The Minimal Estrada Index of Trees with Two Maximum Degree Vertices

Jing Li ${ }^{1}$, Xueliang Li^{1}, Lusheng Wang ${ }^{2}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: lj02013@163.com; lxl@nankai.edu.cn
${ }^{2}$ Department of Computer Science, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong SAR, China
E-mail: cswangl@cityu.edu.hk

(Received December 22, 2009)

Abstract

Let G be a simple graph with n vertices and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of its adjacency matrix. The Estrada index $E E$ of G is the sum of the terms $e^{\lambda_{i}}$. In 2009 Ilić et al. obtained the trees with minimal Estrada index among trees with a given maximum vertex degree. In this paper, we give the trees with minimal Estrada index among the trees of order n with exactly two vertices of maximum degree.

1 Introduction

Let G be a simple graph with n vertices and m edges. A walk [1] in a simple graph G is a sequence $W:=v_{0} v_{1} \cdots v_{\ell}$ of vertices, such that $v_{i-1} v_{i}$ is an edge in G. If $v_{0}=x$ and
$v_{\ell}=y$, we say that W connects x to y and refer to W as an $x y$-walk. The vertices x and y are called the ends of the walk, x being its initial vertex and y its terminal vertex, while the vertices $v_{1}, \ldots, v_{\ell-1}$ are called its internal vertices. The integer ℓ is the length of W. If u and v are two vertices of a walk W, where u precedes v on W, the subsequence of W starting from u and ending at v is denoted by $u W v$ and called the segment of W from u to v.

The spectrum of G is the spectrum of its adjacency matrix [2], and consists of the (real) numbers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The Estrada index is defined as

$$
E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}
$$

Although invented in the year 2000 [6], the Estrada index has already found a large number of applications, such as in biochemistry $[6,7,10]$ and in the theory of complex networks $[8,9]$. Also numerous lower and upper bounds for the Estrada index have been communicated [5, 11, 12, 15].

Recently, Deng in [3] showed that the path P_{n} and the star S_{n} have the minimal and the maximal Estrada indices among n-vertex trees. Zhao and Jia in [14] determined also the trees with the second and the third maximal Estrada index. Then, Deng in [4] gave the first six trees with the maximal Estrada index. In 2009 Ilić et al. [13] obtained the trees with minimal Estrada index among trees of order n with a given maximum vertex degree. In this paper, we give the trees with minimal Estrada index among trees of order n with exactly two vertices of maximum degree.

2 Preliminaries

In our proofs, we will use a relation between $E E$ and the spectral moments of a graph. For $k \geq 0$, we denote by M_{k} the k-th spectral moment of G,

$$
M_{k}(G)=\sum_{i=1}^{n} \lambda_{i}^{k} .
$$

We know from [2] that M_{k} is equal to the number of closed walks of length k of the graph G, and the first few spectral moments of a graph with m edges and n vertices satisfy the relations:

$$
M_{0}=n, \quad M_{1}=0, \quad M_{2}=2 m, \quad M_{3}=6 t
$$

where t is the number of triangles in G.
From the Taylor expansion of e^{x}, we have the following important relation between the Estrada index and the spectral moments of G :

$$
E E(G)=\sum_{k=0}^{\infty} \frac{M_{k}}{k!} .
$$

Thus, if for two graphs G and H we have $M_{k}(G) \geq M_{k}(H)$ for all $k \geq 0$, then $E E(G) \geq$ $E E(H)$. Moreover, if the strict inequality $M_{k}(G)>M_{k}(H)$ holds for at least one value of k, then $E E(G)>E E(H)$.

3 The minimal Estrada index of trees with two maximum degree vertices

Let G_{i} be a graph with n vertices and m edges, in which there are exactly two vertices of maximum degree Δ. Let $W\left(G_{i}\right)$ denote the set of closed walks in G_{i}, and $W_{2 k}\left(G_{i}\right)$ denote the set of closed walks of length $2 k$ in G_{i}. We say a closed walks is at vertex v_{j}, if it is a closed walk from v_{j} to v_{j}.

