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Abstract

Let G be a simple graph with n vertices and let λ1, λ2, . . . , λn be the

eigenvalues of its adjacency matrix. The Estrada index EE of G is

the sum of the terms eλi . In 2009 Ilić et al. obtained the trees with

minimal Estrada index among trees with a given maximum vertex

degree. In this paper, we give the trees with minimal Estrada index

among the trees of order n with exactly two vertices of maximum degree.

1 Introduction

Let G be a simple graph with n vertices and m edges. A walk [1] in a simple graph G

is a sequence W := v0v1 · · · v` of vertices, such that vi−1vi is an edge in G. If v0 = x and



v` = y, we say that W connects x to y and refer to W as an xy-walk. The vertices x and

y are called the ends of the walk, x being its initial vertex and y its terminal vertex, while

the vertices v1, . . . , v`−1 are called its internal vertices. The integer ` is the length of W .

If u and v are two vertices of a walk W , where u precedes v on W , the subsequence of W

starting from u and ending at v is denoted by uWv and called the segment of W from u

to v.

The spectrum of G is the spectrum of its adjacency matrix [2], and consists of the

(real) numbers λ1 ≥ λ2 ≥ · · · ≥ λn. The Estrada index is defined as

EE(G) =
n∑

i=1

eλi .

Although invented in the year 2000 [6], the Estrada index has already found a large

number of applications, such as in biochemistry [6, 7, 10] and in the theory of complex

networks [8, 9]. Also numerous lower and upper bounds for the Estrada index have been

communicated [5, 11, 12, 15].

Recently, Deng in [3] showed that the path Pn and the star Sn have the minimal and

the maximal Estrada indices among n-vertex trees. Zhao and Jia in [14] determined also

the trees with the second and the third maximal Estrada index. Then, Deng in [4] gave

the first six trees with the maximal Estrada index. In 2009 Ilić et al. [13] obtained the

trees with minimal Estrada index among trees of order n with a given maximum vertex

degree. In this paper, we give the trees with minimal Estrada index among trees of order

n with exactly two vertices of maximum degree.

2 Preliminaries

In our proofs, we will use a relation between EE and the spectral moments of a graph.

For k ≥ 0, we denote by Mk the k-th spectral moment of G,

Mk(G) =

n∑

i=1

λk
i .

We know from [2] that Mk is equal to the number of closed walks of length k of the graph

G, and the first few spectral moments of a graph with m edges and n vertices satisfy the

relations:

M0 = n, M1 = 0, M2 = 2m, M3 = 6t,



where t is the number of triangles in G.

From the Taylor expansion of ex, we have the following important relation between

the Estrada index and the spectral moments of G:

EE(G) =

∞∑

k=0

Mk

k!
.

Thus, if for two graphs G and H we have Mk(G) ≥ Mk(H) for all k ≥ 0, then EE(G) ≥

EE(H). Moreover, if the strict inequality Mk(G) > Mk(H) holds for at least one value

of k, then EE(G) > EE(H).

3 The minimal Estrada index of trees with two max-

imum degree vertices

Let Gi be a graph with n vertices and m edges, in which there are exactly two vertices

of maximum degree ∆. Let W (Gi) denote the set of closed walks in Gi, and W2k(Gi)

denote the set of closed walks of length 2k in Gi. We say a closed walks is at vertex vj,

if it is a closed walk from vj to vj.

Lemma 3.1 [3] Let u be a non-isolated vertex of a simple graph H. If H1 and H2 are

the graphs obtained from H by identifying an end vertex v1 and an internal vertex vt of

the n-vertex path Pn, respectively, with u, see Figure 3.1, then M2k(H1) < M2k(H2) for

n ≥ 3 and k ≥ 2.

v1 vt vt+1 vn

u

H

H2

v1 vt vt+1 vn

H1

H
u

Figure 3.1 The transformation in Lemma 3.1.

