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Abstract

We establish a stronger symmetry between the numbers of northeast and southeast chains in
the context of 01-fillings of moon polyominoes. LetM be a moon polyomino with n rows and m

columns. Consider all the 01-fillings ofM in which every row has at most one 1. We introduce
four mixed statistics with respect to a bipartition of rows or columns ofM. More precisely, let
S ⊆ {1, 2, . . . , n} and R(S) be the union of rows whose indices are in S. For any filling M , the
top-mixed (resp. bottom-mixed) statistic α(S; M) (resp. β(S; M)) is the sum of the number of
northeast chains whose top (resp. bottom) cell is in R(S), together with the number of southeast
chains whose top (resp. bottom) cell is in the complement of R(S). Similarly, we define the
left-mixed and right-mixed statistics γ(T ; M) and δ(T ; M), where T is a subset of the column
index set {1, 2, . . . , m}. Let λ(A; M) be any of these four statistics α(S; M), β(S; M), γ(T ; M)
and δ(T ; M), we show that the joint distribution of the pair (λ(A; M), λ(Ā; M)) is symmetric
and independent of the subsets S, T . In particular, the pair of statistics (λ(A; M), λ(Ā; M))
is equidistributed with (se(M), ne(M)), where se(M) and ne(M) are the numbers of southeast
chains and northeast chains of M , respectively.
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1 Introduction

Recently it is observed that the numbers of crossings and nestings have a symmetric distribution
over many families of combinatorial objects, such as matchings and set partitions. Recall that a
matching of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] with the property that each block
has exactly two elements. It can be represented as a graph with vertices 1, 2, . . . , 2n drawn on a
horizontal line in increasing order, where two vertices i and j are connected by an edge if and only
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if {i, j} is a block. We say that two edges (i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 < j2;
they form a nesting if i1 < i2 < j2 < j1. The symmetry of the joint distribution of crossings and
nestings follows from the bijections of de Sainte-Catherine, who also found the generating functions
for the number of crossings and the number of nestings. Klazar [12] further studied the distribution
of crossings and nestings over the set of matchings obtained from a given matching by successfully
adding edges.

The symmetry between crossings and nestings was extended by Kasraoui and Zeng [11] to
set partitions, and by Chen, Wu and Yan [4] to linked set partitions. Poznanović and Yan [15]
determined the distribution of crossings and nestings over the set of partitions which are identical
to a given partition π when restricted to the last n elements.

Many classical results on enumerative combinatorics can be put in the larger context of count-
ing submatrices in fillings of certain polyominoes. For example, words and permutations can be
represented as 01-fillings of rectangular boards, and general graphs can be represented as N-fillings
of arbitrary Ferrers shapes, which were studied by Kratthenthaler [13] and de Mier [6, 7]. Other
extensions include stack polyominoes [9], and moon polyominoes [16, 10]. In particular, crossings
and nestings in matchings and set partitions correspond to northeast chains and southeast chains
of length 2 in a filling of polyominoes. The symmetry between crossings and nestings has been
extended by Kasraoui [10] to 01-fillings of moon polyominoes where either every row has at most
one 1, or every column has at most one 1. In both cases, the joint distribution of the numbers of
northeast and southeast chains can be expressed as a product of p, q-Gaussian coefficients. Other
known statistics on fillings of moon polyominoes are the length of the longest northeast/southeast
chains [2, 13, 16], and the major index [5].

The main objective of this paper is to present a stronger symmetry between the numbers
of northeast and southeast chains in the context of 01-fillings of moon polyominoes. Given a
bipartition of the rows (or columns) of a moon polyomino, we define four statistics by considering
mixed sets of northeast and southeast chains according to the bipartition. Let M be a 01-filling
of a moon polyomino M with n rows and m columns. These statistics are the top-mixed and the
bottom-mixed statistics α(S;M), β(S;M) with respect to a row-bipartition (S, S̄), and the left-
mixed and the right-mixed statistics γ(T ;M), δ(T ;M) with respect to a column-bipartition (T, T̄ ).
We show that for any of these four statistics λ(A;M), namely, α(S;M), β(S;M) for S ⊆ [n] and
γ(T ;M), δ(T ;M) for T ⊆ [m], the joint distribution of the pair (λ(A;M), λ(Ā;M)) is symmetric
and independent of the subsets S, T . Consequently, we have the equidistribution

∑

M

pλ(A;M)qλ(Ā;M) =
∑

M

pse(M)qne(M),

where M ranges over all 01-fillings of M with the property that either every row has at most one
1, or every column has at most one 1, and se(M) and ne(M) are the numbers of southeast and
northeast chains of M , respectively.

The paper is organized as follows. Section 2 contains necessary notation and the statements
of the main results. In Section 3, we explain how our results specialize to classical combinatorial
objects, including permutations, words, matchings, and set partitions. We present the proofs of
the main theorems in Section 4. In Section 5, we show by bijections that these new statistics are
invariant under a permutation of columns or rows on moon polyominoes.
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2 Notation and the Main Results

A polyomino is a finite subset of Z
2, where every element of Z

2 is represented by a square cell. The
polyomino is convex if its intersection with any column or row is connected. It is intersection-free
if every two columns are comparable, i.e., the row-coordinates of one column form a subset of those
of the other column. Equivalently, it is intersection-free if every two rows are comparable. A moon
polyomino is a convex and intersection-free polyomino.

Given a moon polyomino M, we assign 0 or 1 to each cell ofM so that there is at most one 1
in each row. Throughout this paper we will simply use the term filling to denote such 01-fillings.
We say that a cell is empty if it is assigned 0, and it is a 1-cell otherwise. Assume M has n rows
and m columns. We label the rows R1, . . . , Rn from top to bottom, and the columns C1, . . . , Cm

from left to right. Let e = (ε1, . . . , εn) ∈ {0, 1}n and s = (s1, . . . , sm) ∈ N
m with

n
∑

i=1

εi =

m
∑

j=1

sj.

We denote by F(M, e, s) the set of fillings M ofM such that the row Ri has exactly εi many 1’s,
and the column Cj has exactly sj many 1’s, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. See Figure 1 for an
illustration.

1

1

1

1

1

1

Figure 1: A filling M with e = (1, 1, 0, 1, 1, 1, 1) and s = (1, 1, 2, 1, 1, 0).

A northeast (resp. southeast) chain in a filling M of M is a set of two 1-cells such that one
of them is strictly above (resp. below) and to the right of the other and the smallest rectangle
containing them is contained in M. Northeast (resp. southeast) chains will be called NE (resp.
SE) chains. The number of NE (resp. SE) chains of M is denoted by ne(M) (resp. se(M)).

