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Abstract

We propose a major index statistic on 01-fillings of moon polyominoes which, when spe-
cialized to certain shapes, reduces to the major index for permutations and set partitions. We
consider the set F(M, s;A) of all 01-fillings of a moon polyomino M with given column sum
s whose empty rows are A, and prove that this major index has the same distribution as the
number of north-east chains, which are the natural extension of inversions (resp. crossings)
for permutations (resp. set partitions). Hence our result generalizes the classical equidistribu-
tion results for the permutation statistics inv and maj. Two proofs are presented. The first
is an algebraic one using generating functions, and the second is a bijection on 01-fillings of
moon polyominoes in the spirit of Foata’s second fundamental transformation on words and
permutations.

1 Introduction

Given a multiset S of n positive integers, a word on S is a sequence w = w1w2 . . . wn that reorders
the elements in S. When S = [n] := {1, . . . , n} the word is a permutation. A pair (wi, wj) is called
an inversion of w if i < j and wi > wj . One well-known statistic on words and permutations is
inv(w), defined as the number of inversions of w. The descent set and descent statistic of a word
w are defined as

Des(w) = {i : 1 ≤ i ≤ n− 1, wi > wi+1}, des(w) = #Des(w).

In [15] MacMahon defined the major index statistic for a word w as

maj(w) =
∑

i∈Des(w)

i,
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and showed the remarkable result that its distribution over all words on S is equal to that of the
inversion number over the same set. Precisely, for the set WS of all words on S,

∑

w∈WS

qmaj(w) =
∑

w∈WS

qinv(w). (1.1)

The proof of (1.1) given by MacMahon relied on combinatorial analysis, while an elegant bijection
Φ : WS → WS such that maj(w) = inv(Φ(w)) was constructed later by Foata [6].

A set partition of [n] is a family of nonempty sets B1, . . . , Bk which are pairwise disjoint and
whose union is [n]. If all the blocks Bi have at most two elements, the set partition is called a
matching. If the size of every block is exactly two, the matching is called a perfect matching. A
set partition π can be represented as a simple graph with vertex set [n] drawn on a horizontal
line, where two vertices are joined by an arc if and only if they represent consecutive elements
in the same block of π under the numerical order. Two statistics, the numbers of crossings and
nestings, arise naturally from such graphical representations, and have been the central topic in
many recent research articles, e.g., [1], [12], [13], [17], [20], [16], [18], [5], [22], to list a few. A
crossing (resp. nesting) of a set partition is a pair of arcs (i1, j1), (i2, j2) such that i1 < i2 < j1 < j2
(resp. i1 < i2 < j2 < j1). As explained in [2, Section 2], a crossing can be viewed as a natural
generalization of an inversion in a permutation. Hence it is natural to ask what would be the major
index for matchings (set partitions) that extends MacMahon’s equidistribution results (1.1). A
definition of such a statistic, denoted by pmaj, was proposed by Chen et al. in [2]. For completeness,
we present the definition for perfect matchings here. The general case for set partitions is very
similar. Label the arcs of a perfect matching M of [2n] by 1, . . . , n in decreasing order with respect
to their left endpoints from left to right. Suppose r1, . . . , rn are the right endpoints of arcs from
right to left. Then to each right endpoint ri of an arc associate a word w(i) on [n] where the words
w(i) are defined backwards recursively: let w(1) = a, where a is the label of the arc that ends with
r1. In general, after defining w(i), assume that the left endpoints of the arcs labeled a1, . . . , at lie
between ri and ri+1. Then w(i+1) is obtained from w(i) by deleting entries a1, . . . , at and adding
the entry b at the very beginning, where b is the label of the arc that ends with ri+1. Then

pmaj(M) :=
n∑

i=1

des(w(i)).

Chen et al. [2] computed the generating function for pmaj and showed that it is equally distributed
with the number of crossings over all matchings with fixed left and right endpoints. A similar result
holds for set partitions.

The aim of this paper is to extend the major index to certain 01-fillings of moon polyominoes
which include words and set partitions. In Section 2 we introduce the necessary notations, and
describe the definition of the major index for 01-fillings of moon polyominoes. We explain in
Section 3 how the classical definition of major index on words and set partitions can be obtained
by considering moon polyominoes of special shapes. In Section 4 we show that the maj statistic
is equally distributed as ne, the number of north-east chains, by computing the corresponding
generating functions. In the fillings of special shapes, ne corresponds to the number of inversions
for words and crossings for set partitions. Therefore, our main result, Theorem 4.1, leads to a
generalization of (1.1) and the analogous result for set partitions. In Section 5, we present a
bijective proof for the equidistribution of maj and ne, which consists of three maps. The first is
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from the fillings of left-aligned stack polyominoes to itself that sends maj to ne, constructed in the
spirit of Foata’s second fundamental transformation. The other two are maps that transform a
moon polyomino to a left-aligned stack polyomino with the same set of columns, while preserving
the statistics maj and ne, respectively. Composing these three maps yields the desired bijection.

2 Definition of major index for fillings of moon polyominoes

A polyomino is a finite subset of Z2, where we represent every element of Z2 by a square cell. The
polyomino is convex if its intersection with any column or row is connected. It is intersection-free
if every two columns are comparable, i.e., the row-coordinates of one column form a subset of
those of the other column. Equivalently, it is intersection-free if every two rows are comparable. A
moon polyomino is a convex intersection-free polyomino. If the rows (resp. columns) of the moon
polyomino are left-aligned (resp. top-aligned), we will call it a left-aligned stack polyomino (resp.
top-aligned stack polyomino). A Ferrers diagram is a left-aligned and top-aligned stack polyomino.
See Figure 1 for an illustration. The term ‘moon polyomino’ was first used by Jonsson in [10] where
he used fillings of such polyominoes to study generalized triangulations.

Figure 1: A moon polyomino, a left-aligned and a top-aligned stack polyomino, and a Ferrers
diagram.

We are concerned with 01-fillings of moon polyominoes with restricted row sums. That is, given
a moon polyomino M, we assign a 0 or a 1 to each cell of M so that there is at most one 1 in
each row. Throughout this paper we will simply use the term filling to denote such 01-filling. We
say a cell is empty if it is assigned a 0, and it is a 1-cell otherwise. Given a moon polyomino M
with m columns, we label them c1, . . . , cm from left to right . Let s = (s1, . . . , sm) be an m-tuple of
nonnegative integers and A be a subset of rows of M. We denote by F(M, s;A) the set of fillings
M of M such that the empty rows of M are exactly those in A and the column ci has exactly si
many 1’s, 1 ≤ i ≤ m. A north-east (NE) chain in a filling M of M is a set of two 1-cells such that
one of them is strictly above and to the right of the other and the smallest rectangle containing
them is contained in M. The number of NE chains of M will be denoted ne(M). See Figure 2.

The set F(M, s;A) was first studied by Kasraoui [11], who showed that the numbers of north-
east and south-east chains are equally distributed. The generating functions for these statistics are
also presented in [11, Theorem 4.4].

To define the major index for fillings of moon polyominoes, we first state it for rectangular
shapes, which is essentially the classical definition of major index for words, (c.f. Section 3.1).

Let R be a filling of a rectangle whose n nonempty rows r1, . . . , rn are numbered from top to
bottom. We define the descent statistic for R as

des(R) = |{i | the 1-cells in rows ri and ri+1 form an NE chain}|.
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Figure 2: Filling M of a moon polyomino M for A = {3} and s = (1, 1, 2, 1, 1, 0) with ne(M) = 5.

That is, descents of a rectangular filling are NE chains in consecutive nonempty rows.
For each nonempty row ri of R, let R(ri) denote the rectangle that contains the row ri and all

rows in R above the row ri.

Definition 2.1. The major index for the rectangular filling R is defined to be

maj(R) =

n∑

i=1

des(R(ri)). (2.1)

Clearly, the empty rows of R do not play any role in maj(R). That is, if we delete them, the
major index of the resulting filling remains the same.