Lemma 3.2 For the two trees G1 and G2 in Figure 3.2, we have EE(G1) > EE(G2),

where Pi are paths of length ni, ni ≥ 0, 1 ≤ i ≤ s, A and B are (connected) trees and

G1 � G2.



A B
1 2 3 s

P1 P2 P3 Ps

A B
1 2 3 s s+1 s +

∑
s

i=1
ni

G1

G2

u v

u

v

Figure 3.2 The graphs G1 and G2 in Lemma 3.2.

Proof. Suppose Pi is the first path with ni > 0. Let ni = m and i = i0. Then G1 can

be redrawn as in Figure 3.3. First we show that if G1 � G3, then EE(G1) > EE(G3).

Consider the following correspondence:

ξ : W2k(G3) → W2k(G1), ∀ w ∈ W2k(G3).

Denote by A1, B1 the graphs in Figure 3.3. Since W2k(Gi) = W2k(A1) ∪ W2k(B1) ∪ Wi,

where Wi is the set of closed walks of length 2k of Gi, each of which contains at least one

edge in E(A1) and at least one edge in E(B1). So M2k(Gi) = |W2k(A1)| + |W2k(B1)| +

|Wi| = M2k(A1) + M2k(B1) + |Wi|. Obviously, it is sufficient to show that |W1| > |W3|.

For any closed walk w ∈ W3, it contains the segments w1` of the walk in W (A1), and

the segments w2j in W (B1), 1 ≤ `, j ≤ t, t = max{t1, t2}, where t1 and t2 are the numbers

of segments of w in W (A1) and W (B1), respectively, and some of the segments may be

empty. Then it can be written as w = w11 ∪ w21 ∪ w12 ∪ w22 · · · ∪ w1t ∪ w2t. For the

segments w1` ∈ W (A1), define ξ(w1`) = w1`, 1 ≤ ` ≤ t. Now we define ξ(w2j), 1 ≤ j ≤ t.

Let f : {i0, i1, . . . , im} → {i0, i1, . . . , im}, f(ir) = im−r, for 0 ≤ r ≤ m.

Case 1. If w2j does not pass the edge ei0,i+1, then define ξ(w2j) = f(w2j).

Case 2. If on the contrary, w2j pass the edge ei0,i+1, then

• if w begins with a vertex in A1, then w2j is a closed walk at im. It contains the first

segment w′

2j from the initial vertex im to the first i0, the second segment w′′

2j from

the first i0 to the last i0, and the third segment w′′′

2j from the last i0 to the terminal

vertex im. Then, define ξ(w2j) = f(w′

2j) ∪ (w′′′

2j)
−1 ∪ w′′

2j , where (w′′′

2j)
−1 is the walk
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Figure 3.3 The graphs in the proof of Lemma 3.2.

from w′′′

2j by reversing the order of all the vertices. It is the walk in G1 that consists

of the first segment from i0 to the first im, the second segment from im to the next

first i0 and the third segment from i0 to i0.

• if w begins with a vertex except im in B1, and j 6= 1, t, then define ξ(w2j) is the

same as above.

• if w begins with a vertex except im in B1, j = 1, t. We can see that w11 is empty,

w21 contains the first segment w′

21 from the initial vertex to the first i0, the second

segment w′′

21 from the first i0 to the last i0, and the third segment w′′′

21 from the last

i0 to the terminal vertex im. Then, define ξ(w21) = f(w′

21)∪ (w′′′

21)
−1 ∪w′′

21. And w2t

contains the first segment w′

2t from im to the first i0, the second segment w′′

2t from

the first i0 to the last i0, and the third segment w′′′

2t from the last i0 to the terminal

vertex. Then, define ξ(w2t) = w′′

2t ∪ (w′

2t)
−1 ∪ f(w′′′

2t).

We then define ξ(w) = ξ(w11) ∪ ξ(w21) ∪ ξ(w12) ∪ ξ(w22) · · · ∪ ξ(w1t) ∪ ξ(w2t), for

ξ(w) ∈ W1.