Lemma 3.1 [3] Let u be a non-isolated vertex of a simple graph H. If H_{1} and H_{2} are the graphs obtained from H by identifying an end vertex v_{1} and an internal vertex v_{t} of the n-vertex path P_{n}, respectively, with u, see Figure 3.1, then $M_{2 k}\left(H_{1}\right)<M_{2 k}\left(H_{2}\right)$ for $n \geq 3$ and $k \geq 2$.

Figure 3.1 The transformation in Lemma 3.1.

Lemma 3.2 For the two trees G_{1} and G_{2} in Figure 3.2, we have $\operatorname{EE}\left(G_{1}\right)>E E\left(G_{2}\right)$, where P_{i} are paths of length $n_{i}, n_{i} \geq 0,1 \leq i \leq s, A$ and B are (connected) trees and $G_{1} \not \not G_{2}$.

Figure 3.2 The graphs G_{1} and G_{2} in Lemma 3.2.

Proof. Suppose P_{i} is the first path with $n_{i}>0$. Let $n_{i}=m$ and $i=i_{0}$. Then G_{1} can be redrawn as in Figure 3.3. First we show that if $G_{1} \not \approx G_{3}$, then $E E\left(G_{1}\right)>E E\left(G_{3}\right)$. Consider the following correspondence:

$$
\xi: W_{2 k}\left(G_{3}\right) \rightarrow W_{2 k}\left(G_{1}\right), \forall w \in W_{2 k}\left(G_{3}\right)
$$

Denote by A_{1}, B_{1} the graphs in Figure 3.3. Since $W_{2 k}\left(G_{i}\right)=W_{2 k}\left(A_{1}\right) \cup W_{2 k}\left(B_{1}\right) \cup W_{i}$, where W_{i} is the set of closed walks of length $2 k$ of G_{i}, each of which contains at least one edge in $E\left(A_{1}\right)$ and at least one edge in $E\left(B_{1}\right)$. So $M_{2 k}\left(G_{i}\right)=\left|W_{2 k}\left(A_{1}\right)\right|+\left|W_{2 k}\left(B_{1}\right)\right|+$ $\left|W_{i}\right|=M_{2 k}\left(A_{1}\right)+M_{2 k}\left(B_{1}\right)+\left|W_{i}\right|$. Obviously, it is sufficient to show that $\left|W_{1}\right|>\left|W_{3}\right|$.

For any closed walk $w \in W_{3}$, it contains the segments $w_{1 \ell}$ of the walk in $W\left(A_{1}\right)$, and the segments $w_{2 j}$ in $W\left(B_{1}\right), 1 \leq \ell, j \leq t, t=\max \left\{t_{1}, t_{2}\right\}$, where t_{1} and t_{2} are the numbers of segments of w in $W\left(A_{1}\right)$ and $W\left(B_{1}\right)$, respectively, and some of the segments may be empty. Then it can be written as $w=w_{11} \cup w_{21} \cup w_{12} \cup w_{22} \cdots \cup w_{1 t} \cup w_{2 t}$. For the segments $w_{1 \ell} \in W\left(A_{1}\right)$, define $\xi\left(w_{1 \ell}\right)=w_{1 \ell}, 1 \leq \ell \leq t$. Now we define $\xi\left(w_{2 j}\right), 1 \leq j \leq t$.

Let $f:\left\{i_{0}, i_{1}, \ldots, i_{m}\right\} \rightarrow\left\{i_{0}, i_{1}, \ldots, i_{m}\right\}, f\left(i_{r}\right)=i_{m-r}$, for $0 \leq r \leq m$.
Case 1. If $w_{2 j}$ does not pass the edge $e_{i_{0}, i+1}$, then define $\xi\left(w_{2 j}\right)=f\left(w_{2 j}\right)$.
Case 2. If on the contrary, $w_{2 j}$ pass the edge $e_{i 0, i+1}$, then

