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Abstract

In this paper we study abstract shapes of 𝑘-noncrossing, 𝜎-canonical RNA

pseudoknot structures. We consider lv1𝑘- and lv5𝑘-shapes, which represent a gener-

alization of the abstract 𝜋′- and 𝜋-shapes of RNA secondary structures introduced

by Giegerich et al. (2004). Using a novel approach we compute the generating

functions of lv1𝑘- and lv5𝑘-shapes as well as the generating functions of all lv1𝑘- and

lv5𝑘-shapes induced by all 𝑘-noncrossing, 𝜎-canonical RNA structures for fixed length

𝑛. By means of singularity analysis of the generating functions, we derive explicit

asymptotic expressions.
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1. Introduction

Pseudoknots have long been known as important structural elements

[Westhof and Jaeger 1992], see Fig. 1. They represent cross-serial interactions be-

tween RNA nucleotides and are an important functionally in tRNAs, RNaseP

[Loria and Pan 1996], telomerase RNA [Staple and Butcher 2005], and ribosomal

RNAs [Konings and Gutell 1995]. Pseudoknots in plant virus RNAs mimic tRNA

structures, and in vitro selection experiments have produced pseudoknotted RNA

families that bind to the HIV-1 reverse transcriptase [Tuerk et al. 1992]. Import

general mechanism, such as ribosomal frame shifting, are dependent upon pseudo-

knots [Chamorro et al. 1992].

Despite their biological importance, pseudoknots are typically excluded from large-

scale computational studies. Although the problem has attracted considerable atten-

tion in the last decade, and several software tools [Huang et al. 2009, Rivas and Eddy 1999]

have become available, the required resources have remained prohibitive for appli-

cations beyond individual molecules.
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An RNA molecule is a sequence of the four nucleotides A, G, U and C together

with the Watson-Crick (A-U, G-C) and U-G base pairing rules. The sequence of

bases is called the primary structure of the RNA molecule. Two bases in the primary

structure which are not adjacent may form hydrogen bonds following the Watson-

Crick base pairing rules. Three decades ago Waterman et al. [Kleitman 1970,

Nussinov et al. 1978, Waterman 1978b] analyzed RNA secondary structures. Sec-

ondary structures are coarse grained RNA contact structures. They can be repre-

sented as diagrams, planar graphs as well as Motzkin-paths, see Fig. 2. Diagrams

are labeled graphs over the vertex set [𝑛] = {1, . . . , 𝑛} with vertex degrees ≤ 1,

represented by drawing its vertices on a horizontal line and its arcs (𝑖, 𝑗) (𝑖 < 𝑗),

in the upper half-plane, see Fig. 2 and Fig. 3. Here, vertices and arcs correspond

to the nucleotides A, G, U and C and Watson-Crick (A-U, G-C) and (U-G)

base pairs, respectively. In a diagram two arcs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are called cross-

ing if 𝑖1 < 𝑖2 < 𝑗1 < 𝑗2 holds. Accordingly, a 𝑘-crossing is a sequence of arcs

(𝑖1, 𝑗1), . . . , (𝑖𝑘, 𝑗𝑘) such that 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 < 𝑗1 < 𝑗2 < ⋅ ⋅ ⋅ < 𝑗𝑘, see Fig. 3.

We call diagrams containing at most (𝑘 − 1)-crossings, 𝑘-noncrossing diagrams (𝑘-

noncrossing partial matchings).

An important observation in this context is that RNA secondary structures have

no crossings in their diagram representation, see Fig. 3 (l.h.s.) and Fig. 2, and

are therefore 2-noncrossing diagrams. The length of an arc (𝑖, 𝑗) is given by 𝑗 − 𝑖,

characterizing the minimal length of a hairpin loop. A stack of length 𝜎 is a sequence
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of “parallel” arcs of the form

(1.1) ((𝑖, 𝑗), (𝑖+ 1, 𝑗 − 1), . . . , (𝑖+ (𝜎 − 1), 𝑗 − (𝜎 − 1))).

In the context of minimum-free energy pseudoknot structures [Huang et al. 2009], a

minimum stack length 𝜎 or either two or three is stipulated. We remark that RNA

secondary structures are 2-noncrossing, 2-canonical diagrams, whose numbers are

asymptotically given by [Hofacker et al. 1998]

(1.2) 𝑆2,2(𝑛) ∼ 𝑐 𝑛−3/2 1.96798𝑛, 𝑐 > 0.

We call an arc of length one a 1-arc. A 𝑘-noncrossing, 𝜎-canonical RNA structure

is a 𝑘-noncrossing diagram without 1-arcs, having a minimum stack-size of 𝜎.

The efficient minimum free energy (mfe) folding of secondary structures is a conse-

quence of the following relation of the numbers of RNA secondary structures over 𝑛

nucleotides, 𝑆2(𝑛), [Waterman 1978b]

(1.3) 𝑆2(𝑛) = 𝑆2(𝑛− 1) +
𝑛−2∑
𝑗=0

𝑆2(𝑛− 2− 𝑗)𝑆2(𝑗),

where 𝑆2(𝑛) = 1 for 0 ≤ 𝑛 ≤ 2. Accordingly, RNA secondary structures satisfy

a constructive recursion. As mentioned above, this relation is the key for deriving

the fundamental DP-recursions used for the polynomial time folding of secondary

structures [Hofacker 2003, Nussinov et al. 1978] and has therefore profound algo-

rithmic implications. In addition, eq. (1.3) is of central importance for the analysis
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of abstract shapes [Nebel and Scheid 2009]. In addition, for a given RNA sequence,

we have not only one but an ensemble of structures, quantified via the partition

function generated by the (Boltzman weighted) probability space of all structures

[McCaskill 1990]. In view of the fact that the number of the mfe and suboptimal

foldings of an RNA sequence is large, Giegerich et al. [Giegerich et al. 2004] in-

troduced the notion of abstract shapes of secondary structures. Two particularly

important shape levels are the important level-1 (𝜋′-) and level-5 (𝜋-) shapes were

studied in [Giegerich et al. 2004]. In [Voß et al. 2006], the authors compute the

probability of a shape by means of the partition function, where the probability of

a shape is the induced probability of all the structures inducing it.

The problem with pseudoknotted structures is, that they do not satisfy a recur-

sion of the type of eq. (1.3), rendering the ab initio folding into mfe configura-

tions [Huang et al. 2009, Lyngso and Pedersen 2000] as well as the derivation of

any other properties a nontrivial task. Here, we generalize the 𝜋′- and 𝜋-shapes

of [Giegerich et al. 2004], by introducing lv1𝑘- and lv5𝑘-shapes, see Fig. 4. Our re-

sults are not new in case of 𝑘 = 2, since we have lv12 = 𝜋′ and lv52 = 𝜋. In two

beautiful papers [Lorenz et al. 2008, Nebel and Scheid 2009] 𝜋′- and 𝜋-shapes have

been analyzed. The results of [Lorenz et al. 2008, Nebel and Scheid 2009] explicitly

make use of the constructive recurrence relation given in eq. (1.3). Their approach

can consequently not be generalized to RNA pseudoknot structures, as the latter

are genuinely nonrecursive. Our framework therefore identifies the combinatorial
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“heart” of the results of [Lorenz et al. 2008, Nebel and Scheid 2009] and provides a

new approach avoiding any notion of recursiveness. The key idea behind the con-

struction of lv5𝑘-shapes is a projection onto so called 𝑘-noncrossing core-structures

[Jin and Reidys 2009].

