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Abstract

We use the Algortihm Z on partitions due to Zeilberger, in a variant form, to give a
combinatorial proof of Ramanujan’s 1𝜓1 summation formula.
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1 Introduction

Ramanujan’s sum for 1𝜓1 has been extensively studied in the theory of 𝑞-series, which is usually
stated in the following form:

1𝜓1(𝑎; 𝑏; 𝑞, 𝑧) =

∞∑
𝑛=−∞

(𝑎; 𝑞)𝑛
(𝑏; 𝑞)𝑛

𝑧𝑛 =
(𝑞, 𝑏/𝑎, 𝑎𝑧, 𝑞/𝑎𝑧; 𝑞)∞
(𝑏, 𝑞/𝑎, 𝑧, 𝑏/𝑎𝑧; 𝑞)∞

, ∣𝑏/𝑎∣ < ∣𝑧∣ < 1, ∣𝑞∣ < 1, (1.1)

where the 𝑞-shifted factorial is defined by

(𝑎; 𝑞)∞ =

∞∏
𝑛=0

(1− 𝑎𝑞𝑛), (𝑎; 𝑞)𝑛 = (𝑎; 𝑞)∞/(𝑎𝑞𝑛; 𝑞)∞.

The main result of this paper is a combinatorial proof of the above formula by using a
variation of the Algorithm Z named after Zeilberger [7]. Since Hahn and Jackson published the
first proofs in 1949 and 1950, many other proofs have been found, see, for example, Andrews
[4], Andrews and Askey [2], Berndt [5], Fine [12], Ismail [15], Mimachi [17]. However, the com-
binatorial proofs have appeared only recently. Using the Frobenius notation for overpartitions,
Corteel and Lovejoy [10] have found a bijective proof of the constant term identity for the the
following formulation of Ramanujan’s 1𝜓1 summation:

(−𝑎𝑞; 𝑞)∞(−𝑏𝑞; 𝑞)∞
(𝑞; 𝑞)∞(𝑎𝑏𝑞; 𝑞)∞

∞∑
𝑛=−∞

(−𝑎−1; 𝑞)𝑛(𝑧𝑞𝑎)
𝑛

(−𝑏𝑞; 𝑞)𝑛 =
(−𝑧𝑞; 𝑞)∞(−𝑧−1; 𝑞)∞
(𝑏𝑧−1; 𝑞)∞(𝑎𝑧𝑞; 𝑞)∞

. (1.2)
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Corteel [9] went on to find a bijection, by using particle seas, to show that the coefficients
of 𝑧𝑁 (𝑁 ∕= 0) on both sides of (1.2) are equal as well, which leads to the completion of
the combinatorial proof of (1.2). In the meantime, Yee [19] also found a combinatorial proof
of (1.2) in the language of 𝐹 -partitions defined as pairs of overpartitions with different sizes
written in the two line notation.

In this paper, we shall present a new combinatorial proof of Ramanujan’s 1𝜓1 sum based on
a variation of the Algorithm Z. Conceptually, our bijection is rather simple despite that there
are several steps which do not seem to be avoidable to accomplish the task of transformations of
partitions. As will be seen, the Algorithm Z serves as the main ingredient of our combinatorial
construction for Ramanujan’s formula. To be precise, our bijection is devised for following
restatement of Ramanujan’s formula

(−𝑞/𝑎; 𝑞)∞(−𝑏/𝑎𝑧; 𝑞)∞
(𝑞; 𝑞)∞

∞∑
𝑛=−∞

(−𝑎; 𝑞)𝑛
(𝑏; 𝑞)𝑛

𝑧𝑛 =
(−𝑏/𝑎; 𝑞)∞(−𝑎𝑧; 𝑞)∞(−𝑞/𝑎𝑧; 𝑞)∞

(𝑏; 𝑞)∞(𝑧; 𝑞)∞
. (1.3)

The Algorithm Z, as called by Andrews and Bressoud [3], was found by Zeilberger [7]
(Proposition 3.1) as a combinatorial interpretation of the Gauss coefficient

[
𝑛
𝑘

]
as defined by

the following relation
1

(𝑞; 𝑞)𝑖+𝑗

[
𝑖+ 𝑗

𝑖

]
=

1

(𝑞; 𝑞)𝑖(𝑞; 𝑞)𝑗
.

Using this algorithm, Andrews and Bressoud have found combinatorial proofs of some classical
𝑞-identities. The Algorithm Z has also been employed by Bessenrodt [6] to give a bijective
proof of a theorem of Alladi and Gordon, and to give a combinatorial interpretation of the
Lebesgue identity by Fu [13].