- if w begins with a vertex in A_{1}, then $w_{2 j}$ is a closed walk at i_{m}. It contains the first segment $w_{2 j}^{\prime}$ from the initial vertex i_{m} to the first i_{0}, the second segment $w_{2 j}^{\prime \prime}$ from the first i_{0} to the last i_{0}, and the third segment $w_{2 j}^{\prime \prime \prime}$ from the last i_{0} to the terminal vertex i_{m}. Then, define $\xi\left(w_{2 j}\right)=f\left(w_{2 j}^{\prime}\right) \cup\left(w_{2 j}^{\prime \prime \prime}\right)^{-1} \cup w_{2 j}^{\prime \prime}$, where $\left(w_{2 j}^{\prime \prime \prime}\right)^{-1}$ is the walk

Figure 3.3 The graphs in the proof of Lemma 3.2.
from $w_{2 j}^{\prime \prime \prime}$ by reversing the order of all the vertices. It is the walk in G_{1} that consists of the first segment from i_{0} to the first i_{m}, the second segment from i_{m} to the next first i_{0} and the third segment from i_{0} to i_{0}.

- if w begins with a vertex except i_{m} in B_{1}, and $j \neq 1, t$, then define $\xi\left(w_{2 j}\right)$ is the same as above.
- if w begins with a vertex except i_{m} in $B_{1}, j=1, t$. We can see that w_{11} is empty, w_{21} contains the first segment w_{21}^{\prime} from the initial vertex to the first i_{0}, the second segment $w_{21}^{\prime \prime}$ from the first i_{0} to the last i_{0}, and the third segment $w_{21}^{\prime \prime \prime}$ from the last i_{0} to the terminal vertex i_{m}. Then, define $\xi\left(w_{21}\right)=f\left(w_{21}^{\prime}\right) \cup\left(w_{21}^{\prime \prime \prime}\right)^{-1} \cup w_{21}^{\prime \prime}$. And $w_{2 t}$ contains the first segment $w_{2 t}^{\prime}$ from i_{m} to the first i_{0}, the second segment $w_{2 t}^{\prime \prime}$ from the first i_{0} to the last i_{0}, and the third segment $w_{2 t}^{\prime \prime \prime}$ from the last i_{0} to the terminal vertex. Then, define $\xi\left(w_{2 t}\right)=w_{2 t}^{\prime \prime} \cup\left(w_{2 t}^{\prime}\right)^{-1} \cup f\left(w_{2 t}^{\prime \prime \prime}\right)$.

We then define $\xi(w)=\xi\left(w_{11}\right) \cup \xi\left(w_{21}\right) \cup \xi\left(w_{12}\right) \cup \xi\left(w_{22}\right) \cdots \cup \xi\left(w_{1 t}\right) \cup \xi\left(w_{2 t}\right)$, for $\xi(w) \in W_{1}$.

Now, for any closed walk $w \in W_{3}$, there is a unique walk $\xi(w)$ in W_{1} corresponding to it. By the definition of ξ and the description above, we know that if there is a walk
$\xi(w) \in W_{1}$, then $\xi(w)$ can be divided into some pieces in only one way, and ξ on each piece is bijective. We combine all the inverse images of the pieces according to the only order, so we can get the only $w \in W_{3}$. Therefore, if $w_{1}, w_{2} \in W_{3}, w_{1} \neq w_{2}$, then $\xi\left(w_{1}\right) \neq \xi\left(w_{2}\right)$. Thus, ξ is injective. But it is not surjective, since there is no $w \in W_{2 k}\left(G_{3}\right)$ such that $\xi(w)=(i-1) i_{0}(i+1) i_{0}(i-1)$. Then clearly $\left|W_{1}\right|>\left|W_{3}\right|$.

Thus, $M_{2 k}\left(G_{1}\right)>M_{2 k}\left(G_{3}\right)$, that is, $E E\left(G_{1}\right)>E E\left(G_{3}\right)$.
Then, we can repeat the above process and finally get that $E E\left(G_{1}\right)>E E\left(G_{2}\right)$, as required.