The paper is organized as follows: after introducing all necessary background we

give a detailed computation of the generating functions and study their singularities.

We derive simple asymptotic expressions for the numbers of lv1𝑘- and lv5𝑘-shapes as

well as the numbers of theses shapes, induced by 𝑘-noncrossing, 𝜎-canonical RNA

structures of fixed length 𝑛. Finally we put our results into context.
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2. Some basic facts

Let 𝑓𝑘(𝑛, ℓ) denote the number of 𝑘-noncrossing diagrams on 𝑛 vertices having ex-

actly ℓ isolated vertices. A diagram without isolated points is called a matching.

The exponential generating function of 𝑘-noncrossing matchings satisfies the follow-

ing identity [Chen et al. 2007, Grabiner and Magyar 1993, Jin et al. 2008]

∑
𝑛≥0

𝑓𝑘(2𝑛, 0) ⋅ 𝑧2𝑛

(2𝑛)!
= det[𝐼𝑖−𝑗(2𝑧)− 𝐼𝑖+𝑗(2𝑧)]∣𝑘−1

𝑖,𝑗=1(2.1)

where 𝐼𝑟(2𝑧) =
∑

𝑗≥0
𝑧2𝑗+𝑟

𝑗!(𝑗+𝑟)!
is the hyperbolic Bessel function of the first kind of

order 𝑟. Eq. (2.1) allows to conclude that the ordinary generating function

F𝑘(𝑧) =
∑
𝑛≥0

𝑓𝑘(2𝑛, 0)𝑧
𝑛

is 𝐷-finite [Stanley 1980], i.e. there exists some 𝑒 ∈ ℕ such that

(2.2) 𝑞0,𝑘(𝑧)
𝑑𝑒

𝑑𝑧𝑒
F𝑘(𝑧) + 𝑞1,𝑘(𝑧)

𝑑𝑒−1

𝑑𝑧𝑒−1
F𝑘(𝑧) + ⋅ ⋅ ⋅+ 𝑞𝑒,𝑘(𝑧)F𝑘(𝑧) = 0,

where 𝑞𝑗,𝑘(𝑧) are polynomials. Since 𝐼𝑟(2𝑧) is 𝐷-finite by its definition and 𝐷-finite

power series are algebraic closed [Stanley 1980]. The key point is that any singularity

of F𝑘(𝑧) is contained in the set of roots of 𝑞0,𝑘(𝑧) [Stanley 1980], which we denote

by 𝑅𝑘. For 2 ≤ 𝑘 ≤ 7, we give the polynomials 𝑞0,𝑘(𝑧) and their roots in Table 1.
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In [Jin et al. 2008] we showed that for arbitrary 𝑘

(2.3) 𝑓𝑘(2𝑛, 0) ∼ �̃�𝑘 𝑛
−((𝑘−1)2+(𝑘−1)/2) (2(𝑘 − 1))2𝑛, �̃�𝑘 > 0 .

in accordance with the fact that F𝑘(𝑧) has the unique dominant singularity 𝜌2𝑘, where

𝜌𝑘 = 1/(2𝑘 − 2).

According to Pringsheim’s Theorem [Flajolet and Sedgewick 2009, Titchmarsh 1939],

each power series 𝑓(𝑧) =
∑

𝑛≥0 𝑎𝑛 𝑧
𝑛 with nonnegative coefficients and a radius of

convergence 𝑅 > 0 has a positive real dominant singularity at 𝑧 = 𝑅. This singular-

ity plays a key role for the asymptotics of the coefficients. The class of theorems that

deal with such deductions are called transfer-theorems [Flajolet and Sedgewick 2009].

One key ingredient in this framework is a specific domain in which the functions in

question are analytic, which is “slightly” bigger than their respective radius of con-

vergence. It is tailored for extracting the coefficients via Cauchy’s integral formula.

Details on the method can be found in [Flajolet and Sedgewick 2009, Stanley 1980].

In case of 𝐷-finite functions we have analytic continuation in any simply connected

domain containing zero and avoiding the singularities [Wasow 1987] and all prereq-

uisites of singularity analysis are met. We use the notation

(2.4) (𝑓(𝑧) = Θ (𝑔(𝑧)) as 𝑧 → 𝜌) ⇐⇒ (𝑓(𝑧)/𝑔(𝑧) → 𝑐 as 𝑧 → 𝜌) ,
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where 𝑐 is some constant. Let [𝑧𝑛]𝑓(𝑧) denote the 𝑛-th coefficient of the power series

𝑓(𝑧) at 𝑧 = 0. Since the Taylor coefficients have the property

(2.5) ∀ 𝛾 ∈ ℂ ∖ 0; [𝑧𝑛]𝑓(𝑧) = 𝛾𝑛[𝑧𝑛]𝑓(
𝑧

𝛾
),

we can, without loss of generality, reduce our analysis to the case where 𝑧 = 1 is the

unique dominant singularity.

Theorem 1. [Flajolet and Sedgewick 2009] (a) Suppose 𝑓(𝑧) = (1 − 𝑧)−𝛼, 𝛼 ∈
ℂ ∖ ℤ≤0, then

[𝑧𝑛] 𝑓(𝑧) ∼ 𝑛𝛼−1

Γ(𝛼)

[
1 +

𝛼(𝛼− 1)

2𝑛
+
𝛼(𝛼− 1)(𝛼− 2)(3𝛼− 1)

24𝑛2
+

𝛼2(𝛼− 1)2(𝛼− 2)(𝛼− 3)

48𝑛3
+𝑂

(
1

𝑛4

)]
.(2.6)

(b) Suppose 𝑓(𝑧) = (1− 𝑧)𝑟 log( 1
1−𝑧

), 𝑟 ∈ ℤ≥0, then we have

(2.7) [𝑧𝑛]𝑓(𝑧) ∼ (−1)𝑟
𝑟!

𝑛(𝑛− 1) . . . (𝑛− 𝑟)
.

Theorem 2. [Flajolet and Sedgewick 2009] Let 𝑓(𝑧) be a D-finite function having

a unique dominant singularity 𝑧 = 1. Let

𝑔(𝑧) = (1− 𝑧)𝛼 log𝛽
(

1

1− 𝑧

)
, 𝛼, 𝛽 ∈ ℝ.

That is we have in the intersection of a neighborhood of 1

(2.8) 𝑓(𝑧) = Θ(𝑔(𝑧)) for 𝑧 → 1.
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Then we have

(2.9) [𝑧𝑛]𝑓(𝑧) = Θ ([𝑧𝑛]𝑔(𝑧)) .

Theorem 1 and Theorem 2 facilitate to derive the asymptotics of the coefficients of

the 𝐷-finite function F𝑘(𝑧) at its unique dominant singularity. More precisely we

shall encounter a particular instance of the supercritical paradigm, where we have the

following situation: we are given a 𝐷-finite function, 𝑓(𝑧) and an algebraic function

𝑔(𝑢) satisfying 𝑔(0) = 0. Furthermore we suppose that 𝑓(𝑔(𝑢)) has a unique real

valued dominant singularity 𝛾 and 𝑔 is regular in a disc with radius slightly larger

than 𝛾. Then the supercritical paradigm stipulates that the subexponential factors

of 𝑓(𝑔(𝑢)) at 𝑢 = 0, given that 𝑔(𝑢) satisfies certain conditions, coincide with those

of 𝑓(𝑧).

