Eigenvalues and [1, n]-odd factors

Hongliang Lu^a, Zefang Wu^a^{*}, Xu Yang^a

^aCenter for Combinatorics, LPMC-TJKLC Nankai University Tianjin 300071, P. R. China

Abstract

Amahashi [1] gave a sufficient and necessary condition for the existence of [1, n]-odd factor. In this paper, for the existence of [1, n]-odd factors, we obtain some sufficient conditions in terms of eigenvalues. Moreover, we construct some examples which show that those results are best possible.

Keywords: [1, n]-odd factor; eigenvalue; Laplacian eigenvalue. AMS Classification: 05C50, 05C70, 15A18

1 Introduction

Throughout this paper, let G denote a simple graph of order v (the number of vertices) and size e (the number of edges). The eigenvalues of G are the eigenvalues λ_i of its adjacency matrix A, indexed so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_v$. If G is k-regular, then it is easy to see that $\lambda_1 = k$ and also, $\lambda_2 < k$ if and only if G is connected. Recall that the Laplacian matrix L, is related to the adjacency matrix A by L = D - A, where D is the diagonal matrix of the vertex degrees. The Laplacian matrix L is positive semidefinite with row sum 0. Its eigenvalues will be denoted by $0 = \mu_1 \leq \mu_2 \leq \ldots \leq \mu_v$. For k-regular graphs, we have $\lambda_i + \mu_i = k$ for all $1 \leq i \leq v$.

We use [8] for terminologies and notations not defined here.

Let G be a graph. For two disjoint subsets S, T of V(G), we use $e_G(S, T)$ to denote the number of edges with one end in S and the other in T, and o(G - S) to denote

^{*}Corresponding author.

Email addresses: luhongliang215@sina.com (H. Lu); wzfapril@mail.nankai.edu.cn (Z. Wu); yangxu54@hotmail.com (X. Yang).

the number of components with odd number of vertices in G - S. Let \overline{G} denote the complement of a graph G.

Given an odd integer-valued function $f: V(G) \to \{1, 3, 5, \ldots, \}$, a spanning subgraph F of G is called a (1, f)-odd factor if

$$d_F(x) \in \{1, 3, 5, \dots, f(x)\}$$
 for all $x \in V(F)$.

Of course, if f(x) = 1 for all vertices x, then a (1, f)-odd factor is a 1-factor, i.e., a perfect matching. For an odd integer $n \ge 1$, if f(x) = n for all $x \in V(G)$, then a (1, f)-odd factor is called a [1, n]-odd factor. So, a [1, n]-odd factor F satisfies

$$d_F(x) \in \{1, 3, 5, \dots, n\}$$
 for all $x \in V(F)$.

In [2], Brouwer and Haemers gave sufficient conditions for the existence of a 1factor in a graph in terms of its Laplacian eigenvalues and, for a regular graph, gave an improvement in terms of the third largest adjacency eigenvalue, λ_3 . Cioabă and Gregory [3] also studied relations between 1-factors and eigenvalues in regular graphs. Later, Cioabă, Gregory and Haemers [4] found a best upper bound on λ_3 that is sufficient to guarantee that a regular graph G of order v has a 1-factor when v is even, and a matching of order v - 1 when v is odd. Motivated by these results, in this paper, we relate the eigenvalues of a connected graph G to the existence of a [1, n]-odd factor. We give a sufficient condition in terms of Laplacian eigenvalues for the existence of [1, n]-odd factors of graphs, as well as sufficient conditions in terms of eigenvalues for the existence of [1, n]-odd factors of regular graphs.

The main tool in our proofs is the following theorem given by Amahashi [1]. It is a sufficient and necessary condition of [1, n]-odd factors in a multigraph. Here, a multigraph is a graph that has no loops but may have multiple edges.

Theorem 1.1 (Amahashi [1]) Let G be a multigraph and $n \ge 1$ be an odd integer. Then G has a [1, n]-odd factor if and only if

$$o(G-S) \leq n|S|$$
 for all $S \subseteq V(G)$.

The set S in Theorem 1.1 may be taken to be empty. The theorem then implies the obvious necessary condition that each component of G have an even number of vertices. It is interesting to note that by taking n sufficiently large, the theorem implies an exercise in [7] which states that a graph with no odd components must contain a spanning subgraph whose vertex degrees are all odd.

