On Classification of Extendability of Cayley Graphs on Dicyclic Groups *

Bing Bai ${ }^{1}$, Xiao Huan ${ }^{1}$ and Qinglin $\mathrm{Yu}^{1,2 \dagger}$
${ }^{1}$ Center for Combinatorics, LPMC
Nankai University, Tianjin, PR China
${ }^{2}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

Let G be a group and S a subset of G such that the identity element $1 \notin S$ and $x^{-1} \in S$ for each $x \in S$. The Cayley graph $X(G ; S)$ on a group G has the elements of G as its vertices and edges joining g and $g s$ for all $g \in G$ and $s \in S$. A graph is said to be k-extendable if it contains k independent edges and any k independent edges can be extended to a perfect matching. In this paper, we prove that every connected Cayley graph on dicyclic groups is 2-extendable and also investigate the 3-extendability in $X(G ; S)$.

Keywords: dicyclic group, Cayley graph, k-extendable graphs.
AMS(2000) Subject Classification: 05C70

1 Introduction

For a simple graph X, we use $V(X)$ and $E(X)$ to denote vertex-set and edge-set of X, respectively. For any set $S \subseteq V(X)$, we use $X[S]$ to denote the subgraph of X induced by S.

Let G be a group and S a subset of G such that the identity element $1 \notin S$ and $x^{-1} \in S$ for each $x \in S$. Cayley $\operatorname{graph} X(G ; S)$ on a group G has the elements of G as its vertices and edges joining g and $g s$ for all $g \in G$ and $s \in S$. An edge $x y$ in $X(G ; S)$ is called type a (or an a-edge) if $x^{-1} y=a$ or a^{-1}. Hence, if $x y$ is of

[^0]type a, then either $y=x a$ or $x=y a$. It is well-known that every Cayley graph is vertex-transitive. For $S \subseteq G$, we denote by $\langle S\rangle$ the subgroup of G induced by S. When G is a cyclic group, Cayley graphs $X(G ; S)$ are also referred as circulants.

The dicyclic group $Q_{2 n}$ is a group which is generated by two elements a and x, where $a^{2 n}=1, x^{2}=a^{n}$ and $x^{-1} a x=a^{-1}$. We denote $\{m x \mid m \in\langle a\rangle\}$ by $\langle a\rangle x$. From the relations $a^{2 n}=1, x^{2}=a^{n}$ and $x^{-1} a x=a^{-1}$, we can easily verify $\left(a^{i} x\right)^{-1}=a^{i+n} x, x a^{i} x=a^{n-i}$ and $a^{i} x=x a^{2 n-i}$, which are useful later. It is not hard to see that $Q_{2 n}$ has a cyclic subgroup $\langle a\rangle$ of index $2 n$, which is isomorphic to $Z_{2 n}$. Moreover, $Q_{2 n}=\langle a\rangle \cup\langle a\rangle x$ and $\left|Q_{2 n}\right|=4 n$.

A perfect matching of a graph X is a set of independent edges which together cover all the vertices of X. For a positive integer k, if M is a set of k independent edges of X (i.e., k-matching) and M^{*} is a perfect matching of X such that $M \subseteq M^{*}$, we call M^{*} a perfect matching extension of M, or M can be extended to M^{*}. A graph X is said to be k-extendable if it contains a k-matching and any k-matching of X can be extended to a perfect matching of X. We use $c_{0}(G)$ to denote the number of odd components in G.

The concept of k-extendability was introduced by Plummer [5] in 1980. Stong [6] showed that 1-factorization exists for all generating sets of abelian groups of even order, dihedral groups, dicyclic groups, all minimal generating sets of nilpotent groups of even order and $D_{m} \times Z_{n}$. Chan, Chen and Yu [1] classified the 2-extendable Cayley graphs on abelian groups. Later, Chen, Liu and Yu [3] classified the 2-extendable Cayley graphs on dihedral groups. These classifications will be useful in our proof of the main theorem. In this paper, we show that any connected Cayley graph $X=X\left(Q_{2 n} ; S\right)$ is 2-extendable. In Section 3, we study 3-extendability of X and classify 3-extendability of Cayley graph with regularity at most 5 .

From the generator and relation definition of $Q_{2 n}$, it follows that the maps defined on generators by

$$
x \mapsto a^{i} x, a \mapsto a
$$

and

$$
x \mapsto x, a \mapsto a^{d}, \operatorname{gcd}(d, 2 n)=1
$$

are group automorphisms. We will exploit this symmetry to simplify many types of dicyclic Cayley graphs.

2 2-extendability and connectivity

In this section, we study 2-extendability of Cayley graph with a given set S.
Theorem 2.1 Let $X=X\left(Q_{2 n} ; S\right)$ be a connected Cayley graph on the dicyclic group $Q_{2 n}(n \geq 1)$. Then X is 2 -extendable.