Let R be the set of rows of the moon polyominoM. For S ⊆ [n], let

R(S) =
⋃

i∈S

Ri.

We say a 1-cell is an S-cell if it lies in R(S). An NE chain is called a top S-NE chain if its northeast
1-cell is an S-cell. Similarly, an SE chain is called a top S-SE chain if its northwest 1-cell is an
S-cell. In other words, an NE/SE chain is a top S-NE/SE chain if the upper 1-cell of the chain is
in R(S). Similarly, an NE/SE chain is a bottom S-NE/SE chain if the lower 1-cell of the chain is
in R(S).

Let S̄ = [n]\S be the complement of S. Given a filling M ∈ F(M, e, s), we define the top-mixed
statistic α(S;M) and the bottom-mixed statistic β(S;M) with respect to S as

α(S;M) = #{top S-NE chain of M}+ #{top S̄-SE chain of M},

β(S;M) = #{bottom S-NE chain of M}+ #{bottom S̄-SE chain of M}.
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See Example 2.2 for some of these statistics on the filling M in Figure 1.

Let F t
S(p, q) and F b

S(p, q) be the bi-variate generating functions for the pairs (α(S;M), α(S̄ ;M))
and (β(S;M), β(S̄ ;M)) respectively, namely,

F t
S(p, q) =

∑

M∈F(M,e,s)

pα(S;M)qα(S̄;M) and F b
S(p, q) =

∑

M∈F(M,e,s)

pβ(S;M)qβ(S̄;M).

Note that
(α(∅;M), α([n];M)) = (β(∅;M), β([n];M)) = (se(M),ne(M)).

Our first result is the following property.

Theorem 2.1. F t
S(p, q) = F t

S′(p, q) for any two subsets S, S ′ of [n]. In other words, the bi-variate
generating function F t

S(p, q) does not depend on S. Consequently,

F t
S(p, q) = F t

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for F b
S(p, q).

We can also define the mixed statistics with respect to a subset of columns. Let C be the set of
columns of M. For T ⊆ [m], let

C(T ) =
⋃

j∈T

Cj.

An NE chain is called a left T -NE chain if the southwest 1-cell of the chain lies in C(T ). Similarly,
an SE chain is called a left T -SE chain if the northwest 1-cell of the chain lies in C(T ). In other
words, an NE/SE chain is a left T -NE/SE chain if its left 1-cell is in C(T ). Similarly, an NE/SE
chain is a right T -NE/SE chain if its right 1-cell is in C(T ).

Let T̄ = [m] \ T be the complement of T . For any filling M of F(M, e, s), we define the
left-mixed statistic γ(T ;M) and the right-mixed statistic δ(T ;M) with respect to T as

γ(T ;M) = #{left T -NE chain of M}+ #{left T̄ -SE chain of M},

δ(T ;M) = #{right T -NE chain of M}+ #{right T̄ -SE chain of M}.

Example 2.2. Let M be the filling in Figure 1, where ne(M) = 6 and se(M) = 1. Let S = {2, 4},
i.e., R(S) contains the second and the fourth rows. Then

α(S;M) = 5, α(S̄;M) = 2, β(S;M) = 1, β(S̄;M) = 6.

Let T = {1, 3}, i.e., C(T ) contains the first and the third columns. Then

γ(T ;M) = 4, γ(T̄ ;M) = 3, δ(T ;M) = 2, δ(T̄ ;M) = 5.

Let Gl
T (p, q) and Gr

T (p, q) be the bi-variate generating functions of the pairs (γ(T ;M), γ(T̄ ;M))
and (δ(T ;M), δ(T̄ ;M)) respectively, namely,

Gl
T (p, q) =

∑

M∈F(M,e,s)

pγ(T ;M)qγ(T̄ ;M) and Gr
T (p, q) =

∑

M∈F(M,e,s)

pδ(T ;M)qδ(T̄ ;M).

Again note that

(γ(∅;M), γ([m];M)) = (δ(∅;M), δ([m];M)) = (se(M),ne(M)).

Our second result shows that the generating function Gl
T (p, q) possesses a similar property as

F t
S(p, q).
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Theorem 2.3. Gl
T (p, q) = Gl

T ′(p, q) for any two subsets T, T ′ of [m]. In other words, the bi-variate
generating function Gl

T (p, q) does not depend on T . Consequently,

Gl
T (p, q) = Gl

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for Gr
T (p, q).

We notice that the set F(M, e, s) appeared as N r(T,m, A) in Kasraoui [10], where m is the
column sum vector, and A is the set of empty rows, i.e., A = {i : εi = 0}. Kasraoui also considered
the set N c(T,n, B) of fillings whose row sum is an arbitrary N-vector n under the condition that
there is at most one 1 in each column and where B is the set of empty columns. By a rotation
of moon polyominoes, it is easily seen that Theorem 2.1 and Theorem 2.3 also hold for the set
N c(T,n, B), as well as for the set of fillings such that there is at most one 1 in each row and in
each column.

3 Mixed Statistics in Special Shapes

In this section we show how Theorems 2.1 and 2.3 specialize to classical combinatorial objects,
including permutations, words, matchings, set partitions, and simple graphs.

We first consider the case of permutations and words. Fillings of an n×m rectangle M are in
bijection with words of length n on [m]. More precisely, a word w = w1w2 · · ·wn on [m] can be
represented as a filling M in which the cell in row n + 1− i and column j is assigned the integer 1
if and only if wi = j. In the word w1w2 · · ·wn, a pair (wi, wj) is an inversion if i < j and wi > wj ;
we say that it is a co-inversion if i < j and wi < wj , see also [14]. Denote by inv(w) the number
of inversions of w, and by coinv(w) the number of co-inversions of w.

For S ⊆ [n], the statistics α(S;M) and β(S;M) become

α(S;w) = #{(wi, wj) : n + 1− j ∈ S and (wi, wj) is a co-inversion}

+ #{(wi, wj) : n + 1− j 6∈ S and (wi, wj) is an inversion},

and

β(S;w) = #{(wi, wj) : n + 1− i ∈ S and (wi, wj) is a co-inversion}

+ #{(wi, wj) : n + 1− i 6∈ S and (wi, wj) is an inversion}.

