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Abstract

The energy of a simple graph G, denoted by E(G), is defined as the sum
of the absolute values of all eigenvalues of its adjacency matrix. Denote
by Cn the cycle, and P 6

n the unicyclic graph obtained by connecting a
vertex of C6 with a leaf of Pn−6 . Caporossi et al. conjectured that
the unicyclic graph with maximal energy is P 6

n for n = 8, 12, 14 and
n ≥ 16. In“Y. Hou, I. Gutman and C. Woo, Unicyclic graphs with
maximal energy, Linear Algebra Appl. 356(2002), 27–36”, the authors
proved that E(P 6

n) is maximal within the class of the unicyclic bipartite
n-vertex graphs differing from Cn . And they also claimed that the
energies of Cn and P 6

n is quasi-order incomparable and left this as an
open problem. In this paper, by utilizing the Coulson integral formula
and some knowledge of real analysis, especially by employing certain
combinatorial techniques, we show that the energy of P 6

n is greater than
that of Cn for n = 8, 12, 14 and n ≥ 16, which completely solves this
open problem and partially solves the above conjecture.
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1 Introduction

Let G be a simple graph of order n, A(G) the adjacency matrix of G. The characteristic
polynomial of A(G) is usually called the characteristic polynomial of G, denoted by

φ(G, x) = det(xI − A(G)) = xn + a1x
n−1 + · · ·+ an,

It is well-known [3] that the characteristic polynomial of a bipartite graph G takes the
form

φ(G, x) =

bn/2c∑

k=0

a2kx
n−2k =

bn/2c∑

k=0

(−1)kb2kx
n−2k,
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where b2k = (−1)ka2k and b2k ≥ 0 for all k = 1, . . . , bn/2c, especially b0 = a0 = 1.
Moreover, the characteristic polynomial of a tree T can be expressed as

φ(T, x) =

bn/2c∑

k=0

(−1)km(T, k)xn−2k,

where m(T, k) is the number of k-matchings of T .

For a graph G, let λ1, λ2, . . . , λn denote the eigenvalues of its characteristic polynomial.
The energy of a graph G is defined as

E(G) =
n∑

i=1

|λi|.

This definition was proposed by Gutman [5]. The following formula is also well-known

E(G) =
1

π

∫ +∞

−∞

1

x2
log |xnφ(G, i/x)|dx,

where i2 = −1. Furthermore, in the book of Gutman and Polansky [8], the above equality
was converted into an explicit formula as follows:

E(G) =
1

2π

∫ +∞

−∞

1

x2
log






bn/2c∑

k=0

(−1)ka2kx
2k




2

+



bn/2c∑

k=0

(−1)ka2k+1x
2k+1




2
 dx.

For more results about graph energy, we refer the reader to the recent survey of Gutman
et al. [7].

For two trees T1 and T2 of the same order, one can introduce a quasi order ¹ in the
set of trees, namely, if m(T1, k) ≤ m(T2, k) holds for all k ≥ 0, then define T1 ¹ T2,
and so T1 ¹ T2 implies E(T1) ≤ E(T2) (e.g. [4]). Similarly, one can generalize the quasi
order to the cases of bipartite graphs (e.g. [15]) and unicyclic graphs (e.g. [9]). The quasi
order method is commonly used to compare the energies of two trees, bipartite graphs and
unicyclic graphs. However, for general graphs, it is difficult to define such a quasi order.
If, for two trees or bipartite graphs, the above quantities m(T, k) or |ak(G)| can not be
compared uniformly, then the common comparing method is invalid, and this happened
very often. Recently, for these quasi-order incomparable problems, we find an efficient
way to determine which one attains the extremal value of the energy, see [11–14].

Let Cn be the cycle, and P 6
n be the unicyclic graph obtained by connecting a vertex

of C6 with a leaf of Pn−6 . In [2], Caporossi et al. proposed a conjecture on the unicyclic
graphs with the maximum energy.

Conjecture 1.1. Among all unicyclic graphs on n vertices, the cycle Cn has maximal
energy if n ≤ 7 and n = 9, 10, 11, 13 and 15 . For all other values of n , the unicyclic
graph with maximal energy is P 6

n .

Theorem 1.2. Let G be any connected, unicyclic and bipartite graph on n vertices and
G � Cn . Then E(G) < E(P 6

n) .
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In [10], the authors proved Theorem 1.2 that is weaker than the above conjecture,
namely, E(P 6

n) is maximal within the class of the unicyclic bipartite n-vertex graphs dif-
fering from Cn . And they also claimed that the energies of Cn and P 6

n is quasi-order
incomparable. In this paper, we will employ the Coulson integral formula and some
knowledge of analysis, especially by using certain combinatorial techniques, to show that
E(Cn) < E(P 6

n), and then completely determine that P 6
n is the only graph which at-

tains the maximum value of the energies among all the unicyclic bipartite graphs, which
partially solves the above conjecture.