Definition 2.2. Let M be a filling of a moon polyomino M. Let R1, . . . ,Rr be the list of all the
maximal rectangles contained in M ordered increasingly by height, and denote by Ri the filling M
restricted on the rectangle Ri. Then the major index of M is defined to be

maj(M) =

r∑

i=1

maj(Ri)−
r−1∑

i=1

maj(Ri ∩Ri+1), (2.2)

where maj(Ri) and maj(Ri ∩Ri+1) are defined by (2.1).

In particular, maj(M) = maj(R1) when M is a rectangular shape. It is also clear that maj(M)
is always nonnegative since maj(Ri+1) ≥ maj(Ri ∩Ri+1), i = 1, . . . , r − 1.

Example 2.3. Consider the filling from Figure 2. It has four maximal rectangles and maj(M) =
(2 + 2 + 1 + 1)− (2 + 0 + 0) = 4.
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maj(R1) = 2 maj(R4) = 1maj(R3) = 1maj(R2) = 2

Figure 3: Calculation of maj(M) for a moon polyomino using Definition 2.2.
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The major index can be equivalently defined in a slightly more complicated way. However, this
way is useful in proofs, especially when one uses induction on the number of columns of the filling,
(c.f. Theorem 4.1). We state this equivalent definition next. First we need some notation. Let
Left(M) be the set of columns of M which are to left of the columns of maximal length and let
Right(M) consist of the remaining columns of M.

We order the columns of M, c1, . . . , cm, by a total order ≺ as follows: ci ≺ cj if and only if

• |ci| < |cj | or
• |ci| = |cj |, ci ∈ Left(M) and cj ∈ Right(M), or

• |ci| = |cj |, ci, cj ∈ Left(M) and ci is to the left of cj , or

• |ci| = |cj |, ci, cj ∈ Right(M) and ci is to the right of cj ,

where |c| denotes the length of the column c. A similar ordering of rows was used in [11].
For every column ci ∈ Left(M) define the rectangle M(ci) to be the largest rectangle that

contains ci as the leftmost column. For ci ∈ Right(M), the rectangle M(ci) is taken to be the
largest rectangle that contains ci as the rightmost column and does not contain any columns from
Left(M) of same length as ci.

Definition 2.2’. Let ci1 ≺ ci2 ≺ · · · ≺ cim be the ordering of the columns of M and let Mj be the
restriction of M on the rectangle M(cij ), 1 ≤ j ≤ m. Then

maj(M) =
m∑

j=1

maj(Mj)−
m−1∑

j=1

maj(Mj ∩Mj+1), (2.3)

where maj(Mj) and maj(Mj ∩Mj+1) are defined by (2.1).

Example 2.4. Consider the f illing M from Figure 2. The order ≺ on the columns of M is
c6 ≺ c1 ≺ c5 ≺ c4 ≺ c3 ≺ c2. So, M1 = M(c6), M2 = M(c1), M3 = M(c5), M4 = M(c4),
M5 = M(c3), and M6 = M(c2), as illustrated in Figure 4. By Definition 2.2’, maj(M) =
(2 + 2 + 1 + 1 + 1 + 0)− (2 + 1 + 0 + 0 + 0) = 4.

Proposition 2.5. Definitions 2.2 and 2.2’ are equivalent.

Proof. Some of the rectangular fillings Mj in Definition 2.2’ may contain Mj+1, in which case
maj(Mj+1) − maj(Mj ∩ Mj+1) = 0 and formula (2.3) can be simplified. More precisely, there
are uniquely determined indices 1 = j1 < j2 < · · · < jr ≤ m such that M1 = Mj1 ⊇ M2 ⊇
· · · ⊇ Mj2−1 + Mj2 ⊇ · · · ⊇ Mjr−1 + Mjr ⊇ · · · ⊇ Mm. That is, if the rectangles Mi are
ordered by containment, then Mj1 ,Mj2 , . . . ,Mjr are the maximal elements. Following the notation
in Definition 2.2, the filling Mjk is the filling Rk of the k-th maximal rectangle contained in M.
Then, after cancellation of some terms, the right-hand side of (2.3) becomes the right-hand side
of (2.2). For instance, in the previous example, the rectangles M3 and M6 are not maximal and
therefore maj(M3)−maj(M2 ∩M3) = 0 and maj(M6)−maj(M5 ∩M6) = 0.
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maj(M1) = 2 maj(M2) = 2

maj(M6) = 0maj(M5) = 1

maj(M3) = 1

maj(M4) = 1

Figure 4: Calculation of maj(M) for a moon polyomino using Definition 2.2’.

3 maj(M) for special shapes M
It is well-known that permutations and set-partitions can be represented as fillings of Ferrers dia-
grams (e.g. [14]). Here we will describe such presentations to show how to get the classical major
index for words and set partitions from Definition 2.2.

3.1 When M is a rectangle: words and permutations

For any rectangle, label the rows from top to bottom, and columns from left to right. Fillings of
rectangles are in bijection with words. More precisely, let w = w1 . . . wn be a word with letters
in the set [m]. The word w can be represented as a filling M of an n ×m rectangle M in which
the cell in row n − i + 1 and column m − j + 1 is assigned the integer 1 if wi = j, and is empty
otherwise. Conversely, each filling of the rectangle M corresponds to a word w. It is easy to check
that ne(M) = inv(w), des(M) = des(w), and maj(M) = maj(w). The latter follows from the fact
that maj(w) =

∑n
i=1 des(wiwi+1 . . . wn).

3.2 When M is a Ferrers diagram: matchings and set partitions

As explained in [4], general fillings of Ferrers diagrams correspond to multigraphs. Here we briefly
describe the correspondence when restricted to 01-fillings with row sum at most 1. The Ferrers
diagram is bounded by a vertical line from the left, a horizontal line from above, and a path
consisting of east and north steps. Following this path starting from the bottom left end, we label
the steps of the path by 1, 2, . . . , n. This gives a labeling of the columns and rows of the diagram.
Draw n vertices on a horizontal line and draw an edge connecting vertices i and j if and only if
there is a 1 in the cell of the column labeled i and the row labeled j (see Figure 5). The resulting
graph has no loops or multiple edges and every vertex is a right endpoint of at most one edge.
The NE chains correspond to crossings of edges in the graph. If the column sums are at most one,
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the graph is a matching. If, moreover, in the labeling of the steps we allow to have a vertical step
followed by a horizontal one with a same label, then the corresponding graph will have vertices
which are both right and left endpoints of edges. Such graphs represent set partitions. In either
case, the major index of the filling is equal to the major index of the corresponding matching or set
partition as defined in [2]. Restricting to the triangular Ferrers diagram, the 01-fillings considered
in this paper also include linked partitions, a combinatorial structure that was studied in [3, 11].
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Figure 5: A filling of a Ferrers diagram and the corresponding graph.

3.3 When M is a top-aligned stack polyomino

In the case when M is a top-aligned stack polyomino, maj(M) has a simpler form in terms of
the des statistic, just as in words and permutations. Explicitly, if the nonempty rows of M are
r1, . . . , rn, denote by M(ri) the filling M restricted to the largest rectangle contained in M whose
bottom row is ri.

Proposition 3.1. Let M be a filling of a top-aligned stack polyomino and M(ri) be as defined
above. Then

maj(M) =
n∑

i=1

des(M(ri)). (3.1)

Proof. Let rk+1, . . . , rn be all the nonempty rows of M that are of same length as the last row rn.
Denote by M ′ = M\{rk+1, . . . , rn} and by R the filling of the largest rectangle of M containing
rn. We proceed by induction on the number n of rows of M . The claim is trivial when M has only
one row or is a rectangle. Otherwise,

maj(M) = maj(M ′) + maj(R)−maj(M ′ ∩R) (Definition 2.2)

=

k∑

i=1

des(M(ri)) +

n∑

i=k+1

des(M(ri)), (Induction hypothesis and Definition 2.1)

which completes the proof.

