The Minimal Estrada Index of Trees with Two Maximum Degree Vertices

Jing Li¹, Xueliang Li¹, Lusheng Wang²

¹Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China E-mail: lj02013@163.com; lxl@nankai.edu.cn

²Department of Computer Science, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong SAR, China E-mail: cswangl@cityu.edu.hk

(Received December 22, 2009)

Abstract

Let G be a simple graph with n vertices and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of its adjacency matrix. The Estrada index EE of G is the sum of the terms e^{λ_i} . In 2009 Ilić et al. obtained the trees with minimal Estrada index among trees with a given maximum vertex degree. In this paper, we give the trees with minimal Estrada index among the trees of order n with exactly two vertices of maximum degree.

1 Introduction

Let G be a simple graph with n vertices and m edges. A walk [1] in a simple graph G is a sequence $W := v_0 v_1 \cdots v_\ell$ of vertices, such that $v_{i-1}v_i$ is an edge in G. If $v_0 = x$ and $v_{\ell} = y$, we say that W connects x to y and refer to W as an xy-walk. The vertices x and y are called the ends of the walk, x being its initial vertex and y its terminal vertex, while the vertices $v_1, \ldots, v_{\ell-1}$ are called its internal vertices. The integer ℓ is the length of W. If u and v are two vertices of a walk W, where u precedes v on W, the subsequence of W starting from u and ending at v is denoted by uWv and called the *segment* of W from u to v.

The spectrum of G is the spectrum of its adjacency matrix [2], and consists of the (real) numbers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The Estrada index is defined as

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i}.$$

Although invented in the year 2000 [6], the Estrada index has already found a large number of applications, such as in biochemistry [6, 7, 10] and in the theory of complex networks [8, 9]. Also numerous lower and upper bounds for the Estrada index have been communicated [5, 11, 12, 15].

Recently, Deng in [3] showed that the path P_n and the star S_n have the minimal and the maximal Estrada indices among *n*-vertex trees. Zhao and Jia in [14] determined also the trees with the second and the third maximal Estrada index. Then, Deng in [4] gave the first six trees with the maximal Estrada index. In 2009 Ilić et al. [13] obtained the trees with minimal Estrada index among trees of order n with a given maximum vertex degree. In this paper, we give the trees with minimal Estrada index among trees of order n with exactly two vertices of maximum degree.

2 Preliminaries

In our proofs, we will use a relation between EE and the spectral moments of a graph. For $k \ge 0$, we denote by M_k the k-th spectral moment of G,

$$M_k(G) = \sum_{i=1}^n \lambda_i^k.$$

We know from [2] that M_k is equal to the number of closed walks of length k of the graph G, and the first few spectral moments of a graph with m edges and n vertices satisfy the relations:

$$M_0 = n, \quad M_1 = 0, \quad M_2 = 2m, \quad M_3 = 6t,$$

where t is the number of triangles in G.

From the Taylor expansion of e^x , we have the following important relation between the Estrada index and the spectral moments of G:

$$EE(G) = \sum_{k=0}^{\infty} \frac{M_k}{k!}.$$

Thus, if for two graphs G and H we have $M_k(G) \ge M_k(H)$ for all $k \ge 0$, then $EE(G) \ge EE(H)$. Moreover, if the strict inequality $M_k(G) > M_k(H)$ holds for at least one value of k, then EE(G) > EE(H).

3 The minimal Estrada index of trees with two maximum degree vertices

Let G_i be a graph with *n* vertices and *m* edges, in which there are exactly two vertices of maximum degree Δ . Let $W(G_i)$ denote the set of closed walks in G_i , and $W_{2k}(G_i)$ denote the set of closed walks of length 2k in G_i . We say a closed walks is at vertex v_j , if it is a closed walk from v_j to v_j .