For T ⊆ [m], the statistics γ(T ;M) and δ(T ;M) become

γ(T,w) = #{(wi, wj) : wi ∈ T and (wi, wj) is a co-inversion}

+ #{(wi, wj) : wj 6∈ T and (wi, wj) is an inversion},

and

δ(T,w) = #{(wi, wj) : wj ∈ T and (wi, wj) is a co-inversion}

+ #{(wi, wj) : wi 6∈ T and (wi, wj) is an inversion}.
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Let W = {1s1 , 2s2 , . . . ,msm} be a multiset with s1 + · · ·+sm = n. We adopt the notation R(W )
for the set of permutations, also called rearrangements, of the elements in W . Let λ(A;w) denote
any of the four statistics α(S;w), β(S;w), γ(T ;w), δ(T ;w). Theorems 2.1 and 2.3 imply that the
bi-variate generating function for (λ(A;w), λ(Ā;w)) is symmetric and

∑

w∈R(W )

pλ(A;w)qλ(Ā;w) =
∑

w∈R(W )

pinv(w)qcoinv(w) =

[

n

s1, . . . , sm

]

p,q

, (1)

where
[

n
s1,...,sm

]

p,q
is the p, q-Gaussian coefficient

[

n

s1, . . . , sm

]

p,q

=
[n]p,q!

[s1]p,q! · · · [sm]p,q!
.

As usual, the p, q-integer [r]p,q is given by

[r]p,q =
pr − qr

p− q
= pr−1 + pr−2q + · · · + pqr−2 + qr−1,

and the p, q-factorial [r]p,q! is defined as [r]p,q! =
∏r

i=1[i]p,q.

We note that the symmetry of the distribution of (λ(A;w), λ(Ā;w)) can be easily seen from the
map w1 · · ·wn → (m+1−w1) · · · (m+1−wn) for α and β, and the map w1 · · ·wn → wn · · ·w1 for γ

and δ. Nevertheless, the generating function Eq. (1) seems to be new. Chebikin [1] has considered
the special case of α(S;w) when S is the set of even integers and w ranges over all permutations
of [n].

We now consider the case of matchings and set partitions. As can be seen in de Mier [7]
and Chen et al. [5], general fillings of Ferrers diagrams correspond to multigraphs, which include
matchings, set partitions, and linked set partitions. For simplicity, we give a description only for
matchings. Given a matching π on [2n], let l1 < l2 < · · · < ln be the left-hand endpoints, and
r1 < r2 < · · · < rn be the right-hand endpoints. It determines a Ferrers diagram F whose rows are
indexed by l1, . . . , ln and columns are indexed by rn, . . . , r1, where a cell (lr, rk) is in the Ferrers
diagram if and only if lr is on the left of rk. The cell (lr, rk) is assigned the integer 1 if and only if
(lr, rk) is an arc of the matching π. See Figure 2 for an example.

l1 l2 r1 l3 l4 r2 r3 r4

←→

l4

l3

l2

l1

r4 r3 r2 r1

1

1

1

1

Figure 2: A matching and the corresponding filling of Ferrers diagram.

A subset of rows corresponds to a subset S of the left-hand endpoints {l1, . . . , ln}. The statistic
α(S;M) corresponds to the mixed crossing-nesting statistic with respect to the first left-hand
endpoint. More precisely, for a crossing formed by two edges (i1, j1) and (i2, j2) with i1 < i2 <

j1 < j2, it is said to be an S-crossing if i1 ∈ S. Similarly, a nesting formed by two edges (i1, j1)
and (i2, j2) with i1 < i2 < j2 < j1 is said to be an S-nesting if i1 ∈ S. Thus the statistic α(S;M)
becomes

α(S;π) = #{S-crossing of π}+ #{S̄-nesting of π}.
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Theorem 2.1 asserts that
∑

π pα(S;π)qα(S̄;π) is symmetric and independent of S, where π ranges
over Pn(A,B), the set of matchings with a given set of left-hand endpoints A and a given set of
right-hand endpoints B. In particular, for each ri, let

hi = #{cell in the column indexed by ri} − (i− 1).

By the generating function for the numbers of crossings and nestings [3, 11], we have

∑

π∈Pn(A,B)

pα(S;π)qα(S̄;π) =

n
∏

i=1

[hi]p,q, (2)

for any S ⊆ {l1, . . . , ln}. It is worth noting some immediate consequences of Eq. (2). For example,
for any non-empty set Pn(A,B), there is exactly one matching π such that α(S;π) = 0. It is not
hard to construct such a matching. Hence the number of matchings on [2n] with α(S;π) = 0 is
given by the n-th Catalan number. Similar statements hold when one considers the mixed crossing-
nesting statistics with respect to the second left-hand endpoint, the first right-hand endpoint, and
the second right-hand endpoint, respectively.

All the above results can be extended to set partitions [11] and linked set partitions [4], or more
generally, to simple graphs for which the left-degree of every vertex is at most 1, or the right-degree
of every vertex is at most 1, see de Mier [7]. Another way to see this is to associate a simple graph
with a filling of the triangular Ferrers diagram ∆n = (n− 1, n− 2, . . . , 1), see, for example, [13, 7].

4 Proof of the Main Results

It is sufficient to prove our results for α(S;M) and γ(T ;M) only, since conclusions for β(S;M) and
δ(T ;M) can be obtained by reflecting the moon polyomino with respect to a horizontal line or a
vertical line.

In Subsection 4.1, we recall Kasraoui’s bijection Ψ from F(M, e, s) to sequences of compositions
[10]. Kasraoui’s construction is stated for the set N c(T,n, B). We shall give a description to fit
our notation. The detailed justification of the bijection Ψ can be found in [10], and hence is
omitted. This bijection will be used in the proof of Lemma 4.6 which states that the pair of the
top-mixed statistics (α({1};M), α({1};M)) is equidistributed with (se(M),ne(M)). Theorem 2.1
follows from an iteration of Lemma 4.6. In Subsection 4.3 we provide two proofs of Theorem 2.3.
Again the crucial step is the observation that (γ({1};M), γ({1};M)) has the same distribution as
(se(M),ne(M)).

4.1 Kasraoui’s bijection Ψ

If the columns ofM are C1, . . . , Cm from left to right, it is clear that the sequence of their lengths
is unimodal and there exists a unique k such that

|C1| ≤ · · · ≤ |Ck−1| < |Ck| ≥ |Ck+1| ≥ · · · ≥ |Cm|,

where |Ci| is the length of the column Ci. The left part ofM, denoted L(M), is the set of columns
Ci’s with 1 ≤ i ≤ k − 1, and the right part of M, denoted R(M), is the set of columns Ci’s with
k ≤ i ≤ m. Note that the columns of maximal length inM belong to R(M).