2 Graphs

In this section, we investigate the relationship between the Laplacian eigenvalues of a graph G and its [1, n]-odd factors. For graphs, we will use an inequality for disconnected vertex sets in graphs, due to Haemers [5].

Two disjoint vertex sets A and B in a graph are called *disconnected* if there are no edges between A and B.

Lemma 2.1 (Haemers, [5]) If A and B are disconnected vertex sets of a graph with v vertices and Laplacian eigenvalues $0 = \mu_1 \leq \ldots \leq \mu_v$, then

$$\frac{|A| \cdot |B|}{(v-|A|)(v-|B|)} \le \left(\frac{\mu_v - \mu_2}{\mu_v + \mu_2}\right)^2.$$

For 1-factors, Brouwer and Haemers proved that:

Theorem 2.2 (Brouwer and Haemers, [2]) Let G be a graph with v vertices, and Laplacian eigenvalues $0 = \mu_1 \leq \ldots \leq \mu_v$. If v is even and $\mu_v \leq 2\mu_2$, G has a 1-factor.

Brouwer and Haemers also gave a technical lemma in the proof of Theorem 2.2.

Lemma 2.3 (Brouwer and Haemers, [2]) Let x_1, \ldots, x_n be n positive integers such that $\sum_{i=1}^{n} x_i = k \leq 2n - 1$. Then for every integer l, satisfying $0 \leq l \leq k$, there exists a set $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} x_i = l$.

We generalize the theorem above to [1, n]-odd factors, we have the following theorem. From now on, n will always be assumed to be a positive odd integer.

Theorem 2.4 Let G be a graph with v vertices, and Laplacian eigenvalues $0 = \mu_1 \leq$ $\ldots \leq \mu_v$. If v is even and $\mu_v \leq (n+1)\mu_2$, G has a [1,n]-odd factor.

Proof. Assume G = (V, E) has no [1, n]-odd factor. By Theorem 1.1, there exists an s-vertex-set $S \subset V$, such that q = o(G - S) > ns. Since v is even, q and ns have the same parity, hence $q \ge ns + 2$. Then $v \ge (n+1)s + 2$. There are two cases to consider.

Case 1. v < 2ns + s + 3.

Since $q = o(G - S) \ge ns + 2$, and $|V(G - S)| = v - s \le 2ns + 3 < 2q$, it follows from Lemma 2.3 that there exists a pair of disconnected vertex sets A and B with $|A| = \lfloor \frac{v-s}{2} \rfloor$ and $|B| = \lceil \frac{v-s}{2} \rceil$. By Lemma 2.1, we have

$$\left(\frac{\mu_v - \mu_2}{\mu_v + \mu_2}\right)^2 \ge \frac{|A| \cdot |B|}{vs + |A| \cdot |B|} \ge \frac{(v-s)^2 - 1}{(v+s)^2 - 1}.$$

Since $g(v) = \frac{(v-s)^2-1}{(v+s)^2-1}$ is an increasing function of v on [(n+1)s+2, 2ns+s+3], it follows that

$$\left(\frac{\mu_v - \mu_2}{\mu_v + \mu_2}\right)^2 \ge g(v) \ge \frac{(ns + s + 2 - s)^2 - 1}{(ns + s + 2 + s)^2 - 1} > \left(\frac{n}{n+2}\right)^2.$$

Therefore, $(n+1)\mu_2 < \mu_v$, a contradiction.

Case 2.
$$v \ge 2ns + s + 4$$
.

We claim that G must have a pair of disconnected vertex sets A and B with |A| + |B| = v - s and $\min\{|A|, |B|\} \ge ns + 1$.

If $q \ge 2ns + 2$, let A be a union of ns + 1 odd components of G - S and B be the complement of A in the vertex set G - S, then $\min\{|A|, |B|\} \ge \min\{ns + 1, (2ns + 2) - (ns + 1)\} = ns + 1$. Thus in addition to the previous observation that $q \ge ns + 2$, we may assume that $q \le 2ns + 1$.

