
ON THE INDEX OF SEQUENCES OVER CYCLIC GROUPS

WEIDONG GAO, YUANLIN LI, JIANGTAO PENG, CHRIS PLYLEY, AND GUOQING WANG

Abstract. Let G be a finite cyclic group of order n ≥ 2. Every sequence S over G can be
written in the form S = (n1g) · . . . · (nlg) where g ∈ G and n1, . . . , nl ∈ [1, ord(g)], and the
index ind(S) of S is defined as the minimum of (n1 + . . . + nl)/ ord(g) over all g ∈ G with
ord(g) = n. In this paper we prove that a sequence S over G of length |S| = n having an
element with multiplicity at least n

2
has a subsequence T with ind(T ) = 1, and if the group

order n is a prime, then the assumption on the multiplicity can be relaxed to n−2
10

. On the
other hand, if n = 4k + 2 with k ≥ 5, we provide an example of a sequence S having length
|S| > n and an element with multiplicity n

2
− 1 which has no subsequence T with ind(T ) = 1.

This disproves a conjecture given twenty years ago by Lemke and Kleitman.

1. Introduction and Main Results

Let G be an additively written, finite cyclic group and g ∈ G with ord(g) = |G|. For a
sequence

S = (n1g) · . . . · (nlg) over G , where l ∈ N0 and n1, . . . , nl ∈ [1, n] ,

we set
‖S‖g =

n1 + . . . + nl

n
,

and then
ind(S) = min{‖S‖h | h ∈ G with ord(h) = |G|} ∈ Q≥0

denotes the index of S. The index of a sequence is a crucial invariant in the investigation of
(minimal) zero-sum sequences (resp. of zero-sum free sequences) over cyclic groups. It was first
addressed by Lemke and Kleitman ([11]), used as key tool by Geroldinger ([6, page 736]), and
then investigated by Gao [3] in a systematical way. Since then it has attracted a lot of attention
in recent years (see [1, 2, 5, 8, 12, 13, 14, 15, 16]). We briefly discuss some key results.

If S is a minimal zero-sum sequence, then |S| ≤ 3, as well as |S| ≥ bn
2 c + 2, implies that

ind(S) = 1 (see [1], [14], [16]). In contrast to that, it was shown that for every k ∈ [5, bn
2 c+ 1],

there is a minimal zero-sum subsequence T of length |T | = k and with ind(T ) ≥ 2, and that the
same is true for k = 4 and gcd(n, 6) 6= 1. This leads to the conjecture that, in case gcd(n, 6) = 1,
every minimal zero-sum sequence S over G of length |S| = 4 has ind(S) = 1. Li, Plyley, Yuan
and Zeng [12] recently proved that this holds true if n is a prime power, but the general case is
still open.

In 1989, Lemke and Kleitman stated the following conjecture ([11, page 344]), which we
formulate in the present language.
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Conjecture 1.1. Let G be a cyclic group of order n, d a divisor of n, and let S be a sequence
over G of length |S| = n. Then there exists a subsequence T of S and element g ∈ G with
ord(g) = n such that

d
∣∣ n‖T‖g

∣∣ n .

In the special case d = n, this is equivalent to the existence of a subsequence T with ind(T ) = 1.

Indeed the above is the third of three interesting conjectures stated by Lemke and Kleitman
in [11]. Their first conjecture has turned out to be true for all finite abelian groups (see [7]),
and the second one is still open. In this paper we demonstrate that the above conjecture fails
in general (see Theorem 1.2), but that it holds true under an additional assumption on the
highest multiplicity of an element occurring in the sequence. Here are the main results of the
present paper (for any undefined terminology or notation the reader is referred to the beginning
of Section 2).

Theorem 1.2. Let G be a cyclic group of order n ≥ 2, where n = 4k + 2 for some k ≥ 5, and
let g ∈ G with ord(g) = n. Then the sequence

S = g
n
2
−3

(n

2
g
) ((n

2
+ 1

)
g
)n

2
−1 ((n

2
+ 2

)
g
)bn

4
c−2

has no subsequence T with ind(T ) = 1.

Theorem 1.3. Let G be a cyclic group of order n ≥ 2 and S be a sequence over G of length
|S| = n. If h(S) < 4 or h(S) ≥ n/2, then S has a subsequence T with ind(T ) = 1 and length
|T | ≤ h(S).