Example 3.2. Consider the filling M of a top-aligned stack polyomino in Figure 6 with A = {3} and
s = (0, 1, 2, 1, 1). M has five nonempty rows and, by Proposition 3.1, maj(M) =

∑5
i=1 des(M(ri)) =

0 + 1 + 0 + 1 + 1 = 3.

Proposition 3.1 will be used in the proof of Lemma 5.5.
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des(M(r1)) = 0 des(M(r2)) = 1 des(M(r3)) = 0 des(M(r4)) = 1 des(M(r5)) = 1

Figure 6: Calculation of maj(M) using Proposition 3.1.

4 The generating function for the major index

In this section we state and prove the main theorem which gives the generating function for maj
over F(M, s;A), the set of all fillings of the moon polyomino M with column sums given by the
integer sequence s and empty rows given by A . Let |c1|, . . . , |cm| be the column lengths of M and
let ai the number of rows in A that intersect the column ci. Suppose that, under the ordering
defined in Section 2, ci1 ≺ ci2 ≺ · · · ≺ cim . Then for j = 1, . . . ,m, define

hij = |cij | − aij − (si1 + si2 + · · ·+ sij−1) (4.1)

The numbers hi have the following meaning: if one fills in the columns of M from smallest to
largest according to the order ≺, then hij is the number of available cells in the j-th column to be
filled.

Theorem 4.1. For a moon polyomino M with m columns,

∑

M∈F(M,s;A)

qmaj(M) =
m∏

i=1

[
hi
si

]

q

(4.2)

where hi is defined by (4.1).

We postpone the proof of Theorem 4.1 until the end of this section.

Example 4.2. Suppose M is the first moon polyomino in Figure 1, A = {5}, and s = (1, 0, 2, 1, 1).
The ≺ order on the columns of M is: c1 ≺ c5 ≺ c2 ≺ c4 ≺ c3. The fifth row intersects all columns
except c1, so, a1 = 0 and a2 = a3 = a4 = a5 = 1. Therefore,

h1 = hi1 = |c1| − a1 = 2− 0 = 2

h5 = hi2 = |c5| − a5 − s1 = 3− 1− 1 = 1

h2 = hi3 = |c2| − a2 − (s1 + s5) = 4− 1− (1 + 1) = 1

h4 = hi4 = |c4| − a4 − (s1 + s5 + s2) = 6− 1− (1 + 1 + 0) = 3

h3 = hi5 = |c3| − a3 − (s1 + s5 + s2 + s4) = 6− 1− (1 + 1 + 0 + 1) = 2

By Theorem 4.1,
∑

M∈F(M,s;A) q
maj(M) =

∏m
i=1

[
hi
si

]
q
=

[
2
1

]
q

[
1
0

]
q

[
2
2

]
q

[
3
1

]
q

[
1
1

]
q
= (1 + q)(1 + q + q2) =

1 + 2q + 2q2 + q3. The fillings in F(M, s;A) are listed in Figure 7.
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Figure 7: Illustration of Theorem 4.1.

Corollary 4.3. Let σ be a permutation of [m] and let M be a moon polyomino with columns
c1, . . . , cm. Suppose the shape N with columns c′i = cσ(i) is also a moon polyomino and s′ =
(s′1, . . . , s

′
m) with s′i = sσ(i). Then

∑

M∈F(M,s;A)

qmaj(M) =
∑

N∈F(N ,s′;A)

qmaj(N). (4.3)

That is, the generating function
∑

M∈F(M,s;A) q
maj(M) does not depend on the order of the columns

of M.

Proof. The formula (4.2) seems to depend on the order ≺ of the columns of the moon polyomino.
However, note that ci ≺ cj if |ci| < |cj |; and columns of same length are consecutive in the order
≺. Hence it suffices to compare the terms in the right-hand side of (4.2) that come from columns
of fixed length. If cij+1 ≺ · · · ≺ cij+k

are all the columns of M of fixed length, then

hij+r = hij+1 − (sij+1 + · · ·+ sij+r−1), 2 ≤ r ≤ k. (4.4)

Thus the contribution of these columns to the right-hand side of (4.2) is

k∏

r=1

[
hij+r

sij+r

]

q

=

[
hij+1

sij+1 , . . . , sij+k
, hij+1 − (sij+1 + · · ·+ sij+k

)

]

q

. (4.5)

The last q-multinomial coefficient is invariant under permutations of sij+1 , . . . , sij+k
, and the claim

follows.

The right-hand side of formula (4.2) also appeared in the generating function of NE chains, as
shown in [11]:
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Theorem 4.4 (Kasraoui).
∑

M∈F(M,s;A)

qne(M) =

m∏

i=1

[
hi
si

]

q

.

Combining Theorems 4.1 and 4.4, we have

Theorem 4.5. ∑

M∈F(M,s;A)

qmaj(M) =
∑

M∈F(M,s;A)

qne(M).

That is, the maj statistic has the same distribution as the ne statistic over the set F(M, s, A).
Since ne(M) is the natural analogue of inv for words and permutations, Theorem 4.5 generalizes
MacMahon’s equidistribution result. Unfortunately, as noted in [2], the refinement of MacMahon’s
theorem which asserts that the joint distribution of maj and inv over permutations is symmetric
does not hold even for matchings.

We shall prove a lemma about the major index for words and then use it to prove Theorem 4.1.

Lemma 4.6. Let w = w1 . . . wk be a word such that wi < n for all i. Consider the set S(w) of
all the words w′ that can be obtained by inserting m many n’s between the letters of w. Then the
difference maj(w′)−maj(w) ranges over the multiset {i1+i2+· · ·+im | 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ k}.
It follows that

∑

w′∈S(w)

qmaj(w′) = qmaj(w)
∑

0≤i1≤i2≤···≤im≤k

qi1+i2+···+im = qmaj(w)

[
k +m

m

]

q

. (4.6)

The same statement holds if w = w1 . . . wk is a word such that wi > 1 for all i and S(w) is the set
of all the words w′ obtained by inserting m many 1’s between the letters of w.

Proof. We give an elementary proof for the case of inserting n’s. The case of inserting 1’s is dealt
with similarly. For a word w = w1 . . . wk we define the descent sequence desseq(w) = a1 . . . ak+1 by
letting ai = maj(w(i))−maj(w), where w(i) is obtained by inserting one n in the i-th gap of w, i.e.,
w(i) = w1 . . . wi−1nwi . . . wk. Note that

maj(w(i)) = maj(w) +





1 + des(wi . . . wk), if wi−1 > wi, 2 ≤ i ≤ k or i = 1

i+ des(wi . . . wk), if wi−1 ≤ wi, 2 ≤ i ≤ k

0, if i = k + 1.

Hence, if t = des(w) then desseq(w) is a shuffle of the sequences t+1, t, . . . , 0 and t+2, t+3, . . . , k
which begins with t+1 and ends with 0. Moreover, every such sequence is desseq(w) for some word
w. By definition, the multiset {maj(w′)−maj(w) | w′ ∈ S(w)} depends only on desseq(w) and not
on the letters of w.

First we consider the case when desseq(w) = k(k − 1) . . . 0, i.e., Des(w) = [k − 1]. Inserting b
n’s between wi−1 and wi increases the major index by b(k − i + 1). Hence, if one inserts bi many
n’s between wi−1 and wi for 1 ≤ i ≤ k + 1, the major index is increased by

k+1∑

i=1

bi(k − i+ 1) = k + · · ·+ k︸ ︷︷ ︸
b1

+(k − 1) + · · ·+ (k − 1)︸ ︷︷ ︸
b2

+ · · ·+ 0 + · · ·+ 0︸ ︷︷ ︸
bk+1

.
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Letting (b1, . . . , bk+1) range over all (k+1)-tuples with
∑k+1

i=1 bi = m, the increased amount ranges
over the multiset {i1 + i2 + · · ·+ im | 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ k}.