2 The Algorithm Z

In this section, we shall give an overview of the Algorithm Z and use it to give a combinatorial
interpretation of 𝑞-binomial theorem, which is an important step of our combinatorial proof of
Ramanujan’s summation (1.3):∑

𝑛≥0

𝑃𝑛(𝑏,−𝑎)
(𝑞; 𝑞)𝑛

𝑧𝑛 =
∑
𝑛≥0

(−𝑎/𝑏; 𝑞)𝑛
(𝑞; 𝑞)𝑛

(𝑏𝑧)𝑛 =
(−𝑎𝑧; 𝑞)∞
(𝑏𝑧; 𝑞)∞

. (2.1)

where the polynomials

𝑃𝑛(𝑏,−𝑎) =
𝑛∑

𝑘=0

[
𝑛

𝑘

]
𝑎𝑘𝑞(

𝑘
2)𝑏𝑛−𝑘 =

⎧⎨⎩ (𝑏+ 𝑎)(𝑏+ 𝑎𝑞) ⋅ ⋅ ⋅ (𝑏+ 𝑎𝑞𝑛−1), if 𝑛 ≥ 1;

1, if 𝑛 = 0,

are the Cauchy polynomials as called in [8].

A partition 𝜆 of a nonnegative integer with 𝑟 parts is denoted by 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟), where
𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑟 ≥ 0. The number of parts, called the length of 𝜆, is denoted by 𝑙(𝜆), and
the sum of parts, called the weight of 𝜆, is denoted by ∣𝜆∣. The conjugate of 𝜆 is denoted by
𝜆′ = (𝜆′1, . . .), where 𝜆′𝑖 is the number of positive parts of 𝜆 that are greater than or equal to 𝑖.
The following bijection is call the Algorithm Z.

Theorem 2.1 There is a bijection between the set of pairs of partitions (𝛼, 𝛽) where 𝛼 has
𝑠− 𝑟 parts and 𝛽 has 𝑟 parts, and the set of pairs of partitions (𝜇, 𝜈), where 𝜇 has 𝑠 parts and
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𝜈 has 𝑟 parts with each part not exceeding 𝑠 − 𝑟. We call 𝜇 the insertion partition and call 𝜈
the record partition.

Proof. Given a partition 𝛼 with 𝑠− 𝑟 parts, denoted by (𝛼1, . . . , 𝛼𝑠−𝑟), and a partition 𝛽 with
𝑟 parts, denoted by (𝛽1, . . . , 𝛽𝑟), we may insert 𝛽 into 𝛼 to create a pair of partitions 𝜇 and 𝜈.
The insertion algorithm can be described as the following recursive procedure.

∙ If 𝛽1 ≤ 𝛼𝑠−𝑟, we insert 𝛽1 into 𝛼 so that we get a new partition (𝛼1, 𝛼2, . . . , 𝛼𝑠−𝑟+1),
where 𝛼𝑠−𝑟+1 = 𝛽1. Moreover, we use a zero part as a record of the insertion position.

∙ If 𝛽1 > 𝛼𝑠−𝑟, we recursively insert 𝛽1−1 into the partition (𝛼1, 𝛼2, . . . , 𝛼𝑠−𝑟−1). Suppose
that the recursive procedure ends up with 𝛽1 − 𝜈1 being inserted, we use a part 𝜈1 to
record the position of 𝛽1 − 𝜈1. Obviously, we have 0 ≤ 𝜈1 ≤ 𝑠− 𝑟.

Conversely, given a partition (𝛼1, . . . , 𝛼𝑠−𝑟+1) and a number 𝜈1 with 0 ≤ 𝜈1 ≤ 𝑠 − 𝑟, we
may extract the part 𝛽1 from the given partition. It is easy to see that above procedure is
reversible.

After the part 𝛽1 has been inserted to 𝛼, we may iterate the above procedure to insert
remaining parts of 𝛽. Eventually, we obtain a pair of partitions (𝜇, 𝜈). This completes the
proof.

As an example, taking 𝛼 = (5, 3, 2, 1), 𝛽 = (4, 3, 0) with 𝑠 = 7, 𝑟 = 3, we have

𝜇 = (5, 3, 2, 2, 2, 1, 0), 𝜈 = (2, 1, 0).