Proposition 1. Let 𝜓(𝑧) be an algebraic, analytic function in a domain 𝒟 =

{𝑧∣∣𝑧∣ ≤ 𝑟} such that 𝜓(0) = 0. In addition suppose 𝛾 is the unique dominant

singularity of F𝑘(𝜓(𝑧)) and minimum positive real solution of 𝜓(𝛾) = 𝜌2𝑘, ∣𝛾∣ < 𝑟,

𝜓′(𝛾) ∕= 0. Then F𝑘(𝜓(𝑧)) has a singular expansion and

(2.10) [𝑧𝑛]F𝑘(𝜓(𝑧)) ∼ 𝐴𝑛−((𝑘−1)2+(𝑘−1)/2)

(
1

𝛾

)𝑛

,

where 𝐴 is some constant.
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In the following we will compute the generating functions via the symbolic enumer-

ation method [Flajolet and Sedgewick 2009]. For this purpose we need the notion

of a combinatorial class. A combinatorial class (𝒞, 𝑤𝒞) is a set together with a size-

function, 𝑤𝒞 : 𝒞 −→ ℤ+ such that 𝒞𝑛 = 𝑤−1
𝒞 (𝑛) is finite for any 𝑛 ∈ ℤ+. We write

𝑤 instead of 𝑤𝒞 and set 𝐶𝑛 = ∣𝒞𝑛∣. Two special combinatorial classes are ℰ and 𝒵

which contain only one element of size 0 and 1, respectively. The generating function

of a combinatorial class 𝒞 is given by

(2.11) C(𝑧) =
∑
𝑐∈𝒞

𝑧𝑤(𝑐) =
∑
𝑛≥0

𝐶𝑛 𝑧
𝑛,

where 𝒞𝑛 ⊂ 𝒞. In particular, the generating functions of the classes ℰ and 𝒵 are

E(𝑧) = 1 and Z(𝑧) = 𝑧. Suppose 𝒞,𝒟 are combinatorial classes. Then 𝒞 is iso-

morphic to 𝒟, 𝒞 ∼= 𝒟, if and only if ∀𝑛 ≥ 0,∣𝒞𝑛∣ = ∣𝒟𝑛∣. In the following we shall

identify isomorphic combinatorial classes and write 𝒞 = 𝒟 if 𝒞 ∼= 𝒟. We set

∙ 𝒞+𝒟 := 𝒞 ∪𝒟, if 𝒞 ∩𝒟 = ∅ and for 𝛼 ∈ 𝒞+𝒟,

(2.12) 𝑤𝒞+𝒟(𝛼) =

⎧⎨⎩
𝑤𝒞(𝛼) if 𝛼 ∈ 𝒞

𝑤𝒟(𝛼) if 𝛼 ∈ 𝒟.

∙ 𝒞×𝒟 := {𝛼 = (𝑐, 𝑑) ∣ 𝑐 ∈ 𝒞, 𝑑 ∈ 𝒟} and for 𝛼 ∈ 𝒞×𝒟,

(2.13) 𝑤𝒞×𝒟((𝑐, 𝑑)) = 𝑤𝒞(𝑐) + 𝑤𝒟(𝑑).
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and furthermore 𝒞𝑚 :=
∏𝑚

ℎ=1 𝒞 and Seq(𝒞) := ℰ+𝒞+𝒞2+ ⋅ ⋅ ⋅ . Plainly, Seq(𝒞) is a
combinatorial class if and only if there is no element in 𝒞 of size 0. We immediately

observe

Proposition 2. Suppose 𝒜, 𝒞 and 𝒟 are combinatorial classes with generating

functions A(z), C(𝑧) and D(𝑧). Then

(a) 𝒜 = 𝒞+𝒟 =⇒ A(𝑧) = C(𝑧) +D(𝑧)

(b) 𝒜 = 𝒞×𝒟 =⇒ A(𝑧) = C(𝑧) ⋅D(𝑧)

(c) 𝒜 = Seq(𝒞) =⇒ A(𝑧) = 1
1−C(𝑧)

.
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3. Combinatorics of lv5𝑘-shapes

Let 𝒢𝑘(𝑠,𝑚) denote the set of the 𝑘-noncrossing matchings of length 2𝑠 with 𝑚

1-arcs. In our first lemma, we will compute the bivariate generating function of

𝑔𝑘(𝑠,𝑚), i.e. the number of 𝑘-noncrossing matchings of length 2𝑠 with exactly 𝑚

1-arcs.

Lemma 1. Suppose 𝑘, 𝑠,𝑚 ∈ ℕ, 𝑘 ≥ 2. Then 𝑔𝑘(𝑠,𝑚) has the following properties

𝑔𝑘(𝑠,𝑚) = 0 for 𝑚 > 𝑠,(3.1)
𝑠∑

𝑚=0

𝑔𝑘(𝑠,𝑚) = 𝑓𝑘(2𝑠, 0)(3.2)

and we have the recursion

(3.3) (𝑚+ 1)𝑔𝑘(𝑠+ 1,𝑚+ 1) = (𝑚+ 1)𝑔𝑘(𝑠,𝑚+ 1) + (2𝑠+ 1−𝑚)𝑔𝑘(𝑠,𝑚).

Furthermore, the generating function G𝑘(𝑥, 𝑦) =
∑

𝑠≥0

∑𝑠
𝑚=0 𝑔𝑘(𝑠,𝑚)𝑥𝑠𝑦𝑚 is given

by

(3.4) G𝑘(𝑥, 𝑦) =
1

𝑥+ 1− 𝑦𝑥
F𝑘

(
𝑥

(𝑥+ 1− 𝑦𝑥)2

)
.

Proof. By construction eq. (3.1) and
∑𝑠

𝑚=0 𝑔𝑘(𝑠,𝑚) = 𝑓𝑘(2𝑠, 0) hold, the latter being

equivalent to

(3.5) G𝑘(𝑥, 1) = F𝑘(𝑥).
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Choose a 𝑘-noncrossing matching 𝛿 ∈ 𝒢𝑘(𝑠+1,𝑚+1) and label one 1-arc. We have

(𝑚+1)𝑔𝑘(𝑠+1,𝑚+1) different such labeled 𝑘-noncrossing matchings. On the other

hand, in order to obtain such a labeled matching, we can also insert one labeled

1-arc in a 𝑘-noncrossing matching 𝛿′ ∈ 𝒢𝑘(𝑠,𝑚+1). In this case, we can only put it

inside one original 1-arc in 𝛿′ in order to preserve the number of the 1-arcs. We may

also insert a labeled 1-arc in a 𝑘-noncrossing matching 𝛿′′ ∈ 𝒢𝑘(𝑠,𝑚). In this case,

we can only insert the 1-arc between two vertices not forming a 1-arc, see Fig. 5.

Therefore, we arrive at (𝑚 + 1)𝑔𝑘(𝑠,𝑚 + 1) + (2𝑠 + 1 − 𝑚)𝑔𝑘(𝑠,𝑚) different such

labeled matchings and

(𝑚+ 1)𝑔𝑘(𝑠+ 1,𝑚+ 1) = (𝑚+ 1)𝑔𝑘(𝑠,𝑚+ 1) + (2𝑠+ 1−𝑚)𝑔𝑘(𝑠,𝑚).