Let V_1, \ldots, V_{q-1} be the vertex sets of q-1 of the q odd components of G-S, and let $V_q = V(G-S) - \bigcup_{i=1}^{q-1} V_i$. If the V'_1, \ldots, V'_q are nonempty subsets of V_1, \ldots, V_q , then

$$q \le \sum_{i=1}^{q} |V_i'| \le \sum_{i=1}^{q} |V_i| = v - s.$$

Since $q \leq 2ns + 1$ and $v - s \geq 2ns + 4$, the subset V'_i may be chosen such that $\sum_{i=1}^{q} |V'_i| = 2ns+3$. As $2q-1 \geq 2(ns+2)-1 = 2ns+3$, it follows from Lemma 2.3 that there is a subset $I \subseteq [q] = \{1, \ldots, q\}$ such that $\sum_{i \in I} |V'_i| = ns+1$. Let J = [q] - I, we have $\sum_{i \in J} |V'_i| = (2ns+3) - (ns+1) > ns+1$. Therefore, $A = \bigcup_{i \in I} V_i$ and $B = \bigcup_{i \in J} V_i$ are disconnected vertex sets with |A| + |B| = v - s and $\min\{|A|, |B|\} \geq ns+1$.

So $|A| \cdot |B| \ge (ns+1)(v-s-ns-1)$. Then Lemma 2.1 implies

$$\left(\frac{\mu_v - \mu_2}{\mu_v + \mu_2}\right)^2 \ge \frac{|A| \cdot |B|}{vs + |A| \cdot |B|} \ge 1 - \frac{vs}{vs + (ns+1)(v-s-ns-1)}$$

Let

$$f(s) = \frac{vs + (ns+1)(v-s-ns-1)}{vs}$$

By use of $v \ge (2n+1)s + 4$, we have

$$f(s) \geq 1 + (n + \frac{1}{s})(1 - \frac{(n+1)s+1}{(2n+1)s+4})$$

= $1 + \frac{(ns+1)(ns+3)}{(2n+1)s^2+4s}$
> $1 + \frac{n^2}{2n+1}$
= $\frac{(n+1)^2}{2n+1}$.

Thus

$$\left(\frac{\mu_v - \mu_2}{\mu_v + \mu_2}\right)^2 \ge 1 - \frac{1}{f(s)} > \left(\frac{n}{n+1}\right)^2 > \left(\frac{n}{n+2}\right)^2,$$

and hence $(n+1)\mu_2 < \mu_v$, which is a contradiction.

Remark. Theorem 2.4 is sharp. Consider a bipartite graph $K_{a,b}$ with b > a. Its Laplacian eigenvalues are $\mu_1 = 0, \mu_2 = \cdots = \mu_b = a, \mu_{b+1} = \cdots = \mu_{v-1} = b, \mu_v = a+b$. When $b = an, \mu_v = (n+1)\mu_2$ and $K_{a,an}$ has a [1,n]-odd factor. When b > an, $\mu_v > (n+1)\mu_2$ and $K_{a,b}$ has no [1,n]-odd factor.

3 Regular graphs

For regular graphs, we improve the result in the previous section.

Lemma 3.1 (Cioabă and Gregory, [3]) For every graph G,

$$\lambda_1 - \frac{2e}{v} \ge \frac{(\Delta - \delta)^2}{4v\Delta}.$$

In particular, if $v \geq 4$ and $\delta \leq \Delta - 1$, then

$$\lambda_1 - \frac{2e}{v} > \frac{1}{v(\Delta + 2)}.$$

Brouwer, Haemers [2] and Cioabă, Gregory [3] studied the relationship between the existence of 1-factors of a regular graph and its eigenvalue λ_3 . Similarly, we investigate the existence of [1, n]-odd factors in terms of λ_3 , by use of Lemma 3.1. First we'd like to give the following result as a special case.

Theorem 3.2 Let G be a connected k-regular graph of even order v, where k is even. If n is odd and $2n \ge k$, G has a [1, n]-odd factor.

Proof. Suppose that G contains no [1, n]-odd factor. As in the proof of Theorem 2.4, there exists $S \subseteq V(G)$ with |S| = s such that G - S has $q \ge ns + 2$ components of odd order, say G_1, \ldots, G_q . Since k is even, $e_G(V(G_i), S) = k|V(G_i)| - \sum_{x \in V(G_i)} d_{G_i}(x)$ is even for $i = 1, \ldots, q$. Since G is k-regular, hence

$$k|S| \ge \sum_{i=1}^{q} e_G(V(G_i), S) \ge 2q \ge 2ns + 4 \ge k|S| + 4$$

a contradiction.