Theorem 1.3. For n = 8, 12, 14 and n ≥ 16, E(P 6
n) > E(Cn).

2 Main results

We recall some knowledge on real analysis, for which we refer to [16].

Lemma 2.1. For any real number X > −1, we have

X

1 + X
≤ log(1 + X) ≤ X.

The following lemma is a well-known result due to Gutman [6], which will be used in
the sequel.

Lemma 2.2. If G1 and G2 are two graphs with the same number of vertices, then

E(G1)− E(G2) =
1

π

∫ +∞

−∞
log

∣∣∣∣
φ(G1, ix)

φ(G2, ix)

∣∣∣∣ dx.

In the following, we list some basic properties of the characteristic polynomial φ(G, x) ,
which can be found in [3].

Lemma 2.3. Let uv be an edge of G . Then

φ(G, x) = φ(G− uv, x)− φ(G− u− v, x)− 2
∑

C∈C(uv)

φ(G− C, x)

where C(uv) is the set of cycles containing uv . In particular, if uv is a pendent edge with
pendent vertex v , then φ(G, x) = xφ(G− v, x)− φ(G− u− v, x) .

Now we can easily obtain the following lemma from Lemma 2.3.

Lemma 2.4. φ(P 6
n , x) = xφ(P 6

n−1, x)−φ(P 6
n−2, x) and φ(Cn, x) = φ(Pn, x)−φ(Pn−2, x)−2.

By some easy calculations, we get φ(P 6
8 , x) = x8−8x6+19x4−16x2+4 and φ(P 6

7 , x) =
x7 − 7x5 + 13x3 − 7x. Now for convenience, we introduce some notions as follows

Y1(x) =
x +

√
x2 − 4

2
, Y2(x) =

x−√x2 − 4

2
,

C1(x) =
Y1(x)(x2 − 1)− x

(Y1(x))3 − Y1(x)
, C2(x) =

Y2(x)(x2 − 1)− x

(Y2(x))3 − Y2(x)
,

A1(x) =
Y1(x)φ(P 6

8 , x)− φ(P 6
7 , x)

(Y1(x))9 − (Y1(x))7
, A2(x) =

Y2(x)φ(P 6
8 , x)− φ(P 6

7 , x)

(Y2(x))9 − (Y2(x))7
.
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It is easy to verify that Y1(x) + Y2(x) = x, Y1(x)Y2(x) = 1, Y1(ix) = x+
√

x2+4
2

i and

Y2(ix) = x−√x2+4
2

i. We define

f8 = x8 + 8x6 + 19x4 + 16x2 + 4, f7 = x7 + 7x5 + 13x3 + 7x

and

Z1(x) = −iY1(ix) =
x +

√
x2 + 4

2
, Z2(x) = −iY2(ix) =

x−√x2 + 4

2
.

Lemma 2.5. For n ≥ 10 and x 6= ±2, the characteristic polynomials of P 6
n and Cn have

the following forms

φ(P 6
n , x) = A1(x)(Y1(x))n + A2(x)(Y2(x))n

and
φ(Cn, x) = (Y1(x))n + (Y2(x))n − 2.

Proof. By Lemma 2.4, we notice that φ(P 6
n , x) satisfies the recursive formula f(n, x) =

xf(n − 1, x) − f(n − 2, x). Therefore, the general solution of this linear homogeneous
recurrence relation is f(n, x) = D1(x)(Y1(x))n + D2(x)(Y2(x))n. By some elementary
calculations, we can easily obtain that Di(x) = Ai(x) for φ(P 6

n , x), i = 1, 2, from the
initial values φ(P 6

8 , x), φ(P 6
7 , x).

By Lemma 2.4, φ(Cn, x) = φ(Pn, x)−φ(Pn−2, x)− 2 and φ(Pn, x) satisfy the recursive
formula f(n, x) = xf(n−1, x)−f(n−2, x). Similarly, we can obtain the general solution
of this linear nonhomogeneous recurrence relation from the initial values φ(P1, x) = x,
φ(P2, x) = x2 − 1.

Proof of Theorem 1.3 For n = 8, 12, 14, it is easy to verify E(P 6
n) > E(Cn). In

the following, we always suppose n ≥ 16. Using Lemma 2.2, we can deduce

E(Cn)− E(P 6
n) =

1

π

∫ +∞

−∞
log

∣∣∣∣
φ(Cn, ix)

φ(P 6
n , ix)

∣∣∣∣ dx.