For any tree T of order n with exactly two vertices u, v of maximum degree Δ, by using the transformation in Lemma 3.1 repeatedly, we can easily get that $E E(T) \geq E E\left(G_{1}\right)$, where A denotes the union of the $\Delta-1$ disjoint paths all of which have their end vertices adjacent to u, and B denotes the union of the $\Delta-1$ disjoint paths all of which have the end vertices adjacent to v. Then from Lemma $3.2, E E(T) \geq E E\left(G_{1}\right) \geq E E\left(G_{2}\right)$, and the equality holds if and only if $T \cong G_{1} \cong G_{2}$.

The following is a very useful lemma from [13].

Lemma 3.3 [13] Let w be a vertex of a nontrivial connected graph G, and for nonnegative integers p and q, let $G(p, q)$ denote the graph obtained from G by attaching pendent paths $P=w v_{1} v_{2} \cdots v_{p}$ and $Q=w u_{1} u_{2} \cdots u_{q}$ of lengths p and q, respectively, at w. If $p \geq q \geq 1$, then

$$
E E(G(p, q))>E E(G(p+1, q-1))
$$

Then by applying the transformation in Lemma 3.3 repeatedly, we get that $E E\left(G_{2}\right)>$ $E E\left(G_{4}\right)$ if $G_{2} \not \approx G_{4}$, where G_{4} is the graph introduced in the following lemma.

Lemma 3.4 $\operatorname{Let} G_{4}$ and G_{5} be two trees with n vertices, see Figure 3.4, we have $E E\left(G_{4}\right)>$ $E E\left(G_{5}\right)$, where P_{i} are paths of length $n_{i}, n_{i} \geq 1, i=1,2,3$, and u, v are vertices with maximum degree Δ, and $G_{4} \not \not G_{5}$.

Proof. We first show that if $G_{4} \not \equiv G_{6}$, then $E E\left(G_{4}\right)>E E\left(G_{6}\right)$.
Since $M_{2 k}\left(G_{i}\right)=\left|W_{2 k}(A)\right|+\left|W_{2 k}(B)\right|+\left|W_{i}\right|=M_{2 k}(A)+M_{2 k}(B)+\left|W_{i}\right|$, where W_{i} is the set of closed walks of length $2 k$ of G_{i} containing at least one edge in $E(A)$ and

Figure 3.4 The graphs $G_{i}, i=4,5,6$ in Lemma 3.4.
at least one edge in $E(B), i=4,6$. Similar to Lemma 3.2, we only need to show that $\left|W_{4}\right|>\left|W_{6}\right|$. For convenience, we relabel B as $B^{\prime}, m=n_{2}+2$, see Figure 3.5.

Now we show that for a closed walk $w \in W_{6}$, there is an injection ξ, such that $\xi(w) \in W_{4}$. For any closed walk $w \in W_{6}$, it contains the segments $w_{1 \ell}$ of the walk in $W(A)$, and the segments $w_{2 j}$ in $W\left(B^{\prime}\right), 1 \leq \ell, j \leq s, s=\max \left\{s_{1}, s_{2}\right\}$, where s_{1} and s_{2} are the numbers of segments of w in $W(A)$ and $W\left(B^{\prime}\right)$, respectively, and some of the segments may be empty. Then it can be written as $w=w_{11} \cup w_{21} \cup w_{12} \cup w_{22} \cdots \cup w_{1 s} \cup w_{2 s}$. For the segments $w_{1 \ell} \in W(A)$, define $\xi\left(w_{1 \ell}\right)=w_{1 \ell}, 1 \leq \ell \leq s$. Now we define $\xi\left(w_{2 j}\right), 1 \leq j \leq s$.

Case 1. $w_{2 j}$ only uses edges on the path $P=v_{1} v_{2} \ldots v_{m}$.
Let $f:\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \rightarrow\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, f\left(v_{i}\right)=v_{m+1-i}, \forall 1 \leq i \leq m$. Then, define $\xi\left(w_{2 j}\right)=f\left(w_{2 j}\right)$.