Theorem 3.3 Let G be a connected k-regular graph of even order $v, k \ge 3$, and eigenvalues $k = \lambda_1 \ge \ldots \ge \lambda_v$. If one of the following conditions holds, G contains a [1, n]-odd factor:

- (1) k is even, $\lceil \frac{k}{n} \rceil$ is even, and $\lambda_3 \leq k \frac{\lceil \frac{k}{n} \rceil 2}{k+1} + \frac{1}{(k+1)(k+2)};$
- (2) k is even, $\lceil \frac{k}{n} \rceil$ is odd, and $\lambda_3 \leq k \frac{\lceil \frac{k}{n} \rceil 1}{k+1} + \frac{1}{(k+1)(k+2)};$
- (3) k is odd, $\lceil \frac{k}{n} \rceil$ is even, and $\lambda_3 \leq k \frac{\lceil \frac{k}{n} \rceil 1}{k+2} + \frac{1}{(k+2)^2}$;

(4) k is odd, $\lceil \frac{k}{n} \rceil$ is odd, and $\lambda_3 \leq k - \frac{\lceil \frac{k}{n} \rceil - 2}{k+2} + \frac{1}{(k+2)^2}$.

Proof. Assume that G contains no [1, n]-odd factors. As seen earlier, because v is even, there exists $S \subseteq V(G)$ with |S| = s such that G - S has $q \ge ns + 2$ components of odd order, say G_1, \ldots, G_q . For each subgraph G_i $(1 \le i \le q)$, let t_i be the number of edges between $V(G_i)$ and S, and let v_i, e_i , respectively, be the order and the size of G_i .

We claim that there are at least three odd components, say G_1, G_2, G_3 , satisfying $t_j < \lceil \frac{k}{n} \rceil$ for all $1 \le j \le 3$. Otherwise, $e_G(V(G-S), S) \ge \sum_{i=1}^q t_i \ge \lceil \frac{k}{n} \rceil (q-2) + 2 \ge \lceil \frac{k}{n} \rceil (n|S|+2-2) + 2 > k|S| = \sum_{x \in S} d_G(x)$, a contradiction.

For each $1 \leq i \leq 3$, $t_i < \lceil \frac{k}{n} \rceil$. Since vertices in G_i are only adjacent to vertices in S or $V(G_i)$, we deduce that $2e_i = kv_i - t_i \geq kv_i - \lceil \frac{k}{n} \rceil + 1$ if k and $\lceil \frac{k}{n} \rceil$ are of different parities; and $2e_i = kv_i - t_i \geq kv_i - \lceil \frac{k}{n} \rceil + 2$ if k and $\lceil \frac{k}{n} \rceil$ are of the same parity. So,

$$\frac{2e_i}{v_i} \ge \begin{cases} k - \frac{\lceil \frac{k}{n} \rceil - 1}{v_i} & \text{if } k, \lceil \frac{k}{n} \rceil \text{ are of different parities;} \\ k - \frac{\lceil \frac{k}{n} \rceil - 2}{v_i} & \text{if } k, \lceil \frac{k}{n} \rceil \text{ are of the same parity.} \end{cases}$$

Note that $\lceil \frac{k}{n} \rceil \geq 2$. Otherwise $n \geq k$, so G is itself a [1, n]-odd factor if k is odd and, by Theorem 3.2, contains a [1, n]-odd factor if k is even. This contradicts our assumption at the beginning. Also, $v_i(v_i - 1) \geq 2e_i \geq kv_i - \lceil \frac{k}{n} \rceil + 1 \geq kv_i - k + 1$. Then $v_i \geq k + 1$ if k is even and $v_i \geq k + 2$ if k is odd.