Now, for any closed walk w ∈ W3, there is a unique walk ξ(w) in W1 corresponding

to it. By the definition of ξ and the description above, we know that if there is a walk



ξ(w) ∈ W1, then ξ(w) can be divided into some pieces in only one way, and ξ on each piece

is bijective. We combine all the inverse images of the pieces according to the only order,

so we can get the only w ∈ W3. Therefore, if w1, w2 ∈ W3, w1 6= w2, then ξ(w1) 6= ξ(w2).

Thus, ξ is injective. But it is not surjective, since there is no w ∈ W2k(G3) such that

ξ(w) = (i − 1)i0(i + 1)i0(i − 1). Then clearly |W1| > |W3|.

Thus, M2k(G1) > M2k(G3), that is, EE(G1) > EE(G3).

Then, we can repeat the above process and finally get that EE(G1) > EE(G2), as

required.

For any tree T of order n with exactly two vertices u, v of maximum degree ∆, by using

the transformation in Lemma 3.1 repeatedly, we can easily get that EE(T ) ≥ EE(G1),

where A denotes the union of the ∆− 1 disjoint paths all of which have their end vertices

adjacent to u, and B denotes the union of the ∆ − 1 disjoint paths all of which have the

end vertices adjacent to v. Then from Lemma 3.2, EE(T ) ≥ EE(G1) ≥ EE(G2), and

the equality holds if and only if T ∼= G1
∼= G2.

The following is a very useful lemma from [13].

Lemma 3.3 [13] Let w be a vertex of a nontrivial connected graph G, and for nonnegative

integers p and q, let G(p, q) denote the graph obtained from G by attaching pendent paths

P = wv1v2 · · · vp and Q = wu1u2 · · ·uq of lengths p and q, respectively, at w. If p ≥ q ≥ 1,

then

EE(G(p, q)) > EE(G(p + 1, q − 1)).

Then by applying the transformation in Lemma 3.3 repeatedly, we get that EE(G2) >

EE(G4) if G2 � G4, where G4 is the graph introduced in the following lemma.

Lemma 3.4 Let G4 and G5 be two trees with n vertices, see Figure 3.4, we have EE(G4) >

EE(G5), where Pi are paths of length ni, ni ≥ 1, i = 1, 2, 3, and u, v are vertices with

maximum degree ∆, and G4 � G5.

Proof. We first show that if G4 � G6, then EE(G4) > EE(G6).

Since M2k(Gi) = |W2k(A)| + |W2k(B)| + |Wi| = M2k(A) + M2k(B) + |Wi|, where Wi

is the set of closed walks of length 2k of Gi containing at least one edge in E(A) and
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Figure 3.4 The graphs Gi, i = 4, 5, 6 in Lemma 3.4.

at least one edge in E(B), i = 4, 6. Similar to Lemma 3.2, we only need to show that

|W4| > |W6|. For convenience, we relabel B as B ′, m = n2 + 2, see Figure 3.5.

Now we show that for a closed walk w ∈ W6, there is an injection ξ, such that

ξ(w) ∈ W4. For any closed walk w ∈ W6, it contains the segments w1` of the walk in

W (A), and the segments w2j in W (B′), 1 ≤ `, j ≤ s, s = max{s1, s2}, where s1 and s2 are

the numbers of segments of w in W (A) and W (B ′), respectively, and some of the segments

may be empty. Then it can be written as w = w11∪w21∪w12∪w22 · · ·∪w1s∪w2s. For the

segments w1` ∈ W (A), define ξ(w1`) = w1`, 1 ≤ ` ≤ s. Now we define ξ(w2j), 1 ≤ j ≤ s.

Case 1. w2j only uses edges on the path P = v1v2 . . . vm.

Let f : {v1, v2, . . . , vm} → {v1, v2, . . . , vm}, f(vi) = vm+1−i, ∀ 1 ≤ i ≤ m. Then, define

ξ(w2j) = f(w2j).