We order the columns C1, . . . , Cm by a total order ≺ as follows: Ci ≺ Cj if and only if
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• |Ci| < |Cj | or

• |Ci| = |Cj |, Ci ∈ L(M) and Cj ∈ R(M), or

• |Ci| = |Cj |, Ci, Cj ∈ L(M) and Ci is on the left of Cj, or

• |Ci| = |Cj |, Ci, Cj ∈ R(M) and Ci is on the right of Cj.

For every column Ci ∈ L(M), we define the rectangle M(Ci) to be the largest rectangle that
contains Ci as the leftmost column. For Ci ∈ R(M), the rectangleM(Ci) is taken to be the largest
rectangle that contains Ci as the rightmost column and does not contain any column Cj ∈ L(M)
such that Cj ≺ Ci.

Given M ∈ F(M, e, s), we define a coloring of M by the following steps.

The coloring of the filling M

1. Color the cells of empty rows;

2. For each Ci ∈ L(M), color the cells which are contained in the rectangle M(Ci) and on the
right of any 1-cell in Ci.

3. For each Ci ∈ R(M), color the cells which are contained in the rectangle M(Ci) and on the
left of any 1-cell in Ci.

Given M with the coloring, let ce be a cell of M. If ce is a 1-cell, we denote by auc(ce;M)
(resp. buc(ce;M)) the number of uncolored empty cells in the same column as ce and above (resp.
below) ce. If ce is empty, we set auc(ce;M) = buc(ce;M) = 0.

Proposition 4.1. Let M ∈ F(M, e, s) and ce be a 1-cell of Ci.

1. If Ci ∈ L(M), then auc(ce;M) (resp. buc(ce;M)) is equal to the number of NE (resp. SE )
chains contained in the rectangle M(Ci) whose southwest (resp. northwest) 1-cell is ce;

2. If Ci ∈ R(M), then auc(ce;M) (resp. buc(ce;M)) is equal to the number of SE (resp. NE )
chains contained in the rectangle M(Ci) whose southeast (resp. northeast) 1-cell is ce.

Example 4.2. Let M be the 01-filling in Figure 1, where L(M) = {C1} and R(M) = {C2, . . . , C6}.
Let ce be the 1-cell in the first column, and ce′ the 1-cell in the fifth column. Then auc(ce;M) = 1,
buc(ce;M) = 1, auc(ce′;M) = 0, and buc(ce′;M) = 2; See Figure 3.

1

1

1

1

1

1

Figure 3: The statistics auc and buc for cells in a 01-filling.

The following theorem can be deduced from Prop. 4.1.
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Theorem 4.3.
ne(M) =

∑

ce∈L(M)

auc(ce;M) +
∑

ce∈R(M)

buc(ce;M),

se(M) =
∑

ce∈L(M)

buc(ce;M) +
∑

ce∈R(M)

auc(ce;M).

For M ∈ F(M, e, s), let ai be the number of empty rows (i.e., {Ri : εi = 0}) that intersect the
column Ci. Suppose that Ci1 ≺ Ci2 ≺ · · · ≺ Cim . For j = 1, . . . ,m, we define

hij = |Cij | − aij − (si1 + si2 + · · ·+ sij−1
). (3)

Note that the numbers hi’s have the following interpretation. If one puts 1-cells in the columns of
M from the smallest to the largest under the order ≺, then hij is the number of available cells in
the j-th column to be filled. For positive integers n and k, denote by Ck(n) the set of compositions
of n into k nonnegative parts, that is, Ck(n) = {(λ1, λ2, . . . , λk) ∈ N

k :
∑k

i=1 λi = n}. The bijection
Ψ is constructed as follows.

The bijection Ψ : F(M, e, s) −→ Cs1+1(h1 − s1)× Cs2+1(h2 − s2)× · · · × Csm+1(hm − sm).

For each M ∈ F(M, e, s) with the coloring, Ψ(M) is a sequence of compositions (c(1), c(2), . . . , c(m)),
where

• c(i) = (0) if si = 0. Otherwise

• c(i) = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
si+1) where

– c
(i)
1 is the number of uncolored cells above the first 1-cell in the column Ci;

– c
(i)
k is the number of uncolored cells between the (k − 1)-st and the k-th 1-cells in the

column Ci, for 2 ≤ k ≤ si;

– c
(i)
si+1 is the number of uncolored cells below the last 1-cell in the column Ci.

Let c = Ψ(M) = (c(1), c(2), . . . , c(m)), and ce be the k-th 1-cell in the column Ci. It follows from
the bijection Ψ that

auc(ce;M) = c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ,

buc(ce;M) = c
(i)
k+1 + c

(i)
k+2 + · · ·+ c

(i)
si+1 = hi − si − (c

(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ).

Now Theorem 4.3 can be rewritten as

Theorem 4.4. Let M ∈ F(M, e, s) and c = Ψ(M) = (c(1), c(2), . . . , c(m)). Then

ne(M) =
∑

Ci∈L(M)

si
∑

k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ) +

∑

Cj∈R(M)

sj
∑

k=1

(hj − sj − c
(j)
1 − c

(j)
2 − · · · − c

(j)
k ),

se(M) =
∑

Ci∈L(M)

si
∑

k=1

(hi − si − c
(i)
1 − c

(i)
2 − · · · − c

(i)
k ) +

∑

Cj∈R(M)

sj
∑

k=1

(c
(j)
1 + c

(j)
2 + · · · + c

(j)
k ).

Summing over the sequences of compositions yields the symmetric generating function.
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Theorem 4.5 (Kasraoui).

∑

M∈F(M,e,s)

pne(M)qse(M) =
∑

M∈F(M,e,s)

pse(M)qne(M) =

m
∏

i=1

[

hi

si

]

p,q

.

4.2 Proof of Theorem 2.1

To prove Theorem 2.1 for the top-mixed statistic α(S;M), we first consider the special case when
R(S) contains the first row only.

Lemma 4.6. For S = {1}, we have

F t
{1}(p, q) = F t

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M).

Proof. We assume that the first row is nonempty. Otherwise the identity is obvious. Given a
filling M ∈ F(M, e, s), assume that the unique 1-cell of the first row lies in the column Ct. Let the
upper polyomino Mu be the union of the rows that intersect Ct, and the lower polyomino Md be
the complement of Mu, i.e., Md =M\Mu. We aim to construct a bijection φα : F(M, e, s) →
F(M, e, s) such that for any filling M ,

(α({1};M), α({1};M)) = (se(φα(M)),ne(φα(M))),

and φα(M) is identical to M onMd.