To deal with the other possible descent sequences, we note that any descent sequence desseq(w)
can be obtained by applying a series of adjacent transpositions to k(k − 1) . . . 0, where we only
transpose adjacent elements i, j which correspond to ascent and descent positions, respectively.
Suppose desseq(w) = a1 . . . ai−1ai+1aiai+2 . . . ak+1 is obtained by transposing the i-th and (i+1)-st
element in desseq(v) = a1 . . . ai−1aiai+1ai+2 . . . ak+1, where ai and ai+1 correspond to an ascent and
a descent in v, respectively. Consequently, wi−1 > wi ≤ wi+1 and vi−1 ≤ vi > vi+1, while wj ≤ wj+1

if and only if vj ≤ vj+1 for j 6= i−1, i. It suffices to show that the multisets {maj(w′)−maj(w) | w′ ∈
S(w)} and {maj(v′) −maj(v) | v′ ∈ S(v)} are equal. Suppose w′ ∈ S(w) is obtained by inserting
bj many n’s in the j-th gap of w, 1 ≤ j ≤ k + 1. Let v′ ∈ S(v) be the word obtained by inserting
cj n’s in the j-th gap of v where cj are defined as follows.
If bi+1 = 0 then

cj =





0, if j = i

bi, if j = i+ 1

bj , if j 6= i, i+ 1.

(4.7)

If bi+1 > 0 then

cj =





bi + 1, if j = i

bi+1 − 1, if j = i+ 1

bj , if j 6= i, i+ 1.

(4.8)

This defines a map between sequences (bj) with bi+1 = 0 (resp. bi+1 > 0), and (cj) with ci = 0
(resp. ci > 0), which is a bijection. The n’s inserted in the j-th gap of w for j 6= i, i+1 contribute to
maj(w′)−maj(w) the same amount as do the n’s inserted in the same gaps in v to maj(v′)−maj(v).
The major index contributed to maj(w′) by the segment

wi−1 n . . . n︸ ︷︷ ︸
bi

wi n . . . n︸ ︷︷ ︸
bi+1

is the sum of i− 1 (which equals the contribution of wi−1wi to maj(w)) and

{
(b1 + · · ·+ bi) + (b1 + · · ·+ bi+1 + i), if bi+1 > 0

(b1 + · · ·+ bi), if bi+1 = 0.

Similarly, the major index contributed to maj(v′) by the segment

vi−1 n . . . n︸ ︷︷ ︸
ci

vi n . . . n︸ ︷︷ ︸
ci+1

is the sum of i (which equals the contribution of vi−1vi to maj(v)) and

{
(c1 + · · ·+ ci + i− 1) + (c1 + · · ·+ ci+1), if ci > 0

(c1 + · · ·+ ci+1), if ci = 0.

Now, one readily checks that maj(w′)−maj(w) = maj(v′)−maj(v). This completes the proof.
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Remark 4.7. Lemma 4.6 can be proved in many ways, for example, in [8, Theorem 1.2] Foata
and Han constructed a transformation on the shuffle class Sh(0mv), where v is a nonempty word
whose letters are positive integers. Alternatively, one can use the theory of P -partitions [9], which
leads to a stronger result, namely, Equation (4.6) holds if w = w1 . . . wk with wi 6= n0, i = 1, . . . , k
and S(w) is the set of all words w′ obtained by inserting m copies of n0 between the letters of w.
To show this, it is enough to consider the case when w is a permutation of length k on k distinct
numbers between 1 and k+m such that the integers N1 < N2 < · · · < Nm are missing from it and
w′ varies over the set S(w) of all permutations obtained by inserting N1, N2, . . . , Nm in w from left
to right. We outline the proof in this general case assuming that the reader is familiar with the
theory of P -partitions. We adopt the notation and definitions from Section 4.5 in [21], which is
also a good reference for basic results on P -partitions.

Let P1 be the antichain with k elements labeled with the letters of w. Let P2 be a disjoint union
of P1 and a chain of m elements labeled N1 < N2 < · · · < Nm. We denote by Fw(q1, . . . , qk) the
generating function of all w-compatible functions f : [k] → N (see [21] for the definitions). Lemma
4.5.2 in [21] asserts that

Fw(q, . . . , q) =
qmaj(w)

(1− q) · · · (1− qk)
. (4.9)

All P2-partitions compatible with some w′ ∈ S(w) are obtained by combining a P1-partition com-
patible with w and a integer partition with at most m parts. Therefore,

∑

w′∈S(w)

Fw′(q, . . . , q) =
Fw(q, . . . , q)

(1− q) · · · (1− qm)
. (4.10)

Applying Lemma 4.5.2 in [21] to all w′ ∈ S(w), we have

∑

w′∈S(w)

Fw′(q, . . . , q) =
∑

w′∈S(w)

qmaj(w′)

(1− q) · · · (1− qk+m)
. (4.11)

Combining equations (4.9), (4.10), and (4.11) gives (4.6).

Proof of Theorem 4.1. Let c be the smallest column of M in the order ≺ and M′ = M\c. Note
that c is the leftmost or the rightmost column of M. Let M be a filling of M with s nonempty
cells in c and let M ′ be its restriction on M′. From Definition 2.2’, we derive that

maj(M) = maj(M ′) + maj(Rc)−maj(Rc ∩M ′),

where Rc is the filling of the rectangle M(c) determined by the column c. Rc is obtained by adding
a column with s many 1-cells to the rectangular filling Rc ∩ M ′. Using the bijection between
fillings of rectangles and words described in Section 3.1, one sees that if c is the leftmost (resp.
rightmost) column in M , this corresponds to inserting s maximal (resp. minimal) elements in the
word determined by the filling Rc ∩M ′. When the column c varies over all possible

(
h
s

)
fillings, by

Lemma 4.6, the value maj(Rc)−maj(Rc ∩M ′) varies over the multiset {i1+ i2+ · · ·+ is | 0 ≤ i1 ≤
i2 ≤ · · · ≤ is ≤ (h − s)} with generating function

∑
0≤i1≤···≤is≤(h−s) q

i1+···+is =
[
h
s

]
q
, where h is

the value h1 (resp. hm) if c is the leftmost (resp. the rightmost) column of M , as defined in (4.1).
Therefore, ∑

M∈F(M,s;A)

qmaj(M) =

[
h

s

]

q

∑

M ′∈F(M′,s′;A)

qmaj(M ′)

12



where s′ is obtained from s by removing the first (resp. last) component if c is the leftmost (resp.
rightmost) column of M . Equation (4.2) now follows by induction on the number of columns of
M.

5 The Foata-type bijection for moon polyominoes

The objective of this section is to give a bijective proof for Theorem 4.5. For the set WS of all words
of a multiset S, the equidistribution of maj and inv was first proved by MacMahon by combinatorial
analysis. This raised the question of constructing a canonical bijection Φ : WS → WS such that
maj(w) = inv(Φ(w)). Foata answered the question by constructing an elegant map Φ [6], which
is referred to as the second fundamental transformation [7]. We begin this section by reviewing
Foata’s map Φ : WS → WS .

Let w = w1w2 · · ·wn be a word on N and let a be an integer. If wn ≤ a, the a-factorization
of w is w = v1b1 · · · vpbp, where each bi is a letter less than or equal to a, and each vi is a word
(possibly empty), all of whose letters are greater than a. Similarly, if wn > a, the a-factorization
of w is w = v1b1 · · · vpbp, where each bi is a letter greater than a, and each vi is a word (possibly
empty), all of whose letters are less than or equal to a. In both cases one defines

γa(w) = b1v1 · · · bpvp.

With the above notation, let a = wn and let w′ = w1 · · ·wn−1. The second fundamental transfor-
mation Φ is defined recursively by Φ(w) = w if w has length 1, and

Φ(w) = γa(Φ(w
′))a,

if w has length n > 1. The map Φ has the property that it preserves the last letter of the word,
and inv(Φ(w)) = maj(w).