Below is the illustration of the insertion procedure

5 3 2 1

5 3 2 2 2 1 0

2 1 0

4 3 0

Corollary 2.2 There is a bijection 𝜙 between the set of pairs of partitions (𝛼, 𝛽) and the set
of pairs of partitions (𝜇, 𝜈) satisfying the following conditions

∙ 𝛼 has 𝑖 distinct parts, 𝛽 has 𝑗 parts;

∙ 𝜇 has 𝑖+ 𝑗 parts, 𝜈 has 𝑖 distinct parts with each part ≤ 𝑖+ 𝑗 − 1;

∙ ∣𝛼∣+ ∣𝛽∣ = ∣𝜇∣+ ∣𝜈∣.

Proof. Given a pair of partitions (𝛼, 𝛽), where 𝛼 has 𝑖 distinct parts and 𝛽 has 𝑗 parts, we
denote by 𝛼 the partition (𝛼1 − 𝑖+ 1, 𝛼2 − 𝑖+ 2, . . . , 𝛼𝑖 − 0). Applying the Algorithm Z to (𝛽,
�̄�) yields the desired partition 𝜇 into exactly 𝑖+ 𝑗 parts and a partition 𝜈 into exactly 𝑖 parts
with each part ≤ 𝑗. Set 𝜈 = (𝜈1 + 𝑖− 1, . . . , 𝜈𝑖 + 0). It is clear that ∣𝜇∣+ ∣𝜈∣ = ∣𝛼∣+ ∣𝛽∣. Hence
the pair of partitions (𝜇, 𝜈) satisfy the conditions in the corollary. Since each step is reversible,
we have established a bijection. This completes the proof.

It is clear that Corollary 2.2 leads to a combinatorial proof of the 𝑞-binomial theorem. The
first partition-theoretic proof of (2.1) is due to Andrews [1]. There are other proofs of this
classical identity, for example, by overpartitions [11] and by MacMahon diagrams [16, 18].
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3 A Variation of the Algorithm Z

In this section, we give a variation of the Algorithm Z. This algorithm plays a key role in our
combinatorial proof of Ramanujan’s summation formula.

Theorem 3.1 Let 𝑠, 𝑡, 𝑘,𝑚 be nonnegative integers. There is a bijection 𝜑 between the set of
pairs of partitions (𝛼, 𝛽) and the set of pairs of partitions (𝜇, 𝜈) satisfying the conditions

∙ 𝛼 has 𝑠 distinct parts with each part ≥ 𝑚 and 𝛽 has 𝑡 parts with each part ≥ 𝑘+𝑠+ 𝑡−1;

∙ If 𝑠, 𝑡 > 0, then 𝜇 has 𝑠+ 𝑡 distinct nonnegative parts with 𝜇𝑠 − 𝜇𝑠+1 ≥ 𝑚+ 1 and 𝜈 has
𝑡 distinct parts with 𝑘 ≤ 𝜈𝑖 ≤ 𝑘 + 𝑠+ 𝑡− 1 for each 1 ≤ 𝑖 ≤ 𝑡;

If 𝑠 > 0 and 𝑡 = 0, then 𝜇 = 𝛼 and 𝜈 is an empty partition;

If 𝑠 = 0, 𝑡 > 0, then 𝜇 = (𝛽1 − 𝑘, 𝛽2 − 𝑘 − 1, . . . , 𝛽𝑡 − 𝑘 − 𝑡+ 1) and 𝜈 = (𝑘 + 𝑡− 1, 𝑘 +
𝑡− 2, . . . , 𝑘);

If 𝑠 = 𝑡 = 0, then both 𝜇 and 𝜈 are empty partitions.

∙ ∣𝛼∣+ ∣𝛽∣ = ∣𝜇∣+ ∣𝜈∣.

Proof. Given two partitions 𝛼 = (𝛼1, . . . , 𝛼𝑠) and 𝛽 = (𝛽1, . . . , 𝛽𝑡) satisfying above conditions.
We shall only consider the case when 𝑠, 𝑡 > 0 because the other three cases are trivial.

Set �̄�𝑖 = 𝛼𝑖−𝑚+ 𝑡 and 𝛽𝑗 = 𝛽𝑗 −𝑘− 𝑠− 𝑗+1. It is easy to chcek that �̄� = (�̄�1, �̄�2, . . . , �̄�𝑠)
and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑡) form two partitions with �̄�𝑠 ≥ 𝑡 and 𝛽𝑡 ≥ 0. So we may insert 𝛽 into
�̄� to create a pair of partitions (𝜇, 𝜈) via the following procedure.