The above recursion is equivalent to the partial differential equation

(3.6)
∂G𝑘(𝑥, 𝑦)

∂𝑦
= 𝑥

∂G𝑘(𝑥, 𝑦)

∂𝑦
+ 2𝑥2

∂G𝑘(𝑥, 𝑦)

∂𝑥
+ 𝑥G𝑘(𝑥, 𝑦)− 𝑥𝑦

∂G𝑘(𝑥, 𝑦)

∂𝑦
.

We next claim

∙ The function

G∗
𝑘(𝑥, 𝑦) =

1

𝑥+ 1− 𝑦𝑥
F𝑘

(
𝑥

(𝑥+ 1− 𝑦𝑥)2

)
is a solution of eq. (3.6),

∙ its coefficients, 𝑔∗𝑘(𝑠,𝑚) = [𝑥𝑠𝑦𝑚]G∗
𝑘(𝑥, 𝑦), satisfy 𝑔

∗
𝑘(𝑠,𝑚) = 0 for 𝑚 > 𝑠,

∙ G∗
𝑘(𝑥, 1) = F𝑘(𝑥).
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Indeed,

∂G∗
𝑘(𝑥, 𝑦)

∂𝑦
= 𝑥𝑢F𝑘 (𝑥𝑢) + 2𝑥𝑢F′

𝑘 (𝑥𝑢)(3.7)

∂G∗
𝑘(𝑥, 𝑦)

∂𝑥
= (𝑦 − 1)𝑢F𝑘 (𝑥𝑢) +

(1 + 𝑦𝑥− 𝑥)𝑢

𝑥
F′

𝑘 (𝑥𝑢) ,(3.8)

where 𝑢 = (𝑥+ 1− 𝑦𝑥)−2 and F′
𝑘 (𝑥𝑢) =

∑
𝑛≥0 𝑛𝑓𝑘(2𝑛, 0)(𝑥𝑢)

𝑛. Consequently,

(3.9) (1 + 𝑥𝑦 − 𝑥)
∂G∗

𝑘(𝑥, 𝑦)

∂𝑦
= 2𝑥2

∂G∗
𝑘(𝑥, 𝑦)

∂𝑥
+ 𝑥G∗

𝑘(𝑥, 𝑦)

which coincides with eq. (3.6). In order to prove 𝑔∗𝑘(𝑠,𝑚) = 0 for 𝑚 > 𝑠, we first

observe that G∗
𝑘(𝑥, 𝑦) is a power series, since it is analytic in (0, 0). Note that

the indeterminant 𝑦 only appears in form of products 𝑥𝑦, from which the assertion

follows. The equality G∗
𝑘(𝑥, 1) = F𝑘(𝑥) is obvious. We next claim

(3.10) G∗
𝑘(𝑥, 𝑦) = G𝑘(𝑥, 𝑦).

By construction 𝑔∗𝑘(𝑠,𝑚) satisfies

𝑔∗𝑘(𝑠,𝑚) = 0 for 𝑚 > 𝑠
𝑠∑

𝑚=0

𝑔∗𝑘(𝑠,𝑚) = 𝑓𝑘(2𝑠, 0)

(𝑚+ 1)𝑔∗𝑘(𝑠+ 1,𝑚+ 1) = (𝑚+ 1)𝑔∗𝑘(𝑠,𝑚+ 1) + (2𝑠+ 1−𝑚)𝑔∗𝑘(𝑠,𝑚),

Using these properties we can prove by induction over 𝑠

∀ 𝑠,𝑚 ≥ 0; 𝑔∗𝑘(𝑠,𝑚) = 𝑔𝑘(𝑠,𝑚),
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whence eq. (3.4) and the lemma is proved. □

We now show how to derive the lv5𝑘-shape of a given 𝑘-noncrossing, 𝜎-canonical

RNA structures. This construction is based on the notion of 𝑘-noncrossing cores

[Jin and Reidys 2009]. A 𝑘-noncrossing core is a 𝑘-noncrossing RNA structure in

which each stack has size exactly one. The cores of a 𝑘-noncrossing, 𝜎-canonical

RNA structure, 𝛿, denoted by 𝑐(𝛿) is obtained in two steps: first we map arcs and

isolated vertices as follows:

(3.11) ∀ℓ ≥ 𝜎 − 1; ((𝑖− ℓ, 𝑗 + ℓ), . . . , (𝑖, 𝑗)) 7→ (𝑖, 𝑗) and 𝑗 7→ 𝑗 if 𝑗 is isolated

and second we relabel the vertices of the resulting diagram from left to right in

increasing order, see Fig.6. We are now in position to define lv5𝑘-shapes.

Definition 1. (lv5𝑘-shape) A lv5𝑘-shape is a 𝑘-noncrossing matching with stacks of

size exactly one.

That is, given a 𝑘-noncrossing, 𝜎-canonical RNA structure 𝛿, its lv5𝑘-shape, lv
5
𝑘(𝛿), is

obtained by first removing all isolated vertices and second collapsing all stacks into

a single arc, see Fig.7.
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By construction, lv5𝑘 shapes do not preserve stack-lengths, unpaired regions, and

interior loops, i.e. sequences of parallel arcs of the form

((𝑖1, 𝑗1), [𝑖1 + 1, 𝑖2 − 1], (𝑖2, 𝑗2), [𝑗2 + 1, 𝑗1 − 1]),

where (𝑖2, 𝑗2) is an arc nested in (𝑖1, 𝑗1) and [𝑖, 𝑗] is an interval of unpair region.

Let ℐ𝑘(𝑠,𝑚) (𝑖𝑘(𝑠,𝑚)) denote the set (number) of the lv5𝑘-shapes of length 2𝑠 with

𝑚 1-arcs and

(3.12) I𝑘(𝑧, 𝑢) =
∑
𝑠≥0

𝑠∑
𝑚=0

𝑖𝑘(𝑠,𝑚)𝑧𝑠𝑢𝑚

be the bivariate generating function. Furthermore, let 𝑖𝑘(𝑠) denote the number of

the lv5𝑘-shapes of length 2𝑠 with generating function

(3.13) I𝑘(𝑧) =
∑
𝑠≥0

𝑖𝑘(𝑠)𝑧
𝑠.

Since any lv5𝑘-shape is in particular the core of some 𝑘-noncrossing matching, Lemma

1 allows us to establish a relation between the bivariate generating function of

𝑖𝑘(𝑠,𝑚) and the generating function of F𝑘(𝑧).

Theorem 3. Let 𝑘, 𝑠,𝑚 be natural numbers where 𝑘 ≥ 2, then the following asser-

tions hold
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(a) the generating functions I𝑘(𝑧, 𝑢) and I𝑘(𝑧) satisfy

I𝑘(𝑧, 𝑢) =
1 + 𝑧

1 + 2𝑧 − 𝑧𝑢
F𝑘

(
𝑧(1 + 𝑧)

(1 + 2𝑧 − 𝑧𝑢)2

)
(3.14)

I𝑘(𝑧) = F𝑘

(
𝑧

1 + 𝑧

)
.(3.15)

(b) for 2 ≤ 𝑘 ≤ 7, the number of lv5𝑘-shapes of length 2𝑠 is asymptotically given by

(3.16) 𝑖𝑘(𝑠) ∼ 𝑐𝑘𝑠
−((𝑘−1)2+(𝑘−1)/2)

(
𝜇−1
𝑘

)𝑠
,

where 𝜇𝑘 is the unique minimum positive real solution of 𝑧
1+𝑧

= 𝜌2𝑘 and 𝑐𝑘 is some

positive constant.