Let Mu = M ∩Mu and Md = M ∩Md. Let s′i be the number of 1-cells of M in the column
Ci ∩Mu, and s′ = (s′1, . . . , s

′
m). Let e′ = (ε1, . . . , εr), where r is the number of rows in Mu. We

shall define φα on F(Mu, e′, s′) such that φα(Mu) ∈ F(Mu, e′, s′) and

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)),ne(φα(Mu))).

Let C ′
i = Ci ∩ Mu. Suppose that in M the columns intersecting with the first row are

Ca, . . . , Ct, . . . , Cb from left to right. Then Ct = C ′
t, and in Mu the columns C ′

a, . . . , C
′
t, . . . , C

′
b

intersect the first row. Assume that among them the ones with the same length as C ′
t are

C ′
u, . . . , C ′

t, . . . , C
′
v from left to right. Clearly, the columns C ′

u, . . . , C ′
t, . . . , C

′
v are those with maxi-

mal length and belong to R(Mu). Note that in Mu, the number of top {1}-NE chains is
∑

a≤i<t s′i,
while the number of top {1}-SE chains is

∑

t<i≤b s′i. Let h′
i be given as in Eq. (3) for F(Mu, e′, s′).

Let c = Ψ(Mu) = (c(1), c(2), . . . , c(m)), from Theorem 4.4 we see that

α({1};Mu) =
∑

a≤i<t

s′i +
∑

C′

i∈L(Mu)

s′i
∑

k=1

(h′
i − s′i − c

(i)
1 − c

(i)
2 − · · · − c

(i)
k )

+
∑

C′

j∈R(Mu)

s′j
∑

k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑

t<i≤b

s′i

=
∑

a≤i<u

s′i + (h′
t − s′t) +

∑

C′

i∈L(Mu)

s′i
∑

k=1

(h′
i − s′i − c

(i)
1 − c

(i)
2 − · · · − c

(i)
k )
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+
∑

C′

j∈R(Mu)

s′j
∑

k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑

t<i≤b

s′i. (4)

The second equation holds since C ′
t ≺ C ′

t−1 ≺ · · · ≺ C ′
u are the largest t− u + 1 columns in R(Mu)

under the order ≺. By definition h′
t is the number of available rows when all the smaller columns

of Mu have been filled. Those available rows will be filled by the 1’s in the columns C ′
t, . . . , C

′
u.

Hence h′
t = s′t + · · ·+ s′u. Similarly, we have

α({1};Mu) =
∑

t<i≤b

s′i +
∑

C′

i∈L(Mu)

s′i
∑

k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′

j∈R(Mu)

s′j
∑

k=1

(h′
j − s′j − c

(j)
1 − c

(j)
2 − · · · − c

(j)
k )−

∑

a≤i<t

s′i

=
∑

t<i≤b

s′i +
∑

C′

i∈L(Mu)

s′i
∑

k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′

j∈R(Mu)

s′j
∑

k=1

(h′
j − s′j − c

(j)
1 − c

(j)
2 − · · · − c

(j)
k )−

∑

a≤i<u

s′i − (h′
t − s′t). (5)

The fact that the 1-cell of the first row lies in the column C ′
t implies that c

(t)
1 = 0, and c

(i)
1 > 0

for a ≤ i < u or t < i ≤ b. We define the filling φα(Mu) by setting φα(Mu) = Ψ−1(c̃), where c̃ is
obtained from c as follows:















c̃(i) = (c
(i)
1 − 1, c

(i)
2 , . . . , c

(i)
si , c

(i)
si+1 + 1), if a ≤ i < u or t < i ≤ b, and s′i 6= 0,

c̃(t) = (c
(t)
2 , c

(t)
3 , . . . , c

(t)
st+1, c

(t)
1 ), if i = t,

c̃(i) = c(i), for any other i.

Comparing the formulas (4) and (5) with Theorem 4.4 for c̃, it is easily verified that

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)),ne(φα(Mu))).

Now φα(M) is obtained from M by replacing Mu with φα(Mu).

Claim: (α({1};M), α({1};M)) = (se(φα(M)),ne(φα(M))) for any M ∈ F(M, e, s).

This is true because (1) M has the same number of top {1}-NE/SE chains as Mu, since every
top {1}-NE/SE chains of M must appear in Mu; (2) Md appears in both M and φα(M); (3) If
(ce, ce′) is an NE chain or an SE chain with ce ∈ Mu and ce′ ∈ Md, by the intersection-free
property of M, both ce and ce′ are in columns {Ca, . . . , Cb}. For any fixed ce′ ∈ Md, the number
of NE (resp. SE) chains formed by ce′ and 1-cells ce in the column Cj ∩Mu is unchanged under
the map φα since φα preserves the column sum and row sum of Mu.

To show that φ is a bijection on F(M, e, s), it is enough to explain how to determine from φα(M)
the column Ct, and hence the upper polyomino Mu. Then the correspondence between c and c̃
becomes obvious. To this end, we shall use the map Ψ defined in Subsection 4.1. If the columns
intersecting the first row are Ca, . . . , Cb inM, then Ct is the smallest column in {Ca, . . . , Cb} under

the order ≺ with the property that the last entry c
(t)
st+1 is 0 in the corresponding composition c(t).

The rest of the proof is straightforward.
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Proposition 4.7. Assume S = {r1, r2, . . . , rs} ⊆ [n] with r1 < r2 < · · · < rs. Let S′ =
{r1, r2, . . . , rs−1}. Then F t

S(p, q) = F t
S′(p, q).

Proof. Let X = {Ri : 1 ≤ i < rs} be the set of rows above the row Rrs , and Y be the set of
remaining rows. Given a filling M ∈ F(M, e, s), let T (M) be the set of fillings M ′ ∈ F(M, e, s)
that are identical to M in the rows of X. Construct a bijection θrs : T (M) → T (M) by setting
θrs(M) to be the filling obtained from M by replacing M ∩ Y with φα(M ∩ Y ).

We proceed to show that

(α(S;M), α(S̄ ;M)) = (α(S ′; θrs(M)), α(S ′; θrs(M))). (6)

There are three cases.

Case 1 An NE or an SE chain consisting of two 1-cells in X contributes equally to both pairs of
statistics.

Case 2 By Lemma 4.6, the set of NE chains and SE chains consisting of two cells in Y contributes
equally to both pairs of statistics.