∙ If 𝛽1 ≥ �̄�1, we insert 𝛽1 into �̄� to form a new partition 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑠+1) = (𝛽1, �̄�1 −
1, �̄�2− 1, . . . , �̄�𝑠− 1). Moreover, we set 𝜈1 = 𝑘+ 𝑠+ 𝑡−1 to record the insertion position.

∙ Otherwise, we assume that 𝑗1 is the largest integer such that �̄�𝑗1 > 𝛽1. Then we insert 𝛽1
into �̄� to form a new partition 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑠+1) = (�̄�1, . . . , �̄�𝑗1 , 𝛽1, �̄�𝑗1+1−1, . . . , �̄�𝑠−
1). In this case, we use 𝜈1 = 𝑘 + 𝑠 + 𝑡 − 𝑗1 − 1 to record the insertion position of 𝛽1.
Obviously, 𝑘 + 𝑡− 1 ≤ 𝜈1 ≤ 𝑘 + 𝑠+ 𝑡− 2.

Conversely, given a partition 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑠+1) and a number 𝜈1 with 𝑘 + 𝑡− 1 ≤ 𝜈1 ≤
𝑘 + 𝑠 + 𝑡 − 1, we may extract the part 𝛽1 from 𝛿. It is clear that the above procedure is
reversible.

Similarly, we can insert 𝛽2 into the partition 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑠+1). Applying the insertion
algorithm repeatedly to 𝛽2, . . . , 𝛽𝑡, we come to a partition �̄� with 𝑠 + 𝑡 parts and the desired
partition 𝜈, where 𝜈 = (𝜈1, . . . , 𝜈𝑡) with 𝜈𝑖 = 𝑘+ 𝑠+ 𝑡− 𝑗𝑖 − 1 for each 1 ≤ 𝑖 ≤ 𝑡. Furthermore,
one sees that 𝑘 + 𝑡− 𝑖 ≤ 𝜈𝑖 ≤ 𝑘 + 𝑠+ 𝑡− 𝑖. On the other hand, we get the desired partition 𝜇
by setting 𝜇 = {�̄�1 +𝑚, . . . , �̄�𝑠 +𝑚, �̄�𝑠+1, . . . �̄�𝑠+𝑡}. This completes the proof.

In the above correspondence, the partition 𝜇 is also called the insertion partition and 𝜈 is
called the record partition. As an example, let 𝑘 = 3,𝑚 = 2,𝑠 = 4, 𝑡 = 3 and 𝛼 = (8, 7, 5, 3),
𝛽 = (12, 11, 9). Then we have �̄� = (9, 8, 6, 4) and 𝛽 = (5, 3, 0), and

�̄� = (9, 8, 6, 5, 3, 2, 0), 𝜈 = (6, 5, 3), 𝜇 = (11, 10, 8, 7, 3, 2, 0).

The above correspondence is illustrated as follows
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9 8 6 4

9 8 6 5 3 2 0

6 5 3

5 3 0

It is worth mentioning that the conditions 𝛼𝑠 > 𝑚 and 𝛽𝑡 > 𝑘 + 𝑠 + 𝑡 − 1 can be recast
in terms of the single statement that 𝜇𝑠+𝑡 > 0. This observation will be useful in the proof of
Theorem 4.1.

We now turn our attention to the minor difference between the Algorithm Z and the above
variation. Given two partitions 𝛼 and 𝛽, we may apply the Algorithm Z to a pair of partitions
(�̄�, 𝛽), where �̄� = (𝛼1 − 𝑠 − 𝑚 + 1, 𝛼2 − 𝑠 − 𝑚 + 2, . . . , 𝛼𝑠 − 𝑚) and 𝛽 = (𝛽1 − 𝑠 − 𝑡 − 𝑘 +
1, . . . , 𝛽𝑡 − 𝑠 − 𝑡 − 𝑘 + 1). It can be seen that the record partition of (𝛼, 𝛽) and the record
partition of (�̄�, 𝛽) differ only by a staircase partition (𝑘+ 𝑡− 1, 𝑘+ 𝑡− 2, . . . , 𝑘). For the above
example, one has �̄� = (3, 3, 2, 1), 𝛽 = (3, 2, 0). Inserting 𝛽 into �̄� via the Algorithm Z gives
�̄� = (3, 3, 2, 2, 1, 1, 0), 𝜈 = (1, 1, 0) as illustrated below

3 3 2 1

3 3 2 2 1 1 0

1 1 0

3 2 0

It is not hard to see that our combinatorial proof of Ramanujan’s formula can be restated
in terms of the original Algorithm Z. Nevertheless, the variation seems to be more convenient
for the sake of presentation.

