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Abstract

Amahashi [1] gave a sufficient and necessary condition for the existence of
[1, n]-odd factor. In this paper, for the existence of [1, n]-odd factors, we obtain
some sufficient conditions in terms of eigenvalues. Moreover, we construct some
examples which show that those results are best possible.
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1 Introduction

Throughout this paper, letG denote a simple graph of order v (the number of vertices)
and size e (the number of edges). The eigenvalues of G are the eigenvalues λi of its
adjacency matrix A, indexed so that λ1 ≥ λ2 ≥ · · · ≥ λv. If G is k-regular, then it is
easy to see that λ1 = k and also, λ2 < k if and only if G is connected. Recall that the
Laplacian matrix L, is related to the adjacency matrix A by L = D −A, where D is
the diagonal matrix of the vertex degrees. The Laplacian matrix L is positive semi-
definite with row sum 0. Its eigenvalues will be denoted by 0 = µ1 ≤ µ2 ≤ . . . ≤ µv.
For k-regular graphs, we have λi + µi = k for all 1 ≤ i ≤ v.

We use [8] for terminologies and notations not defined here.

Let G be a graph. For two disjoint subsets S, T of V (G), we use eG(S, T ) to denote
the number of edges with one end in S and the other in T , and o(G − S) to denote
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the number of components with odd number of vertices in G− S. Let G denote the
complement of a graph G.

Given an odd integer-valued function f : V (G) → {1, 3, 5, . . . , }, a spanning sub-
graph F of G is called a (1, f)-odd factor if

dF (x) ∈ {1, 3, 5, . . . , f(x)} for all x ∈ V (F ).

Of course, if f(x) = 1 for all vertices x, then a (1, f)-odd factor is a 1-factor, i.e.,
a perfect matching. For an odd integer n ≥ 1, if f(x) = n for all x ∈ V (G), then a
(1, f)-odd factor is called a [1, n]-odd factor. So, a [1, n]-odd factor F satisfies

dF (x) ∈ {1, 3, 5, . . . , n} for all x ∈ V (F ).

In [2], Brouwer and Haemers gave sufficient conditions for the existence of a 1-
factor in a graph in terms of its Laplacian eigenvalues and, for a regular graph,
gave an improvement in terms of the third largest adjacency eigenvalue, λ3. Cioabǎ
and Gregory [3] also studied relations between 1-factors and eigenvalues in regular
graphs. Later, Cioabǎ, Gregory and Haemers [4] found a best upper bound on λ3

that is sufficient to guarantee that a regular graph G of order v has a 1-factor when
v is even, and a matching of order v − 1 when v is odd. Motivated by these results,
in this paper, we relate the eigenvalues of a connected graph G to the existence of a
[1, n]-odd factor. We give a sufficient condition in terms of Laplacian eigenvalues for
the existence of [1, n]-odd factors of graphs, as well as sufficient conditions in terms
of eigenvalues for the existence of [1, n]-odd factors of regular graphs.

The main tool in our proofs is the following theorem given by Amahashi [1]. It
is a sufficient and necessary condition of [1, n]-odd factors in a multigraph. Here, a
multigraph is a graph that has no loops but may have multiple edges.

Theorem 1.1 (Amahashi [1]) Let G be a multigraph and n ≥ 1 be an odd integer.
Then G has a [1, n]-odd factor if and only if

o(G− S) ≤ n|S| for all S ⊆ V (G).

The set S in Theorem 1.1 may be taken to be empty. The theorem then implies
the obvious necessary condition that each component of G have an even number of
vertices. It is interesting to note that by taking n sufficiently large, the theorem
implies an exercise in [7] which states that a graph with no odd components must
contain a spanning subgraph whose vertex degrees are all odd.

2 Graphs

In this section, we investigate the relationship between the Laplacian eigenvalues
of a graph G and its [1, n]-odd factors. For graphs, we will use an inequality for
disconnected vertex sets in graphs, due to Haemers [5].
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Two disjoint vertex sets A and B in a graph are called disconnected if there are
no edges between A and B.