Case 3 For a 1-cell ce in X, assume ce is in row Ru and column Ct. Let T = {Ca, . . . , Cb} be the
set of columns intersecting both the rows Rrs and Ru, and Rp (p ≥ rs) be the lowest row that
intersects Ct. If ce forms an NE chain with a cell ce′ in Y , then ce′ is in a row on or above
Rp, and in a column in {Ca, . . . , Ct−1}.

It follows that the number of NE chains of the form (ce, ce′) for a fixed 1-cell ce ∈ X equals
the number of 1-cells in the area {(Ri, Cj) : rs ≤ i ≤ p, a ≤ j < t}, see Figure 4. This number
is unchanged under the map φα, as φα preserves the column sum and the row sum, and
hence the number of 1’s in columns Ca, . . . , Ct−1, and the number of 1’s in rows {Ri : i > p}.
Similarly, the number of SE chains (ce, ce′) with ce ∈ X and ce′ ∈ Y is unchanged under the
map φα. Thus NE and SE chains formed by one X-cell and one Y -cell contribute equally to
the two pairs of statistics as well.

ce

ce’

6
Ca

6
Ct

6
Cb

- Rrs

-Rp

-
Ru

X

Y

Figure 4: NE chains formed by the cell ce ∈ X and Y -cells.

Thus (6) is proved by combining the above three cases.
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Proof of Theorem 2.1. Assume S = {r1, r2, . . . , rs} ⊆ R with r1 < r2 < · · · < rs. Let Θα =
θr1
◦θr2
◦· · · ◦θrs , where θr is defined in the proof of Prop. 4.7. Then Θα is a bijection on F(M, e, s)

with the property that

(α(S;M), α(S̄ ;M)) = (se(Θα(M)),ne(Θα(M))).

The symmetry of F t
S(p, q) follows from Theorem 4.5.

4.3 Proof of Theorem 2.3

Theorem 2.3 is concerned with the left-mixed statistic γ(T ;M). The proof is similar to that of The-
orem 2.1. The key idea amounts to the observation that (γ({1};M), γ({1};M)) is equidistributed
with (se(M),ne(M)). We provide two proofs of this fact: one is based on generating functions, and
the other is bijective.

Lemma 4.8. For T = {1}, we have

Gl
{1}(p, q) = Gl

∅(p, q) =

m
∏

i=1

[

hi

si

]

p,q

.

First proof of Lemma 4.8. We conduct induction on the number of columns ofM. The statement
is trivial ifM has only one column.

Assume that Lemma 4.8 holds for 01-fillings on any moon polyominoes with less than m columns.
Suppose that M have m columns. Consider the minimal column C under the order ≺. There are
two cases.

1. C = C1 is the leftmost column ofM. In this case we employ the bijection Ψ. For any filling
M with Ψ(M) = (c(1), c(2), . . . , c(m)), let τ(M) = Ψ−1(c(1),r, c(2), . . . , c(m)), where

c(1),r = (c
(1)
s1+1, . . . , c

(1)
2 , c

(1)
1 ) if c(1) = (c

(1)
1 , c

(1)
2 , . . . , c

(1)
s1+1).

It is readily checked that (γ({1};M), γ({1};M)) = (se(τ(M)),ne(τ(M))).

2. C = Cm is the rightmost column of M. We first prove the case for rectangular shapes.
Assume M is a rectangle with n non-empty rows. A filling M of M can be read as a word
w = w1w2 · · ·wn where wi = j if the only 1-cell in the (n+1− i)-th non-empty row appears in
the j-th column. It is clear that se(M) = inv(w1w2 · · ·wn) and ne(M) = coinv(w1w2 · · ·wn).
In addition, fillings with a given column sum s = (s1, . . . , sm) correspond to words on the
multiset {1s1 , . . . ,msm}. Therefore

∑

M∈F(M,e,s)

pse(M)qne(M) =

[

n

s1, . . . , sm

]

p,q

. (7)

Observe that

γ({1};M) = # {(wi, wj) | wi = 1 < wj and i < j}+ # {(wi, wj) | i < j and wi > wj 6= 1}.
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Let ε(w1w2 · · ·wn) = ε(w1)ε(w2) · · · ε(wn) where

ε(wi) =

{

m + 1, if wi = 1,

wi, otherwise.

Then γ({1};M) = inv(ε(w1w2 · · ·wn)). Similarly, γ({1};M) = coinv(ε(w1w2 · · ·wn)). When
M ranges over F(M, e, s), the word ε(w1w2 · · ·wn) ranges over all rearrangements of the
multiset W = {(m + 1)s1 , 2s2 , . . . ,msm}. Hence

∑

M∈F(M,e,s)

pγ({1};M)qγ({1};M) =
∑

w∈R(W )

pinv(w)qcoinv(w) =

[

n

s1, . . . , sm

]

p,q

. (8)

Comparing (7) and (8), we complete the proof for a rectangular shapeM.

Now we deal with the case for a general shape M. Let M(C) be the largest rectangle that
contains C. Let M1 = M \ C and M1(C) = M(C) \ C. By the inductive hypothesis,
(γ({1};M), γ({1};M)) has the same distribution as (se(M),ne(M)) over the set of fillings in
F(M1, e

′, s − {sm}), where e′ is the row-vector when one removes the rows with a 1-cell in
the column C. We analyze the contribution when one adds the last column C with sm many
1-cells.

Given a filling M onM1, let S(M) be the set of all fillings that have the same 1-cells in rows
other than those inM1(C). For any N ∈ S(M), let N(C) be the restriction of N onM1(C),
then the values

γ({1};N) − γ({1};N(C)) and γ({1};N)− γ({1};N(C))

are constants over S(M), which will not change when the last column C is added. Note
that M1(C) is a rectangular shape. Hence N(C) can be identified as a word of length n on
{1s′

1 , 2s′
2 , . . . , (m−1)s′m−1}, where n is the number of non-empty rows inM1(C), and s′i is the

number of 1’s of M in Ci ∩M(C). By the argument for a rectangular shape, we find that

∑

N∈S(M)

pγ({1};N(C))qγ({1};N(C)) =

[

n

s′1, . . . , s
′
m−1

]

p,q

.