Corollary 3.2 There is a bijection between the set of pairs of partitions (𝛼, 𝛽) and the set of
triples of partitions (𝑛;𝜇, 𝜈, 𝛾) satisfying the conditions

∙ 𝛼 has distinct nonnegative parts and 𝛽 has nonnegative parts;

∙ 𝜇 has 𝑛 distinct nonnegative parts, 𝜈 has either distinct nonnegative parts with each
part ≤ 𝑛 − 1 (corresponding to 𝛽1 ≥ 𝑙(𝛼)) or is an empty partition (corresponding to
𝛽1 < 𝑙(𝛼)), and 𝛾 has nonnegative parts with each part ≤ 𝑛− 1;

∙ ∣𝛼∣+ ∣𝛽∣ = ∣𝜇∣+ ∣𝜈∣+ ∣𝛾∣.

Proof. Assume that 𝑛 is the largest number satisfying 𝛽𝑛−𝑙(𝛼) ≥ 𝑛 − 1. If such an 𝑛 exists,
then set 𝛾 = (𝛽𝑛−𝑙(𝛼)+1, . . . , 𝛽𝑙(𝛽)), which is a partition with each part ≤ 𝑛 − 1. Denote by
𝛽 the partition (𝛽1, . . . , 𝛽𝑛−𝑙(𝛼))and apply the bijection 𝜑 in Theorem 3.1 to (𝛼, 𝛽) for 𝑚 = 0
and 𝑘 = 0, we get a partition 𝜇 having 𝑛 distinct nonnegative parts and a partition 𝜈 having
distinct parts with 0 ≤ 𝜈𝑖 ≤ 𝑛 − 1. If there does not exist such an 𝑛, namely 𝛽1 ≤ 𝑙(𝛼) − 1,
then we set 𝑛 = 𝑙(𝛼), 𝜇 = 𝛼, 𝛾 = 𝛽 and set 𝜈 to be the empty partition. This completes the
proof.

The above corollary can be regarded as a combinatorial interpretation of the following
identity [14, Exercise 1.6 (ii)]:

(−𝑎; 𝑞)∞
(𝑏; 𝑞)∞

=
∞∑
𝑛=0

𝑃𝑛(𝑎,−𝑏)𝑞(
𝑛
2)

(𝑞; 𝑞)𝑛(𝑏; 𝑞)𝑛
. (3.1)
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4 The Combinatorial Proof

In this section, we aim to give a combinatorial proof of Ramanujan’s 1𝜓1 summation formula
(1.3). When 𝑁 ≥ 0, the coefficient of 𝑧𝑁 on the left-hand side equals the generating function
for the quintuples (𝑛;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) subject to the following conditions:

∙ 𝛼 has distinct and positive parts,

∙ 𝛽 has positive parts,

∙ 𝛾 has distinct nonnegative parts,

∙ 𝜆 has distinct nonnegative parts with each part ≤ 𝑛− 1,

∙ 𝜇 has nonnegative parts with each part ≤ 𝑛− 1,

where the exponents of 𝑎 and 𝑏 are used to keep track of 𝑙(𝜆)−𝑙(𝛼)−𝑙(𝛾) and 𝑙(𝛾)+𝑙(𝜇) respec-
tively, and 𝑁 records 𝑛 − 𝑙(𝛾). The coefficient of 𝑧𝑁 on the right-hand side is the generating
function for the quintuples (𝐴,𝐵,𝐶,𝐷,𝐸) of partitions with the following restrictions:

∙ Both 𝐴 and 𝐶 have distinct nonnegative parts,

∙ Both 𝐵 and 𝐷 have nonnegative parts,

∙ 𝐸 has distinct and positive parts,

where the exponents of 𝑎 and 𝑏 are used to keep track of 𝑙(𝐶) − 𝑙(𝐴) − 𝑙(𝐸) and 𝑙(𝐴) + 𝑙(𝐵)
respectively, and 𝑁 records the number 𝑙(𝐶) + 𝑙(𝐷) − 𝑙(𝐸). Let A and B be the sets of the
quintuples (𝑛;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) and (𝐴,𝐵,𝐶,𝐷,𝐸), as defined above.

Theorem 4.1 There is a bijection between A and B.

Proof. Given a quintuple (𝑛;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) with 𝑁 = 𝑛− 𝑙(𝛾). As an example, for 𝑁 = 4, 𝑛 = 9,
let

𝛼 = (10, 9, 5, 3, 2), 𝛽 = (13, 11, 10, 9, 9, 5, 4, 4, 2), 𝛾 = (9, 6, 4, 2, 1),

𝜆 = (7, 6, 5, 3, 1), 𝜇 = (5, 4, 4, 1).