Lemma 2.1 (Haemers, [5]) If A and B are disconnected vertex sets of a graph with
v vertices and Laplacian eigenvalues 0 = µ1 ≤ . . . ≤ µv, then

|A| · |B|
(v − |A|)(v − |B|)

≤
(µv − µ2

µv + µ2

)2
.

For 1-factors, Brouwer and Haemers proved that:

Theorem 2.2 (Brouwer and Haemers, [2]) Let G be a graph with v vertices, and
Laplacian eigenvalues 0 = µ1 ≤ . . . ≤ µv. If v is even and µv ≤ 2µ2, G has a 1-factor.

Brouwer and Haemers also gave a technical lemma in the proof of Theorem 2.2.

Lemma 2.3 (Brouwer and Haemers, [2]) Let x1, . . . , xn be n positive integers
such that

∑n
i=1 xi = k ≤ 2n − 1. Then for every integer l, satisfying 0 ≤ l ≤ k,

there exists a set I ⊆ {1, . . . , n} such that
∑

i∈I xi = l.

We generalize the theorem above to [1, n]-odd factors, we have the following the-
orem. From now on, n will always be assumed to be a positive odd integer.

Theorem 2.4 Let G be a graph with v vertices, and Laplacian eigenvalues 0 = µ1 ≤
. . . ≤ µv. If v is even and µv ≤ (n+ 1)µ2, G has a [1, n]-odd factor.

Proof. Assume G = (V,E) has no [1, n]-odd factor. By Theorem 1.1, there exists
an s-vertex-set S ⊂ V , such that q = o(G− S) > ns. Since v is even, q and ns have
the same parity, hence q ≥ ns + 2. Then v ≥ (n + 1)s + 2. There are two cases to
consider.

Case 1. v ≤ 2ns+ s+ 3.

Since q = o(G− S) ≥ ns + 2, and |V (G− S)| = v − s ≤ 2ns + 3 < 2q, it follows
from Lemma 2.3 that there exists a pair of disconnected vertex sets A and B with
|A| = ⌊v−s

2
⌋ and |B| = ⌈v−s

2
⌉. By Lemma 2.1, we have

(µv − µ2

µv + µ2

)2 ≥ |A| · |B|
vs+ |A| · |B|

≥ (v − s)2 − 1

(v + s)2 − 1
.

Since g(v) = (v−s)2−1
(v+s)2−1

is an increasing function of v on [(n + 1)s + 2, 2ns + s + 3], it
follows that (µv − µ2

µv + µ2

)2 ≥ g(v) ≥ (ns+ s+ 2− s)2 − 1

(ns+ s+ 2 + s)2 − 1
> (

n

n+ 2
)2.
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Therefore, (n+ 1)µ2 < µv, a contradiction.

Case 2. v ≥ 2ns+ s+ 4.

We claim that G must have a pair of disconnected vertex sets A and B with
|A|+ |B| = v − s and min{|A|, |B|} ≥ ns+ 1.

If q ≥ 2ns+2, let A be a union of ns+1 odd components of G−S and B be the
complement of A in the vertex set G − S, then min{|A|, |B|} ≥ min{ns + 1, (2ns +
2)− (ns+1)} = ns+1. Thus in addition to the previous observation that q ≥ ns+2,
we may assume that q ≤ 2ns+ 1.

Let V1, . . . , Vq−1 be the vertex sets of q− 1 of the q odd components of G−S, and
let Vq = V (G − S) −

∪q−1
i=1 Vi. If the V ′

1 , . . . , V
′
q are nonempty subsets of V1, . . . , Vq,

then

q ≤
q∑

i=1

|V ′
i | ≤

q∑
i=1

|Vi| = v − s.

Since q ≤ 2ns + 1 and v − s ≥ 2ns + 4, the subset V ′
i may be chosen such that∑q

i=1 |V ′
i | = 2ns+3. As 2q−1 ≥ 2(ns+2)−1 = 2ns+3, it follows from Lemma 2.3 that

there is a subset I ⊆ [q] = {1, . . . , q} such that
∑

i∈I |V ′
i | = ns+1. Let J = [q]−I, we

have
∑

i∈J |V ′
i | = (2ns+3)−(ns+1) > ns+1. Therefore, A =

∪
i∈I Vi and B =

∪
i∈J Vi

are disconnected vertex sets with |A|+ |B| = v − s and min{|A|, |B|} ≥ ns+ 1.