Figure 1: Lemma 2.3

To show Theorem 2.1, we consider several cases based on the given subset S. For $S=\left\{a^{i} x\right\}$, from the definition of Cayley graph, it is easy to see that $X\left(Q_{2 n} ; S\right)$ is the union of $n 4$-cycles,

$$
\bigcup_{j=0}^{n-1} C_{j}=\bigcup_{j=0}^{n-1}\left\{\left(a^{j}\right)\left(a^{i+j} x\right)\left(a^{j+n}\right)\left(a^{j+i+n} x\right)\left(a^{j}\right)\right\}
$$

where the superscripts are taken in modula $2 n$. So we have the following lemma.
Lemma 2.2 $X\left(Q_{2 n} ;\left\{a^{i} x\right\}\right)$ is a disconnected graph for any i. Furthermore, it is the union of $n 4$-cycles.

We call 4-cycles in $X\left(Q_{2 n} ; S\right)$ generated by $a^{i} x$-edges and $a^{i+n} x$-edges basic cycles.

Lemma 2.3 $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ is connected if and only if $\operatorname{gcd}(n, j-i)=1$. Furthermore, if $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ is connected, then it is 2-extendable.

Proof. It is easy to see that $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ is connected if and only if $\left\{a^{i} x, a^{j} x\right\}$ is a generating set of $Q_{2 n}$. By exploiting symmetry, we can reduce $\left\{a^{i} x, a^{j} x\right\}$ to $\left\{x, a^{j-i}\right\}$, clearly, $\left\{x, a^{j-i}\right\}$ is a generating set of $Q_{2 n}$ if and only if $\operatorname{gcd}(n, j-i)=1$. We can arrange the vertices of each basic cycle of $X\left(Q_{2 n} ;\left\{a^{i} x\right\}\right)$ in a column and connect them by all $a^{j} x$-edges and $a^{j+n} x$-edges. The resulting graph, shown in Figure 1, is connected. Let $X=X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$. Without loss of generality, assume $0 \leq i<j<n$. Since X is connected, we arrange the vertices of each basic
cycle of $X\left(Q_{2 n} ;\left\{a^{i} x\right\}\right)$ and their adjacency as in Figure 1. Let $M=\left\{e_{1}, e_{2}\right\}$ be a set of any two independent edges. Consider the following two cases.

Case 1. e_{1} and e_{2} are the same type, say $a^{i} x$.
They lie in either the same basic cycle or two distinct basic cycles. Clearly, M can be extended to a perfect matching of X.

Case 2. e_{1} is of type $a^{i} x$ and e_{2} is of type $a^{j} x$.
Since X is vertex-transitive, we may assume $e_{1}=(1)\left(a^{i} x\right), e_{2}=\left(a^{k(j-i)}\right)\left(a^{(k+1) j-k i} x\right)$. First, we show that regardless n is odd or even, the edge $\left(a^{(n-1)(j-i)}\right)\left(a^{i+n} x\right)$ is in X. By the definition of Cayley graph, $\left(a^{(n-1)(j-i)}\right)^{-1}\left(a^{i+n} x\right)=a^{j-n(j-i)} x$. If n is even and $j-i$ is odd, then $j-n(j-i) \equiv j+n(\bmod 2 n)$; if n is odd, then $j-n(j-i) \equiv j$ $(\bmod 2 n)$. Thus, in either case, $\left(a^{(n-1)(j-i)}\right)\left(a^{i+n} x\right)$ is an edge of X.

Let

$$
\begin{aligned}
& M^{*}=\left\{e_{1},\left(a^{n}\right)\left(a^{j+n} x\right),\left(a^{j} x\right)\left(a^{j-i+n}\right),\left(a^{(n-1)(j-i)}\right)\left(a^{i+n} x\right)\right\} \\
& \cup\left\{\left(a^{j-i}\right)\left(a^{2 j-i} x\right), \ldots, e_{2}, \ldots,\left(a^{(n-2)(j-i)}\right)\left(a^{(n-1) j-(n-2) i} x\right)\right\} \\
& \cup\left\{\left(a^{2(j-i)+n}\right)\left(a^{2 j-i+n} x\right), \ldots,\left(a^{(k+1)(j-i)+n}\right)\left(a^{(k+1) j-k i+n} x\right), \ldots,\right. \\
&\left.\left(a^{(n-1)(j-i)+n}\right)\left(a^{(n-1) j-(n-2) i+n} x\right)\right\} .
\end{aligned}
$$

Then M^{*} is a perfect matching and thus M can be extended to a perfect matching of X.

Since $a^{i} x$ and a^{k} generate the same subgroup of $Q_{2 n}$ as $a^{i} x$ and $a^{i+k} x$, by Lemma2.3 we have the following consequence.

Corollary 2.4 $X\left(Q_{2 n} ;\left\{a^{i} x, a^{k}\right\}\right)$ is connected if and only if one of the following

 holds:(i) n is odd and $\operatorname{gcd}(k, 2 n)=2$;
(ii) $\operatorname{gcd}(k, 2 n)=1$.