Theorem 1.4. Let G be a cyclic group of prime order p > 24318 and S be a sequence over G
of length |S| = p. If h(S) ≥ p−2

10 , then S has a subsequence T with ind(T ) = 1.

In Section 2 we summarize our notations and give the proof of Theorem 1.2. In the following
two sections we provide the proofs of Theorem 1.3 and of Theorem 1.4. We end the paper with
a further conjecture and some open problems (see Section 5).

2. Notations and Proof of Theorem 1.2

Let N denote the set of positive integers, P ⊂ N the set of prime numbers, and for rational
numbers a, b ∈ Q we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let G be an additively written abelian
group and G0 ⊂ G a subset. We fix the notation concerning sequences over G0 (which is
consistent with [4] and [9]). Let F(G0) be the free abelian monoid with basis G0. The elements
of F(G0) are called sequences over G0. We write sequences S ∈ F(G0) in the form

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ,

where l ∈ N0, g1, . . . , gl ∈ G0, vg(S) ∈ N0 and vg(S) = 0 for almost all g ∈ G0. We call
|S| = l the length of S, σ(S) = g1 + . . . + gl the sum of S, vg(S) the multiplicity of g in S,
supp(S) = {g ∈ G | vg(S) > 0} the support of S, and we denote by

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|] the maximum of the multiplicities of S .

For every group homomorphism ϕ : G → H, we set ϕ(S) = ϕ(g1) · . . . · ϕ(gl) ∈ F(H), and if
ϕ is the multiplication by some m ∈ N, then we set mS = ϕ(S). We say that S is a zero-sum
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sequence if σ(S) = 0, and it is called a minimal zero-sum sequence if σ(S) = 0 but
∑

i∈I gi 6= 0
for all ∅ 6= I ( [1, l]. Suppose that G is finite cyclic. Then a simple calculation (see [8, Lemma
5.1.2]) shows that

ind(S) = min{‖S‖h | h ∈ G with supp(S) ⊂ 〈h〉}
= min{‖S‖h | h ∈ G with 〈supp(S)〉 = 〈h〉} .

Proof of Theorem 1.2. Assume to the contrary that S has a subsequence T with ind(T ) = 1.
Then there exists an element h ∈ G with ord(h) = n such that ‖T‖h = 1. We set

g = jh and T = gx
(n

2
g
)y ((n

2
+ 1

)
g
)z ((n

2
+ 2

)
g
)w

where j ∈ [1, n − 1] with gcd(j, n) = 1, x ∈ [0, n/2 − 3], y ∈ [0, 1], z ∈ [0, n/2 − 1] and
w ∈ [0, n/4− 2]. Then

(1) n‖T‖g = (x + z + 2w) +
n

2
(y + z + w) ≡ 0 (mod n).

Case 1. j < n
4 .

Then
T = (jh)x

(n

2
h
)y ((n

2
+ j

)
h
)z ((n

2
+ 2j

)
h
)w

.

Since ‖T‖h = 1, we infer that y + z + w ≤ 1 which implies that n‖T‖g ≤ x + (n
2 + 2) ≤

n
2 − 3 + n

2 + 2 < n, a contradiction.

Case 2. n
4 < j < n

2 .

Then
T = (jh)x

(n

2
h
)y ((n

2
+ j

)
h
)z ((

2j − n

2
)
h
)w

.

Since ‖T‖h = 1, we infer that x ≤ 3 and z ≤ 1 which implies that n‖T‖g ≤ x + z + 2w ≤
3+1+2 (bn

4 c−2) < n
2 . Since x+z+2w > 0 and again by ‖T‖h = 1, we derive that x+z+2w ≡ 0

(mod n
2 ), a contradiction.

Case 3. n
2 < j < 3n

4 .

Then
T = (jh)x

(n

2
h
)y ((

j − n

2
)
h
)z ((

2j − n

2
)
h
)w

.

Since ‖T‖h = 1, we infer that x + y + w ≤ 1. We assert that

(2) x + y + w = 1.

Otherwise, x = y = w = 0 and n‖T‖g = z + n
2 z 6≡ 0 (mod n

2 ), a contradiction to n‖T‖g ≡ 0
(mod n). Note that 0 < x + z + 2w < n. By (1), we have that

(3) x + z + 2w =
n

2
and

(4) y + z + w ≡ 1 (mod 2).