So |A| · |B| ≥ (ns+ 1)(v − s− ns− 1). Then Lemma 2.1 implies(µv − µ2

µv + µ2

)2 ≥ |A| · |B|
vs+ |A| · |B|

≥ 1− vs

vs+ (ns+ 1)(v − s− ns− 1)
.

Let

f(s) =
vs+ (ns+ 1)(v − s− ns− 1)

vs
.

By use of v ≥ (2n+ 1)s+ 4, we have

f(s) ≥ 1 + (n+ 1
s
)(1− (n+1)s+1

(2n+1)s+4
)

= 1 + (ns+1)(ns+3)
(2n+1)s2+4s

> 1 + n2

2n+1

= (n+1)2

2n+1
.

Thus (µv − µ2

µv + µ2

)2 ≥ 1− 1

f(s)
>

( n

n+ 1

)2
>

( n

n+ 2

)2
,

and hence (n+ 1)µ2 < µv, which is a contradiction.

Remark. Theorem 2.4 is sharp. Consider a bipartite graph Ka,b with b > a. Its
Laplacian eigenvalues are µ1 = 0, µ2 = · · · = µb = a, µb+1 = · · · = µv−1 = b, µv = a+b.
When b = an, µv = (n + 1)µ2 and Ka,an has a [1, n]-odd factor. When b > an,
µv > (n+ 1)µ2 and Ka,b has no [1, n]-odd factor.
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3 Regular graphs

For regular graphs, we improve the result in the previous section.

Lemma 3.1 (Cioabǎ and Gregory, [3]) For every graph G,

λ1 −
2e

v
≥ (∆− δ)2

4v∆
.

In particular, if v ≥ 4 and δ ≤ ∆− 1, then

λ1 −
2e

v
>

1

v(∆ + 2)
.

Brouwer, Haemers [2] and Cioabǎ, Gregory [3] studied the relationship between
the existence of 1-factors of a regular graph and its eigenvalue λ3. Similarly, we
investigate the existence of [1, n]-odd factors in terms of λ3, by use of Lemma 3.1.
First we’d like to give the following result as a special case.

Theorem 3.2 Let G be a connected k-regular graph of even order v, where k is even.
If n is odd and 2n ≥ k, G has a [1, n]-odd factor.

Proof. Suppose that G contains no [1, n]-odd factor. As in the proof of Theorem 2.4,
there exists S ⊆ V (G) with |S| = s such that G−S has q ≥ ns+2 components of odd
order, say G1, . . . , Gq. Since k is even, eG(V (Gi), S) = k|V (Gi)| −

∑
x∈V (Gi)

dGi
(x) is

even for i = 1, . . . , q. Since G is k-regular, hence

k|S| ≥
q∑

i=1

eG(V (Gi), S) ≥ 2q ≥ 2ns+ 4 ≥ k|S|+ 4,

a contradiction.

Theorem 3.3 Let G be a connected k-regular graph of even order v, k ≥ 3, and
eigenvalues k = λ1 ≥ . . . ≥ λv. If one of the following conditions holds, G contains a
[1, n]-odd factor:

(1) k is even, ⌈ k
n
⌉ is even, and λ3 ≤ k − ⌈ k

n
⌉−2

k+1
+ 1

(k+1)(k+2)
;

(2) k is even, ⌈ k
n
⌉ is odd, and λ3 ≤ k − ⌈ k

n
⌉−1

k+1
+ 1

(k+1)(k+2)
;

(3) k is odd, ⌈ k
n
⌉ is even, and λ3 ≤ k − ⌈ k

n
⌉−1

k+2
+ 1

(k+2)2
;
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(4) k is odd, ⌈ k
n
⌉ is odd, and λ3 ≤ k − ⌈ k

n
⌉−2

k+2
+ 1

(k+2)2
.