We shall use this example to illustrate the operations at every step.

Step 1. Find the largest number 𝑝 such that 𝜆𝑝 ≥ 𝑁 . Then �̄� = (𝜆1, . . . , 𝜆𝑝) is a partition into
distinct parts with 𝑁 ≤ 𝜆𝑖 ≤ 𝑛 − 1 and 1 ≤ 𝑖 ≤ 𝑝. Let 𝐹 = (𝜆𝑝+1, . . . , 𝜆𝑙(𝜆)), where 𝑝 is the
largest number such that 𝜆𝑝+1 ≤ 𝑁 − 1. Clearly, 𝑙(�̄�) ≤ 𝑛−𝑁 = 𝑙(𝛾).

Applying the bijection 𝜑−1 in Theorem 3.1 to the pair (𝛾, �̄�) with 𝑚 = 0 and 𝑘 = 𝑁 , we
obtain a partition 𝐴 with distinct nonnegative parts, and a partition �̄� with every part ≥ 𝑛−1.
Now we can put the parts of �̄� and 𝜇 together to form the desired partition 𝐵. Note that if
such an integer 𝑝 does not exist, that is, 𝜆1 ≤ 𝑁 − 1, then we have 𝐹 = 𝜆, 𝐴 = 𝛾 and 𝐵 = 𝜇.

For the above example, we have

�̄� = (7, 6, 5), 𝐹 = (3, 1), 𝐴 = (6, 1), 𝐵 = (12, 11, 10, 5, 4, 4, 1).

Step 2. Find the largest number 𝑙 such that 𝛽𝑙−𝑙(𝛼) ≥ 𝑁 + 𝑙, and set 𝛽 = (𝛽1, . . . , 𝛽𝑙−𝑙(𝛼)). Add
enough zero parts if necessary to the conjugate of the partition (𝛽𝑙−𝑙(𝛼)+1, . . . , 𝛽𝑙(𝛽)) to obtain
a partition �̄� with 𝑁 + 𝑙 parts.
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Now we can apply the mapping 𝜑 to (𝛼, 𝛽) with 𝑚 = 0 and 𝑘 = 𝑁 to generate a partition
𝐸 with 𝑙 distinct positive parts, since 𝛼𝑙(𝛼) > 0 and 𝛽𝑙−𝑙(𝛼) ≥ 𝑁 + 𝑙. Meanwhile, we also obtain
a partition 𝐹 into distinct parts with each part ≥ 𝑁 ≤ 𝑁 + 𝑙 − 1. So we can put 𝐹 and 𝐹
together to create a partition 𝐶 into distinct nonnegative parts with each part ≤ 𝑁 + 𝑙 − 1.
Note that if such an integer 𝑙 does not exist, that is, 𝛽1 ≤ 𝑁 + 𝑙(𝛼), we may set 𝐸 = 𝛼 and
𝐶 = 𝐹 . In this case, �̄� is a partition with 𝑁 + 𝑙(𝛼) parts, which can be obtained from the
conjugate of 𝛽 with some zero parts added if needed.

For the above example, we have

𝛽 = (13, 11), �̄� = (7, 7, 6, 6, 4, 3, 3, 3, 3, 1, 0),

𝐸 = (12, 11, 7, 5, 4, 3, 1), 𝐶 = (6, 4, 3, 1).

Applying the bijection 𝜙−1 in Corollary 2.2 to (�̄�,𝐶), we obtain the partition 𝐶 into distinct
nonnegative parts and the partition 𝐷 into nonnegative parts. For the above example, we have

𝐶 = (10, 7, 6, 2), 𝐷 = (7, 7, 6, 6, 3, 3, 0).

Whence we have constructed a quintuple (𝐴,𝐵,𝐶,𝐷,𝐸) for which

∣𝐴∣+ ∣𝐵∣+ ∣𝐶∣+ ∣𝐷∣+ ∣𝐸∣ = ∣𝛼∣+ ∣𝛽∣+ ∣𝛾∣+ ∣𝜆∣+ ∣𝜇∣.

Notice that the exponents of 𝑎 and 𝑏 remain unchanged during the above procedure. Since
each step is reversible, we have established a bijection between A and B. This completes the
proof.