By (2) and (3), we have y + z + w ≡ z + w − y = n
2 − 1 ≡ 0 (mod 2), a contradiction to (4).

Case 4. 3n
4 < j < n.
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Then

T = (jh)x
(n

2
h
)y ((

j − n

2
)
h
)z

((
2j − 3n

2
)
h

)w

.

Since ‖T‖h = 1, we infer that x ≤ 1 and z ≤ 3 which implies that n‖T‖g ≤ x + z + 2w ≤
1 + 3 + 2 (bn

4 c − 2) < n
2 . Clearly, x + z + 2w > 0. From (1), we derive a contradiction. �

3. Proof of Theorem 1.3

We need the following two results. A simple proof of the first one can be found in [8,
Proposition 4.2.6] (for historical comments see [10]), and a proof of Lemma 3.2 is given in [13].

Lemma 3.1. Let G be a finite cyclic group and S be a sequence over G of length |S| ≥ |G|.
Then S has a zero-sum subsequence T of length |T | ∈ [1, h(S)].

Lemma 3.2. Let G be a finite cyclic group and S be a minimal zero-sum sequence over G of
length |S| ∈ [1, 3]. Then ind(S) = 1.

Proof of Theorem 1.3. We set n = |G| and h = h(S). If h < 4, then the assertion follows from
Lemmas 3.1 and 3.2. Suppose that h ≥ n/2. Let g ∈ G with vg(S) = h. If ord(g) < n, then
ord(g) ≤ n/2 ≤ h, and T = gord(g) has the required properties. If 0 | S, then T = 0 has the
required properties.

Suppose that ord(g) = n and that 0 - S. Then we can write S in the form

S = gh(b1g) · . . . · (bn−hg) where b1, . . . , bn−h ∈ [2, n− 1] .

Assume to the contrary that S has no subsequence T with the required properties. We continue
with the following assertion.

A. For every subset I ⊂ [1, n− h] we have
∑

i∈I bi ≤ n− h + |I| − 1 .

If A holds, then we apply it with I = [1, n− h] and obtain that
n−h∑
i=1

bi ≤ 2(n− h)− 1 ,

a contradiction to b1, . . . , bn−h ∈ [2, n − 1]. We prove A by induction on |I|. If there were
an i ∈ [1, n − h] such that bi ≥ n − h + 1, then T = gn−bi(big) were a subsequence of S
with ind(T ) = 1 and length |T | = n − bi + 1 ≤ h, a contradiction. Let I ⊂ [1, n − h] with
|I| = k + 1 ≥ 2, say I = [1, k + 1], and suppose that A holds for all proper subsets of I. We set
β = b1 + . . .+bk+1. By induction hypothesis we get β−bi ≤ n−h+k−1 for every i ∈ [1, k+1],
which implies that

β =
1
k
(kβ) =

1
k

k+1∑
i=1

(β − bi) ≤
(k + 1)(n− h + k − 1)

k
≤ n

(to get the last inequality, use that h ≥ n/2 and k ≤ n − h − 1). Thus, if β ≥ n − h + k + 1,
then T = gn−β(b1g) · . . . · (bk+1g) is a subsequence of S with ind(T ) = 1 and length |T | =
n− β + k + 1 ≤ h. This is a contradiction, and thus A is proved. �
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Note that the sequence S given in Theorem 1.2 satisfies h(S) = n
2 − 1. Thus the assumption

in Theorem 1.3, that h(S) ≥ n
2 , cannot be weakened for n ≡ 2 (mod 4).

4. Proof of Theorem 1.4

We fix our notations which remain valid throughout the whole section. Let G be a prime
cyclic group of order |G| = p > 24318, G• = G \ {0}, and let S be a sequence over G• of length
|S| = p. If g ∈ G•, A ⊂ Z and S = (n1g) · . . . · (nlg) with n1, . . . , nl ∈ [1, p− 1], then we set

S(A, g) =
∏

i∈[1,l],ni∈A

(nig) .

For an element g ∈ G•, we set

Σg(S) = {p ‖T‖g | T is a subsequence of S with ‖T‖g ≤ 1} ,

and we denote by mg(S) the maximal t ∈ [1, p] such that Σg(T ) = [1, t] for some subsequence
T of S. We define

m(S) = max{mg(S) | g ∈ G•} .

From now on we fix an element g ∈ G• such that mg(S) = m(S).