According to the parity of k and $\lceil \frac{k}{n} \rceil$, there are four cases together. Here, we only argue about the case that k is even and $\lceil \frac{k}{n} \rceil$ is even. Other cases can be dealt with along the same line. Since $k \equiv 0 \pmod{2}$, then $\lceil \frac{k}{n} \rceil > 2$; otherwise, G contains a [1, n]-odd factor by Theorem 3.2. By Lemma 3.1,

$$\lambda_1(G_i) > \frac{2e_i}{v_i} + \frac{1}{v_i(\Delta+2)} \ge k - \frac{\lceil \frac{k}{n} \rceil - 2}{v_i} + \frac{1}{v_i(\Delta+2)} \ge k - \frac{\lceil \frac{k}{n} \rceil - 2}{k+1} + \frac{1}{(k+1)(k+2)}.$$

It follows from interlacing theorem [6], that

$$\lambda_3(G) \ge \lambda_3(G_1 \cup G_2 \cup G_3) \ge \min_{1 \le i \le 3} \lambda_1(G_i) > k - \frac{\lceil \frac{k}{n} \rceil - 2}{k+1} + \frac{1}{(k+1)(k+2)},$$

a contradiction. This completes the proof.

Remark. Let k be an odd integer and n an integer with k = an + b, where $a \ge 4$ is even and 0 < b < n. Let $H = \overline{M_{(k-a+3)/2}} \lor \overline{C_{a-1}}$, where $M_{(k-a+3)/2}$ denotes a 1-factor on k-a+3 vertices, and the join $H_1 \lor H_2$ denotes the graph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1 \lor H_2) = E(H_1) \cup E(H_2) \cup \{xy : x \in V(H_1), y \in V(H_2)\}$. Take k copies of H, add an (a-1)-vertex-set S and join each vertex of S to a vertex of degree k-1 in each H. Then we obtain a new graph G on $k^2 + 2k + a - 1$

vertices. G is k-regular and has no [1, n]-odd factors, for $|V(H)| = k + 2 \equiv 1 \pmod{2}$ and o(G - S) = k = an + b > n(a - 1) = n|S|. Moreover,

$$\lambda_3(G) \ge \lambda_1(H) = \frac{1}{2}(k - 3 + \sqrt{(k + 3)^2 - 4(a - 1)})$$
$$= k - \frac{a - 1}{k + 2} + \frac{1}{(k + 2)^2} + O(k^{-2}).$$

It implies that there exist k-regular graphs with no [1, n]-odd factor for k and $\lceil \frac{k}{n} \rceil$ odd, even if λ_3 is arbitrarily close to the value given in Theorem 3.3. The upper bound of λ_3 given in Theorem 3.3 is best possible up to order $O(k^{-2})$. Similarly, we can construct graphs for other cases.

In fact, we can restrict on studying a more general eigenvalue λ rather than λ_3 . Thus, we obtain two results as follows.

Theorem 3.4 Let G be a connected k-regular graph of even order v with $k \equiv 0 \pmod{4}$. If $\lambda_k \leq k - \frac{2}{k+1} + \frac{1}{(k+1)(k+2)}$, G has a [1,n]-odd factor for $n = \frac{k}{2} - 1$.

Proof. Assume that G has no [1, n]-odd factors. As seen earlier, because v is even, there exists $S \subseteq V(G)$ with |S| = s such that G - S has $q \ge ns + 2$ components of odd order, say G_1, \ldots, G_q . Let t_i denote the number of edges in G between S and $V(G_i)$, and let v_i and e_i be the number of vertices and edges of G_i , respectively. Because vertices in G_i are adjacent only to vertices in G_i or S, we deduce that $2e_i = kv_i - t_i = k(v_i - 1) + k - t_i$. Since v_i is odd and k = 2n + 2 is even, it is easy to see t_i is even. That is, $t_i \ge 2$ is even.

The sum of the degrees of the vertices in S is at least the number of edges between S and $\bigcup_{i=1}^{q} V(G_i)$. Then clearly $ks \geq \sum_{i=1}^{q} t_i$. If s = 1, we have $k \geq \sum_{i=1}^{n+2} t_i \geq 2(n+2) > k$ by $t_i \geq 2$, a contradiction. So $s \geq 2$. Suppose that $t_1 \leq t_2 \leq \cdots \leq t_q$.

Claim. $t_{2n+2} \leq 2$.