Proof. Assume that G contains no [1, n]-odd factors. As seen earlier, because v is
even, there exists S ⊆ V (G) with |S| = s such that G−S has q ≥ ns+2 components
of odd order, say G1, . . . , Gq. For each subgraph Gi (1 ≤ i ≤ q), let ti be the number
of edges between V (Gi) and S, and let vi, ei, respectively, be the order and the size
of Gi.

We claim that there are at least three odd components, say G1, G2, G3, satisfying
tj < ⌈ k

n
⌉ for all 1 ≤ j ≤ 3. Otherwise, eG(V (G−S), S) ≥

∑q
i=1 ti ≥ ⌈ k

n
⌉(q− 2)+ 2 ≥

⌈ k
n
⌉(n|S|+ 2− 2) + 2 > k|S| =

∑
x∈S dG(x), a contradiction.

For each 1 ≤ i ≤ 3, ti < ⌈ k
n
⌉. Since vertices in Gi are only adjacent to vertices in

S or V (Gi), we deduce that 2ei = kvi− ti ≥ kvi−⌈ k
n
⌉+1 if k and ⌈ k

n
⌉ are of different

parities; and 2ei = kvi − ti ≥ kvi − ⌈ k
n
⌉+ 2 if k and ⌈ k

n
⌉ are of the same parity. So,

2ei
vi

≥

{
k − ⌈ k

n
⌉−1

vi
if k, ⌈ k

n
⌉ are of different parities;

k − ⌈ k
n
⌉−2

vi
if k, ⌈ k

n
⌉ are of the same parity.

Note that ⌈ k
n
⌉ ≥ 2. Otherwise n ≥ k, so G is itself a [1, n]-odd factor if k is odd

and, by Theorem 3.2, contains a [1, n]-odd factor if k is even. This contradicts our
assumption at the beginning. Also, vi(vi − 1) ≥ 2ei ≥ kvi − ⌈ k

n
⌉ + 1 ≥ kvi − k + 1.

Then vi ≥ k + 1 if k is even and vi ≥ k + 2 if k is odd.

According to the parity of k and ⌈ k
n
⌉, there are four cases together. Here, we only

argue about the case that k is even and ⌈ k
n
⌉ is even. Other cases can be dealt with

along the same line. Since k ≡ 0 (mod 2), then ⌈ k
n
⌉ > 2; otherwise, G contains a

[1, n]-odd factor by Theorem 3.2. By Lemma 3.1,

λ1(Gi) >
2ei
vi

+
1

vi(∆ + 2)
≥ k−

⌈ k
n
⌉ − 2

vi
+

1

vi(∆ + 2)
≥ k−

⌈ k
n
⌉ − 2

k + 1
+

1

(k + 1)(k + 2)
.

It follows from interlacing theorem [6], that

λ3(G) ≥ λ3(G1 ∪G2 ∪G3) ≥ min
1≤i≤3

λ1(Gi) > k −
⌈ k
n
⌉ − 2

k + 1
+

1

(k + 1)(k + 2)
,

a contradiction. This completes the proof.

Remark. Let k be an odd integer and n an integer with k = an + b, where a ≥ 4
is even and 0 < b < n. Let H = M(k−a+3)/2 ∨ Ca−1, where M(k−a+3)/2 denotes a
1-factor on k−a+3 vertices, and the join H1∨H2 denotes the graph with vertex set
V (H1) ∪ V (H2) and edge set E(H1 ∨H2) = E(H1) ∪ E(H2) ∪ {xy : x ∈ V (H1), y ∈
V (H2)}. Take k copies of H, add an (a− 1)-vertex-set S and join each vertex of S to
a vertex of degree k− 1 in each H. Then we obtain a new graph G on k2+2k+a− 1
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vertices. G is k-regular and has no [1, n]-odd factors, for |V (H)| = k+2 ≡ 1 (mod 2)
and o(G− S) = k = an+ b > n(a− 1) = n|S|. Moreover,

λ3(G) ≥ λ1(H) =
1

2
(k − 3 +

√
(k + 3)2 − 4(a− 1))

= k − a− 1

k + 2
+

1

(k + 2)2
+O(k−2).