Lemma 4.1. Let T be a subsequence of S such that Σg(T ) = [1,m(S)]. Then |T | ≤ m(S), and
if x ∈ [1, p− 1] such that (xg) |ST−1, then x ≥ m(S)+2. Furthermore, if m(S) = p, or if there
exists an x ∈ [1, p− 1] such that (xg) |ST−1 and x ≥ p−m(S), then S has a subsequence with
index 1.

Proof. By definition, we have |T | ≤ p ‖T‖g = m(S). If there is some x ∈ [1, p − 1] with
(xg) |ST−1 and x ≤ m(S) + 1, then Σg((xg)T ) = [1,min{p, m(S) + x}], a contradiction to the
maximality of m(S). The second part of this lemma is clear. �

From now on we suppose that S has no subsequence with index 1.

Let k ≥ 2 be a positive integer, and let F [ 1k , k−1
k ] be all irreducible fractions between 1

k and
k−1

k and with denominators in [2, k], i.e.,

F

[
1
k
,
k − 1

k

]
=

{
a

b

∣∣∣ a ∈ N, b ∈ [2, k] with gcd(a, b) = 1 and
1
k
≤ a

b
≤ k − 1

k

}
.

Lemma 4.2. Let a
b and c

d be two adjacent fractions in F [ 1k , k−1
k ] with a

b < c
d . Then we have

1. b + d ≥ k + 1.
2. bc− ad = 1.

Proof. 1. Note that a
b < a+c

b+d < c
d . Since a

b and c
d are adjacent, it follows that the irreducible

fraction with value a+c
b+d is not in F [ 1k , k−1

k ]. This forces that b + d ≥ k + 1.

2. Since gcd(a, b) = 1, there are two integers u and v such that bu + av = 1. Note that
b(u + ma) + a(v − mb) = 1 holds for any integer m. Let x = u + ma and y = mb − v. Then,
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bx − ay = 1. By choosing m suitably we may assume that y ≤ k and y + b ≥ k + 1. It follows
that y ≥ k + 1− b > 0 and x > 0. From bx− ay = 1 we get

x

y
− a

b
=

1
by

.

If y > 1, then x
y is a fraction in F [ 1k , k−1

k ]. So, either c
d = x

y and we are done, or c
d < x

y . For

the latter case we have 1
by = x

y −
a
b = (x

y −
c
d) + ( c

d −
a
b ) = b(dx−cy)+y(cb−ad)

byd ≥ b+y
byd . This implies

that d ≥ b + y ≥ k + 1, a contradiction.

Now assume that y = 1 and we must have b = k. It follows from bx − ay = 1 that
a = kx− 1. Therefore, x = 1 and a = k− 1. So, a

b = k−1
k is the biggest fraction in F [ 1k , k−1

k ], a
contradiction. �

We set

k =
⌊ p

m(S)

⌋
, f =

∣∣∣ F
[1
k
,
k − 1

k

] ∣∣∣ ,

and we arrange all fractions in F [ 1k , k−1
k ] increasingly; so let

a1

b1
< . . . <

af

bf

denote the elements of F [ 1k , k−1
k ]. Furthermore, we set

S1 = S([1,m(S)], g) S2 = S([m(S) + 2,
p− 1

b1
], g)

and, for every i ∈ [1, f ], we set

S2i+1 = S
([aip + 1

bi
,
aip + m(S)

bi

]
, g

)
and S2i+2 = S

([aip + m(S) + 1
bi

,
ai+1p− 1

bi+1

]
, g

)
.

Furthermore, for every i ∈ [2, k], we define

Ri = S({x ∈ [1, p] | If xi ∈ [1, p] with p | (xi − ix), then xi ∈ [1,m(S)] and gcd(xi, i) = 1}, g) .

Lemma 4.3. We have S =
∏2f+1

j=1 Sj.

Proof. This is clear by construction. �

Lemma 4.4. Suppose that

4 ≤ m(S) ≤ p− 3
2

and max
{p−m(S)− 2

m(S)
,

p−m(S)
m(S) + 1

}
≤ k ≤ p + 1

m(S)
.

1. |S2i+2| ≤ bi+1 − 1 for every i ∈ [0, f − 1].

2. p = |S| ≤ m(S) +
∑k

i=2

∑
j∈[1,i−1] with gcd(i,j)=1(i− 1) +

∑k
i=2 |Ri|.