Case 2. $w_{2 j}$ also uses other edges of B^{\prime}.
We first define the term stable segment S, it is a maximal consecutive subsequence of $w_{2 j}$ from u_{i} to $v_{2}, 1 \leq i \leq \Delta-2$, all the edges of the subsequence are of the form $v_{2} u_{k}, 1 \leq k \leq \Delta-2$. Now we consider the remaining subsequence $w_{2 j}^{\prime}$ of $w_{2 j}$ by deleting

Figure 3.5 The trees in the proof of Lemma 3.4.
all the stable segments.
Let $f^{\prime}:\left\{v_{2}, v_{3} \ldots, v_{m}\right\} \rightarrow\left\{v_{1}, v_{2}, \ldots, v_{m-1}\right\}, f^{\prime}\left(v_{i}\right)=v_{i-1}, \forall 2 \leq i \leq m . \quad f^{\prime \prime}:$ $\left\{v_{2}, \ldots, v_{m}\right\} \rightarrow\left\{v_{2}, \ldots, v_{m}\right\}, f^{\prime \prime}\left(v_{i}\right)=v_{m+2-i}, \forall 2 \leq i \leq m . w^{-1}$ is the walk from w by reversing the order of all the vertices.

Subcase 2.1. If w begins with a vertex in A, or w begins with a vertex in B^{\prime} and $j \neq 1, s$, then $w_{2 j}$ is a closed walk at v_{m}. We only need to show that $\xi\left(w_{2 j}\right)$ is a closed walk at v_{1}. Actually, it is easy to see that $w_{2 j}^{\prime}$ is also a closed walk at v_{m}.

- If $w_{2 j}$ passes the vertex v_{1}, so is $w_{2 j}^{\prime}$. Then $w_{2 j}^{\prime}$ consists of four segments: the first segment \hat{w}_{1}^{\prime} from the initial vertex v_{m} to the first v_{2}, the second segment \hat{w}_{2}^{\prime} from the first v_{2} to the v_{2} that is just before the first v_{1}, the third segment $\hat{w}_{3}^{\prime}=v_{2} v_{1}$, where the v_{1} is the first v_{1} in $w_{2 j}^{\prime}$, and the forth segment \hat{w}_{4}^{\prime} from the first v_{1} to the terminal vertex of $w_{2 j}^{\prime}$. Actually, some of the segments may be empty.

Let S_{i}^{t} be the stable segment after the i-th v_{2} of $\hat{w}_{t}^{\prime}, 1 \leq t \leq 4$. Let $\xi\left(\hat{w}_{1}^{\prime}\right)=f^{\prime \prime}\left(\hat{w}_{1}^{\prime}\right)$, it is a walk from v_{2} to v_{m}, no internal vertices is v_{1} or v_{m}. And $\xi\left(\hat{w}_{1}\right)$ is the walk from $\xi\left(\hat{w}_{1}^{\prime}\right)$ by inserting S_{1}^{1} (if it exists) after the first v_{2} in it. Let $\xi\left(\hat{w}_{2}^{\prime}\right)=f^{\prime}\left(\hat{w}_{2}^{\prime}\right)$, it is a walk from v_{1} to v_{1}, and no internal vertices is v_{m}. Since in \hat{w}_{2}^{\prime}, there must be a v_{3} before each v_{2} except the first one, and $f^{\prime}\left(v_{3}\right)=v_{2}, f^{\prime}\left(v_{2}\right)=v_{1}$. So we can define $\xi\left(\hat{w}_{2}\right)$ to be the walk from $\xi\left(\hat{w}_{2}^{\prime}\right)$ by inserting S_{i}^{2} after the v_{2} that is just before the i-th $v_{1}, i \geq 2$. Let $\xi\left(\hat{w}_{3}\right)=\xi\left(\hat{w}_{3}^{\prime}\right)=\left(\hat{w}_{3}^{\prime}\right)^{-1}=v_{1} v_{2}$. Finally, let $\xi\left(\hat{w}_{4}^{\prime}\right)=\left(\hat{w}_{4}^{\prime}\right)^{-1}$, it is a walk from v_{m} to v_{1}, and $\xi\left(\hat{w}_{4}\right)$ is the walk from $\xi\left(\hat{w}_{4}^{\prime}\right)$ by inserting all S_{i}^{4} to the original place in $w_{2 j}$. Thus, we define $\xi\left(w_{2 j}\right)=\xi\left(\hat{w}_{2}\right) \cup \xi\left(\hat{w}_{3}\right) \cup \xi\left(\hat{w}_{1}\right) \cup \xi\left(\hat{w}_{4}\right)$, it is a closed walk at v_{1}. On the other hand, if $\xi\left(w_{2 j}\right)$ is given, we can get the four parts
uniquely according to the features we described above.