Lemma 3.1 [3] Let u be a non-isolated vertex of a simple graph H. If H_1 and H_2 are the graphs obtained from H by identifying an end vertex v_1 and an internal vertex v_t of the n-vertex path P_n , respectively, with u, see Figure 3.1, then $M_{2k}(H_1) < M_{2k}(H_2)$ for $n \geq 3$ and $k \geq 2$.

Figure 3.1 The transformation in Lemma 3.1.

Lemma 3.2 For the two trees G_1 and G_2 in Figure 3.2, we have $EE(G_1) > EE(G_2)$, where P_i are paths of length n_i , $n_i \ge 0$, $1 \le i \le s$, A and B are (connected) trees and $G_1 \ncong G_2$.

Figure 3.2 The graphs G_1 and G_2 in Lemma 3.2.

Proof. Suppose P_i is the first path with $n_i > 0$. Let $n_i = m$ and $i = i_0$. Then G_1 can be redrawn as in Figure 3.3. First we show that if $G_1 \ncong G_3$, then $EE(G_1) > EE(G_3)$. Consider the following correspondence:

$$\xi: W_{2k}(G_3) \to W_{2k}(G_1), \ \forall \ w \in W_{2k}(G_3).$$

Denote by A_1 , B_1 the graphs in Figure 3.3. Since $W_{2k}(G_i) = W_{2k}(A_1) \cup W_{2k}(B_1) \cup W_i$, where W_i is the set of closed walks of length 2k of G_i , each of which contains at least one edge in $E(A_1)$ and at least one edge in $E(B_1)$. So $M_{2k}(G_i) = |W_{2k}(A_1)| + |W_{2k}(B_1)| +$ $|W_i| = M_{2k}(A_1) + M_{2k}(B_1) + |W_i|$. Obviously, it is sufficient to show that $|W_1| > |W_3|$.

For any closed walk $w \in W_3$, it contains the segments $w_{1\ell}$ of the walk in $W(A_1)$, and the segments w_{2j} in $W(B_1)$, $1 \leq \ell, j \leq t, t = \max\{t_1, t_2\}$, where t_1 and t_2 are the numbers of segments of w in $W(A_1)$ and $W(B_1)$, respectively, and some of the segments may be empty. Then it can be written as $w = w_{11} \cup w_{21} \cup w_{12} \cup w_{22} \cdots \cup w_{1t} \cup w_{2t}$. For the segments $w_{1\ell} \in W(A_1)$, define $\xi(w_{1\ell}) = w_{1\ell}, 1 \leq \ell \leq t$. Now we define $\xi(w_{2j}), 1 \leq j \leq t$.

Let
$$f: \{i_0, i_1, \dots, i_m\} \to \{i_0, i_1, \dots, i_m\}, f(i_r) = i_{m-r}, \text{ for } 0 \le r \le m.$$

Case 1. If w_{2j} does not pass the edge $e_{i_0,i+1}$, then define $\xi(w_{2j}) = f(w_{2j})$.

Case 2. If on the contrary, w_{2i} pass the edge $e_{i_0,i+1}$, then

• if w begins with a vertex in A_1 , then w_{2j} is a closed walk at i_m . It contains the first segment w'_{2j} from the initial vertex i_m to the first i_0 , the second segment w''_{2j} from the first i_0 to the last i_0 , and the third segment w''_{2j} from the last i_0 to the terminal vertex i_m . Then, define $\xi(w_{2j}) = f(w'_{2j}) \cup (w''_{2j})^{-1} \cup w''_{2j}$, where $(w''_{2j})^{-1}$ is the walk

Figure 3.3 The graphs in the proof of Lemma 3.2.

from $w_{2j}^{\prime\prime\prime}$ by reversing the order of all the vertices. It is the walk in G_1 that consists of the first segment from i_0 to the first i_m , the second segment from i_m to the next first i_0 and the third segment from i_0 to i_0 .