Case 2. w2j also uses other edges of B ′.

We first define the term stable segment S, it is a maximal consecutive subsequence

of w2j from ui to v2, 1 ≤ i ≤ ∆ − 2, all the edges of the subsequence are of the form

v2uk, 1 ≤ k ≤ ∆− 2. Now we consider the remaining subsequence w′

2j of w2j by deleting
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Figure 3.5 The trees in the proof of Lemma 3.4.

all the stable segments.

Let f ′ : {v2, v3 . . . , vm} → {v1, v2, . . . , vm−1}, f ′(vi) = vi−1, ∀ 2 ≤ i ≤ m. f ′′ :

{v2, . . . , vm} → {v2, . . . , vm}, f ′′(vi) = vm+2−i, ∀ 2 ≤ i ≤ m. w−1 is the walk from w by

reversing the order of all the vertices.

Subcase 2.1. If w begins with a vertex in A, or w begins with a vertex in B ′ and j 6= 1, s,

then w2j is a closed walk at vm. We only need to show that ξ(w2j) is a closed walk at v1.

Actually, it is easy to see that w′

2j is also a closed walk at vm.

• If w2j passes the vertex v1, so is w′

2j . Then w′

2j consists of four segments: the first

segment ŵ′

1 from the initial vertex vm to the first v2, the second segment ŵ′

2 from

the first v2 to the v2 that is just before the first v1, the third segment ŵ′

3 = v2v1,

where the v1 is the first v1 in w′

2j , and the forth segment ŵ′

4 from the first v1 to the

terminal vertex of w′

2j. Actually, some of the segments may be empty.

Let St
i be the stable segment after the i-th v2 of ŵ′

t, 1 ≤ t ≤ 4. Let ξ(ŵ′

1) = f ′′(ŵ′

1),

it is a walk from v2 to vm, no internal vertices is v1 or vm. And ξ(ŵ1) is the walk

from ξ(ŵ′

1) by inserting S1
1 (if it exists) after the first v2 in it. Let ξ(ŵ′

2) = f ′(ŵ′

2), it

is a walk from v1 to v1, and no internal vertices is vm. Since in ŵ′

2, there must be a

v3 before each v2 except the first one, and f ′(v3) = v2, f
′(v2) = v1. So we can define

ξ(ŵ2) to be the walk from ξ(ŵ′

2) by inserting S2
i after the v2 that is just before the

i-th v1, i ≥ 2. Let ξ(ŵ3) = ξ(ŵ′

3) = (ŵ′

3)
−1 = v1v2. Finally, let ξ(ŵ′

4) = (ŵ′

4)
−1, it

is a walk from vm to v1, and ξ(ŵ4) is the walk from ξ(ŵ′

4) by inserting all S4
i to the

original place in w2j. Thus, we define ξ(w2j) = ξ(ŵ2)∪ ξ(ŵ3)∪ ξ(ŵ1)∪ ξ(ŵ4), it is a

closed walk at v1. On the other hand, if ξ(w2j) is given, we can get the four parts



uniquely according to the features we described above.

• If w2j does not pass the vertex v1, it must pass the vertex v2, and so is w′

2j. Then

w′

2j consists of three segments: the first segment ŵ′

1 from the initial vertex vm to

the first v2, the second segment ŵ′

2 from the first v2 to the last v2, and the third

segment ŵ′

3 from the last v2 to the terminal vertex of w′

2j.