Proof. 1. Suppose that i = 0. Then S2 = S([m(S)+2, p−1
b1

], g) and b1 = k. If |S2| ≥ b1 = k, then
we can take a k-term subsequence U of S2. Note that p−1 ≥ p‖U‖g ≥ k(m(S)+2) ≥ p−m(S)
and one can find a subsequence V of S1 such that UV has index 1, a contradiction.
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Now suppose that i ∈ [1, f − 1], and assume to the contrary that |S2i+2| ≥ bi+1. We choose
an arbitrary bi+1-term subsequence X of S2i+2, and write biS in the form

biS =
(
x1g

)
· . . . ·

(
xpg

)
with x1, . . . , xp ∈ [1, p− 1] .

It follows from Lemma 4.2 that ai+1bi − aibi+1 = 1, and so bi(
ai+1p−1

bi+1
) − aip = p−bi

bi+1
. Thus for

every ν ∈ [1, p] with (xνg) |S2i+2, we infer that xν ∈ [m(S) + 1, p−bi

bi+1
] and xν ≡ −aip (mod bi).

Therefore we get, since by Lemma 4.2 , bi + bi+1 ≥ k + 1,

p− bi ≥ p‖biX‖g ≥ bi+1(m(S) + 1) ≥ p− bim(S)

and
p‖biX‖g ≡ −bi+1aip = (1− ai+1bi)p ≡ p (mod bi) .

Therefore there exists a subsequence Y of S1 such that p‖bi(XY )‖g = p, a contradiction.

2. For every ` ∈ [2, k], we have R` =
∏

bi=` S2i+1, and hence

S = S1

f−1∏
i=0

S2i+2

k∏
`=2

R` .

Now 2. follows from 1. �

Lemma 4.5. Let ` ∈ N≥2 and S ∈ F(Z) be a sequence of length |S| = `. Suppose that every
element from S is co-prime to `. Then for every m ∈ Z there exists a subsequence Sm such that
σ(Sm) ≡ m (mod `). Moreover, if m /∈ `Z, then we get Sm 6= S.

Proof. Let ϕ : Z → Z/`Z be the canonical epimorphism and ϕ(S) = a1 · . . . · al. We denote
by A = {a1, 0} + . . . + {a`−1, 0} ⊂ Z/`Z the sumset, and by H = Stab(A) the stabilizer of A.
Clearly, it suffices to verify that A = Z/`Z. If H would be a proper subgroup of Z/`Z, then
Kneser’s Theorem would imply that

|A| ≥
`−1∑
i=1

|{ai, 0}+ H| − (`− 2)|H| = (`− 1)2|H| − (`− 2)|H| ≥ ` ,

whence A = H = Z/`Z. Thus H = Z/`Z, which implies that A = Z/`Z, and we are done. �

Lemma 4.6. Let t, ` ∈ [2, k − 1] with t < ` and d = gcd(t, `) < t, and let u ∈ [2,m(S)]. If

(t− d)p− `

t`
≤ m(S) ≤ dp

`
−t(u−1) , then |Rt| = 0 or |R`| ≤

p− `m(S)− 2` + 1
u

+2`−1 .

Proof. Suppose that |Rt| > 0. Let x ∈ [1, p− 1] such that (xg) |Rt, and let x` ∈ [1, p− 1] such
that p | (`x− x`). By the definition of Rt, we get

x` ∈
⋃

i∈[1,t−1] with gcd(i,t)=1

[`ip + `

t
,
`ip + `m(S)

t

]
,

and thus,

x` ∈
⋃

i∈[1,t−1] with d | i

[ ip + `

t
,
ip + `m(S)

t

]
⊂

[dp + `

t
,
(t− d)p + `m(S)

t

]
⊂

[
p−`m(S), p−`(u−1)

]
.

If |(`R`)([1, u − 1], g)| ≥ `, then, by Lemma 4.5 and the definition of Rt, we may choose a
subsequence W of R` of length at most ` such that (`W )([1, u−1], g) = `W and x`+p‖`W‖g ≡ p
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(mod `). Since p‖`W‖g ≤ `(u−1), we have x`+p‖`W‖g ∈ [p−`m(S), p]. Thus, we can construct
a subsequence of (xg)WS1 of index 1, a contradiction. Therefore,

(5) |(`R`)([1, u− 1], g)| ≤ `− 1.