It implies that there exist k-regular graphs with no [1, n]-odd factor for k and ⌈ k
n
⌉

odd, even if λ3 is arbitrarily close to the value given in Theorem 3.3. The upper
bound of λ3 given in Theorem 3.3 is best possible up to order O(k−2). Similarly, we
can construct graphs for other cases.

In fact, we can restrict on studying a more general eigenvalue λ rather than λ3.
Thus, we obtain two results as follows.

Theorem 3.4 Let G be a connected k-regular graph of even order v with k ≡ 0
(mod 4). If λk ≤ k − 2

k+1
+ 1

(k+1)(k+2)
, G has a [1, n]-odd factor for n = k

2
− 1.

Proof. Assume that G has no [1, n]-odd factors. As seen earlier, because v is even,
there exists S ⊆ V (G) with |S| = s such that G − S has q ≥ ns + 2 components
of odd order, say G1, . . . , Gq. Let ti denote the number of edges in G between S
and V (Gi), and let vi and ei be the number of vertices and edges of Gi, respectively.
Because vertices in Gi are adjacent only to vertices in Gi or S, we deduce that
2ei = kvi − ti = k(vi − 1) + k − ti. Since vi is odd and k = 2n + 2 is even, it is easy
to see ti is even. That is, ti ≥ 2 is even.

The sum of the degrees of the vertices in S is at least the number of edges between
S and ∪q

i=1V (Gi). Then clearly ks ≥
∑q

i=1 ti. If s = 1, we have k ≥
∑n+2

i=1 ti ≥
2(n+ 2) > k by ti ≥ 2, a contradiction. So s ≥ 2. Suppose that t1 ≤ t2 ≤ · · · ≤ tq.

Claim. t2n+2 ≤ 2.

Otherwise, suppose that t2n+2 > 2. Since ti is even, so t2n+2 ≥ 4. Then

q∑
i=1

ti =
2n+1∑
i=1

ti +

q∑
i=2n+2

ti

≥ 2(2n+ 1) + 4(ns+ 2− (2n+ 1))

= 4ns− 4n+ 6 > (2n+ 2)s = ks,

a contradiction. This completes the claim.

For 1 ≤ i ≤ 2n + 2, ti = 2. Since vi(vi − 1) ≥ 2ei = kvi − ti = kvi − 2,
then vi ≥ k + 1 − 2

vi
. Hence, vi ≥ k + 1 and the average degree di of Gi satisfies

di =
2ei
vi

= k − 2
vi
.
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Let li denote the largest eigenvalue of Gi for i ∈ {1, 2, . . . , 2n + 2}. Suppose
l1 ≥ l2 ≥ · · · ≥ l2n+2. Then, by interlacing in G1 ∪ · · · ∪ G2n+2, it follows that
λ2n+2 ≥ l2n+2.

Thus, according to Lemma 3.1, λ2n+2 ≥ l2n+2 > d2n+2 +
1

v2n+2(k+2)
≥ k − 2

k+1
+

1
(k+1)(k+2)

. This is a contradiction.

Remark. Let k = 2n + 2 and H = K2 ∨ Kk−1. Take k copies of H. Add a two-
vertex-set S and join each vertex of S to a vertex of degree k − 1 in each H. This is
a connected k-regular graph denoted by G. As H is of odd order, o(G − S) = k =
2n+ 2 > 2n = n|S| and then G has no [1, n]-odd factors. Moreover,

λ2n+2(G) ≥ λ1(H) =
1

2
(k−2+

√
(k + 2)2 − 8) = k− 2

k + 1
+

1

(k + 1)(k + 2)
+O(k−2).

So the bound of Theorem 3.4 is sharp up to O(k−2).

For k even and k ≥ 2n + 4 or k odd, we obtain the following result similar to
Theorem 3.4.