The following classic result of Chen and Quimpo [2] is the first study of extendability of Cayley graphs.

Lemma 2.5 (Chen and Quimpo [2]) Every Cayley graph of even order over an abelian group is 1-extendable.

From now on, we assume that $X\left(Q_{2 n} ; S\right)$ is connected. For convenience, let $S^{\prime}=S \cap\langle a\rangle$ and $S^{\prime \prime}=S \cap(\langle a\rangle x)$. Clearly, $S=S^{\prime} \cup S^{\prime \prime}$ and $S^{\prime \prime} \neq \emptyset$ as $X\left(Q_{2 n} ; S\right)$ is connected. Without loss of generality, assume $x \in S^{\prime \prime}$. Let E_{s} be the set of edges of type s for $s \in S^{\prime \prime}$. Then E_{s} is a perfect matching of $X\left(Q_{2 n} ; S\right)$. We denote $E_{1}=E(X[\langle a\rangle]), E_{2}=E(X[\langle a\rangle x])$ and $E_{3}=E\left(X\left(Q_{2 n} ; S^{\prime \prime}\right)\right)$. Then $E\left(X\left(Q_{2 n} ; S\right)\right)=E_{1} \cup E_{2} \cup E_{3}$.

Proof of Theorem 2.1. If $n=1$, then $X=X\left(Q_{2} ; S\right)$ is complete graph K_{4}. In this case, X is 2 -extendable. So we may assume that $n \geqslant 2$. Let e_{1} and e_{2} be any two independent edges of X and $M=\left\{e_{1}, e_{2}\right\}$.

Case 1. $M \subseteq E_{1}$ or E_{2}.
Since $X[\langle a\rangle] \cong X[\langle a\rangle x]$, we may assume that $M \subseteq E_{1}$. Suppose $e_{1}=\left(a^{i}\right)\left(a^{j}\right)$ and $e_{2}=\left(a^{k}\right)\left(a^{h}\right)$, then i, j, k and h are all distinct integers in modulus $2 n$. Let

$$
M^{*}=\left(E_{x} \cup\left\{e_{1}, e_{2},\left(a^{i} x\right)\left(a^{j} x\right),\left(a^{k} x\right)\left(a^{h} x\right)\right\}\right)-\left\{\left(a^{i}\right)\left(a^{i} x\right),\left(a^{j}\right)\left(a^{j} x\right),\left(a^{k}\right)\left(a^{k} x\right),\left(a^{h}\right)\left(a^{h} x\right)\right\} .
$$

So M can be extended to M^{*}.
Case 2. $M \cap E_{3} \neq \emptyset$ and $M \cap\left(E_{1} \cup E_{2}\right) \neq \emptyset$.
Without loss of generality, we assume that $e_{1}=\left(a^{i}\right)\left(a^{j}\right) \in E_{1}$ and $e_{2}=$ $\left(a^{k}\right)\left(a^{k+h} x\right) \in E_{3}$, where i, j and k are all distinct in modulus $2 n$ and $a^{h} x \in S^{\prime \prime}$. Then

$$
\left(E_{a^{h} x} \cup\left\{e_{1},\left(a^{i+h} x\right)\left(a^{j+h} x\right)\right\}\right)-\left\{\left(a^{i}\right)\left(a^{i+h} x\right),\left(a^{j}\right)\left(a^{j+h} x\right)\right\}
$$

is a perfect matching containing M.
Case 3. $e_{1} \in E_{1}, e_{2} \in E_{2}$.
Let $G_{1}, G_{2}, \cdots, G_{r}$ be the components of $X[\langle a\rangle]$, then $G_{i} \cong G_{j}$ for $1 \leqslant i, j \leqslant r$. Let G_{i}^{\prime} be the subgraph of $X[\langle a\rangle x]$ induced by $\left\{m x \mid m \in V\left(G_{i}\right)\right\}$. Then $G_{i}^{\prime} \cong G_{i}$ for $1 \leqslant i \leqslant r$.

We consider the following subcases.
Case 3.1. e_{1} and e_{2} lie in G_{i} and G_{j}^{\prime}, respectively, where $i \neq j$.
Let $e_{1}=\left(a^{i}\right)\left(a^{j}\right), e_{2}=\left(a^{k} x\right)\left(a^{h} x\right)$, then

$$
\left(E_{x} \cup\left\{e_{1}, e_{2},\left(a^{i} x\right)\left(a^{j} x\right),\left(a^{k}\right)\left(a^{h}\right)\right\}\right)-\left\{\left(a^{i}\right)\left(a^{i} x\right),\left(a^{j}\right)\left(a^{j} x\right),\left(a^{k}\right)\left(a^{k} x\right),\left(a^{h}\right)\left(a^{h} x\right)\right\}
$$