If |R`| < ` then we are done. Otherwise, by Lemma 4.5, we get a subsequence R0 of R` with
p‖`R0‖p ≡ p (mod `) and

(6) |R0| ≥ |R`| − `.

We assert that

(7) p‖`R0‖p ≤ p− `m(S)− `.

Assume to the contrary that p‖`R0‖p ≥ p − `m(S), choose T to be the minimal subsequence
of R0 such that p‖`T‖g ≥ p − `m(S) and p‖`T‖g ≡ p (mod `). If p‖`T‖g ≤ p, then we can
construct a subsequence of TS1 with index 1, a contradiction. Now suppose that p‖`T‖g > p.
If y ∈ [1, p− 1] such that (yg) |R` and y` ∈ [1, p− 1] such that p | (`y − y`), then y` ∈ [1,m(S)]
and gcd(y`, `) = 1. By Lemma 4.5, by dropping at most ` terms from T , we get a proper
subsequence T̃ such that p‖`T̃‖g ≥ p− `m(S) and p‖`T̃‖g ≡ p (mod `), a contradiction to the
minimality of T . Therefore, (7) holds.

By (5), we have that p‖`R0‖g ≥ (`− 1) + u
(
|R0| − ` + 1

)
. This together with (7) gives that

|R0| ≤ p−`m(S)−2`+1
u + `− 1. Now the lemma follows from (6). �

Lemma 4.7. Let t ∈ [2, k], and let 1 = α1 < α2 < . . . denote all positive integers coprime to t.
If

m(S) ≤ p− 2t + wαu+1 + 2

t +
u∑

i=2
αi

for some w, u ∈ N0 ,

then

|Rt| ≤
p− (t +

u∑
i=2

αi)m(S)− 2t + 2

αu+1
+ δu(u− 1)m(S) + 2t + w where δu =

{
0 for u = 0
1 for u ≥ 1

Proof. Assume to the contrary that |Rt| is strictly larger than the above bound. Since

m(S) ≤ p− 2t + wαu+1 + 2

t +
u∑

i=2
αi

, it follows that |Rt| ≥ 2t + 1 .

By Lemma 4.5, there exists a nonempty subsequence R0 of Rt with

(8) p‖tR0‖g ≡ p (mod t) and |R0| ≥ |Rt| − t.

Similarly to Lemma 4.6, we can prove that

(9) p‖tR0‖g ≤ p− tm(S)− t.

Note that tR0 contains α1g = g at most t− 2 times, because otherwise we would get

m(S) ≥ mg(tS) ≥ tmg(S) + t− 1 > mg(S) = m(S) ,

a contradiction. Since vαig(S) ≤ h(S) ≤ m(S) for all i ≥ 2, it follows that

p‖tR0‖g ≥ α1(t− 2) +
( u∑

i=2

αi

)
m(S) + αu+1

(
|R0| − (u− 1)m(S)− (t− 2)

)
.
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By (9), we have |R0| ≤
p−(t+

uP
i=2

ai)m(S)−2t+2

αu+1
+ δ(u − 1)m(S) + t − 2. By (8), we derive a

contradiction. �

Proof of Theorem 1.4. We use all the notations which have been fixed at the beginning of this
section. In particular, we assume to the contrary that there exists a sequence S ∈ F(G•) of
length |S| = p which has no subsequence with index 1. We have to derive a contradiction.

Clearly, we have h(S) ≤ m(S) ≤ p− 1. Lemma 4.1 implies that, for every x ∈ [1, p− 1] with
(xg) |ST−1, we have m(S) + 2 ≤ x ≤ p−m(S)− 1. Thus it follows that

p− 2
10

≤ h(S) ≤ m(S) ≤ p− 3
2

.

We distinguish several cases.

Case 1. p−2
3 ≤ m(S) ≤ p−3

2 .

With k = 2 in Lemma 4.4, we have

p ≤ m(S) + 1 + |R2|.
Applying Lemma 4.7 with u = 0 and w = 6, we infer that

|R2| ≤ p− 2m(S) + 8.

It follows that p ≤ m(S) + 1 + |R2| = m(S) + 1 + p− 2m(S) + 8 < p, a contradiction.

Case 2. p+3
4 ≤ m(S) ≤ p−4

3 .