Foata’s map Φ is constructed recursively with certain “local operations” to eliminate the differ-
ence caused by adding the last letter in the words. Inspired by this idea, we construct a Foata-type
bijection φ : F(M, s;A) → F(M, s;A) with the property maj(M) = ne(φ(M)). The map φ can be
defined directly for left-aligned stack polyominoes. But we describe it first for Ferrers diagrams in
Section 5.1, because this case contains all the essential steps and is easy to understand. This map
is a revision of the Foata-type bijection presented in the preprint of [2] for set partitions, which
correspond to fillings with row and column sums at most 1. Then in Section 5.2 we extend the
construction to left-aligned stack polyominoes and prove that maj(M) = ne(φ(M)). In Section 5.3,
we construct two bijections, f and g, that transform a filling of a moon polyomino to a filling of a
left-aligned stack polyomino and preserve the statistics maj and ne, respectively. Composing these
maps with φ defined on left-aligned stack polyominoes yields a bijection on F(M, s;A) that sends
maj to ne.

5.1 The bijection φ for Ferrers diagrams

The empty rows in the filling M ∈ F(M, s;A) do not play any role in the definitions of maj(M) or
ne(M). Therefore, in what follows we assume that A = ∅ and describe φ for fillings without empty
rows. For A 6= ∅, one can first delete the empty rows of the filling, apply the map φ, and reinsert
the empty rows back.
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Let F be a Ferrers diagram and F a filling of F . The bijection φ is defined inductively on the
number of rows of F . If F has only one row, then φ(F ) = F . Otherwise, we denote by F1 the
filling obtained by deleting the top row r of F . Let F ′

1 = φ(F1) and let F2 be the filling obtained
by performing the algorithm γr described below. Then F ′ = φ(F ) is obtained from F2 by adding
the top row r. So, by definition, φ preserves the first row of F .

The algorithm γr

If C is the 1-cell of r, then denote by R the set of all rows of F ′
1 that intersect the column of C.

The 1-cells in R that are strictly to the left of C are called left and the 1-cells in R that are weakly
to the right of C are called right. The cell C is neither left nor right.

Let CLC (critical left cell) be the topmost left 1-cell, and CRC (critical right cell) be the
leftmost right 1-cell that is above CLC. If there is more than one such cell the CRC is defined
to be the lowest one. Note that CLC and CRC need not exist. Denote by R1 the set of all rows
weakly below the row of CRC that intersect the column of CRC and R2 is the set of all rows in R
that do not intersect the column of CRC. If CLC does not exist then both R1 and R2 are empty.
If CLC exists but CRC does not, then R1 is empty and R2 contains all the rows in R weakly
below CLC. See Figure 8 for an illustration.

¾ CLC

¾ CRC

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

Figure 8: The CRC and CLC are in rows 5 and 6, respectively. R1 contains rows 5, 6, and 7,
while R2 contains rows 8 and 9.

Definition 5.1. Let C1 and C2 be two 1-cells with coordinates (i1, j1) and (i2, j2), respectively.
We swap the cells C1 and C2 by deleting the 1’s from these two cells and write 1’s in the cells with
coordinates (i1, j2) and (i2, j1).

For a cell C, denote by col(C) the column of C, and |col(C)| the length of col(C).

Algorithm γ1
r on R1

Let ptr1 and ptr2 be two pointers.

(A) Set ptr1 on the highest row of R1 and ptr2 on the next row in R1 below ptr1.

(B) If ptr2 is null, then go to (D). Otherwise, the pointers ptr1 and ptr2 point at 1-cells C1 and C2,
respectively.
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(B1) If C2 is a left cell then swap the cells C1 and C2 and move ptr1 to the row of ptr2.

(B2) If C2 is a right cell, then

(B2.1) If |col(C1)| = |col(C2)| then move ptr1 to the row of ptr2.

(B2.2) If C1 is to the left of C2 and |col(C1)| > |col(C2)| then do nothing.

(B2.3) If C1 is to the right of C2 and |col(C1)| < |col(C2), then find the lowest left 1-cell L
that is above C1. Suppose that the row-column coordinates of the cells L, C1, and C2

are (i1, j1), (i2, j2), and (i3, j3), respectively. Delete the 1’s from these three cells and
write them in the cells with coordinates (i1, j3), (i2, j1), and (i3, j2). Move ptr1 to the
row of ptr2.

†

(C) Move ptr2 to the next row in R1. Go to (B).

(D) Stop.

See Figure 9 for illustration of the steps.
†Note: This step is well-defined since it cannot occur before ptr2 reaches CLC (that would

contradict the definition of CRC) and, after that, ptr1 is always below CLC. Therefore, the 1-cell
L always exists. The fact that the square (i3, j2) belongs to F follows from the definition of R1

and Lemma 5.2 (c).
When the algorithm γ1r stops, we continue processing the rows of R2 by algorithm γ2r .

The algorithm γ2
r on R2

(A′) Set ptr1 on the highest row of R2 and ptr2 on the next row in R2 below ptr1.

(B′) (Borrowing) If ptr1 points to a right 1-cell then find the lowest left 1-cell above it and swap
them. Now ptr1 points to a left 1-cell.

(C′) If ptr2 is null, then go to (E′). Otherwise, the pointers ptr1 and ptr2 point at 1-cells C1 and C2

respectively.

(C′1) If C2 is a right cell then swap C1 and C2.

(C′2) If C2 is a left cell then do nothing.

(D′) Move ptr1 to the row of ptr2 and ptr2 to the next row in R2 below. Go to (C′).

(E′) Stop.

See Figure 10 for illustration of the steps in γ2r .
Let us note the following easy but useful properties of the algorithm γr.

1. The pointers ptr1 and ptr2 process the rows of R1 and R2 from top to bottom. However,
while ptr2 always moves from one row to the next one below it, ptr1 sometimes stays on the
same row (cf. step (B2.2)) and sometimes “jumps” several rows below (cf. step (B1)).

2. Pointer ptr1 always points to a right 1-cell in γ1r and to a left 1-cell in γ2r .

Further we show some nontrivial properties which will be used to show that the map φ has the
desired property maj(F ) = ne(φ(F )).
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ptr1

ptr2 ptr1
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1L 1R

1L

ptr1
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1R 1R

1R

ptr1

ptr2 ptr1

ptr2

1R

1R 1R

1R

1R

1R

ptr2

1R

1R

ptr2

ptr1 ptr1

1R

1R

1R

1R

1L

1L

ptr1

ptr2 ptr1

ptr2

Step (B1).

Step (B2.3).Step (B2.2).

Step (B2.1).

Figure 9: The algorithm γ1r on R1.

Lemma 5.2. Suppose in γ1r ptr1 is pointing to C1 and ptr2 is pointing to C2. Then

(a) In the rows between C1 and C2 there are no 1’s weakly to the left of C1.

(b) If L is the lowest left 1-cell above C1, then in the rows between L and C1 there are no 1’s
weakly to the left of C1.

(c) The 1-cell C1 is in a column with same length as the column of the critical right cell CRC.
Moreover, when γ1r stops ptr1 points to the last row in R1.

Proof. The first two parts are proved by induction on the number of steps performed in the algo-
rithm.

(a) The only step which leaves the gap between ptr1 and ptr2 nonempty is (B2.2). But after this
step, the number of 1’s in the rows between ptr1 and ptr2 weakly to the left of C1 does not
change.

(b) The case when the last step is (B2.2) follows from the induction hypothesis. If the last step
is (B1) or (B2.3) the claim follows from part (a). The case when the last step was (B2.1)
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ptr1 ptr1

Step (C
′
1). Step (C

′
2).

ptr2 ptr1

ptr2

ptr2 ptr1

ptr2

1L

1L

1L

1L

1R

1L

1L

1R

Figure 10: Algorithm γ2r on R2.

and the cells C1 and C2 formed an NE chain the claim also follows from part (a) and the
induction hypothesis. If in (B2.1), the cells C1 and C2 do not form an NE chain, in addition
to the induction hypothesis, one uses the fact that there are no 1’s in the rows between these
two cells which are weakly to the left of C2.

(c) The first part follows immediately from the definition of the steps. If the second part is not
true, then the last step must be (B2.2). and the column of C1 is longer than the column of
C2. Since this is the last step of γ1r , it follows that the column of C1 intersects the top row of
R2. However, the column of CRC does not intersect the top row of R2 by definition of R2.
This contradicts the fact that C1 and CRC are in columns of same length.