Let St
i be the stable segment after the i-th v2 of ŵ′

t, 1 ≤ t ≤ 3. Let ξ(ŵ′

1) = f(ŵ′

1),

it is a walk from v1 to vm−1, no internal vertices is vm−1. And ξ(ŵ1) is the walk

from ξ(ŵ′

1) by inserting S1
1 (if it exists) after the first v2 in it. Let ξ(ŵ′

2) = f ′(ŵ′

2),

it is a walk from v1 to v1. Since in ŵ′

2, there must be a v3 before each v2 except the

first one, and f ′(v3) = v2, f
′(v2) = v1. So we can define ξ(ŵ2) to be the walk from

ξ(ŵ′

2) by inserting S2
i after the v2 that is just before the i-th v1, i ≥ 2. Finally, let

ξ(ŵ3) = ξ(ŵ′

3) = (f ′(ŵ′

3))
−1, it is a walk from vm−1 to v1, no internal vertices is v1.

Thus, we define ξ(w2j) = ξ(ŵ1) ∪ ξ(ŵ3) ∪ ξ(ŵ2), it is a closed walk at v1. On the

other hand, if ξ(w2j) is given, we can get the three parts uniquely according to the

features we described above.

Subcase 2.2. If w begins with a vertex in B ′, and j = 1, s, the for the two cases that

w2j , j = 1, s passes the vertex v1 or does not pass v1, both can be defined similarly as

above. Thus, If w begins and ends with vertex vt, 2 ≤ t ≤ m − 1, ξ(w21) can be defined

uniquely to be a walk from vm+1−t to v1, ξ(w2s) can be defined uniquely to be a walk from

v1 to vm+1−t. If w begins and ends with vertex ut, 1 ≤ t ≤ ∆ − 2, ξ(w21) can be defined

uniquely to be a walk from vm−1 to v1, ξ(w2s) can be defined uniquely to be a walk from

v1 to vm−1.

Then we define ξ(w) = ξ(w11) ∪ ξ(w21) ∪ ξ(w12) ∪ ξ(w22) · · · ∪ ξ(w1s) ∪ ξ(w2s), for

ξ(w) ∈ W4.

Now, for any closed walk w ∈ W6, there is a unique walk ξ(w) in W4 corresponding to

it. By the definition of ξ and the description above, we know if there is a walk ξ(w) ∈ W4,

ξ(w) can be divided into some pieces in only one way, and ξ on each piece is bijective.

We combine all the inverse images of the pieces according to the only order, so we can

get the only w ∈ W6. Therefore, if w1, w2 ∈ W6, w1 6= w2, then ξ(w1) 6= ξ(w2). Thus, ξ is

injective. But it is not surjective, since there is no w ∈ W6, such that there is a segment

ξ(w2j) ⊆ ξ(w) with ξ(w2j) = v1v2u1v2v1, 1 ≤ j ≤ s.



Thus, |W4| > |W6|, and consequently, M2k(G4) > M2k(G6), that is, EE(G4) >

EE(G6).

Analogously, we can get that EE(G6) > EE(G5) if G5 � G6. Thus EE(G4) >

EE(G5), as required.

The above lemma is true for the case n3 ≥ 1, which means that u and v are not

adjacent. Actually the lemma is also true when u and v are adjacent. We can prove it

similarly.

From Lemmas 3.1 through 3.4, we finally get the result below.

Theorem 3.5 For all trees T of order n with exactly two vertices of maximum degree,

the graph G5 has the minimal Estrada index.

With one more restriction that the two maximum degree vertices of the trees must be

adjacent, we give the following conjecture.

Conjecture 3.6 For all trees T of order n with two adjacent vertices of maximum degree,

the graph G7 has the minimal Estrada index, see Figure 3.6, where u, v are vertices with

maximum degree.

u

1

2

n1

v∆ − 2
∆ − 1

G7

Figure 3.6 The graph G7 in Conjecture 3.6.

Theorem 3.5 can be generalized to trees with one maximum and one second maximum

degree vertex as follows.



Theorem 3.7 For all trees T of order n with exactly one maximum and one second

maximum degree vertex, the graph G8 has the minimal Estrada index, see Figure 3.7,

where u, v are vertices with the maximum and second maximum degree, respectively.

u v

G8

Figure 3.7 The graph G8 in Theorem 3.7
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