} \geq\left\{\begin{array}{l}
k\left(v_{n+2}-1\right)+(2 n+2) \quad \text { if } k \text { is even } \\
k\left(v_{n+2}-1\right)+(n+1) \quad \text { if } k \text { is odd }
\end{array}\right.
$$

then $v_{n+2} \geq k+1$ if k is even and $v_{n+2} \geq k+2$ is k is odd, and hence by Lemma 3.1, we have

$$
\lambda_{n+2} \geq l_{n+2}> \begin{cases}\overline{d_{n+2}}+\frac{1}{v_{n+2}(k+2)} \geq k-1+\frac{2 n+3}{k+1}+\frac{1}{(k+1)(k+2)} & \text { if } k \text { is even }, \\ \overline{d_{n+2}}+\frac{1}{v_{n+2}(k+2)} \geq k-1+\frac{n+3}{k+2}+\frac{1}{(k+2)^{2}} & \text { if } k \text { is odd. }\end{cases}
$$

This is a contradiction.

Acknowledgments. The authors are indebted to the anonymous referee for valuable suggestions.

References

[1] A. Amahashi, On factors with all degrees odd, Graphs and Combinatorics, 1 (1985), 111-114.
[2] A.E. Brouwer and W.H. Haemers, Eigenvalues and perfect matchings, Linear Algebra and its Application, 395 (2005), 155-162.
[3] S.M. Cioabǎ and D.A. Gregory, Large matchings from eigenvalues, Linear Algebra and its Applications, 422 (2007), 308-317.
[4] S.M. Cioabǎ, D.A. Gregory and W.H. Haemers, Matchings in regular graphs from eigenvalues, J. Comb. Theory Ser. B, 99 (2009), 287-297.
[5] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra and its Applications, 226-228 (1995), 593-616.
[6] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[7] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
[8] Q.L. Yu and G.Z. Liu, Graph Factors and Matching Extensions, Springer, 2009.

[^0]: * Corresponding author.

 Email addresses: luhongliang215@sina.com (H. Lu); wzfapril@mail.nankai.edu.cn (Z. Wu); yangxu54@hotmail.com (X. Yang).