Otherwise, suppose that $t_{2n+2} > 2$. Since t_i is even, so $t_{2n+2} \ge 4$. Then

$$\sum_{i=1}^{q} t_i = \sum_{i=1}^{2n+1} t_i + \sum_{i=2n+2}^{q} t_i$$

$$\geq 2(2n+1) + 4(ns+2 - (2n+1))$$

$$= 4ns - 4n + 6 > (2n+2)s = ks,$$

a contradiction. This completes the claim.

For $1 \leq i \leq 2n+2$, $t_i = 2$. Since $v_i(v_i - 1) \geq 2e_i = kv_i - t_i = kv_i - 2$, then $v_i \geq k+1-\frac{2}{v_i}$. Hence, $v_i \geq k+1$ and the average degree $\overline{d_i}$ of G_i satisfies $\overline{d_i} = \frac{2e_i}{v_i} = k - \frac{2}{v_i}$. Let l_i denote the largest eigenvalue of G_i for $i \in \{1, 2, ..., 2n + 2\}$. Suppose $l_1 \geq l_2 \geq \cdots \geq l_{2n+2}$. Then, by interlacing in $G_1 \cup \cdots \cup G_{2n+2}$, it follows that $\lambda_{2n+2} \geq l_{2n+2}$.

Thus, according to Lemma 3.1, $\lambda_{2n+2} \geq l_{2n+2} > \overline{d_{2n+2}} + \frac{1}{v_{2n+2}(k+2)} \geq k - \frac{2}{k+1} + \frac{1}{(k+1)(k+2)}$. This is a contradiction.

Remark. Let k = 2n + 2 and $H = \overline{K_2} \vee K_{k-1}$. Take k copies of H. Add a twovertex-set S and join each vertex of S to a vertex of degree k - 1 in each H. This is a connected k-regular graph denoted by G. As H is of odd order, o(G - S) = k = 2n + 2 > 2n = n|S| and then G has no [1, n]-odd factors. Moreover,

$$\lambda_{2n+2}(G) \ge \lambda_1(H) = \frac{1}{2}(k-2+\sqrt{(k+2)^2-8}) = k - \frac{2}{k+1} + \frac{1}{(k+1)(k+2)} + O(k^{-2}).$$

So the bound of Theorem 3.4 is sharp up to $O(k^{-2})$.

For k even and $k \ge 2n + 4$ or k odd, we obtain the following result similar to Theorem 3.4.

Theorem 3.5 Let G be a connected k-regular graph of even order v, and eigenvalues $k = \lambda_1 \geq \ldots \geq \lambda_v$. If one of the following conditions holds, G contains a [1, n]-odd factor:

- (1) when k is even, $n \ge 3$ and $k \ge 2n+4$, $\lambda_{n+2} \le k-1+\frac{2n+3}{k+1}+\frac{1}{(k+1)(k+2)}$;
- (2) when k is odd, $\lambda_{n+2} \leq k 1 + \frac{n+3}{k+2} + \frac{1}{(k+2)^2}$.

Proof. When k is odd, G has a [1, n]-odd factor if $k \le n$ or, by Theorem 3.3 (4), if n = 1. Thus, in part (2) it may be assumed that $n \ge 2$ and $k \ge n + 2$.

Assume that G has no [1, n]-odd factors. As seen earlier, because v is even, there exists S with |S| = s such that G - S has $q \ge ns + 2$ components of odd order, say G_1, \ldots, G_q . Let t_i denote the number of edges in G between S and $V(G_i)$, and let v_i and e_i be the number of vertices and edges of G_i , respectively. Because vertices in G_i are adjacent only to vertices in G_i or S, we deduce that $2e_i = kv_i - t_i = k(v_i - 1) + k - t_i$. Since v_i is odd, it is easy to see $k - t_i$ is even. That is, t_i has the same parity with k for each $i \in \{1, 2, \ldots, q\}$. Without loss of generality, we suppose $t_1 \le \ldots \le t_q$.

The sum of the degrees of the vertices in S is at least the number of edges between S and $\bigcup_{i=1}^{q} V(G_i)$. Then clearly $ks \geq \sum_{i=1}^{q} t_i$, $s \geq 1$ and $t_i \geq 1$. Hence $t_i < k$ for at least (n-1)s+3 values of i.