From Lemma 2.5, we have

φ(Cn, ix) = (Y1(ix))n + (Y2(ix))n − 2 = ((Z2(x))2(x2 + 1)− (Z2(x))3x)(Z1(x))n · in

+ ((Z1(x))2(x2 + 1)− (Z1(x))3x)(Z2(x))n · in − 2,

φ(P 6
n , ix) = A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

=
Z1(x)f8 + f7

(Z1(x))9 + Z7
1

(Z1(x))n · in +
Z2(x)f8 + f7

(Z2(x))9 + (Z2(x))7
(Z2(x))n · in.

Firstly, we will prove that E(Cn)−E(P 6
n) is decreasing in n for n = 4k + j, j = 1, 2, 3,

namely,

log

∣∣∣∣
(Y1(ix))n+4 + (Y2(ix))n+4 − 2

A1(ix)(Y1(ix))n+4 + A2(ix)(Y2(ix))n+4

∣∣∣∣− log

∣∣∣∣
(Y1(ix))n + (Y2(ix))n − 2

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

∣∣∣∣

= log

(
1 +

K0(n, x)

H0(n, x)

)
< 0.
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Case 1 n = 4k + 2.

In this case, H0(n, x) =
∣∣φ(Cn, ix) · φ(P 6

n+4, ix)
∣∣ > 0 and

K0(n, x) = (A1(ix)− A2(ix))
(
(Y2(ix))4 − (Y1(ix))4

)− 2A1(ix)(Y1(ix))n(1− (Y1(ix))4)

− 2A2(ix)(Y2(ix))n(1− (Y2(ix))4).

Then, by some elementary calculations, we have

K0(n, x) = x(x2 + 1)(x9 + 9x7 + 30x5 + 46x3 + 28x

+ (Z2(x))n(x5 + 5x3 + 6x +
√

x2 + 4 (x4 + 3x2 + 4))

+ (Z1(x))n(x5 + 5x3 + 6x−
√

x2 + 4 (x4 + 3x2 + 4))).

If x > 0, then Z1(x) > 1, −1 < Z2(x) < 0, and we obtain

K0(n, x) = x(x2 + 1)(Z1(x))nq(n, x) < x(x2 + 1)(Z1(x))nq(10, x),

where

q(n, x) =(Z2(x))n(x9 + 9x7 + 30x5 + 46x3 + 28x)

+ (Z2(x))2n(x5 + 5x3 + 6x +
√

x2 + 4 (x4 + 3x2 + 4))

+ x5 + 5x3 + 6x−
√

x2 + 4 (x4 + 3x2 + 4).

By some simplifications,

q(10, x) = −1

2
x(x2 + 4)(2x8 + 17x6 + 47x4 + 46x2 + 10) ·

(x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2−
√

x2 + 4(x9 + 8x7 + 21x5 + 20x3 + 5x)).

Since

(
x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2

)2−
(√

x2 + 4 (x9 + 8x7 + 21x5 + 20x3 + 5x)
)2

= 4,

we have q(10, x) < 0, and hence K0(n,x)
H0(n,x)

< 0. Similarly, we can prove K0(n,x)
H0(n,x)

< 0 for x < 0.

Therefore, we have shown that E(Cn)− E(P 6
n) is decreasing in n for n = 4k + 2.

Case 2 n = 4k + j, j = 1, 3.

In this case, H0(n, x) =
∣∣φ(Cn, ix) · φ(P 6

n+4, ix)
∣∣ > 0 and

K0(n, x) =
∣∣((Y1(ix))n+4 + (Y2(ix))n+4 − 2)(A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n)

∣∣
−

∣∣(A1(ix)(Y1(ix))n+4 + A2(ix)(Y2(ix))n+4)((Y1(ix))n + (Y2(ix))n − 2)
∣∣

=
√

p(n, x)−
√

w(n, x),

where

p(n, x) =
(
A2(ix)(Z1(x))4 + A1(ix)(Z2(x))4 − A1(ix)(Z1(x))2n+4 − A2(ix)(Z2(x))2n+4

)2

+ (−2A1(ix)(Z1(x))n − 2A2(ix)(Z2(x))n)2 ,

w(n, x) =
(
A1(ix)(Z1(x))4 + A2(ix)(Z2(x))4 − A1(ix)(Z1(x))2n+4 − A2(ix)(Z2(x))2n+4

)2

+
(−2A1(ix)(Z1(x))n+4 − 2A2(ix)(Z2(x))n+4

)2
.
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Now we only need to check p(n, x) − w(n, x) < 0 for all x and n. First, we suppose
n = 4k + 1. If x > 0, then (Z1(x))2n > (Z1(x))10, (Z2(x))2n < (Z2(x))10, and we have

p(n, x)− w(n, x) = x(x2 + 2)3(x2 + 1)3(x11 + 11x9 + 46x7 + 92x5 + 88x3 + 28x

− 2(Z1(x))2n(
√

x2 + 4 (x2 + 2) + x)

+ 2(Z2(x))2n(
√

x2 + 4 (x2 + 2)− x))

< p(5, x)− w(5, x)

= − x2(x2 + 4)(x2 + 1)4(x2 + 2)3(2x8 + 19x6 + 60x4 + 68x2 + 14) < 0.