Proof. We first prove (a). For this purpose we define a map between 𝑘-noncrossing

matchings with 𝑚 1-arcs and lv5𝑘-shapes

𝑔 : 𝒢𝑘(𝑠,𝑚) →
∪̇

0≤𝑏≤𝑠−𝑚

[
ℐ𝑘(𝑠− 𝑏,𝑚)×

{
(𝑎𝑗)1≤𝑗≤𝑠−𝑏 ∣

𝑠−𝑏∑
𝑗=1

𝑎𝑗 = 𝑏, 𝑎𝑗 ≥ 0

}]
,

where 𝑠 ≥ 1. Here, for every 𝛿 ∈ 𝒢𝑘(𝑠,𝑚), we have 𝑔(𝛿) = (𝑐(𝛿), (𝑎𝑗)1≤𝑗≤𝑠−𝑏), where

𝑐(𝛿) is the core structure of 𝛿 obtained according to eq. (3.11) and where (𝑎𝑗)1≤𝑗≤𝑠−𝑏

keeps track of the deleted arcs. It is straightforward to check that the map 𝑔 is well

defined, since all the 1-arcs of 𝑐(𝛿) are just the 1-arcs of 𝛿. By construction, 𝑔 is a

bijection and then we have that

(3.17) G𝑘(𝑥, 𝑦) =
∑
𝑠≥0

𝑠∑
𝑚=0

𝑔𝑘(𝑠,𝑚)𝑥𝑠𝑦𝑚 =
∑
𝑚≥0

∑
𝛾∈ℐ𝑘(𝑚)

G𝛾(𝑥, 𝑦),
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where ℐ𝑘(𝑚) is the set of lv5𝑘-shapes having 𝑚 1-arcs and G𝛾(𝑥, 𝑦) is the generating

function of all 𝑘-noncrossing matchings having 𝑚 1-arcs that are mapped into the

shape 𝛾. Suppose 𝛾 has 𝑠 arcs. We consider the combinatorial classes of arcs ℛ and

1-arcs ℛ∗ with generating functions R(𝑥) = 𝑥 and R∗(𝑥, 𝑦) = 𝑦𝑥. Then

∙ each 𝑘-noncrossing matching having shape 𝛾 is obtained by inflating 𝛾-arcs

to stacks and the combinatorial class of stacks is given by

ℛ× Seq(ℛ)

∙ the inflation of arcs does not affect the number of 1-arcs.

Therefore we derive

G𝛾(𝑥, 𝑦) =

(
𝑥

1− 𝑥

)𝑠

𝑦𝑚.(3.18)

For any 𝛾, 𝛾1 ∈ ℐ𝑘(𝑚), having 𝑠 arcs we have G𝛾(𝑥, 𝑦) = G𝛾1(𝑥, 𝑦), whence

(3.19) G𝑘(𝑥, 𝑦) =
∑
𝑚≥0

∑
𝛾∈ℐ𝑘(𝑚)

G𝛾(𝑥, 𝑦) =
∑
𝑠≥0

𝑠∑
𝑚=0

𝑖𝑘(𝑠,𝑚)

(
𝑥

1− 𝑥

)𝑠

𝑦𝑚.

According to Lemma 1, we have

G𝑘(𝑥, 𝑦) =
1

𝑥+ 1− 𝑦𝑥
F𝑘

(
𝑥

(𝑥+ 1− 𝑦𝑥)2

)
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and setting 𝑧 = 𝑥
1−𝑥

and 𝑢 = 𝑦, we arrive substituting for G𝑘(𝑥, 𝑦) in eq. (3.19) at

I𝑘(𝑧, 𝑢) =
1 + 𝑧

1 + 2𝑧 − 𝑧𝑢
F𝑘

(
𝑧(1 + 𝑧)

(1 + 2𝑧 − 𝑧𝑢)2

)
.

In particular, setting 𝑢 = 1, we derive

I𝑘(𝑧) = F𝑘

(
𝑧

1 + 𝑧

)
,

whence (a) follows.

Assertion (b) is a direct consequence of the supercritical paradigm, see Proposition 1.

As mentioned before, the ordinary generating function F𝑘(𝑧) =
∑

𝑛≥0 𝑓𝑘(2𝑛, 0)𝑧
𝑛 is

𝐷-finite [Stanley 1980] and the inner function 𝜗(𝑧) = 𝑧
1+𝑧

is algebraic, satisfies

𝜗(0) = 0 and is analytic for ∣𝑧∣ < 1. By direct calculation, using the fact that all

singularities of F𝑘(𝑧) are contained within the set of zeros of 𝑞0,𝑘(𝑧), see Tab. 1,

we can then verify that F𝑘(𝜗(𝑧)) has the unique dominant real singularity 𝜇𝑘 < 1

satisfying 𝜗(𝜇𝑘) = 𝜌2𝑘 for 2 ≤ 𝑘 ≤ 7 by Maple, see the Supplemental Materials (SM).

In view of 𝜗′(𝜇𝑘) ∕= 0, Proposition 1 guarantees eq. (3.16)

𝑖𝑘(𝑠) ∼ 𝑐𝑘𝑠
−((𝑘−1)2+(𝑘−1)/2)

(
𝜇−1
𝑘

)𝑠
.

This proves (b) completing the proof of the theorem. □
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We next studying the number of lv5𝑘-shapes induced by 𝑘-noncrossing, 𝜎-canonical

RNA structures of fixed length 𝑛, lv5𝑘,𝜎(𝑛), setting

(3.20) Lv5
𝑘,𝜎(𝑥) =

∑
𝑛≥0

lv5𝑘,𝜎(𝑛)𝑥
𝑛.

Theorem 4. Let 𝑘, 𝜎 ∈ ℕ, where 𝑘 ≥ 2. Then the following assertions hold

(a) the generating function Lv5
𝑘,𝜎(𝑥) is given by

(3.21) Lv5
𝑘,𝜎(𝑥) =

(1 + 𝑥2𝜎)

(1− 𝑥)(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)
F𝑘

(
𝑥2𝜎(1 + 𝑥2𝜎)

(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)2

)
.

(b) for 2 ≤ 𝑘 ≤ 7 and 1 ≤ 𝜎 ≤ 10

(3.22) lv5𝑘,𝜎(𝑛) ∼ 𝑐𝑘,𝜎𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜁−1
𝑘,𝜎

)𝑛
,

where 𝑐𝑘,𝜎 > 0 and 𝜁𝑘,𝜎 is the unique minimum positive real solution of

(3.23)
𝑥2𝜎(1 + 𝑥2𝜎)

(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)2
= 𝜌2𝑘.

Proof. In order to proof of (a) we observe that we can always inflate a structure by

adding arcs to stacks or isolated vertices without changing its lv5𝑘-shape. In fact, for

any given lv5𝑘-shape, 𝛽, adding the minimal number of arcs to each stack such that

every stack has 𝜎 arcs, and inserting one isolated vertex in any 1-arc, we derive a

𝑘-noncrossing, 𝜎-canonical RNA structure having arc-length≥ 2, of minimal length.