Claim. If k is odd, then $t_{n+2} \leq k - (n+1)$; else if k is even, then $t_{n+2} \leq k - (2n+2)$.

Conversely, suppose the claim doesn't hold. Firstly we consider that k is odd. Then we have $t_{n+2} \ge k - n + 1$. Note that $t_i \ge 1$. Then, since t_{n+2} , k and n are all odd, we have

$$ks \ge \sum_{i=1}^{n+2} t_i + \sum_{i=n+3}^{q} t_i$$

$$\ge k+2 + (ns-n)(k-n+1).$$

If s = 1, then $k \ge k+2$, a contradiction. So we say $s \ge 2$. Then we have k(n-1) < n(n-1), so k < n, a contradiction. Now we consider that k is even. Since t_{n+2} , k and 2n are even, by assumption, we have $t_{n+2} \ge k-2n$. Since $t_i \ge 2$ by parity, then

$$ks \ge \sum_{i=1}^{n+2} t_i + \sum_{i=n+3}^{q} t_i$$

$$\ge k+2 + (ns-n)(k-2n).$$

If s = 1, clearly, we obtain a contradiction. So we say $s \ge 2$. Then we have k > n(k-2n) and $2n^2 > k(n-1)$. Note $k \ge 2n+4$ and $n \ge 3$, a contradiction. This completes the claim.

Thus, the average degree $\overline{d_i}$ $(1 \le i \le n+2)$ of G_i satisfies the following inequality

$$\overline{d_i} = \frac{2e_i}{v_i} \ge \begin{cases} k - \frac{k - 2n - 2}{v_i} & \text{if } k \text{ is even,} \\ k - \frac{k - n - 1}{v_i} & \text{if } k \text{ is odd.} \end{cases}$$

Let l_i denote the largest eigenvalue of G_i for $i \in \{1, 2, ..., n + 2\}$. Suppose $l_1 \geq l_2 \geq \cdots \geq l_{n+2}$. Then, by interlacing in $G_1 \cup \cdots \cup G_{n+2}$, it follows that $\lambda_{n+2} \geq l_{n+2}$. Now, since

$$v_{n+2}(v_{n+2}-1) \ge 2e_{n+2} = kv_{n+2} - t_{n+2} \ge \begin{cases} k(v_{n+2}-1) + (2n+2) & \text{if } k \text{ is even,} \\ k(v_{n+2}-1) + (n+1) & \text{if } k \text{ is odd,} \end{cases}$$

then $v_{n+2} \ge k+1$ if k is even and $v_{n+2} \ge k+2$ is k is odd, and hence by Lemma 3.1, we have

$$\lambda_{n+2} \ge l_{n+2} > \begin{cases} \overline{d_{n+2}} + \frac{1}{v_{n+2}(k+2)} \ge k - 1 + \frac{2n+3}{k+1} + \frac{1}{(k+1)(k+2)} & \text{if } k \text{ is even,} \\ \overline{d_{n+2}} + \frac{1}{v_{n+2}(k+2)} \ge k - 1 + \frac{n+3}{k+2} + \frac{1}{(k+2)^2} & \text{if } k \text{ is odd.} \end{cases}$$

This is a contradiction.

Acknowledgments. The authors are indebted to the anonymous referee for valuable suggestions.

References

- A. Amahashi, On factors with all degrees odd, Graphs and Combinatorics, 1 (1985), 111–114.
- [2] A.E. Brouwer and W.H. Haemers, Eigenvalues and perfect matchings, *Linear Algebra and its Application*, **395** (2005), 155–162.
- [3] S.M. Cioabă and D.A. Gregory, Large matchings from eigenvalues, *Linear Algebra and its Applications*, 422 (2007), 308–317.
- [4] S.M. Cioabă, D.A. Gregory and W.H. Haemers, Matchings in regular graphs from eigenvalues, J. Comb. Theory Ser. B, 99 (2009), 287–297.
- [5] W.H. Haemers, Interlacing eigenvalues and graphs, *Linear Algebra and its Applications*, **226–228** (1995), 593–616.
- [6] R. Horn and C. Johnson, *Matrix Analysis*, Cambridge University Press, 1990.
- [7] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
- [8] Q.L. Yu and G.Z. Liu, Graph Factors and Matching Extensions, Springer, 2009.