Proposition 5.3. During algorithm γ1r the number of NE chains decreases by the total number
of left 1-cells in R1, whereas during algorithm γ2r the number of NE chains increases by the total
number of right 1-cells in R2.

Proof. To prove the first part note that pointer ptr2 points to each left 1-cell in R1 exactly once
in the algorithm γ1r . When that happens, step (B1) is performed during which, by Lemma 5.2(a),
the number of NE chains decreases by one. In the other steps, the number of NE chains remains
unchanged. This is trivial for steps (B2.1) and (B2.2), whereas for step (B2.3) it follows from
Lemma 5.2 (a) and (b).

For the second part, note that pointer ptr2 points to each right 1-cell in R2 exactly once in the
algorithm γ2r with possible exception being the top 1-cell in R2 to which it never points. In those
steps the number of NE chains is increased by one, while otherwise it remains the same. When the
top 1-cell is right, then Borrowing occurs. It follows from parts (b) and (c) of Lemma 5.2 that the
number of NE chains is also increased by one.

Theorem 5.4. The map φ : F(F , s;A) → F(F , s;A) is a bijection.

The proof is quite technical and is given in the appendix. Here we only present an example of
the bijection φ in Figure 11 and explain how it includes Foata’s second fundamental transformation.
If the moon polyomino is rectangular, then the algorithm γr has a simpler description because some
of the cases can never arise. Namely, if the cell in the second row forms an NE chain with the top
cell (a descent) then R1 = ∅, and only the steps (C’1) and (C’2) are performed. Otherwise, R2 = ∅
and, since all columns are of equal height, only the steps (B1) and (B2.1) are performed. In both

17



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fi φ(Fi)φ(Fi) Fi

Figure 11: Example of the map φ applied inductively on F = F7. The fillings Fi are restrictions of
F on the last i rows.

these cases, via the correspondence between words and rectangular fillings (c.f. Section 3.1) the
algorithms γ2r and γ1r for rectangles are equivalent to Foata’s transformation for words [6].

5.2 The bijection φ for left-aligned stack polyominoes

Next we extend the bijection φ to fillings of left-aligned stack polyominoes which sends maj to ne.
Let M be a left-aligned stack polyomino. As in the case of Ferrers diagrams, we can assume that
A = ∅ and only consider fillings without empty rows. Suppose M is a filling of M with top row r.
The map, which is again denoted by φ, is defined inductively on the number of rows of M . If M
has only one row, then φ(M) = M . Otherwise, let F be the maximal Ferrers diagram in M that
contains the top row and F1 be F without the top row. Let F = M ∩ F and F1 = M ∩ F1. To
obtain φ(M) we perform the following steps. (See Figure 12).

1. Delete the top row of M and get M1 = M\r.
2. Apply φ to M1 and get M ′

1 = φ(M1).

3. Apply the algorithm γr to the filling F ′
1 = M ′

1 ∩ F1 and leave the cells in M ′
1 outside of F ′

1

unchanged. Denote the resulting filling by M2.

4. φ(M) is obtained by adding row r back to M2.

It is a bijection from F(M, s;A) to itself since every step is invertible. That the Step 3 is
invertible follows from the proof of Theorem 5.4.
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  delete return

M

(shaded part is F )
M1 M
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1 M2 φ(M)
(shaded part is F1) (shaded part is F

′
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φ γr

rr

row r row rto F
′

1

(shaded part is F2)

Figure 12: Illustration of φ for left-aligned stack polyominoes.

Lemma 5.5. Using the notation introduced above,

maj(M)−maj(M1) = maj(F )−maj(F1) = #R2(F1) (5.1)

where R2(F1) is defined with respect to the top row r of F as in Section 5.1.

Proof. Let S be the filling M restricted to the rows which are not completely contained in F . From
the definition of maj, we have

maj(M) = maj(F ) + maj(S)−maj(F ∩ S) (5.2)

maj(M1) = maj(F1) + maj(S)−maj(F1 ∩ S) (5.3)

Note that F ∩ S = F1 ∩ S, hence (5.2) and (5.3) give the first equality in (5.1). The second one is
readily checked using Proposition 3.1 for major index of stack polyominoes.

The rest of this subsection is devoted to proving that the map φ has the desired property
maj(M) = ne(φ(M)). We shall need one more lemma.

Let C be a 1-cell in a filling M of a left-aligned stack polyomino. We say that C is maximal
if there is no 1 in M which is strictly above and weakly to the left of C. Clearly, a maximal cell
must be the highest 1-cell in its column. For a maximal cell C in M , we use t(C,M) to denote the
index of the leftmost column (the columns are numbered from left to right) to the right of C that
contains a 1-cell which together with C forms an NE chain. If such a column does not exist set
t(C,M) = ∞.

Lemma 5.6. A 1-cell C in M is maximal if and only if the highest 1-cell C ′ in the same column
in M ′ = φ(M) exists and is maximal. Moreover, t(C,M) = t(C ′,M ′) when they are both maximal.

Proof. We proceed by induction on the number of rows of M and keep the notation as in Figure 11.
The case when M has one row is trivial.

Suppose that the top row r of M has a 1-cell C∗ in the column i∗. The cell C∗ is maximal in
both M and M ′ and t(C∗,M) = ∞ = t(C∗,M ′). Note that a 1-cell C 6= C∗ in M (resp. M ′) is
maximal if and only if C is in column i < i∗ and is maximal in M1 (resp. M2).

Denote by C1, C
′
1, and C2 the highest 1-cells in column i < i∗ in the fillings M1, M

′
1 = φ(M1),

andM2, respectively. By the induction hypothesis, C1 is maximal inM1 if and only if C ′
1 is maximal
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in M ′
1. M2 is obtained from M ′

1 by applying the algorithm γr with respect to the row r to F ′
1. C

′
1

is a left cell in this algorithm, and since γr does not change the relative position of the left 1-cells,
C2 is maximal in M2.

It only remains to prove that t(C,M) = t(C ′,M ′). Suppose t(C1,M1) = t(C ′
1,M

′
1) = a (they

are equal by the inductive hypothesis).
If a < i∗ then t(C,M) = a. In M ′

1 it corresponds to a 1-cell D′ in a column left of C∗ such
that C ′

1, D
′ form an NE chain. Since the algorithm γr preserves the column sums and the relative

positions of left 1-cells, we have t(C2,M2) = a, and hence t(C ′,M ′) = a.
If a ≥ i∗ then t(C,M) = i∗. The fact that t(C ′

1,M
′
1) = a ≥ i∗ means that there is no left 1-cell

in M ′
1 above and to the right of C ′

1 and, since γr does not change the relative positions of the left
1-cells, there will be no left 1-cell above and to the right of C2 in M2. So, in this case, we conclude
t(C ′,M ′) = i∗ = t(C,M).

Theorem 5.7. If M is a filling of a left-aligned stack polyomino M, then maj(M) = ne(φ(M)).

Proof. Again we proceed by induction on the number of rows of M . The case when M has one row
is trivial. We use the notation as in Figure 11, and let F2 = M2 ∩ F1.

By Proposition 5.3, the algorithm γr on M ′
1 decreases ne by one for each left 1-cell in R1(M

′
1)

and increases it by one for each right 1-cell in R2(M
′
1). Therefore,

ne(φ(M)) = ne(M2) + #{left 1-cells in R(F2)}
= ne(M ′

1)−#{left 1-cells in R1(F
′
1)}+#{right 1-cells in R2(F

′
1)}

+#{left 1-cells in R(F2)}

Since γr preserves the column sums,

#{left 1-cells in R(F2)} = #{left 1-cells in R(F ′
1)}

hence
ne(φ(M)) = ne(M ′

1) + #R2(F
′
1).

One the other hand, from Lemma 5.5 and the induction hypothesis, one gets

maj(M) = maj(M1) + #R2(F1) = ne(M ′
1) + #R2(F1).