is a perfect matching containing e_{1} and e_{2}.
Case 3.2. e_{1} and e_{2} lie in G_{i} and G_{i}^{\prime}, respectively.
Let $e_{1}=\left(a^{i}\right)\left(a^{j}\right)$ and $e_{2}=\left(a^{k} x\right)\left(a^{h} x\right)$.
If $\mathrm{X}\left(\langle a\rangle ; S^{\prime}\right)$ is connected, since $\mathrm{X}\left(\langle a\rangle ; S^{\prime}\right)$ and $\mathrm{X}\left(\langle a\rangle x ; S^{\prime}\right)$ are connected graphs of order $2 n$, then, by Lemma 2.5, both of them are 1-extendable. Hence e_{1} can be extended to a perfect matching M_{1} in $\mathrm{X}\left(\langle a\rangle ; S^{\prime}\right)$ and e_{2} can be extended to a perfect matching M_{2} in $\mathrm{X}\left(\langle a\rangle x ; S^{\prime}\right)$. Thus $M_{1} \cup M_{2}$ is a perfect matching of X as required. If $\mathrm{X}\left(\langle a\rangle ; S^{\prime}\right)$ is disconnected, so is $X\left(\langle a\rangle x ; S^{\prime}\right)$. Since X is connected, there exists an $a^{m} x \in S^{\prime \prime}$ such that $a^{m+i} x \notin V\left(G_{i}^{\prime}\right)$. In this case,

$$
\begin{aligned}
& \left(E_{a^{m} x} \cup\left\{e_{1}, e_{2},\left(a^{i+m} x\right)\left(a^{j+m} x\right),\left(a^{k-m}\right)\left(a^{h-m}\right)\right\}\right)- \\
& \left\{\left(a^{i}\right)\left(a^{i+m} x\right),\left(a^{j}\right)\left(a^{j+m} x\right),\left(a^{k-m}\right)\left(a^{k} x\right),\left(a^{h-m}\right)\left(a^{h} x\right)\right\}
\end{aligned}
$$

is a perfect matching containing e_{1} and e_{2}.
Case 4. $M \subseteq E_{3}$.
We consider the following two subcases.
Case 4.1. e_{1} and e_{2} are of same type $a^{i} x$.

Since $X\left(Q_{2 n} ;\left\{a^{i} x\right\}\right)$ is a union of basic cycles by Lemma 2.2, then e_{1} and e_{2} lie in either the same basic cycle or two distinct basic cycles. In either case, M can be extended to a perfect matching of X.

Case 4.2. e_{1} and e_{2} are of different types $a^{i} x$ and $a^{j} x$, respectively, where $i \neq j$.

Without loss of generality, assume $0 \leq i<j<n$. Then e_{1} and e_{2} lie in a spanning subgraph of X generated by $\left\{a^{i} x, a^{j} x\right\}$. If X is connected, by Lemma 2.3, M can be extended to a perfect matching of X. Thus, we only need to consider X is disconnected. From Lemma 2.3, there exists a greatest common divisor of n and $j-i$, say d, satisfying $\frac{j-i}{d} \cdot n=\frac{n}{d}(j-i)$, this implies $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ has d components. If e_{1} and e_{2} lie in the same component, we can find a perfect matching by the similar way as in Lemma 2.3, otherwise, e_{1} and e_{2} lie in two distinct basic cycles, they can be extended to a perfect matching of X as well.

3 3-extendability of Cayley graphs on dicyclic groups

In this section, we discuss 3-extendability of Cayley graphs on dicyclic groups with low regularities. For Cayley graphs with regularity at most 5, we classify 3-extendability of $X\left(Q_{2 n} ; S\right)$.

If the regularity of $X\left(Q_{2 n} ; S\right)$ is less than 4 , none of Cayley graphs $X\left(Q_{2 n} ; S\right)$ is connected. So we only discuss the graphs of the regularity at least 4.

If $X\left(Q_{2 n} ; S\right)$ is 4-regular, by Lemma 2.3 and Corollary2.4, only two families of Cayley graphs are connected, namely, $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ for $\operatorname{gcd}(n, j-i)=1$ and $X\left(Q_{2 n} ;\left\{a^{k}, a^{i} x\right\}\right)$ for either $\operatorname{gcd}(k, 2 n)=2$ and n is odd or $\operatorname{gcd}(k, 2 n)=1$.

Proposition 3.1 The following 4-regular connected Cayley graphs on dicyclic groups are not 3-extendable.
(i) $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x\right\}\right)$ for $n \geq 3$;
(ii) $X\left(Q_{2 n} ;\left\{a^{k}, a^{i} x\right\}\right)$ for $\operatorname{gcd}(k, 2 n)=2$ and n is odd;
(iii) $X\left(Q_{2 n} ;\left\{a^{k}, a^{i} x\right\}\right)$ for $\operatorname{gcd}(k, 2 n)=1$ and n is odd.