With k = 3 in Lemma 4.4, we have

p ≤ m(S) + 1 + 2 + 2 + |R2|+ |R3| .
Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
and |R3| ≤

p− 3m(S) + 20
2

.

It follows that

p ≤ m(S) + 5 +
3∑

i=2

|Ri| = m(S) + 5 +
p− 2m(S) + 28

3
+

p− 3m(S) + 20
2

< p ,

a contradiction.

Case 3. p−2
5 ≤ m(S) ≤ p+1

4 .

With k = 4 in Lemma 4.4, we have

p ≤ m(S) + 1 + 2 · 2 + 3 · 2 + |R2|+ |R3|+ |R4| .
Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
, |R3| ≤

p− 3m(S) + 20
2

and |R4| ≤
p− 4m(S) + 36

3
.

It follows that

p ≤ m(S) + 11 +
p− 2m(S) + 28

3
+

p− 3m(S) + 20
2

+
p− 4m(S) + 36

3
< p ,
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a contradiction.

Case 4. p−1
6 ≤ m(S) ≤ p−3

5 .

With k = 5 in Lemma 4.4, we have

p ≤ m(S) + 27 +
5∑

i=2

|Ri| .

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
, |R3| ≤

p− 3m(S) + 20
2

,

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

.

Applying Lemma 4.6 with t = 2, ` = 3 and u = 12, we obtain that either

|R2| = 0 or |R3| ≤
p− 3m(S) + 55

12
,

and therefore

|R2|+ |R3| ≤ max{p− 2m(S) + 28
3

+
p− 3m(S) + 55

12
,
p− 3m(S) + 20

2
} =

5p− 11m(S) + 167
12

.

Summing up we obtain that

p ≤ m(S) + 27 +
5∑

i=2

|Ri| = m(S) + 27 + (|R2|+ |R3|) + |R4|+ |R5|

≤ 5p− 11m(S) + 167
12

+
p− 4m(S) + 36

3
+

p− 5m(S) + 24
2

+ 27 < p ,

a contradiction.

Case 5. p−5
7 ≤ m(S) ≤ p−5

6 .

With k = 6 in Lemma 4.4, we have

p ≤ m(S) + 37 +
6∑

i=2

|Ri| .

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p + 18

5
and |R3| ≤

p−m(S) + 20
4

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

, and |R6| ≤
p− 6m(S) + 80

5
.

Summing up we obtain that

p ≤ m(S) + 37 +
6∑

i=2

|Ri|

= m(S) + 37 +
p + 18

5
+

p−m(S) + 20
4

+
p− 4m(S) + 36

3
+

p− 5m(S) + 24
2

+
p− 6m(S) + 80

5
< p ,

a contradiction.
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Case 6. p−2
8 ≤ m(S) ≤ p−3

7 .

With k = 7 in Lemma 4.4, we have

p ≤ m(S) + 73 +
7∑

i=2

|Ri| .

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p + 18

5
and |R3| ≤

p−m(S) + 20
4

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

,

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

.

Applying Lemma 4.6, with t = 2, ` = 5 and u = 10, we infer that

|R2|+ |R5| ≤ max{p− 5m(S) + 4
2

,
p + 18

5
+

p− 5m(S)− 9
10

+ 9} =
3p− 5m(S) + 117

10
.

Summing up we obtain that

p ≤ m(S) + 73 +
7∑

i=2

|Ri| = m(S) + 73 + (|R2|+ |R5|) + |R3|+ |R4|+ |R6|+ |R7|

≤ m(S) + 73 +
3p− 5m(S) + 117

10
+

p−m(S) + 20
4

+
p− 4m(S) + 36

3

+
p− 6m(S) + 80

5
+

p− 7m(S) + 28
2

< p ,

a contradiction.

Case 7. p−2
9 ≤ m(S) ≤ p−3

8 .

With k = 8 in Lemma 4.4, we have

p ≤ m(S) + 111 +
8∑

i=2

|Ri| .

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p + 18

5
, |R3| ≤

p−m(S) + 20
4

,

|R4| ≤
p− 2m(S) + 34

5
, |R5| ≤

p− 4m(S) + 22
3

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

and |R8| ≤
p− 8m(S) + 52

3
.