So, it suffices to show that

#R2(F1) = #R2(F
′
1). (5.4)

To show equation (5.4), note that for a filling of a Ferrers diagram F the number of rows in
R2(F ) is determined by the column indices of CLC (critical left cell) and CRC (critical right cell).
The CLC is the topmost left 1-cell which, if exists, is the topmost maximal cell besides the 1-cell
in the first row. By Lemma 5.6, CLC in F1 ⊆ M1 is in the same column as CLC ′ in F ′

1 ⊆ M ′
1,

or neither of them exists. The latter case is trivial, as R2(F ) is empty. In the first case, let |r|
denote the length of row r. Then CRC, the critical right cell of F1, is in the column t(CLC,M1)
if t(CLC,M1) ≤ |r| and does not exist otherwise. Similarly, the critical right cell of F ′

1, CRC ′,
is in the column t(CLC ′,M ′

1) if t(CLC,M ′
1) ≤ |r|, and does not exist otherwise. By Lemma 5.6,

t(CLC,M1) = t(CLC ′,M ′
1), and this implies (5.4).
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5.3 The case of a general moon polyomino

Now we consider the case when M is a general moon polyomino. We label the rows of M by
r1, . . . , rn from top to bottom. Let N be the unique left-aligned stack polyomino whose sequence
of row lengths is equal to |r1|, . . . , |rn| from top to bottom. In other words, N is the left-aligned
polyomino obtained by rearranging the columns of M by length in weakly decreasing order from
left to right. For the definitions that follow, we use an idea of Rubey [19] to describe an algorithm
that rearranges the columns of M to obtain N (Figure 13).

Algorithm α for rearranging M:

1. Set M′ = M.
2. If M′ is left aligned go to (4).
3. If M′ is not left-aligned consider the largest rectangle R completely contained in M′

that contains c1, the leftmost column of M′. Update M′ by letting M′ be the polyomino
obtained by moving the leftmost column of R to the right end. Go to (2).
4. Set N = M′.

Figure 13: The algorithm α.

In this section we give two bijections f, g : F(M, s;A) → F(N , s′;A) which preserve the major
index and the number of NE chains, respectively. The sequence s′ is obtained by rearranging the
sequence s in the same way N is obtained by rearranging the columns of M.

5.3.1 Bijection f : F(M, s;A) → F(N , s′;A) such that maj(M) = maj(f(M))

Let R be a filling of a rectangle R with column sums s1, s2, . . . , sm. First, we describe a trans-
formation τ which gives a filling of R with column sums s2, s3, . . . , sm, s1 and preserves the major
index. Recall that a descent in R is a pair of 1’s in consecutive nonempty rows that form an NE
chain. Define an ascent to be a pair of 1’s in two consecutive nonempty rows that does not form
an NE chain. Suppose the first column of R has k many 1-cells: C1, . . . , Ck from top to bottom.

Transformation τ on rectangles:

1. Let R∗ be the rectangle obtained by adding one empty column to R from right. Process the
1-cells C1, . . . , Ck from bottom to top (see Figure 14):

2. For r = k, k − 1, . . . , 1 do the following:

Let Da be the lowest 1-cell above Cr in R∗ and Db be the highest 1-cell below Cr in R∗.
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Figure 14: Illustration of the transformation τ for rectangles.

(a) If Da does not exist or Da = Cr−1, and Db does not exist, just move Cr horizontally to
the last column of R∗;

(b) If (i) Da does not exist or Da = Cr−1, but Db exists, or (ii) both Da and Db exist, and
Da is strictly to the right of Db:

Let D1 = Cr, D2 = Db, D3, . . . , Dp be the maximal chain of consecutive ascents in
R∗. Move Di horizontally to the column of Di+1, for i = 1, . . . , p − 1, and move Dp

horizontally to the last column of R∗. (If Dp is in the last column of R∗, it remains
there.)

(c) If Da 6= Cr−1, and (Da is weakly to the left of Db or Db does not exist):

Let D1 = Cr, D2 = Da, D3, . . . , Dp be the maximal chain of consecutive descents in
R∗. Move Di horizontally to the column of Di+1, for i = 1, . . . , p − 1, and move Dp

horizontally to the last column of R∗.

3. Delete the first column of R∗.

Note that each iteration in Step 2 decreases the number of 1’s in the first column of R∗ by one
and increases the number of 1’s in the last column by one, while the other column sums remain
unchanged.

Lemma 5.8. The transformation τ is invertible. Moreover, it preserves the descents and hence
maj(R) = maj(τ(R)).

Proof. The map τ is invertible since τ−1 can be obtained by taking ρ◦ τ ◦ρ, where ρ is the rotation
of rectangles by 180◦. Moreover, each iteration of Step 2 of τ preserves the positions of descents,
hence the second part of the claim holds.

Now we are ready to define the map f . Suppose M ∈ F(M, s;A). We perform the algorithm
α on M to transform the shape M to N . While we are in Step 3, instead of just moving the first
column of R to the right end, we perform the algorithm τ on the filling R of R. f(M) is defined
to be the resulting filling of N .
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Proposition 5.9. The map f : F(M, s;A) → F(N , s′;A) is a bijection and maj(M) = maj(f(M)).

Proof. The first part follows from Lemma 5.8 and the fact that α is invertible. The filling f(M)
is obtained after several iterations of Step 3 in the algorithm α combined with application of τ .
For the second part of the claim, it suffices to show that maj is preserved after one such iteration.
Let M ′ be the filling of the shape M′ obtained from M after one step of f in which the rectangle
R is transformed into τ(R). We shall use Definition 2.2 to compare maj(M) and maj(M ′). Let
R1, . . . , Rk (resp. R′

1, . . . , R
′
k) be the maximal rectangles of M (resp. M ′), ordered by height. In

particular, Ri and R′
i are of same size. Suppose R = Rs, then R′

s = τ(R). We partition the set of
rectangles into three subsets according to i < s, i = s, and i > s, and compare the contribution of
Ri’s in each subset.

1. For 1 ≤ i ≤ s− 1, the rectangles Ri and Ri ∩Ri+1 are of smaller height than R and contain
several consecutive rows of R. Using Lemma 5.8 we know that the descents in R′

i ∩ τ(R)
(resp. R′

i∩R′
i+1∩τ(R)) 1 ≤ i ≤ s−1, are in the same rows as in Ri∩R (resp. Ri∩Ri+1∩R).

And descents formed by one cell in R and one cell on the right of R are preserved since τ
preserves the set of rows that contain a non-zero entry. Consequently,

maj(Ri) = maj(R′
i), maj(Ri ∩Ri+1) = maj(R′

i ∩R′
i+1), 1 ≤ i ≤ s− 1. (5.5)

2. For i = s, by Lemma 5.8, we have

maj(Rs) = maj(R′
s). (5.6)

3. For i > s, the height of the rectangle Ri or Ri−1 ∩ Ri is greater than or equal to that of R.
Each of these rectangles contains several consecutive columns of R excluding the first one.
The filling of each subrectangle of R consisting of the columns cj , . . . , cj+m (j > 1) is equal,
up to a rearrangement of the empty rows, to the filling of the subrectangle of τ(R) consisting
of the columns cj−1, . . . , cj+m−1. To see this, note that the shifting of the 1-cells D1, · · · , Dp

horizontally in the algorithm τ can be viewed as moving the 1-cell Di vertically to the row of
Di−1 and moving D1 to the last column of R∗ in the row of Dp. Thus, the descent positions
in the fillings R′

i ∩ τ(R) (resp. R′
i−1 ∩ R′

i ∩ τ(R)), i > s are the same as in Ri ∩ R (resp.
Ri−1 ∩ Ri ∩ R). Finally, one checks that the descents formed by one cell in R and one cell
outside R are also preserved. Therefore,

maj(Ri) = maj(R′
i), maj(Ri−1 ∩Ri) = maj(R′

i−1 ∩R′
i), i > s. (5.7)

Combining (5.5), (5.6), and (5.7) gives maj(M) = maj(M ′).