If x < 0, then (Z1(x))2n < (Z1(x))10, (Z2(x))2n > (Z2(x))10. Similarly, p(n, x)−w(n, x) <
p(5, x) − w(5, x) < 0. By the same discussion as the case of n = 4k + 1, for n = 4k + 3
and x > 0 or x < 0, we can deduce that

p(n, x)− w(n, x) < p(7, x)− w(7, x)

=− x2(x2 + 4)(x2 + 2)3(x2 + 1)3 ·
(2x14 + 30x12 + 178x10 + 533x8 + 849x6 + 690x4 + 242x2 + 22) < 0.

Thus, we have done for n = 4k + j, j = 1, 3.

Therefore, we have shown that E(Cn) − E(P 6
n) is decreasing in n for n = 4k + j,

j = 1, 2, 3. So, when n = 4k + 2, E(Cn) − E(P 6
n) < E(C18) − E(P 6

18)
.
= −0.03752 < 0;

when n = 4k + 1, E(Cn)−E(P 6
n) < E(C17)−E(P 6

17)
.
= −0.00961 < 0; when n = 4k + 3,

E(Cn)− E(P 6
n) < E(C19)− E(P 6

19)
.
= −0.02290 < 0.

Finally, we will deal with the case of n = 4k. Notice that in this case both φ(Cn, ix)
and φ(P 6

n , ix) are polynomials of x with all real coefficients. When n →∞,

(Y1(ix))n + (Y2(ix))n − 2

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
→

{ 1
A1(ix)

if x > 0

1
A2(ix)

if x < 0.

In this case, we will show

log
(Y1(ix))n + (Y2(ix))n − 2

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
< log

1

A1(ix)

for x > 0 and

log
(Y1(ix))n + (Y2(ix))n − 2

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
< log

1

A2(ix)

for x < 0. In the following we only check the case of x > 0 as the case of x < 0 is similar.
Assume

log
(Y1(ix))n + (Y2(ix))n − 2

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
− log

1

A1(ix)
= log

(
1 +

K1(n, x)

H1(n, x)

)
,

by some elementary calculations, we obtain H1(n, x) > 0 and

K1(n, x) = −x2 + 1

x2 + 4
·

(
x8 + 9x6 + 28x4 + 36x2 + 16 + ((Z2(x))n − 1)

√
x2 + 4 (x7 + 7x5 + 16x3 + 14x)

)

< −x2 + 1

x2 + 4
·
(
x8 + 9x6 + 28x4 + 36x2 + 16−

√
x2 + 4 (x7 + 7x5 + 16x3 + 14x)

)
< 0,
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since

(
x8 + 9x6 + 28x4 + 36x2 + 16

)2 −
(√

x2 + 4 (x7 + 7x5 + 16x3 + 14x
)2

= 4x8 + 48x6 + 204x4 + 368x2 + 256 > 0.

Notice that if x > 0, then A1(ix) = Z1(x)f8+f7

(Z1(x))9+Z7
1

> 0, and if x < 0, then A2(ix) =
Z2(x)f8+f7

(Z2(x))9+Z7
2

= Z1(x)·(Z2(x)f8+f7)

Z1(x)·((Z2(x))9+Z7
2)

= f8−Z1(x)f7

(Z2(x))8+Z6
2

> 0. Thus, by Lemma 2.1, we have

1

π

∫ +∞

0

log
1

A1(ix)
dx <

1

π

∫ +∞

0

(
1

A1(ix)
− 1

)
dx

.
= −0.047643;

1

π

∫ 0

−∞
log

1

A2(ix)
dx <

1

π

∫ +∞

0

(
1

A2(ix)
− 1

)
dx

.
= −0.047643.

Therefore,

E(Cn)−E(P 6
n) <

1

π

∫ +∞

0

log
1

A1(ix)
dx+

∫ 0

−∞
log

1

A2(ix)
dx < −0.047643−0.047643 < 0.

The proof is now completed.

Remark. One of the referees points out that at about the same time Andriantiana in [1]
independently obtained the same result. We have carefully read paper [1], and found that
the main idea of our paper is different from his. In our paper we get result by showing
the monotonicity and considering the limit function of the integrand of E(Cn) − E(P 6

n).
While, in [1] he compares the energy of two graphs by using the estimation of E(P 6

n) and
the exact (known) eigenvalues of Cn. Our method is more general than his, since it can
be used to compare energies of some other pairs of graphs. Our similar idea was used in
earlier papers [11–14].

Acknowledgement. The authors are very grateful to the referees for helpful comments
and suggestions and providing us with reference [1].
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