Applying Lemma 4.6 with t = 2, ` ∈ {5, 7} and u = 20, we can prove that either

|R2| = 0 or |Ri| ≤
p− im(S)− 2i + 1

20
+ 2i− 1 for i ∈ {5, 7} ,
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and therefore

|R2|+ |R5|+ |R7| ≤ max
{p− 4m(S) + 22

3
+

p− 7m(S) + 28
2

,

p−m(S) + 20
4

+
p− 5m(S)− 9

20
+ 9 +

p− 7m(S)− 13
20

+ 13
}

=
5p− 29m(S) + 128

6
.

Applying Lemma 4.6 with t = 4, ` = 6 and u = 10, we obtain that either

|R4| = 0 or |R6| ≤
p− 6m(S)− 11

10
+ 11

and therefore

|R4|+|R6| ≤ max
{p− 2m(S) + 34

5
+

p− 6m(S)− 11
10

+11,
p− 6m(S) + 80

5

}
=

3p− 10m(S) + 167
10

.

Summing up we obtain that

p ≤ m(S) + 111 +
8∑

i=2

|Ri| = m(S) + 111 + (|R2|+ |R5|+ |R7|) + (|R4|+ |R6|) + |R3|+ |R8|

≤ m(S) + 111 +
5p− 29m(S) + 128

6
+

3p− 10m(S) + 167
10

+
p−m(S) + 20

4
+

p− 8m(S) + 52
3

< p ,

a contradiction.

Case 8. p−2
10 ≤ m(S) ≤ p−4

9 .

With k = 9 in Lemma 4.4, we have

p ≤ m(S) + 159 +
9∑

i=2

|Ri| .

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p + 18

5
, |R3| ≤

p−m(S) + 20
4

,

|R4| ≤
p− 2m(S) + 34

5
, |R5| ≤

p− 4m(S) + 22
3

.

Applying 4.7 with u = 1 and w = 6, we infer that

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

,

|R8| ≤
p− 8m(S) + 52

3
, |R9| ≤

p− 9m(S) + 32
2

.

Applying Lemma 4.6 with t = 2, ` ∈ {5, 7} and u = 10, we obtain that either

|R2| = 0 or |Ri| ≤
p− im(S)− 2i + 1

10
+ 2i− 1 for i ∈ {5, 7} ,

and therefore

|R2|+ |R5|+ |R7| ≤ max
{p− 4m(S) + 22

3
+

p− 7m(S) + 28
2

,

p + 18
5

+
p− 5m(S)− 9

10
+ 9 +

p− 7m(S)− 13
10

+ 13
}

=
5p− 29m(S) + 128

6
.
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Applying Lemma 4.6 with t = 3, ` = 8 and u = 5, we obtain that either

|R3| = 0 or |R8| ≤
p− 8m(S)− 15

8
+ 15 ,

and therefore

|R3|+|R8| ≤ max
{p−m(S) + 20

4
+

p− 8m(S)− 15
8

+15,
p− 8m(S) + 52

3

}
=

3p− 10m(S)
8

+20 .

Summing up we obtain that

p ≤ m(S) + 159 +
9∑

i=2

|Ri| = M + 159 + (|R2|+ |R5|+ |R7|) + (|R3|+ |R8|) + |R4|+ |R6|+ |R9|

≤ m(S) + 159 +
5p− 29m(S) + 128

6
+ (

3p− 10m(S)
8

+ 20)

+
p− 2m(S) + 34

5
+

p− 6m(S) + 80
5

+
p− 9m(S) + 32

2
< p ,

a contradiction. �

5. A Conjecture and Open Problems

In spite of Theorem 1.2 and in view of Lemma 3.1, we formulate a conjecture which sharpens
the original Lemke-Kleitman Conjecture for prime cyclic groups.

Conjecture 5.1. Let G be a cyclic group of prime order and S be a sequence over G of length
|S| = |G|. Then S has a subsequence T with ind(T ) = 1 and length |T | ∈ [1, h(S)].

Let G be a cyclic group of order n ≥ 2. We denote by

• t(n) the smallest integer ` ∈ N such that every sequence S over G of length |S| ≥ ` has
a subsequence T with ind(T ) = 1.

• T(n) the smallest integer ` ∈ N such that every squarefree sequence S over G of length
|S| ≥ ` has a subsequence T with ind(T ) = 1.

By Theorem 1.2, it follows that t(n) ≥ n + bn
4 c − 4 for n = 4k + 2 ≥ 22.

Open Problem. Determine t(n) and T(n) for all n ≥ 2.
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