When 𝑁 = −𝑚 < 0, by multiplying both sides of (1.3) by (𝑏;𝑞)−𝑚

(−𝑎;𝑞)−𝑚
, we get

(−𝑞/𝑎; 𝑞)∞(−𝑏/𝑎𝑧; 𝑞)∞
(𝑞; 𝑞)∞

∞∑
𝑙=0

(−𝑎𝑞−𝑚; 𝑞)𝑙
(𝑏𝑞−𝑚; 𝑞)𝑙

𝑧𝑙−𝑚

=
(−𝑏/𝑎; 𝑞)∞(−𝑎𝑧; 𝑞)∞(−𝑞/𝑎𝑧; 𝑞)∞(−𝑎𝑞−𝑚; 𝑞)𝑚

(𝑏𝑞−𝑚; 𝑞)∞(𝑧; 𝑞)∞
. (4.1)

Substituting 𝑏 by 𝑏𝑞𝑚 and using Euler’s identity,

(−𝑏𝑞𝑚/𝑎𝑧; 𝑞)∞ =

∞∑
𝑛=0

(𝑏/𝑎𝑧)𝑛𝑞𝑚𝑛+(𝑛2)

(𝑞; 𝑞)𝑛
,

the coefficients of 𝑧𝑁 on both sides can be written as

𝑎−𝑚𝑞(
𝑚+1

2 )(−𝑞𝑚+1/𝑎; 𝑞)∞
(𝑞; 𝑞)∞

∞∑
𝑙=0

𝑃𝑙(𝑏𝑞
𝑚/𝑎,−𝑏)𝑞(𝑙2)

(𝑏; 𝑞)𝑙(𝑞; 𝑞)𝑙

=
[
𝑧−𝑚

](−𝑏𝑞𝑚/𝑎; 𝑞)∞(−𝑎𝑧; 𝑞)∞(−𝑞/𝑎𝑧; 𝑞)∞
(𝑏; 𝑞)∞(𝑧; 𝑞)∞

, (4.2)

where [𝑥𝑛]𝐹 (𝑥) denotes the coefficient of 𝑥𝑛 in 𝐹 (𝑥).

Each term on the left-hand side of (4.2) can be interpreted as the generating function for
the quintuples (𝑙;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) defined as follows

∙ 𝛼 has distinct and positive parts with 𝛼𝑙(𝛼)−𝑚+1 = 𝑚,
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∙ 𝛽 has positive parts,

∙ 𝜆 has distinct nonnegative parts with each part ≤ 𝑙 − 1,

∙ 𝛾 has distinct 𝑙 positive parts. Let 𝑠 = 𝑙 − 𝑙(𝜆). Then 𝛾𝑠 − 𝛾𝑠+1 ≥ 𝑚+ 1 if 0 < 𝑙(𝜆) < 𝑙
and 𝛾𝑠 ≥ 𝑚 if 𝑙(𝜆) = 0.

∙ 𝜇 has nonnegative parts with each part ≤ 𝑙 − 1,

where the exponent of 𝑎 records 𝑙(𝜆)−𝑙(𝛼)−𝑙(𝛾) and the exponent of 𝑏 keeps track of 𝑙(𝛾)+𝑙(𝜇).

Clearly, the right-hand side of (4.2) is the generating function for the quintuples (𝐴,𝐵,𝐶,𝐷,𝐸)
defined as follows

∙ 𝐴 has distinct parts with each part ≥ 𝑚,

∙ Both 𝐵 and 𝐷 have nonnegative parts,

∙ 𝐶 have distinct nonnegative parts,

∙ 𝐸 has distinct and positive parts,

where the exponent of 𝑎 records 𝑙(𝐶)− 𝑙(𝐴)− 𝑙(𝐸), the exponent of 𝑏 keeps track of 𝑙(𝐴)+ 𝑙(𝐵)
and 𝑙(𝐶) + 𝑙(𝐷)− 𝑙(𝐸) = −𝑚.

Let C and D be the sets of quintuples (𝑙;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) and (𝐴,𝐵,𝐶,𝐷,𝐸) as given before.

Theorem 4.2 There is a bijection between C and D .

Proof. Let (𝐴,𝐵,𝐶,𝐷,𝐸) be a quintuple with 𝑁 = 𝑙(𝐶) + 𝑙(𝐷) − 𝑙(𝐸). As an example, for
𝑁 = −2, assume that

𝐴 = (12, 11, 7, 5, 4), 𝐵 = (15, 13, 12, 11, 11, 7, 6, 6, 4, 2, 1, 1), 𝐶 = (7, 6, 4, 1, 0),

𝐷 = (9, 8, 5, 5, 4, 1), 𝐸 = (22, 19, 18, 17, 15, 12, 11, 10, 8, 7, 6, 3, 1).