Proof. For (i), we see that any perfect matching which contains the edges (1) $\left(a^{i} x\right)$ and $\left(a^{n}\right)\left(a^{i+n} x\right)$ must contain only edges generated by $a^{i} x$. In fact, choose any $a^{j} x$ edge $\left(a^{k(j-i)}\right)\left(a^{(k+1) j-k i} x\right)$, we only need to prove that $\hat{X}=X-\left\{1, a^{i} x, a^{n}, a^{i+n} x, a^{k(j-i)}, a^{(k+1) j-k i} x\right\}$ contains no perfect matching (see Figure 1). Let

$$
S=\bigcup_{m=k+2}^{n-1}\left\{a^{m j-(m-1) i} x, a^{m j-(m-1) i+n} x\right\} \cup\left\{a^{(k+1) j-k i+n} x\right\} .
$$

Then $c_{0}(\hat{X}-S)=|S|+2>|S|$, by Tutte's 1-Factor Theorem, \hat{X} has no perfect matching. Therefore, X is not 3-extendable.

The proofs of the other two classes are similar, we can choose three independent edges, deleting them and their end-vertices, leaving a bipartite graph with different number of vertices in the two classes, so we only present the detailed proof of (iii) here.

Assume that $\operatorname{gcd}(k, 2 n)=1$ and n is odd. Choose $e_{1}=(1)\left(a^{k}\right), e_{2}=\left(a^{i+k} x\right)\left(a^{i+2 k} x\right)$ and $e_{3}=\left(a^{n}\right)\left(a^{i+n} x\right)$.

Let

$$
T=\bigcup_{m=2}^{\frac{2 n-k}{2 k}}\left\{a^{(2 m-1) k}, a^{n+(2 m-1) k}, a^{i+2 m k} x, a^{i+n+2 m k} x\right\} \cup\left\{a^{n+k}, a^{i+n+2 k} x\right\} .
$$

Then T is the set of circled vertices in Figure 2. Set $G_{1}=G-\cup_{i=1}^{3} V\left(e_{i}\right)$, then all components of $G_{1}-T$ are isolated vertices, $|T|=2 n-4$ and the number of isolated vertices of $G_{1}-T$ is $2 n-2$. Thus G_{1} is a bipartite graph with bipartition T and $G_{1}-T$. Therefore, G_{1} has no perfect matching or X is not 3-extendable.

Figure 2: Illustration of condition (iii) in Proposition 3.1

We consider $X\left(Q_{2 n} ; S\right)$ as two subgraphs $G^{\prime}=X[\langle a\rangle]$ and $G^{\prime \prime}=X[\langle a\rangle x]$, joined by two perfect matchings consisting of all $a^{i} x$-edges and $a^{i+n} x$-edges. Recall the notions of E_{1}, E_{2}, E_{3}, we need them in the proof of next theorem and also call the edges in E_{1} and E_{2} parallel edges.

For any edge $e=\left(a^{m}\right)\left(a^{m+k}\right) \in E\left(G^{\prime}\right)$, there exists a bijection $\theta: E\left(G^{\prime}\right) \longrightarrow$ $E\left(G^{\prime \prime}\right)$ such that $\theta(e)=\left(a^{m+i} x\right)\left(a^{m+k+i} x\right)$ and a bijection $\delta: E\left(G^{\prime}\right) \longrightarrow E\left(G^{\prime \prime}\right)$ such that $\delta(e)=\left(a^{m+i+n} x\right)\left(a^{m+k+i+n} x\right)$. The shadows of e in G^{\prime} onto $G^{\prime \prime}$ are $\theta(e)$ and $\delta(e)$ under $a^{i} x$-edges and $a^{i+n} x$-edges, respectively. Similarly, we define the shadows of an edge e in $G^{\prime \prime}$ onto G^{\prime}.

Theorem 3.2 A 4-regular connected Cayley graph \hat{X} on dicyclic group is 3extendable if and only if $\hat{X} \cong X\left(Q_{2 n} ;\left\{a^{k}, a^{i} x\right\}\right), \operatorname{gcd}(k, 2 n)=1$ and n is even, $n \geq 4$.

Proof. From Proposition 3.1, we only need to show that if $\operatorname{gcd}(k, 2 n)=1$ and n is even, $n \geq 4$, then \hat{X} is 3-extendable. By exploiting symmetry, generating set $\left\{a^{k}, a^{i} x\right\}$ of \hat{X} could reduce to $\{x, a\}$.

Let $M=\left\{e_{1}, e_{2}, e_{3}\right\}$ be a set of any three independent edges of \hat{X}, \mathbb{C} be the union of all basic cycles. In Table 1, we list all possible cases according to the locations of edges in M.

For Case 1 and Case 2.1, let C^{*} be the union of basic cycles containing e_{1}, e_{2} and e_{3}. As each basic cycle in C^{*} has a perfect matching containing e_{j} and $\hat{X}-V\left(C^{*}\right)$ has a perfect matching, then M can be extended to a perfect matching of \hat{X} in Case 1. For Case 2.1, no matter whether $C_{1}=C_{2}$ or not, we take all the $a^{i} x$-edges in $\hat{X}-V\left(C^{*}\right)$ except two which are contained in the same 4 -cycle with e_{3} and its shadow under $a^{i} x$-edge, and replace the above two edges with e_{3} and its corresponding shadow, then this yields a perfect matching of \hat{X}.