5.3.2 Bijection g : F(M, s;A) → F(N , s′;A) such that ne(M) = ne(g(M))

Suppose M ∈ F(M, s;A). To obtain g(M), we perform the algorithm α to transform the shape
M to N and change the filling when we move columns in Step 3 so that the number of 1’s in each
row and column is preserved.

Let R be the rectangular filling in Step 3 of α that contains the column c1 of the current filling.
Suppose c1 contains k many 1-cells C1, . . . , Ck from top to bottom. Shade the empty rows of R
and the cells in R to the right of C1, . . . , Ck. Let li denote the number of empty white cells in R
above Ci. If R′ is the rectangle obtained by moving the column c1 from first to last place, fill it to
obtain a filling R′ as follows.
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1. The rows that were empty remain empty. Shade these rows.

2. Write k many 1’s in the last column from bottom to top so that there are li white empty cells
below the i-th 1, 1 ≤ i ≤ k.

3. Shade the cells to the left of the nonempty cells in the last column.

4. Fill in the rest of the rectangle by writing 1’s in the unshaded rows of R′ so that the unshaded
part of R to the right of the first column is the same as the unshaded part of R′ to the left
of the last column.

See Figure 15 for an example.
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Figure 15: One step of the map g.

Proposition 5.10. The map g : F(M, s;A) → F(N , s′;A) is a bijection and ne(M) = ne(g(M)).

Proof. Clearly, every step of g is invertible. To see that ne is preserved, it suffices to show that
it is preserved in each step of g, when one column is moved from left to right. First note that
ne(R) = ne(R′). This follows from the fact that the 1’s in the first column of R form l1, . . . , lk
NE chains from top to bottom, while the 1’s in the last column of R′ form l1, . . . , lk NE chains
from bottom to top and the remaining parts of R and R′ are essentially equal. The numbers of NE
chains in M and M ′ respectively made of at least one 1 which is outside of R and R′ respectively
are equal because each step of g preserves the row and column sums.

Theorem 5.11. Let φ denote the Foata-type bijection described in Section 5.2. For a general moon
polyomino M the map ψ = g−1 ◦ φ ◦ f : F(M, s;A) → F(M, s;A) is a bijection with the property

maj(M) = ne(ψ(M)) (5.8)
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Proof. The maps f and g permute the columns of M together with the corresponding number of
1’s, while φ preserves the column sums. Moreover, all three of them preserve the empty rows.
Therefore, ψ is indeed a map from F(M, s;A) to itself. Finally, (5.8) follows from Proposition 5.9,
Proposition 5.10, and Theorem 5.7.
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Appendix

To show that the map φ : F(F , s;A) → F(F , s;A) is a bijection, it suffices to describe the inverse of
the algorithm γr. First, we need to determine what R1 and R2 were. For that we use the following
properties of γr.

1. When γ1r stops, the pointer ptr1 is at the lowest row of R1 pointing at a right 1-cell C1. The
algorithm γ2r does not change the cell C1 and when the whole algorithm γr terminates, there
is no 1-cell below C1 that together with it forms an NE chain.

2. After performing γ2r , all the right 1-cells in R2 have at least one 1-cell below them with which
they form an NE chain.

3. If R2 was nonempty then, after performing γr, the lowest row of R2 contains a left 1-cell.

4. If any borrowing occurred and the right cell C1 = (i1, j1) and the left cell C2 = (i2, j2) were
swapped, then right after this step the cell (i1, j2) is a right 1-cell in R1 which forms an NE
chain with a left 1-cell from R2 and this is the lowest 1-cell in R1 with this property.

Therefore, if R has no left 1-cells then R2 = R1 = ∅. Otherwise, find the lowest right 1-cell C∗

in R such that there is no 1-cell in R below it that together with C∗ forms an NE chain. Then, by
Properties 1 and 2 all the nonempty rows in R below C∗ are in R2. If there is no 1-cell C∗ with
that property, then R2=R.

Algorithm δ2r : the inverse of γ2
r

(IA′) Initially, set ptr1 to the lowest row of R2 and ptr2 to the next row in R2 above ptr1.

(IB′) If ptr2 is null then go to step (ID′). Otherwise, suppose ptr1 and ptr2 are pointing at 1-cells C1

and C2.

(IB′1) If C2 is a left cell do nothing.

(IB′2) If C2 is a right cell then swap the cells C1 and C2.

(IC′) Move ptr1 to the row of ptr2 and ptr2 to the next row in R2 above it. Go to (IB′).
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(ID′) (Inverse borrowing) Note that ptr1 always points to a left 1-cell. When it reaches the highest
row of R2 and points to a 1-cell C1 first we need to determine whether there was any borrowing.
For that purpose find the lowest right 1-cell C2 above C1 such that the two cells form an NE
chain. Using Property 4 we conclude:

(ID′1) If there is no such a cell C2, then there was no borrowing so do nothing.

(ID′2) If there is such a cell C2, and there is a left 1-cell in the rows between C1 and C2, then there
was no borrowing so do nothing.

(ID′3) If there is such a cell C2, and there is no left 1-cell between C1 and C2, then swap C1 and
C2.

(IE′) Stop.

When the algorithm δ2r stops, continue by applying the algorithm δ1r on R\R2.

Algorithm δ1r : the inverse of γ1
r

(IA) Position ptr1 on the lowest row in R\R2 and ptr2 on the lowest nonempty row in R\R2 above
it.

(IB) If ptr2 is null then go to step (ID). Otherwise, suppose that ptr1 and ptr2 point at the 1-cells C1

and C2 respectively.

(IB1) If C2 is a left cell then check whether there exists a right 1-cell R above C2 in a column
longer than the column of C1 such that there are no left 1-cells between R and C2.

(IB1.1) If such a cell R exists, then suppose that the row-column coordinates of C1, C2, and R
are (i1, j1), (i2, j2), and (i3, j3), respectively. Delete the 1’s from these three cells and
write them in the cells with coordinates (i1, j3), (i2, j1), and (i3, j2). Move ptr1 to the
row of ptr2.

(IB1.1) If there is no such a cell R, then swap C1 and C2 and move ptr1 to the row of ptr2.

(IB2) If C2 is a right cell, then

(IB2.1) If |col(C1)| = |col(C2)| then move ptr1 to the row of ptr2.

(IB2.2) If |col(C1)| 6= |col(C2)| then do nothing.

(IC) Move ptr2 to the next row in R\R2 above it. Go to (IB).

(ID) Stop.

Suppose M ′ is a filling obtained by applying the algorithm γr to the filling M ∈ F(M, s;A).
Next we show that by applying δ2r and δ1r to M ′ one obtains the filling M .

Steps (IB′1) and (IB′2) clearly invert the steps (C′2) and (C′1), respectively. Immediately
after the borrowing step in γ2r , by Lemma 5.2, (b) and (c), and Property 4, we can conclude that
borrowing has been performed if and only if there is a right 1-cell in R\R2 which forms an NE
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chain with a left 1-cell from R2 and does not form an NE chain with any left cells in R1. It is clear
that step (ID′) detects whether there was any borrowing and inverts it if it occurred. So, the first
algorithm δ2r is indeed the inverse of γ2r .

In δ1r , when ptr2 points to a left 1-cell we need to invert either (B1) or (B2.3). Using Lemma 5.2
(c) one sees that step (IB1) detects exactly which of (B1) and (B2.3) occurred and inverts it. If
ptr2 points to a right cell, it is clear that (IB2.1) and (IB2.2) invert the steps (B2.1) and (B2.2) of
γ1r . Moreover, if both ptr1 and ptr2 point to right 1-cells, and there is no left 1-cell above them,
then clearly the algorithm δ1r leaves them unchanged. That is, the algorithm δ1r preserves all rows
that are above the rows in R1. Therefore, we have

M
γr−→ M ′ δ2r+δ1r−→ M.

This implies that γr : F(M, s;A) → F(M, s;A) is injective. Since F(M, s;A) is finite, it follows
that γr is bijective.
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