- if w begins with a vertex except i_m in B_1 , and $j \neq 1, t$, then define $\xi(w_{2j})$ is the same as above.
- if w begins with a vertex except i_m in B_1 , j = 1, t. We can see that w_{11} is empty, w_{21} contains the first segment w'_{21} from the initial vertex to the first i_0 , the second segment w''_{21} from the first i_0 to the last i_0 , and the third segment w''_{21} from the last i_0 to the terminal vertex i_m . Then, define $\xi(w_{21}) = f(w'_{21}) \cup (w''_{21})^{-1} \cup w''_{21}$. And w_{2t} contains the first segment w'_{2t} from i_m to the first i_0 , the second segment w''_{2t} from the first i_0 to the last i_0 , and the third segment w''_{2t} from the last i_0 to the terminal vertex. Then, define $\xi(w_{2t}) = w''_{2t} \cup (w'_{2t})^{-1} \cup f(w'''_{2t})$.

We then define $\xi(w) = \xi(w_{11}) \cup \xi(w_{21}) \cup \xi(w_{12}) \cup \xi(w_{22}) \cdots \cup \xi(w_{1t}) \cup \xi(w_{2t})$, for $\xi(w) \in W_1$.

Now, for any closed walk $w \in W_3$, there is a unique walk $\xi(w)$ in W_1 corresponding to it. By the definition of ξ and the description above, we know that if there is a walk $\xi(w) \in W_1$, then $\xi(w)$ can be divided into some pieces in only one way, and ξ on each piece is bijective. We combine all the inverse images of the pieces according to the only order, so we can get the only $w \in W_3$. Therefore, if $w_1, w_2 \in W_3, w_1 \neq w_2$, then $\xi(w_1) \neq \xi(w_2)$. Thus, ξ is injective. But it is not surjective, since there is no $w \in W_{2k}(G_3)$ such that $\xi(w) = (i-1)i_0(i+1)i_0(i-1)$. Then clearly $|W_1| > |W_3|$.

Thus, $M_{2k}(G_1) > M_{2k}(G_3)$, that is, $EE(G_1) > EE(G_3)$.

Then, we can repeat the above process and finally get that $EE(G_1) > EE(G_2)$, as required.

For any tree T of order n with exactly two vertices u, v of maximum degree Δ , by using the transformation in Lemma 3.1 repeatedly, we can easily get that $EE(T) \ge EE(G_1)$, where A denotes the union of the $\Delta - 1$ disjoint paths all of which have their end vertices adjacent to u, and B denotes the union of the $\Delta - 1$ disjoint paths all of which have the end vertices adjacent to v. Then from Lemma 3.2, $EE(T) \ge EE(G_1) \ge EE(G_2)$, and the equality holds if and only if $T \cong G_1 \cong G_2$.

The following is a very useful lemma from [13].

Lemma 3.3 [13] Let w be a vertex of a nontrivial connected graph G, and for nonnegative integers p and q, let G(p,q) denote the graph obtained from G by attaching pendent paths $P = wv_1v_2\cdots v_p$ and $Q = wu_1u_2\cdots u_q$ of lengths p and q, respectively, at w. If $p \ge q \ge 1$, then

$$EE(G(p,q)) > EE(G(p+1,q-1)).$$

Then by applying the transformation in Lemma 3.3 repeatedly, we get that $EE(G_2) > EE(G_4)$ if $G_2 \ncong G_4$, where G_4 is the graph introduced in the following lemma.

Lemma 3.4 Let G_4 and G_5 be two trees with n vertices, see Figure 3.4, we have $EE(G_4) > EE(G_5)$, where P_i are paths of length n_i , $n_i \ge 1, i = 1, 2, 3$, and u, v are vertices with maximum degree Δ , and $G_4 \ncong G_5$.

Proof. We first show that if $G_4 \ncong G_6$, then $EE(G_4) > EE(G_6)$.

Since $M_{2k}(G_i) = |W_{2k}(A)| + |W_{2k}(B)| + |W_i| = M_{2k}(A) + M_{2k}(B) + |W_i|$, where W_i is the set of closed walks of length 2k of G_i containing at least one edge in E(A) and

Figure 3.4 The graphs G_i , i = 4, 5, 6 in Lemma 3.4.

at least one edge in E(B), i = 4, 6. Similar to Lemma 3.2, we only need to show that $|W_4| > |W_6|$. For convenience, we relabel B as B', $m = n_2 + 2$, see Figure 3.5.