For Case $2.2, C_{1} \neq C_{2}$. Let e_{3} join C_{1} and another basic cycle C_{5}. If $C_{5} \neq C_{2}$, $X\left[C_{1} \cup C_{2} \cup C_{5}\right]$ has a perfect matching M_{1} containing $M, X\left[G \backslash C_{1} \cup C_{2} \cup C_{5}\right]$ has a perfect matching M_{2}, generated by the union of perfect matchings in each remaining basic cycle. Then $M_{1} \cup M_{2}$ is the required perfect matching of \hat{X}. If $C_{5}=C_{2}$, for the case that e_{1}, e_{2} are contained in an $a-x$ alternating 4-cycle, $X\left[C_{1} \cup C_{5}\right]$ has a perfect matching M_{1} containing $M, X\left[G \backslash\left(C_{1} \cup C_{5}\right)\right]$ has a perfect matching M_{2}. Then $M_{1} \cup M_{2}$ is the required perfect matching of \hat{X}. Otherwise, without loss of generality, let $e_{1}=(1)(x), e_{2}=(a x)\left(a^{n+1}\right), e_{3}=\left(a^{n} x\right)\left(a^{n+1} x\right)$, let

$$
\begin{aligned}
\bar{M}= & \left(\bigcup_{j=0}^{\frac{n}{2}-2}\left(a^{(2 j+1)}\right)\left(a^{(2 j+2)}\right)\right) \cup\left(\bigcup_{j=2}^{n-2}\left\{\left(a^{j} x\right)\left(a^{j+1} x\right),\left(a^{n+j}\right)\left(a^{n+j+1}\right),\left(a^{n+j} x\right)\left(a^{n+j+1} x\right)\right\}\right) \\
& \cup\left\{e_{1}, e_{2}, e_{3},\left(a^{n-1}\right)\left(a^{n}\right)\right\} .
\end{aligned}
$$

Then \bar{M} is a perfect matching of \hat{X} containing M.
For all the subcases of Case 3.1 and Case 3.2.1, we could always find a perfect matching of $X\left[C_{1,1} \cup C_{1,2} \cup C_{2,1} \cup C_{2,2} \cup C_{3}\right]$, which containing M. The rest is similar to the discussions above.

For Case 3.2.2, we just consider the following location of M, to find a perfect matching for other locations of M are similar as in Case 2.2.

Without loss of generality, let $e_{1}=(1)(a), e_{2}=\left(a^{n+1} x\right)\left(a^{n+2} x\right), e_{3}=(x)\left(a^{n}\right)$

Table 1: Summary of the locations of edges in M

cases	subcases	subsubcases
1. $\|M \cap E(\mathbb{C})\|=3$;	Nil.	Nil.
$\begin{aligned} & \text { 2. }\|M \cap E(\mathbb{C})\|=2 \text {, } \\ & \text { say, } e_{1} \in C_{1} \\ & e_{2} \in C_{2}, e_{3} \notin E(\mathbb{C}) ; \end{aligned}$	1. $\left\|V\left(e_{3}\right) \cap V\left(C_{1}, C_{2}\right)\right\|=0$; 2. $\left\|V\left(e_{3}\right) \cap V\left(C_{1}, C_{2}\right)\right\| \geq 1$.	Nil. Nil.
$\begin{aligned} & \text { 3. }\|M \cap E(\mathbb{C})\|=1, \\ & \text { say } e_{1}, e_{2} \notin E(\mathbb{C}), \\ & e_{3} \in C_{3} \subseteq \mathbb{C} \end{aligned}$	1. $\left\|V\left(e_{1}, e_{2}\right) \cap V\left(C_{3}\right)\right\|=0$; 2. $\left\|V\left(e_{1}, e_{2}\right) \cap V\left(C_{3}\right)\right\|=1$, say, $\left\|V\left(e_{1}\right) \cap V\left(C_{3}\right)\right\|=1$ and $C_{1,1}=C_{3}$; 3. $\left\|V\left(e_{1}, e_{2}\right) \cap C_{3}\right\|=2$.	${ }^{\mathrm{a}}$ 1. $\left\|\cap_{i_{1}, i_{2}=1,2} V\left(C_{i_{1}, i_{2}}\right)\right\|=0$; 2. either $C_{1,1}=C_{2,1}\left(C_{2,2}\right)$ or $C_{1,2}=C_{2,1}\left(C_{2,2}\right)$; 3. $C_{1,1}=C_{2,1}, C_{1,2}=C_{2,2}$. 1. $C_{2, j} \neq C_{1,2}$ for $j=1,2$; 2. $C_{2, j}=C_{1,2}$ for some j, say $j=1$.
4. $\|M \cap E(\mathbb{C})\|=0$.	$\begin{aligned} & \text { 1. }\left\|M \cap G^{\prime}\right\|=3\left(\text { or } G^{\prime \prime}\right) \text {; } \\ & \text { b} 2 . ~\left\|M \cap G^{\prime}\right\|=2 \text {, say } \\ & e_{1}, e_{2} \in G^{\prime}, e_{3} \in G^{\prime \prime} . \end{aligned}$	1. $\left\|V\left(e_{3}\right) \cap V\left(\sigma\left(e_{1}, e_{2}\right)\right)\right\|=0$; 2. $e_{3}=\sigma\left(e_{1}\right)$ or $\sigma\left(e_{2}\right)$; 3. $\left\|V\left(e_{3}\right) \cap V\left(\sigma\left(e_{1} \cup e_{2}\right)\right)\right\|=1$; 4. $\left\|V\left(e_{3}\right) \cap V\left(\sigma\left(e_{1} \cup e_{2}\right)\right)\right\|=2$.