If a 𝑘-noncrosing, 𝜎-canonical RNA structure of length 𝑛 with a shape in ℐ𝑘(𝑠,𝑚),

then 𝑛 ≥ 2𝜎𝑠+𝑚. We can therefore derive Lv5
𝑘,𝜎(𝑥), see eq.(3.20), from the bivariate
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generating function I𝑘(𝑧, 𝑢) as follows

Lv5
𝑘,𝜎(𝑥) =

∑
𝑛≥0

⌊ 𝑛
2𝜎

⌋∑
𝑠=0

min{𝑠,𝑛−2𝜎𝑠}∑
𝑚=0

𝑖𝑘(𝑠,𝑚)𝑥𝑛 =
∑
𝑠≥0

𝑠∑
𝑚=0

∑
𝑛≥2𝜎𝑠+𝑚

𝑖𝑘(𝑠,𝑚)𝑥𝑛,

whence

Lv5
𝑘,𝜎(𝑥) =

1

1− 𝑥

∑
𝑠≥0

𝑠∑
𝑚=0

𝑖𝑘(𝑠,𝑚)𝑥2𝜎𝑠+𝑚

and in view of eq. (3.14), I𝑘(𝑧, 𝑢) =
1+𝑧

1+2𝑧−𝑧𝑢
F𝑘

(
𝑧(1+𝑧)

(1+2𝑧−𝑧𝑢)2

)
, we derive

Lv5
𝑘,𝜎(𝑥) =

(1 + 𝑥2𝜎)

(1− 𝑥)(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)
F𝑘

(
𝑥2𝜎(1 + 𝑥2𝜎)

(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)2

)
,

and (a) follows. As for assertion (b), we observe that

𝜑𝜎(𝑥) =
𝑥2𝜎(1 + 𝑥2𝜎)

(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)2

is algebraic and 𝜑𝜎(0) = 0. We verify that 𝜑𝜎(𝑥) is for 1 ≤ 𝜎 ≤ 10 analytic when

∣𝑥∣ < 𝑟𝜎, where 𝑟𝜎 < 1 and furthermore

𝜙𝜎(𝑥) =
(1 + 𝑥2𝜎)

(1− 𝑥)(1 + 2𝑥2𝜎 − 𝑥2𝜎+1)

is analytic for ∣𝑥∣ < 𝑟𝜎. We distinguish the cases 𝑘 > 2 and 𝑘 = 2.

For 2 < 𝑘 ≤ 7 and 1 ≤ 𝜎 ≤ 10, the minimum positive real solution of eq. (3.23),

𝜁𝑘,𝜎, is the unique dominant singularity of Lv5
𝑘,𝜎(𝑥), ∣𝜁𝑘,𝜎∣ < 𝑟𝜎 and 𝜑′

𝜎(𝜁𝑘,𝜎) ∕= 0.

Therefore, Proposition 1 implies

lv5𝑘,𝜎(𝑛) ∼ 𝑐𝑘,𝜎𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜁−1
𝑘,𝜎

)𝑛
,
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where 𝑐𝑘,𝜎 is some positive constant. In case of 𝑘 = 2, we have

(3.24) F2(𝑧) =
∑
𝑛≥0

𝑓2(2𝑛, 0)𝑧
𝑛 =

2

1 +
√
1− 4 𝑧

.

Substituting 𝜑𝜎(𝑥) into the eq. (3.24), we observe that the poles of 𝜑𝜎(𝑥) are not

singularities of Lv5
2,𝜎(𝑥) and the dominant singularity of Lv5

2,𝜎(𝑥) is the minimum

positive solution of 𝜑𝜎(𝑥) = 𝜌22. Employing Theorem 1 and Theorem 2, we derive

eq. (3.22) and the proof of the theorem is complete. □
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4. Combinatorics of lv1𝑘-shapes

Definition 2. (lv1𝑘-shape) A lv1𝑘-shape is a 𝑘-noncrossing structure in which each

stack and each segment of isolated vertices have length exactly one.

That is, given a 𝑘-noncrossing, 𝜎-canonical RNA structure its lv1𝑘-shape is derived as

follows: first we apply the core map, second we replace a segment of isolated vertices

by a single isolated vertex and third relabel the vertices of the resulting diagram,

see Fig.8. lv1𝑘-shapes do not preserve stack-lengths and project intervals of isolated

vertices into singletons. Let 𝒥𝑘 and ℐ𝑘 denote the set of lv1𝑘-shapes and lv5𝑘-shapes,

respectively. There is a map between lv1𝑘-shapes and lv5𝑘-shapes

(4.1) 𝜙 : 𝒥𝑘 → ℐ𝑘,

obtained by removing all isolated vertices from lv1𝑘-shapes and then collapsing each

stack into a single arc, see Fig. 8. By construction, 𝜙 is surjective (for any lv5𝑘-shape,

we can, inserting one isolated vertex in any 1-arc, obtain a lv1𝑘-shape).

Let 𝒥𝑘(𝑛, ℎ) (𝑗𝑘(𝑛, ℎ)) denote the set (number) of lv1𝑘-shapes of length 𝑛 having

ℎ-arcs, and let 𝑗𝑘(𝑛) be the number of all lv1𝑘-shapes of length 𝑛 and

(4.2) J𝑘(𝑧, 𝑢) =
∑
ℎ≥0

4ℎ+1∑
𝑛=2ℎ

𝑗𝑘(𝑛, ℎ)𝑧
𝑛𝑢ℎ and J𝑘(𝑧) =

∑
𝑛≥0

𝑗𝑘(𝑛)𝑧
𝑛.
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Theorem 5. For 𝑘, 𝑛, ℎ ∈ ℕ, 𝑘 ≥ 2, the following assertions hold

(a) the generating functions J𝑘(𝑧, 𝑢) and J𝑘(𝑧) are given by

J𝑘(𝑧, 𝑢) =
(1 + 𝑧)(1 + 𝑢𝑧2)

𝑢𝑧3 + 2𝑢𝑧2 + 1
F𝑘

(
(1 + 𝑧)2(1 + 𝑢𝑧2)𝑢𝑧2

(𝑢𝑧3 + 2𝑢𝑧2 + 1)2

)
(4.3)

J𝑘(𝑧) =
(1 + 𝑧)(1 + 𝑧2)

𝑧3 + 2𝑧2 + 1
F𝑘

(
(1 + 𝑧)2(1 + 𝑧2)𝑧2

(𝑧3 + 2𝑧2 + 1)2

)
.(4.4)

(b) for 2 ≤ 𝑘 ≤ 7, the number of lv1𝑘-shapes of length 𝑛 satisfies

(4.5) 𝑗𝑘(𝑛) ∼ 𝑐′𝑘𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜇′−1
𝑘

)𝑛
,

where 𝑐′𝑘 > 0 and 𝜇′
𝑘 is the unique minimum positive real solution of

(4.6)
(1 + 𝑧)2(1 + 𝑧2)𝑧2

(𝑧3 + 2𝑧2 + 1)2
= 𝜌2𝑘.