Now we show that for a closed walk $w \in W_6$, there is an injection ξ , such that $\xi(w) \in W_4$. For any closed walk $w \in W_6$, it contains the segments $w_{1\ell}$ of the walk in W(A), and the segments w_{2j} in W(B'), $1 \leq \ell, j \leq s, s = \max\{s_1, s_2\}$, where s_1 and s_2 are the numbers of segments of w in W(A) and W(B'), respectively, and some of the segments may be empty. Then it can be written as $w = w_{11} \cup w_{21} \cup w_{12} \cup w_{22} \cdots \cup w_{1s} \cup w_{2s}$. For the segments $w_{1\ell} \in W(A)$, define $\xi(w_{1\ell}) = w_{1\ell}, 1 \leq \ell \leq s$. Now we define $\xi(w_{2j}), 1 \leq j \leq s$.

Case 1. w_{2j} only uses edges on the path $P = v_1 v_2 \dots v_m$.

Let $f : \{v_1, v_2, \dots, v_m\} \to \{v_1, v_2, \dots, v_m\}, f(v_i) = v_{m+1-i}, \forall 1 \le i \le m$. Then, define $\xi(w_{2j}) = f(w_{2j}).$

Case 2. w_{2j} also uses other edges of B'.

We first define the term *stable* segment S, it is a maximal consecutive subsequence of w_{2j} from u_i to v_2 , $1 \le i \le \Delta - 2$, all the edges of the subsequence are of the form v_2u_k , $1 \le k \le \Delta - 2$. Now we consider the remaining subsequence w'_{2j} of w_{2j} by deleting

Figure 3.5 The trees in the proof of Lemma 3.4.

all the stable segments.

Let $f' : \{v_2, v_3, \dots, v_m\} \to \{v_1, v_2, \dots, v_{m-1}\}, f'(v_i) = v_{i-1}, \forall 2 \le i \le m. f'' : \{v_2, \dots, v_m\} \to \{v_2, \dots, v_m\}, f''(v_i) = v_{m+2-i}, \forall 2 \le i \le m. w^{-1}$ is the walk from w by reversing the order of all the vertices.

Subcase 2.1. If w begins with a vertex in A, or w begins with a vertex in B' and $j \neq 1, s$, then w_{2j} is a closed walk at v_m . We only need to show that $\xi(w_{2j})$ is a closed walk at v_1 . Actually, it is easy to see that w'_{2j} is also a closed walk at v_m .

• If w_{2j} passes the vertex v_1 , so is w'_{2j} . Then w'_{2j} consists of four segments: the first segment \hat{w}'_1 from the initial vertex v_m to the first v_2 , the second segment \hat{w}'_2 from the first v_2 to the v_2 that is just before the first v_1 , the third segment $\hat{w}'_3 = v_2 v_1$, where the v_1 is the first v_1 in w'_{2j} , and the forth segment \hat{w}'_4 from the first v_1 to the terminal vertex of w'_{2j} . Actually, some of the segments may be empty.