${ }^{\text {a }}$ Let $C_{1,1}$ and $C_{1,2}$ be two basic cycles that e_{1} connects, $C_{2,1}$ and $C_{2,2}$ be two basic cycles that e_{2} connects.
${ }^{\mathrm{b}} \sigma$ means the θ or δ shadow of $e_{j}, j=1,2$.
and let

$$
\begin{aligned}
M^{*}= & \left(\bigcup_{j=1}^{\frac{n}{2}-1}\left(a^{2 j}\right)\left(a^{(2 j+1)}\right)\right) \cup\left(\bigcup_{j=1}^{n-2}\left(a^{j} x\right)\left(a^{(n+j)}\right)\right) \cup \\
& \left(\bigcup_{j=2}^{n-1}\left(a^{n+2 j-1} x\right)\left(a^{n+2 j} x\right)\right) \cup\left\{\left(a^{n-1} x\right)\left(a^{n} x\right),\left(a^{2 n-1}\right)\left(a^{2 n-1} x\right), e_{1}, e_{2}, e_{3}\right\} .
\end{aligned}
$$

Then $M \subset M^{*}$ and M^{*} is a perfect matching of \hat{X}.
For Case 3.3, if e_{1}, e_{2} join another common basic cycle different from C_{3}, denoted it by C_{6}, it can be dealt with similarly as in Case 2.2. If not, without loss of generality, let $e_{1}=(1)(a), e_{2}=\left(a^{n+1} x\right)\left(a^{n+2} x\right), e_{3}=(a x)\left(a^{n+1}\right)$, then the above M^{*} is also the required perfect matching.

For Case 4.1, let $E^{*}=E_{x} \cup\left(\cup_{j=1}^{3}\left\{e_{j}\right.\right.$ and its corresponding shadow under x edge\}). Then E^{*} contains three vertex-disjoint $a-x$ alternating cycles. In each alternating cycle, we replace x-edges with e_{j} and its corresponding shadow, then there exists a perfect matching in \hat{X} containing M.

For Case 4.2, if e_{1}, e_{2} have four distinct shadows in $G^{\prime \prime}$.
Case 4.2.1-Case 4.2.3 are similar as in Case 4.1. Next we deal with Case 4.2.4.
If e_{3} joins two shadows of the same $e_{j}(j=1$ or 2$)$, it contradicts to the definition of Cayley graphs except in the case $n=2$. Without loss of generality, let $e_{1}=(1)(a), e_{2}=\left(a^{j}\right)\left(a^{(j+1)}\right), e_{3}=(a x)\left(a^{2} x\right), l_{1}$ be the shadow of e_{1} under x edge and l_{2}, l_{3} be shadows of e_{2} under x-edge and $a^{n} x$-edge, respectively. We only consider the case $\operatorname{gcd}(j, 2 n)=1$, for the case $\operatorname{gcd}(j, 2 n)=2$, there exists a perfect matching in G^{\prime} containing e_{1}, e_{2} and a perfect matching in $G^{\prime \prime}$ containing e_{3}. Let $j=2 m-1$. If e_{3} joins one end-vertex of l_{2}, then there exist two perfect matchings in G^{\prime} and $G^{\prime \prime}$, respectively. Suppose e_{3} joins one end-vertex of l_{3}. Consider the end-vertex $a^{2} x$ of e_{3}, the shadow of $a^{2} x$ under $a^{n} x$-edge in G^{\prime} is a^{2-n}, which is also the end-vertex of e_{2}, then $a^{2-n}=a^{(2 m-1)}$, that is, $(2 m-3)+n \equiv 0(\bmod 2)$, contradicting the fact that $\operatorname{gcd}(k, 2 n)=1$ and n is even.

If e_{1}, e_{2} have two common shadows in $G^{\prime \prime}$. We just consider that e_{3} joins one of these two common shadows, otherwise it is similar to Case 4.2.1-Case 4.2.3. By the hypothesis, k is odd and n is even, then there is a perfect matching M_{1} in G^{\prime} containing e_{1}, e_{2} and a perfect matching M_{2} in $G^{\prime \prime}$ containing e_{3}, so $M_{1} \cup M_{2}$ is the required perfect matching.