Proof. We prove (a) via symbolic enumeration noticing that we can represent an

lv1𝑘-shape as an inflation of an lv5𝑘-shape. By definition of the map 𝜙, the generating

function J𝑘(𝑧, 𝑢) can be rewritten as

(4.7) J𝑘(𝑧, 𝑢) =
∑
𝑚≥0

∑
𝜁∈ℐ𝑘(𝑚)

S𝜁(𝑧, 𝑢),

where S𝜁(𝑧, 𝑢) is the generating function of all lv1𝑘-shapes whose images of 𝜙 are 𝜁

and ℐ𝑘(𝑚) denotes the set of lv5𝑘-shapes with 𝑚 1-arcs. For any 𝜁 ∈ ℐ𝑘(𝑠,𝑚), we can

inflate it to a lv1𝑘-shapes by the following steps, see Fig. 9
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∙ we inflate each arc of the shape to a stem of stacks of size 1. Between stacks

we can insert isolated vertices to the left or the right, or on both sides in

order to separate the stacks and for each such insertion exactly one isolated

vertex is used.

∙ we insert at most one isolated vertex in any of the remaining (2𝑠 + 1) posi-

tions. Furthermore one isolated vertex is inserted into each 1-arc.

We call the newly added stacks of size 1 induced. We introduce the combinatorial

classes ℰ (neutral class which include only one element of size 0), 𝒵 (vertex), ℛ

(arc), 𝒩 (induced stacks), ℳ (stems), and 𝒮𝜁 (lv1𝑘-shapes whose images are 𝜁 under

𝜙), where E(𝑧) = 1, Z(𝑧) = 𝑧, R(𝑧, 𝑢) = 𝑢𝑧2.

𝒮𝜁 = (ℳ)𝑠 × (ℰ+ 𝒵)2𝑠+1−𝑚 × (𝒵)𝑚 ,(4.8)

ℳ = ℛ× Seq (𝒩) ,(4.9)

𝒩 = ℛ× (
𝒵+ 𝒵+ 𝒵2

)
,(4.10)

Thus the generating function S𝜁(𝑧, 𝑢) is given by

(4.11) S𝜁(𝑧, 𝑢) =

(
𝑢𝑧2

1− 𝑢𝑧2(2𝑧 + 𝑧2)

)𝑠

(1 + 𝑧)2𝑠+1−𝑚𝑧𝑚,



27

By construction, for any two shapes 𝜁1, 𝜁2 ∈ ℐ(𝑠,𝑚) we have S𝜁1(𝑧, 𝑢) = S𝜁2(𝑧, 𝑢),

whence

(4.12) J𝑘(𝑧, 𝑢) =
∑
𝑠≥0

𝑠∑
𝑚=0

𝑖𝑘(𝑠,𝑚)S𝜁(𝑧, 𝑢).

According to Theorem 3 we have

(4.13)
∑
𝑠≥0

𝑠∑
𝑚=0

𝑖𝑘(𝑠,𝑚)𝑥𝑠 𝑦𝑚 =
1 + 𝑥

1 + 2𝑥− 𝑥𝑦
F𝑘

(
𝑥(1 + 𝑥)

(1 + 2𝑥− 𝑥𝑦)2

)
.

Therefore substituting

𝑥 =
𝑢𝑧2(1 + 𝑧)2

1− 𝑢𝑧2(2𝑧 + 𝑧2)
and 𝑦 =

𝑧

1 + 𝑧

into eq. (4.13) we derive eq. (4.3). In particular, setting 𝑢 = 1, we derive J𝑘(𝑧),

whence assertion (a).

Assertion (b) follows in complete analogy to the proof of Theorem 4. First we note

that the factor

(4.14) 𝜏(𝑧) =
(1 + 𝑧)2(1 + 𝑧2)𝑧2

(𝑧3 + 2𝑧2 + 1)2

is algebraic and 𝜏(0) = 0. We next verify that 𝜏(𝑧) is analytic for ∣𝑧∣ < 𝑟′, where

𝑟′ < 1 and the unique dominant singularity of J𝑘(𝑧) is the minimum positive real

solution 𝜇′
𝑘 of

(1 + 𝑧)2(1 + 𝑧2)𝑧2

(𝑧3 + 2𝑧2 + 1)2
= 𝜌2𝑘
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for 2 ≤ 𝑘 ≤ 7, ∣𝜇′
𝑘∣ < 𝑟′ and 𝜏 ′(𝜇′

𝑘) ∕= 0, see the Supplemental Material. Now (b)

follows from Proposition 1. □

We finally compute the number of lv1𝑘-shapes induced by 𝑘-noncrossing, 𝜎-canonical

RNA structures of fixed length 𝑛, lv1𝑘,𝜎(𝑛). Let

(4.15) Lv1
𝑘,𝜎(𝑥) =

∑
𝑛≥0

lv1𝑘,𝜎(𝑛)𝑥
𝑛.

Theorem 6. Let 𝑘, 𝜎 ∈ ℕ, where 𝑘 ≥ 2. Then the following assertions hold

(a) the generating function Lv1
𝑘,𝜎(𝑥) is given by

(4.16) Lv1
𝑘,𝜎(𝑥) =

(1 + 𝑥)(1 + 𝑥2𝜎)

(1− 𝑥)(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)
F𝑘

(
(1 + 𝑥)2𝑥2𝜎(1 + 𝑥2𝜎)

(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)2

)
.

(b) for 2 ≤ 𝑘 ≤ 7 and 1 ≤ 𝜎 ≤ 10, we have

(4.17) lv1𝑘,𝜎(𝑛) ∼ 𝑐′𝑘,𝜎𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜒−1
𝑘,𝜎

)𝑛
,

where 𝑐′𝑘,𝜎 > 0 and 𝜒𝑘,𝜎 is the unique minimum positive real solution of

(4.18)
(1 + 𝑥)2𝑥2𝜎(1 + 𝑥2𝜎)

(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)2
= 𝜌2𝑘.

Proof. Obviously, we can inflate any structure by adding arcs into its stacks or

duplicating isolated vertices without changing its lv1𝑘-shape. As a result, we can

derive from any lv1𝑘-shape by inflating its stacks to 𝜎 arcs, a unique, minimal, 𝑘-

noncrossing, 𝜎-canonical RNA structure inducing it. If a 𝑘-noncrossing, 𝜎-canonical
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RNA structure of length 𝑛 has a shape in 𝒥𝑘(𝑠, ℎ), then we have 𝑛 ≥ 2ℎ(𝜎− 1) + 𝑠.

We can use this observation to conclude

lv1𝑘,𝜎(𝑛) =

⌊ 𝑛
2𝜎

⌋∑
ℎ=0

min{4ℎ+1,𝑛−2(𝜎−1)ℎ}∑
𝑠=2ℎ

𝑗𝑘(𝑠, ℎ).

Accordingly, we can rewrite the generating function

Lv1
𝑘,𝜎(𝑥) =

∑
ℎ≥0

4ℎ+1∑
𝑠=2ℎ

∑
𝑛≥2ℎ(𝜎−1)+𝑠

𝑗𝑘(𝑠, ℎ)𝑥
𝑛 =

1

1− 𝑥

∑
ℎ≥0

4ℎ+1∑
𝑠=2ℎ

𝑗𝑘(𝑠, ℎ)𝑥
2ℎ(𝜎−1)+𝑠.