Let S_i^t be the stable segment after the *i*-th v_2 of \hat{w}_t^t , $1 \leq t \leq 4$. Let $\xi(\hat{w}_1^t) = f''(\hat{w}_1^t)$, it is a walk from v_2 to v_m , no internal vertices is v_1 or v_m . And $\xi(\hat{w}_1)$ is the walk from $\xi(\hat{w}_1^t)$ by inserting S_1^1 (if it exists) after the first v_2 in it. Let $\xi(\hat{w}_2^t) = f'(\hat{w}_2^t)$, it is a walk from v_1 to v_1 , and no internal vertices is v_m . Since in \hat{w}_2^t , there must be a v_3 before each v_2 except the first one, and $f'(v_3) = v_2$, $f'(v_2) = v_1$. So we can define $\xi(\hat{w}_2)$ to be the walk from $\xi(\hat{w}_2^t)$ by inserting S_i^2 after the v_2 that is just before the *i*-th v_1 , $i \geq 2$. Let $\xi(\hat{w}_3) = \xi(\hat{w}_3^t) = (\hat{w}_3^t)^{-1} = v_1v_2$. Finally, let $\xi(\hat{w}_4^t) = (\hat{w}_4^t)^{-1}$, it is a walk from v_m to v_1 , and $\xi(\hat{w}_4)$ is the walk from $\xi(\hat{w}_4^t) \cup \xi(\hat{w}_1) \cup \xi(\hat{w}_4)$, it is a closed walk at v_1 . On the other hand, if $\xi(w_{2j})$ is given, we can get the four parts uniquely according to the features we described above.

• If w_{2j} does not pass the vertex v_1 , it must pass the vertex v_2 , and so is w'_{2j} . Then w'_{2j} consists of three segments: the first segment \hat{w}'_1 from the initial vertex v_m to the first v_2 , the second segment \hat{w}'_2 from the first v_2 to the last v_2 , and the third segment \hat{w}'_3 from the last v_2 to the terminal vertex of w'_{2j} .

Let S_i^t be the stable segment after the *i*-th v_2 of \hat{w}_i^t , $1 \leq t \leq 3$. Let $\xi(\hat{w}_1^\prime) = f(\hat{w}_1^\prime)$, it is a walk from v_1 to v_{m-1} , no internal vertices is v_{m-1} . And $\xi(\hat{w}_1)$ is the walk from $\xi(\hat{w}_1^\prime)$ by inserting S_1^1 (if it exists) after the first v_2 in it. Let $\xi(\hat{w}_2^\prime) = f'(\hat{w}_2^\prime)$, it is a walk from v_1 to v_1 . Since in \hat{w}_2^\prime , there must be a v_3 before each v_2 except the first one, and $f'(v_3) = v_2$, $f'(v_2) = v_1$. So we can define $\xi(\hat{w}_2)$ to be the walk from $\xi(\hat{w}_2^\prime)$ by inserting S_i^2 after the v_2 that is just before the *i*-th v_1 , $i \geq 2$. Finally, let $\xi(\hat{w}_3) = \xi(\hat{w}_3^\prime) = (f'(\hat{w}_3^\prime))^{-1}$, it is a walk from v_{m-1} to v_1 , no internal vertices is v_1 . Thus, we define $\xi(w_{2j}) = \xi(\hat{w}_1) \cup \xi(\hat{w}_3) \cup \xi(\hat{w}_2)$, it is a closed walk at v_1 . On the other hand, if $\xi(w_{2j})$ is given, we can get the three parts uniquely according to the features we described above.

Subcase 2.2. If w begins with a vertex in B', and j = 1, s, the for the two cases that $w_{2j}, j = 1, s$ passes the vertex v_1 or does not pass v_1 , both can be defined similarly as above. Thus, If w begins and ends with vertex $v_t, 2 \leq t \leq m - 1$, $\xi(w_{21})$ can be defined uniquely to be a walk from v_{m+1-t} to $v_1, \xi(w_{2s})$ can be defined uniquely to be a walk from v_{m+1-t} . If w begins and ends with vertex $u_t, 1 \leq t \leq \Delta - 2$, $\xi(w_{21})$ can be defined uniquely to be a walk from v_{m-1} to $v_1, \xi(w_{2s})$ can be defined uniquely to be a walk from v_{m-1} .

Then we define $\xi(w) = \xi(w_{11}) \cup \xi(w_{21}) \cup \xi(w_{12}) \cup \xi(w_{22}) \cdots \cup \xi(w_{1s}) \cup \xi(w_{2s})$, for $\xi(w) \in W_4$.