- If $w_{2 j}$ does not pass the vertex v_{1}, it must pass the vertex v_{2}, and so is $w_{2 j}^{\prime}$. Then $w_{2 j}^{\prime}$ consists of three segments: the first segment \hat{w}_{1}^{\prime} from the initial vertex v_{m} to the first v_{2}, the second segment \hat{w}_{2}^{\prime} from the first v_{2} to the last v_{2}, and the third segment \hat{w}_{3}^{\prime} from the last v_{2} to the terminal vertex of $w_{2 j}^{\prime}$.
Let S_{i}^{t} be the stable segment after the i-th v_{2} of $\hat{w}_{t}^{\prime}, 1 \leq t \leq 3$. Let $\xi\left(\hat{w}_{1}^{\prime}\right)=f\left(\hat{w}_{1}^{\prime}\right)$, it is a walk from v_{1} to v_{m-1}, no internal vertices is v_{m-1}. And $\xi\left(\hat{w}_{1}\right)$ is the walk from $\xi\left(\hat{w}_{1}^{\prime}\right)$ by inserting S_{1}^{1} (if it exists) after the first v_{2} in it. Let $\xi\left(\hat{w}_{2}^{\prime}\right)=f^{\prime}\left(\hat{w}_{2}^{\prime}\right)$, it is a walk from v_{1} to v_{1}. Since in \hat{w}_{2}^{\prime}, there must be a v_{3} before each v_{2} except the first one, and $f^{\prime}\left(v_{3}\right)=v_{2}, f^{\prime}\left(v_{2}\right)=v_{1}$. So we can define $\xi\left(\hat{w}_{2}\right)$ to be the walk from $\xi\left(\hat{w}_{2}^{\prime}\right)$ by inserting S_{i}^{2} after the v_{2} that is just before the i-th $v_{1}, i \geq 2$. Finally, let $\xi\left(\hat{w}_{3}\right)=\xi\left(\hat{w}_{3}^{\prime}\right)=\left(f^{\prime}\left(\hat{w}_{3}^{\prime}\right)\right)^{-1}$, it is a walk from v_{m-1} to v_{1}, no internal vertices is v_{1}. Thus, we define $\xi\left(w_{2 j}\right)=\xi\left(\hat{w}_{1}\right) \cup \xi\left(\hat{w}_{3}\right) \cup \xi\left(\hat{w}_{2}\right)$, it is a closed walk at v_{1}. On the other hand, if $\xi\left(w_{2 j}\right)$ is given, we can get the three parts uniquely according to the features we described above.

Subcase 2.2. If w begins with a vertex in B^{\prime}, and $j=1, s$, the for the two cases that $w_{2 j}, j=1, s$ passes the vertex v_{1} or does not pass v_{1}, both can be defined similarly as above. Thus, If w begins and ends with vertex $v_{t}, 2 \leq t \leq m-1, \xi\left(w_{21}\right)$ can be defined uniquely to be a walk from v_{m+1-t} to $v_{1}, \xi\left(w_{2 s}\right)$ can be defined uniquely to be a walk from v_{1} to v_{m+1-t}. If w begins and ends with vertex $u_{t}, 1 \leq t \leq \Delta-2, \xi\left(w_{21}\right)$ can be defined uniquely to be a walk from v_{m-1} to $v_{1}, \xi\left(w_{2 s}\right)$ can be defined uniquely to be a walk from v_{1} to v_{m-1}.

Then we define $\xi(w)=\xi\left(w_{11}\right) \cup \xi\left(w_{21}\right) \cup \xi\left(w_{12}\right) \cup \xi\left(w_{22}\right) \cdots \cup \xi\left(w_{1 s}\right) \cup \xi\left(w_{2 s}\right)$, for $\xi(w) \in W_{4}$.