Adding the last column C with sm 1-cells is equivalent to inserting sm many m’s to a
word on {1s′

1 , 2s′
2 , . . . , (m − 1)s′m−1}. Again using the transformation ε(w1w2 · · ·wn+sm) =

ε(w1)ε(w2) · · · ε(wn+sm), and assuming W ′ = {(m + 1)s′
1 , 2s′

2 , . . . , (m− 1)s′m−1 ,msm}, we have

∑

M∈F(M(C),e1,s′∪{sm})

pγ({1};M)qγ({1};M) =
∑

w∈R(W ′)

pinv(w)qcoinv(w)

=

[

n + sm

s′1, . . . , s
′
m−1, sm

]

p,q

,

where e1 is the restriction of e on the rows in M(C). Thus we deduce that the contribution
of the last column C over the set S(M) is given by

[

n + sm

s′1, . . . , s
′
m−1, sm

]

p,q

/

[

n

s′1, . . . , s
′
m−1

]

p,q

=

[

n + sm

sm

]

p,q

,
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which is independent of s′1, . . . , s
′
m−1.

Summing over all distinct sets of the form S(M), we conclude that adding the last column C

contributes a factor of
[

n+sm

sm

]

p,q
to Gl

{1}(p, q). It follows from (3) that n + sm = hm. Hence

an inductive argument yields

Gl
{1}(p, q) =

m
∏

i=1

[

hi

si

]

p,q

= Gl
∅(p, q).

The second proof of Lemma 4.8 is a bijection, which is built on an involution ρ on the fillings
of a rectangular shapeM.

An involution ρ on rectangular shapes.
LetM be an n×m rectangle. We order the columns ofM from left to right, i.e., C1 ≺

′ · · · ≺′ Cm,
and set L(M) = M. For any filling M , give it the coloring as described in Subsection 4.1, and
apply the bijection Ψ from F(M, e, s) to Cs1+1(h1 − s1) × · · · × Csm+1(hm − sm). For any filling
M with Ψ(M) = (c(1), c(2), . . . , c(m)) under the order ≺′, let ρ(M) be the filling whose associated
sequence of compositions is (c(1),r, c(2), . . . , c(m)), again under the order ≺′, where

c(1),r = (c
(1)
s1+1, . . . , c

(1)
2 , c

(1)
1 ) if c(1) = (c

(1)
1 , c

(1)
2 , . . . , c

(1)
s1+1).

Then it is easy to verify that ρ(ρ(M)) = M and (γ({1};M), γ({1};M)) = (se(ρ(M)),ne(ρ(M))).

Second proof of Lemma 4.8. Given a general moon polyominoM, assume that the rows intersecting
the first column are {Ra, . . . , Rb}. Let Mc be the union Ra ∪ · · · ∪ Rb. Clearly, for any M ∈
F(M, e, s), a left {1}-NE (SE) chain consists of two 1-cells in Mc. Let C ′

i = Ci ∩ Mc be the
restriction of the column Ci onMc. Then C ′

1 = C1 and |C ′
1| ≥ |C

′
2| ≥ · · · ≥ |C

′
m|.

Suppose that

|C ′
1| = |C

′
2| = · · · = |C

′
j1
| > |C ′

j1+1| = |C
′
j1+2| = · · · = |C

′
j2
| > |C ′

j2+1| · · ·

· · · = |C ′
jk−1
| > |C ′

jk−1+1| = |C
′
jk−1+2| = · · · = |C

′
jk
| = |C ′

m|.

Let Bi be the greatest rectangle contained inMc whose right most column is C ′
ji

(1 ≤ i ≤ k), and
B′

i = Bi ∩Bi+1 (1 ≤ i ≤ k − 1).

We define φγ : F(M, e, s) → F(M, e, s) by constructing a sequence of fillings (M,Mk, . . . ,M1)
starting from M .

The map φγ : F(M, e, s)→ F(M, e, s)

Let M ∈ F(M, e, s).

1. The filling Mk is obtained from M by replacing M ∩Bk with ρ(M ∩Bk).

2. For i from k − 1 to 1:

(a) Define a filling Ni on B′
i by setting Ni = ρ(Mi+1 ∩ B′

i). Let the filling M ′
i be obtained

from Mi+1 by replacing Mi+1 ∩B′
i with Ni.

(b) The filling Mi is obtained from M ′
i by replacing M ′

i ∩Bi with ρ(M ′
i ∩Bi).

3. Set φγ(M) = M1.
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See Example 4.9 for an illustration.

Claim: (γ({1};M), γ({1};M)) = (se(φγ(M)),ne(φγ(M))).

We are able to keep track of the statistic γ({1};M) in the above algorithm. In Step 1, by the
definition of ρ we have

γ({1};M) = #{left {1}-NE chain of M}+ #{left {1}-SE chain of M}

= #{left {1}-NE chain of Mk}+ #{left {1}-SE chain of Mk}

−#{left {1}-NE chain of Mk in Bk}+ #{left {1}-SE chain of Mk in Bk}.

Let Bi = Bi ∪ · · · ∪Bk. For i from k − 1 to 1, Step 2(a) implies that for the filling M ′
i ,

γ({1};M) = #{left {1}-NE chain of M ′
i}+ #{left {1}-SE chain of M ′

i}

−#{left {1}-NE chain of M ′
i in Bi+1}+ #{left {1}-SE chain of M ′

i in Bi+1}

+#{left {1}-NE chain of M ′
i in B′

i} −#{left {1}-SE chain of M ′
i in B′

i}.

Then Step 2(b) implies that in the filling Mi,

γ({1};M) = #{left {1}-NE chain of Mi}+ #{left {1}-SE chain of Mi}

−#{left {1}-NE chain of Mi in Bi}+ #{left {1}-SE chain of Mi in Bi}.

Since all the {1}-NE (SE) chains of Mi are in Mc = B1 ∪ · · · ∪ Bk = B1, when i = 1 we have
γ({1};M) = se(M1) = se(φγ(M)). Similarly, γ({1};M) = ne(φγ(M)).

Example 4.9. Figure 5 shows an example of the map φγ applied to a filling M . The filling M is
given in the figure on the left, where |C1| = |C

′
2| = |C

′
3| > |C

′
4| = |C

′
5| > |C

′
6|. Hence k = 3, j1 = 3,

j2 = 5 and j3 = 6. It is easy to see that M = M3 = M ′
2. Figure 5 shows how to get M2 and M ′

1.
In this example, it happens that M ′

1 = M1.

1

1

1

1

1

1
1

M = M3 = M
′

2

(boxed part is B2)

-ρ
to B2

1

1
1
1

1

1
1

M2

(boxed part is B
′

1)

-ρ
to B

′

1

1

1
1

1
1

1
1

M
′

1 = M1

(boxed part is B1)

Figure 5: The map φγ .

Proposition 4.10. Assume T = {c1, c2, . . . , ct} ⊆ [m] with c1 < c2 < · · · < ct. Let T ′ =
{c1, c2, . . . , ct−1}. Then Gl

T (p, q) = Gl
T ′(p, q).