Now, for any closed walk $w \in W_6$, there is a unique walk $\xi(w)$ in W_4 corresponding to it. By the definition of ξ and the description above, we know if there is a walk $\xi(w) \in W_4$, $\xi(w)$ can be divided into some pieces in only one way, and ξ on each piece is bijective. We combine all the inverse images of the pieces according to the only order, so we can get the only $w \in W_6$. Therefore, if $w_1, w_2 \in W_6, w_1 \neq w_2$, then $\xi(w_1) \neq \xi(w_2)$. Thus, ξ is injective. But it is not surjective, since there is no $w \in W_6$, such that there is a segment $\xi(w_{2j}) \subseteq \xi(w)$ with $\xi(w_{2j}) = v_1 v_2 u_1 v_2 v_1, 1 \leq j \leq s$. Thus, $|W_4| > |W_6|$, and consequently, $M_{2k}(G_4) > M_{2k}(G_6)$, that is, $EE(G_4) > EE(G_6)$.

Analogously, we can get that $EE(G_6) > EE(G_5)$ if $G_5 \ncong G_6$. Thus $EE(G_4) > EE(G_5)$, as required.

The above lemma is true for the case $n_3 \ge 1$, which means that u and v are not adjacent. Actually the lemma is also true when u and v are adjacent. We can prove it similarly.

From Lemmas 3.1 through 3.4, we finally get the result below.

Theorem 3.5 For all trees T of order n with exactly two vertices of maximum degree, the graph G_5 has the minimal Estrada index.

With one more restriction that the two maximum degree vertices of the trees must be adjacent, we give the following conjecture.

Conjecture 3.6 For all trees T of order n with two adjacent vertices of maximum degree, the graph G_7 has the minimal Estrada index, see Figure 3.6, where u, v are vertices with maximum degree.

Figure 3.6 The graph G_7 in Conjecture 3.6.

Theorem 3.5 can be generalized to trees with one maximum and one second maximum degree vertex as follows.

Theorem 3.7 For all trees T of order n with exactly one maximum and one second maximum degree vertex, the graph G_8 has the minimal Estrada index, see Figure 3.7, where u, v are vertices with the maximum and second maximum degree, respectively.

Figure 3.7 The graph G_8 in Theorem 3.7

Acknowledgement: The authors Jing Li and Xueliang Li are supported by NSFC No.10831001, PCSIRT and the "973" program. The author Lusheng Wang is fully supported by a grant from the Research Grants Council of the Hong Kong SAR [Project No. CityU 121207]. The authors are very grateful to the referees for helpful comments and suggestions.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
- [2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
- [3] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599–606.
- [4] H. Deng, A note on the Estrada index of trees, MATCH Commun. Math. Comput. Chem. 62 (2009) 607–610.
- [5] J.A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, *Lin. Algebra Appl.* 427 (2007) 70–76.
- [6] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713-718.

- [7] E. Estrada, Characterization of the folding degree of proteins, *Bioinformatics* 18 (2002) 697–704.
- [8] E. Estrada, J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks, *Phys. Rev.* E71 (2005) 056103–1–9.
- [9] E. Estrada, J.A. Rodríguez-Velázquez, Spectral measures of bipartivity in complex networks, *Phys. Rev.* E72 (2005) 046105–1–6.
- [10] E. Estrada, J.A. Rodríguez-Velázquez, M. Randić, Atomic branching in molecules, Int. J. Quantum Chem. 106 (2006) 823–832.
- [11] I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. (Beograd), 83 (2008)
 1–7.
- [12] I. Gutman, S. Radenković, A lower bound for the Estrada index of bipartite molecular graphs, *Kragujevac J. Sci.* 29 (2007) 67–72.
- [13] A. Ilić, D. Stevanović, The Estrada index of chemical trees, J. Math. Chem., DOI: 10.1007/s10910-009-9570-0.
- [14] H. Zhao, Y. Jia, On the Estrada index of bipartite graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 495–501.
- [15] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008) 485–492.