We shall use this example to illustration the operation at each step.

Step 1. If 𝐵1 ≤ 𝑙(𝐴)− 1, we set 𝑙 = 𝑙(𝐴), 𝜇 = 𝐵, 𝛾 = 𝐴 and set 𝜆 to be the empty partition.
Otherwise, we find the largest number 𝑙 such that 𝐵𝑙−𝑙(𝐴) ≥ 𝑙−1, and set �̄� = (𝐵1, . . . , 𝐵𝑙−𝑙(𝐴)).
Now (𝐵𝑙−𝑙(𝐴)+1, . . . , 𝐵𝑙(𝐵)) is the desired partition 𝜇. Apply 𝜑 in Theorem 3.1 to (𝐴, �̄�) with
𝑘 = 0. In the case 𝑠 = 𝑙(𝐴) > 0, we get a partition 𝛾 into 𝑙 distinct nonnegative parts
with 𝛾𝑙(𝐴) − 𝛾𝑙(𝐴)+1 ≥ 𝑚 + 1 and a partition 𝜆 into distinct nonnegative parts with each part
≤ 𝑙 − 1. When 𝑠 = 0, we get a partition 𝛾 = (𝐵1, 𝐵2 − 1, . . . , 𝐵𝑙 − 𝑙 + 1) and a partition
𝜆 = (𝑙 − 1, 𝑙 − 2, . . . , 0).

For the above example, we have

�̄� = (15, 13, 12, 11, 11), 𝜇 = (7, 6, 6, 4, 2, 1, 1),

𝛾 = (17, 16, 12, 11, 9, 6, 5, 4, 3, 2), 𝜆 = (7, 5, 3, 1, 0).

Step 2. Applying the bijection 𝜙 in Corollary 2.2 to (𝐶,𝐷) yields a partition 𝐶 into distinct
nonnegative parts with each part ≤ 𝑛−1 and a partition �̄� into 𝑛 nonnegative parts. Evidently,
we have 𝑙(𝐶) + 𝑙(𝐷) = 𝑛, and hence 𝑙(𝐸) = 𝑛+𝑚.
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For the above example, we find 𝐶 = (5, 4, 3, 1, 0), �̄� = (9, 8, 5, 5, 4, 2, 2, 1, 1, 0, 0).

Step 3. After removing a staircase partition (𝑛+𝑚,𝑛+𝑚− 1, . . . , 1) from 𝐸, we are left with
a partition with 𝑙(𝐸) nonnegative parts, whose conjugate is denoted by �̄�. Add 𝑚+1 to each
part of 𝐶 to obtain a partition 𝐶. Now we may construct a partition �̃� by adding a staircase
(𝑛− 1, 𝑛− 2, . . . , 0) to �̄�, then adding 𝑚+ 1 to the first 𝑙(𝐷) parts.

Applying 𝜑−1 in Theorem 3.1 to (�̃�, 𝐶) with 𝑘 replaced by 𝑚+1 and 𝑚 replaced by 𝑚+1
yields a partition �̄� into 𝑙(𝐷) distinct parts with each part ≥ 𝑚+1 and a partition 𝛽 into 𝑙(𝐶)
parts with each part ≥ 𝑛+𝑚 = 𝑙(𝐸). Combining �̄� with a staircase partition (𝑚,𝑚−1, . . . , 1)
gives the partition 𝛼, and combining 𝛽 with �̄� gives the required partition 𝛽.

For the above example, we get

�̄� = (12, 11, 11, 8, 5, 5, 4, 1, 1), 𝐶 = (8, 7, 6, 4, 3), �̃� = (22, 20, 16, 15, 13, 10, 6, 4, 3, 1, 0),

𝛽 = (16, 16, 15, 13, 13, 12, 11, 11, 8, 5, 5, 4, 1, 1), 𝛼 = (17, 15, 11, 10, 8, 4, 2, 1).

Thus we have constructed a quintuple (𝑙;𝛼, 𝛽, 𝛾, 𝜆, 𝜇) such that

∣𝛼∣+ ∣𝛽∣+ ∣𝛾∣+ ∣𝜆∣+ ∣𝜇∣ = ∣𝐴∣+ ∣𝐵∣+ ∣𝐶∣+ ∣𝐷∣+ ∣𝐸∣.
Moreover, the exponents of 𝑎 and 𝑏 are preserved at every step. It should be mentioned that
each step of the above procedure is reversible. This completes the proof.
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