The proof is complete.
For 5-regular Cayley graphs $X\left(Q_{2 n} ; S\right)$, there are only three types of connected graphs, namely, $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x, a^{n}\right\}\right)$ with $\operatorname{gcd}(j-i, n)=1, X\left(Q_{2 n} ;\left\{a^{i} x, a^{k}, a^{n}\right\}\right)$ with $\operatorname{gcd}(k, 2 n)=1$ and graph $X\left(Q_{2 n} ;\left\{a^{i} x, a^{k}, a^{n}\right\}\right)$ with $\operatorname{gcd}(k, 2 n)=2$ and n is odd.

Note $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x, a^{n}\right\}\right)$ is not 3-extendable since $e_{1}=(1)\left(a^{n}\right), e_{2}=\left(a^{i} x\right)\left(a^{(n-1)(j-i)+n}\right)$ and $e_{3}=\left(a^{(n-1)(j-i)}\right)\left(a^{(n-1) j-(n-2) i} x\right)$ can not be extended to a perfect matching.

For other two types, $E_{a^{i} x}, E_{a^{i+n} x}$ and $E_{a^{n}}$ generate a disjoint union of the complete graph K_{4}. From the discussion of 4-regular Cayley graphs, using the similar arguments as in Theorem 3.2, we have the following theorem but omit the proof.

Theorem 3.3 Every connected 5-regular Cayley graph on a dicyclic group is 3extendable except one family $X\left(Q_{2 n} ;\left\{a^{i} x, a^{j} x, a^{n}\right\}\right)$.

For Cayley graphs with regularity more than 5, it becomes too tedious to manage with case by case analysis and a new technique is required to classify 3-extendability. However, experiments suggest the following conjecture.

Conjecture 3.4 The connected Cayley graphs on dicyclic groups of regularity more than 5 are 3-extendable.

For general $k \geq 4$, the current technique is powerless to deal with k-extendability of Cayley graphs on dicyclic groups. However, as a conclusion of the paper, we provide the following two families of non- k-extendable Cayley graphs.

Proposition 3.5 Let k be an odd integer. Then $(k+1)$-regular connected Cayley graphs $X\left(Q_{2 n} ; S\right)$ are not k-extendable, if
(i) $S=\left\{a^{i_{1}} x, a^{i_{2}} x, \cdots, a^{i_{k+1}} x\right\}$;
(ii) $S=\left\{a^{h}, a^{i_{1}} x, \cdots, a^{\frac{i_{k-1}}{2}} x\right\}$, where $h=i_{2}-i_{1}$ or $i_{2}-i_{1}-n$.

Proof. (i) From Lemma 2.3, without loss of generality, assume $\operatorname{gcd}\left(i_{2}-i_{1}, n\right)=1$. Then the vertices $a^{i_{2}} x$ and $a^{i_{2}+n} x$ have exactly the same neighbors. Choose k edges as follows:

$$
\begin{gathered}
e_{1}=(1)\left(a^{i_{1}} x\right), e_{2}=\left(a^{n}\right)\left(a^{i_{1}+n} x\right), e_{3}=\left(a^{i_{2}-i_{1}}\right)\left(a^{2 i_{2}-i_{1}} x\right), \ldots, \\
e_{2(m-3)+4}=\left(a^{n+i_{2}-i_{m}}\right)\left(a^{n+2 i_{2}-i_{m}} x\right), e_{2(m-3)+5}=\left(a^{i_{2}-i_{m}}\right)\left(a^{2 i_{2}-i_{m}} x\right) \text { for } 3 \leq m \leq \frac{k+1}{2} .
\end{gathered}
$$

After deleting these k edges, then the neighbor set of $a^{i_{2}} x$ and $a^{i_{2}+n} x$ turns out to be $\left\{a^{i_{2}-i_{1}+n}\right\}$ and thus $X\left(Q_{2 n} ; S\right)$ are not k-extendable.

For (ii), it can be verified similarly.

Acknowledgments

The authors are indebted to Professors Weidong Gao and Zaiping Lu for their valuable comments.

References

[1] O. Chan, C. C. Chen and Q. L. Yu, On 2-extendable Abelian Cayley graphs, Discrete Math. 146 (1995), 19-32.
[2] C. C. Chen and N. Quimpo, On strongly connected abelian group graphs, Combinatorial Math. VIII, Springer, Lecture Notes Series, 884 (Springer, Berlin, 1981), 23-34.
[3] C. C. Chen, J. Liu and Q. L. Yu, On the classification of 2-extendable Cayley graphs on dihedral groups, Australas. J. Combin. 6 (1992), 209-219.
[4] Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[5] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980), 201-210.
[6] R. A. Stong, On 1-factorizability of Cayley graphs, J. Combin. Theory, Ser. (B) 39 (1985), 298-307.

[^0]: *This work is supported in part by 973 Project of Ministry of Science and Technology of China and the Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ Corresponding email: yu@tru.ca