Proof. Like Lemma 4.8, Prop. 4.10 can be proved either by analyzing the generating functions, or
by a bijection built on the map φγ . Here we give the details of the bijection which will be used in
Section 5.
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Let U = {Ci : 1 ≤ j < ct} be the set of columns on the left of column Cct, and V be the
set of remaining columns. For any M ∈ F(M, e, s), let ξct(M) be the filling obtained from M by
replacing M ∩ V with φγ(M ∩ V ). Then ξct is a bijection on F(M, e, s) such that

(γ(T ;M), γ(T̄ ;M)) = (γ(T ′; ξct(M)), γ(T̄ ′; ξct(M))). (9)

The proof is similar to that of Prop. 4.7 and is omitted.

Proof of Theorem 2.3. Assume T = {c1, c2, . . . , ct} ⊆ C with c1 < c2 < · · · < ct. Let Σγ =
ξc1 ◦ ξc2 ◦ · · · ◦ ξct, where ξc is defined in the proof of Prop. 4.10. Then Σγ is a bijection on
F(M, e, s) with the property that

(γ(T ;M), γ(T̄ ;M)) = (se(Σγ(M)),ne(Σγ(M))).

5 Invariance Properties

The bi-variate generating function of (ne, se) (cf. Theorem 4.5) implies that the mixed statistics
are invariant under any permutation of rows and/or columns. To be more specific, let M be a
moon polyomino. For any moon polyomino M′ obtained from M by permuting the rows and/or
the columns ofM, we have

#{M ∈ F(M, e, s) : λ(A;M) = i, λ(Ā;M) = j}

= #{M ′ ∈ F(M′, e′, s′) : λ(A;M ′) = i, λ(Ā;M ′) = j}

for any nonnegative integers i and j, where e′ (resp. s′) is the sequence obtained from e (resp. s)
in the same ways as the rows (resp. columns) of M′ are obtained from the rows (resp. columns)
of M, and λ(A;M) is any of the four statistics α(S;M), β(S;M), γ(T ;M), and δ(T ;M). In this
section we present bijective proofs of such phenomena.

LetM be a general moon polyomino. Let Nl be the unique left-aligned moon polyomino whose
sequence of row lengths is equal to |R1|, . . . , |Rn| from top to bottom. In other words, Nl is the
left-aligned polyomino obtained by rearranging the columns of M by length in weakly decreasing
order from left to right. We shall use an algorithm developed in [5] that rearranges the columns of
M to generate Nl.

The algorithm α for rearranging M:

Step 1 Set M′ =M.

Step 2 IfM′ is left aligned, go to Step 4.

Step 3 If M′ is not left-aligned, consider the largest rectangle B completely contained in M ′ that
contains C1, the leftmost column of M′. Update M′ by setting M′ to be the polyomino
obtained by moving the leftmost column of B to the right end. Go to Step 2.

Step 4 Set Nl =M′.

Figure 6 is an illustration of the algorithm α.

Based on the algorithm α, Chen et al. constructed a bijection g = gM : F(M, e, s)→ F(Nl, e, s′)
such that (se(M),ne(M)) = (se(g(M)),ne(g(M))), see [5, Section 5.3.2].
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Figure 6: The algorithm α.

Combining gM with the bijection Θα constructed in the proof of Theorem 2.1, we are led to
the following invariance property.

Theorem 5.1. Let M be a moon polyomino. For any moon polyomino M′ obtained from M by
permuting the columns of M, the map

Φα = Θ−1
α ◦ g−1

M′ ◦ gM ◦Θα : F(M, e, s)→ F(M′, e, s′) (10)

is a bijection with the property that

(α(S;M), α(S̄ ;M)) = (α(S;M ′), α(S̄;M ′)).

Similarly, let Nt be the top aligned polyomino obtained from M by rotating 90 degrees coun-
terclockwise first, followed by applying the algorithm α, and finally rotating 90 degrees clockwise.
Such operations enable us to establish a bijection h = hM from F(M, e, s) to F(Nt, e

′, s) that keeps
the statistics (se,ne). The map hM can be described by using the map gM under the algorithm α

with a rotation of 90 degrees clockwise. More precisely, the rotated algorithm α ′ is the same as the
algorithm α, except that the term left-aligned is replaced with the term top-aligned, C1 is replaced
with R1, and left and right are replaced with top and bottom respectively. In fact the map hM is
much simpler than gM since every row in the filling has at most one 1-cell. We state it in full detail
for completeness.

Theorem 5.2. There is a bijection hM : F(M, e, s) → F(Nt, e
′, s) such that (se(M),ne(M)) =

(se(h(M)),ne(h(M))).

Proof. Let M ∈ F(M, e, s). To obtain hM(M), we perform the rotated algorithm α′ to transform
the shapeM to Nt and change the filling when we move rows down in Step 3 so that the number
of 1’s in each row and column is preserved.

Let N be the filling on the rectangular B in Step 3 of the rotated algorithm α′ that contains
the row R1 of the current filling. Let B′ be the rectangle obtained by moving the row R1 from top
to the bottom of B. Fill it to obtain a filling N ′ as follows.

1. If R1 is empty, then N ′ is obtained from N \ {R1} by adding an empty row at the bottom.

2. If R1 has a 1-cell,
(a) The rows that are empty in B remain empty in B ′. Shade these rows in both B and B′.
(b) The filling on the rectangle formed by the un-shaded rows of B ′ is the same as N restricted

to the rectangle obtained from the un-shaded rows of B.

The filling outside B remains unchanged.

Applying the rotated algorithm α′ with the above operations on filling M , we finally obtain the
filling hM(M). The proof of [5, Prop. 5.10] ensures that hM is a bijection.
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Combining the bijection Θα with hM, we arrive at the second invariance property.

Theorem 5.3. Let M be a moon polyomino. For any moon polyomino M′ obtained from M by
permuting the rows of M, the map

Λα = Θ−1
α ◦ h−1

M′ ◦ hM ◦Θα : F(M, e, s)→ F(M′, e′, s) (11)

is a bijection with the property that

(α(S;M), α(S̄ ;M)) = (α(S;M ′), α(S̄;M ′)).

It is evident that replacing Θα with the map Σγ defined in the proof of Theorem 2.3 in (10)
and (11) leads to bijections preserving the statistics (γ(T ;M), γ(T̄ ;M)) under any permutation of
columns or rows. Similar results hold for the statistics β(S;M) and δ(T ;M) by reflecting the moon
polyomino with respect to a horizonal or a vertical line.
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