Theorem 3.5 Let G be a connected k-regular graph of even order v, and eigenvalues
k = λ1 ≥ . . . ≥ λv. If one of the following conditions holds, G contains a [1, n]-odd
factor:

(1) when k is even, n ≥ 3 and k ≥ 2n+ 4, λn+2 ≤ k − 1 + 2n+3
k+1

+ 1
(k+1)(k+2)

;

(2) when k is odd, λn+2 ≤ k − 1 + n+3
k+2

+ 1
(k+2)2

.

Proof. When k is odd, G has a [1, n]-odd factor if k ≤ n or, by Theorem 3.3 (4), if
n = 1. Thus, in part (2) it may be assumed that n ≥ 2 and k ≥ n+ 2.

Assume that G has no [1, n]-odd factors. As seen earlier, because v is even, there
exists S with |S| = s such that G− S has q ≥ ns + 2 components of odd order, say
G1, . . . , Gq. Let ti denote the number of edges in G between S and V (Gi), and let vi
and ei be the number of vertices and edges of Gi, respectively. Because vertices in Gi

are adjacent only to vertices inGi or S, we deduce that 2ei = kvi−ti = k(vi−1)+k−ti.
Since vi is odd, it is easy to see k − ti is even. That is, ti has the same parity with k
for each i ∈ {1, 2, . . . , q}. Without loss of generality, we suppose t1 ≤ . . . ≤ tq.

The sum of the degrees of the vertices in S is at least the number of edges between
S and ∪q

i=1V (Gi). Then clearly ks ≥
∑q

i=1 ti, s ≥ 1 and ti ≥ 1. Hence ti < k for at
least (n− 1)s+ 3 values of i.

Claim. If k is odd, then tn+2 ≤ k−(n+1); else if k is even, then tn+2 ≤ k−(2n+2).
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Conversely, suppose the claim doesn’t hold. Firstly we consider that k is odd.
Then we have tn+2 ≥ k − n + 1. Note that ti ≥ 1. Then, since tn+2, k and n are all
odd, we have

ks ≥
n+2∑
i=1

ti +

q∑
i=n+3

ti

≥ k + 2 + (ns− n)(k − n+ 1).

If s = 1, then k ≥ k + 2, a contradiction. So we say s ≥ 2. Then we have k(n− 1) <
n(n − 1), so k < n, a contradiction. Now we consider that k is even. Since tn+2, k
and 2n are even, by assumption, we have tn+2 ≥ k − 2n. Since ti ≥ 2 by parity, then

ks ≥
n+2∑
i=1

ti +

q∑
i=n+3

ti

≥ k + 2 + (ns− n)(k − 2n).

If s = 1, clearly, we obtain a contradiction. So we say s ≥ 2. Then we have
k > n(k− 2n) and 2n2 > k(n− 1). Note k ≥ 2n+4 and n ≥ 3, a contradiction. This
completes the claim.

Thus, the average degree di (1 ≤ i ≤ n+2) of Gi satisfies the following inequality

di =
2ei
vi

≥

{
k − k−2n−2

vi
if k is even,

k − k−n−1
vi

if k is odd.

Let li denote the largest eigenvalue of Gi for i ∈ {1, 2, . . . , n + 2}. Suppose
l1 ≥ l2 ≥ · · · ≥ ln+2. Then, by interlacing in G1 ∪ · · · ∪ Gn+2, it follows that
λn+2 ≥ ln+2. Now, since

vn+2(vn+2 − 1) ≥ 2en+2 = kvn+2 − tn+2 ≥

{
k(vn+2 − 1) + (2n+ 2) if k is even,

k(vn+2 − 1) + (n+ 1) if k is odd,

then vn+2 ≥ k+1 if k is even and vn+2 ≥ k+2 is k is odd, and hence by Lemma 3.1,
we have

λn+2 ≥ ln+2 >

{
dn+2 +

1
vn+2(k+2)

≥ k − 1 + 2n+3
k+1

+ 1
(k+1)(k+2)

if k is even,

dn+2 +
1

vn+2(k+2)
≥ k − 1 + n+3

k+2
+ 1

(k+2)2
if k is odd.

This is a contradiction.
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