Now, for any closed walk $w \in W_{6}$, there is a unique walk $\xi(w)$ in W_{4} corresponding to it. By the definition of ξ and the description above, we know if there is a walk $\xi(w) \in W_{4}$, $\xi(w)$ can be divided into some pieces in only one way, and ξ on each piece is bijective. We combine all the inverse images of the pieces according to the only order, so we can get the only $w \in W_{6}$. Therefore, if $w_{1}, w_{2} \in W_{6}, w_{1} \neq w_{2}$, then $\xi\left(w_{1}\right) \neq \xi\left(w_{2}\right)$. Thus, ξ is injective. But it is not surjective, since there is no $w \in W_{6}$, such that there is a segment $\xi\left(w_{2 j}\right) \subseteq \xi(w)$ with $\xi\left(w_{2 j}\right)=v_{1} v_{2} u_{1} v_{2} v_{1}, 1 \leq j \leq s$.

Thus, $\left|W_{4}\right|>\left|W_{6}\right|$, and consequently, $M_{2 k}\left(G_{4}\right)>M_{2 k}\left(G_{6}\right)$, that is, $E E\left(G_{4}\right)>$ $E E\left(G_{6}\right)$.

Analogously, we can get that $E E\left(G_{6}\right)>E E\left(G_{5}\right)$ if $G_{5} \nsubseteq G_{6}$. Thus $E E\left(G_{4}\right)>$ $E E\left(G_{5}\right)$, as required.

The above lemma is true for the case $n_{3} \geq 1$, which means that u and v are not adjacent. Actually the lemma is also true when u and v are adjacent. We can prove it similarly.

From Lemmas 3.1 through 3.4, we finally get the result below.

Theorem 3.5 For all trees T of order n with exactly two vertices of maximum degree, the graph G_{5} has the minimal Estrada index.

With one more restriction that the two maximum degree vertices of the trees must be adjacent, we give the following conjecture.

Conjecture 3.6 For all trees T of order n with two adjacent vertices of maximum degree, the graph G_{7} has the minimal Estrada index, see Figure 3.6, where u, v are vertices with maximum degree.

Figure 3.6 The graph G_{7} in Conjecture 3.6.

Theorem 3.5 can be generalized to trees with one maximum and one second maximum degree vertex as follows.

Theorem 3.7 For all trees T of order n with exactly one maximum and one second maximum degree vertex, the graph G_{8} has the minimal Estrada index, see Figure 3.7, where u, v are vertices with the maximum and second maximum degree, respectively.

Figure 3.7 The graph G_{8} in Theorem 3.7

Acknowledgement: The authors Jing Li and Xueliang Li are supported by NSFC No.10831001, PCSIRT and the " 973 " program. The author Lusheng Wang is fully supported by a grant from the Research Grants Council of the Hong Kong SAR [Project No. CityU 121207]. The authors are very grateful to the referees for helpful comments and suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
[3] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.
[4] H. Deng, A note on the Estrada index of trees, MATCH Commun. Math. Comput. Chem. 62 (2009) 607-610.
[5] J.A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, Lin. Algebra Appl. 427 (2007) 70-76.
[6] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713-718.
[7] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002) 697-704.
[8] E. Estrada, J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E71 (2005) 056103-1-9.
[9] E. Estrada, J.A. Rodríguez-Velázquez, Spectral measures of bipartivity in complex networks, Phys. Rev. E72 (2005) 046105-1-6.
[10] E. Estrada, J.A. Rodríguez-Velázquez, M. Randić, Atomic branching in molecules, Int. J. Quantum Chem. 106 (2006) 823-832.
[11] I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. (Beograd), 83 (2008) $1-7$.
[12] I. Gutman, S. Radenković, A lower bound for the Estrada index of bipartite molecular graphs, Kragujevac J. Sci. 29 (2007) 67-72.
[13] A. Ilić, D. Stevanović, The Estrada index of chemical trees, J. Math. Chem., DOI: 10.1007/s10910-009-9570-0.
[14] H. Zhao, Y. Jia, On the Estrada index of bipartite graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 495-501.
[15] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008) 485-492.