Employing eq. (4.3), we derive

Lv1
𝑘,𝜎(𝑥) =

(1 + 𝑥)(1 + 𝑥2𝜎)

(1− 𝑥)(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)
F𝑘

(
(1 + 𝑥)2𝑥2𝜎(1 + 𝑥2𝜎)

(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)2

)
and assertion (a) follows. As for assertion (b), we proceed in analogy to the proof

of Theorem 4. We verify that for 2 ≤ 𝑘 ≤ 7 and 1 ≤ 𝜎 ≤ 10, the unique mini-

mum positive real solution, 𝜒𝑘,𝜎, of eq. (4.18) is the unique dominant singularity of

generating function Lv1
𝑘,𝜎(𝑥) and that the derivative of

(1 + 𝑥)2𝑥2𝜎(1 + 𝑥2𝜎)

(𝑥2𝜎+1 + 2𝑥2𝜎 + 1)2

is nonzero at 𝑧 = 𝜒𝑘,𝜎. Consequently, Proposition 1 implies that

lv1𝑘,𝜎(𝑛) ∼ 𝑐′𝑘,𝜎𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜒−1
𝑘,𝜎

)𝑛
,

where 𝑐′𝑘,𝜎 is some positive constant, whence (b) and the theorem is proved. □
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5. Conclusion

lv1𝑘- and lv5𝑘-shapes of 𝑘-noncrossing, 𝜎-canonical RNA pseudoknot structures provide

a significant simplification of complicated molecular configurations with cross-serial

interactions. The asymptotic formulas presented in Theorem 4 and Theorem 6

lv5𝑘,𝜎(𝑛) ∼ 𝑐𝑘,𝜎𝑛
−((𝑘−1)2+(𝑘−1)/2)

(
𝜁−1
𝑘,𝜎

)𝑛
lv1𝑘,𝜎(𝑛) ∼ 𝑐′𝑘,𝜎𝑛

−((𝑘−1)2+(𝑘−1)/2)
(
𝜒−1
𝑘,𝜎

)𝑛
,

imply all asymptotic results on abstract shapes of secondary structures in the liter-

ature (note that for 𝑘 = 2, we have 𝑛−((𝑘−1)2+(𝑘−1)/2) = 𝑛−3/2).

The growth rates of lv1𝑘- and lv5𝑘-shapes of 𝑘-noncrossing, 𝜎-canonical RNA struc-

tures, are displayed in Tab. 4 and Tab. 5, where they are contrasted with the expo-

nential growth rates of 𝑘-noncrossing, 𝜎-canonical RNA structures, 𝛾𝑘,𝜎.

Table 5 shows that the exponential growth rate of lv5𝑘-shapes of 𝑘-noncrossing

3-canonical structures are significantly smaller than that of all 𝑘-noncrossing 3-

canonical structures. Therefore, the abstract lv5𝑘-shapes represent a meaningful re-

duction. At http://www.combinatorics.cn/cbpc/paper.html, we provide sup-

plemental material for our results.
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𝑘 𝑞0,𝑘(𝑧) 𝑅𝑘

2 (4𝑧 − 1)𝑧 {1
4
}

3 (16𝑧 − 1)𝑧2 { 1
16
}

4 (144𝑧2 − 40𝑧 + 1)𝑧3 {1
4
, 1
36
}

5 (1024𝑧2 − 80𝑧 + 1)𝑧4 { 1
16
, 1
64
}

6 (14400𝑧3 − 4144𝑧2 + 140𝑧 − 1)𝑧5 {1
4
, 1
36
, 1
100

}
7 (147456𝑧3 − 12544𝑧2 + 224𝑧 − 1)𝑧6 { 1

16
, 1
64
, 1
144

}

Table 1. We present the polynomials 𝑞0,𝑘(𝑧) and their nonzero roots
obtained by the MAPLE package GFUN.

𝜎/𝑘 2 3 4 5 6 7
1 1.51243 3.67528 5.77291 7.82581 9.85873 11.88118
2 1.26585 1.93496 2.41152 2.80275 3.14338 3.44943
3 1.17928 1.55752 1.80082 1.98945 2.14693 2.28376

Table 2. The exponential growth rates 𝜁−1
𝑘,𝜎 of lv5𝑘-shapes induced by 𝑘-

noncrossing, 𝜎-canonical RNA structures of length 𝑛.
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𝜎/𝑘 2 3 4 5 6 7
1 2.09188 4.51263 6.65586 8.73227 10.7804 12.8137
2 1.56947 2.31767 2.81092 3.21184 3.55939 3.87079
3 1.38475 1.80408 2.05600 2.24968 2.41081 2.55050

Table 3. The exponential growth rates 𝜒−1
𝑘,𝜎 of lv1𝑘-shapes induced by

𝑘-noncrossing, 𝜎-canonical RNA structures of length 𝑛.

𝑘 2 3 4 5 6 7
𝛾−1
𝑘,2 1.96798 2.58808 3.03825 3.41383 3.74381 4.04195

𝜒−1
𝑘,2 1.56947 2.31767 2.81092 3.21184 3.55939 3.87079

𝜁−1
𝑘,2 1.26585 1.93496 2.41152 2.80275 3.14338 3.44943

Table 4. The exponential growth rates of arbitrary 𝑘-noncrossing, 2-
canonical RNA structures of length 𝑛 and the numbers of their induced lv1𝑘
and lv5𝑘 shapes.

𝑘 2 3 4 5 6 7
𝛾−1
𝑘,3 1.71599 2.04771 2.27036 2.44664 2.59554 2.72590

𝜒−1
𝑘,3 1.38475 1.80408 2.05600 2.24968 2.41081 2.55050

𝜁−1
𝑘,3 1.17928 1.55752 1.80082 1.98945 2.14693 2.28376

Table 5. The exponential growth rates of arbitrary 𝑘-noncrossing, 3-
canonical RNA structures of length 𝑛 and the numbers of their induced lv1𝑘
and lv5𝑘 shapes.
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Figure 1. The pseudoknot structure of the PrP-encoding mRNA.
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Figure 2. The Sprinzl tRNA RD7550 secondary structure repre-
sented as a planar graph (top), 2-noncrossing diagram (middle) and
Motzkin-path (bottom), where up/down/horizontal-steps correspond to
start/end/unpaired vertices, respectively.

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 13

1

11

5

6

1

13

5

Figure 3. A 2-noncrossing, 2-canonical RNA structure (left) and a 3-
noncrossing, 2-canonical RNA structure (right).
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Figure 4. lv1𝑘- and lv5𝑘-shapes: a 3-noncrossing, 2-canonical RNA struc-
ture (top), its lv13-shape (bottom left) and its lv53-shape (bottom right).

Figure 5. Labeling the 1-arcs allows to trace how certain arc con-
figurations arise.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 101 3 4 6 7 9 10 12 13 14

Figure 6. A 3-noncrossing core structure is obtained from a 3-
noncrossing, 1-canonical RNA structure in two steps.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12

Figure 7. Generation of the lv53-shape. A 3-noncrossing, 2-canonical
RNA structure (top-left) is mapped in two steps into its lv53-shape (top-

right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6

1 2 3 4

Figure 8. lv1𝑘-shapes via the core map and subsequent identification of
unpaired nucleotides: A 3-noncrossing, 1-canonical RNA structure (top-
left) is mapped into its lv13-shape (top-middle). The lv13-shape is projected
into its lv53-shape (top-right) via 𝜙 in two steps.

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(1) (2)

Figure 9. An lv53-shape (left) is inflated to an lv13-shape (right) in two
steps. In (1) we add stacks of size one. Stacks are separated by isolated
vertices to the left (blue) or both sides (red). In (2) we insert at most one
isolated vertex (red) at the remaining positions.


