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Abstract

A path in an edge-colored graph G, where adjacent edges may be
colored the same, is called a rainbow path if no two edges of the path
are colored the same. For a κ-connected graph G and an integer k

with 1 ≤ k ≤ κ, the rainbow k-connectivity rck(G) of G is defined as
the minimum integer j for which there exists a j-edge-coloring of G

such that any two distinct vertices of G are connected by k internally
disjoint rainbow paths. Denote by Kr,r an r-regular complete bipar-
tite graph. Chartrand et al. in “G. Chartrand, G.L. Johns, K.A.
McKeon, P. Zhang, The rainbow connectivity of a graph, Networks
54(2009), 75-81” left an open question of determining an integer g(k)
for which the rainbow k-connectivity of Kr,r is 3 for every integer
r ≥ g(k). This short note is to solve this question by showing that
rck(Kr,r) = 3 for every integer r ≥ 2k⌈k

2
⌉, where k ≥ 2 is a positive

integer.
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All graphs considered in this paper are simple, finite and undirected.
Let G be a nontrivial connected graph with an edge coloring c : E(G) →
{1, 2, · · · , k}, k ∈ N, where adjacent edges may be colored the same. A path
of G is called rainbow if no two edges of it are colored the same. A well-
known result shows that in every κ-connected graph G with κ ≥ 1, there
are k internally disjoint u − v paths connecting any two distinct vertices
u and v for every integer k with 1 ≤ k ≤ κ. Chartrand et al. [2] defined
the rainbow k-connectivity rck(G) of G, which is the minimum integer j

for which there exists a j-edge-coloring of G such that for any two distinct
vertices u and v of G, there exist at least k internally disjoint u−v rainbow
paths.

The concept of rainbow k-connectivity has applications in transferring
information of high security in communication networks. For details we
refer to [2] and [3].

In [2], Chartrand et al. studied the rainbow k-connectivity of the com-
plete graph Kn for various pairs k, n of integers. It was shown in [2] that for
every integer k ≥ 2, there exists an integer f(k) such that rck(Kn) = 2 for
every integer n ≥ f(k). In [4], we improved the upper bound of f(k) from

(k + 1)2 to ck
3

2 + C (here 0 < c < 1 and C = o(k
3

2 )), i.e., from O(k2) to

O(k
3

2 ). Chartrand et al. in [2] also investigated the rainbow k-connectivity
of r-regular complete bipartite graphs for some pairs k, r of integers with
2 ≤ k ≤ r, and they obtained the following results.

Proposition 1. For each integer r ≥ 2,

rc2(Kr,r) =

{

4 if r = 2
3 if r ≥ 3.

.

Proposition 2. For each integer r ≥ 3, rc3(Kr,r) = 3.

Theorem 3. For every integer k ≥ 2, there exists an integer r such that
rck(Kr,r) = 3.

Moreover, they showed that r = 2k⌈k
2⌉ is a desired integer for Theorem 3.

However, they could not show a similar result as for complete graphs, and
therefore they left an open question: For every integer k ≥ 2, determine an
integer (function) g(k), for which rck(Kr,r) = 3 for every integer r ≥ g(k),
that is, the rainbow k-connectivity of the complete bipartite graph Kr,r

is essentially 3. This short note is to solve this question by showing that
rck(Kr,r) = 3 for every integer r ≥ 2k⌈k

2 ⌉. We use a method similar to but
more complicated than the proof of Theorem 3 in [2]. For notation and
terminology not defined here, we refer to [1].
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Theorem 4. For every integer k ≥ 2, there exists an integer g(k) such
that rck(Kr,r) = 3 for any r ≥ g(k).

Proof. Let g(k) = 2k⌈k
2 ⌉. We will show that rck(Kr,r) = 3 for every k ≥ 2,

where r ≥ 2k⌈k
2 ⌉ is an integer. By Propositions 1 and 2, we know that the

conclusion holds for k = 2, 3. So we assume k ≥ 4.

We first assume that k is even. Then, g(k) = 2k · k
2 . Since r ≥ g(k),

then r = k1 · (2k) + r1, where k1 ≥ k
2 , 1 ≤ r1 ≤ 2k − 1. Let the bipartite

sets of G = Kr,r = Kk1·(2k)+r1,k1·(2k)+r1
be U and W . Let U ′, W ′ be the

set of first k1 · (2k) vertices of U , W , respectively. U \ U ′ = {u1, . . . , ur1
}

and W \ W ′ = {w1, . . . , wr1
}. Suppose that

U ′ = U ′

1 ∪ . . . ∪ U ′

2k, W ′ = W ′

1 ∪ . . . ∪ W ′

2k,

where U ′

i = {ui,1, . . . , ui,k1
} and W ′

i = {wj,1, . . . , wj,k1
} for 1 ≤ i, j ≤ 2k.

Let G′ be an induced subgraph of G with bipartite sets U ′ and W ′. Suppose
that

U = U1 ∪ . . . ∪ U2k, W = W1 ∪ . . . ∪ W2k,

where Ui = U ′

i ∪ {ui}, Wj = W ′

j ∪ {wj} for 1 ≤ i, j ≤ r1 and Ui = U ′

i ,
Wj = W ′

j for r1 + 1 ≤ i, j ≤ 2k.

We now give G a 3-edge coloring as follows: Let G′

1 be the spanning
subgraph of G′ such that E(G′

1) = {ui,pwj,p : 1 ≤ i, j ≤ 2k, 1 ≤ p ≤ k1, i

and j are of the same parity}. Let G1 be the spanning subgraph of G such
that E(G1) = E(G′

1)∪{uiwj : 1 ≤ i, j ≤ r1, i and j are of the same parity}.
Let G2 be the spanning of subgraph of G such that

G2 = H1 ∪ . . . ∪ H2k,

where H1 has bipartite sets U1 and W2k, Hi (2 ≤ i ≤ 2k) has bipartite sets
Ui and Wi−1. So, Hi = Km,n({m, n} = {k1, k1 + 1}). See Figure 0.1 for
the case r = 18, k = 4, r1 = 2. Finally, let

G3 = G − (E(G1) ∪ E(G2)).

Assign each edge of Gi(1 ≤ i ≤ 3) the color i.

Next we will show that the above edge-coloring is a k-rainbow coloring,
that is, there are at least k internally disjoint rainbow paths connecting any
two distinct vertices u, v of G. We will consider the following two cases:

Case 1. u ∈ V (G′). Without loss of generality, let u = u1,1.

Subcase 1.1. u and v belong to the same bipartite set of G.

Subsubcase 1.1.1. v ∈ U1. Then G contains the k internally disjoint
u1,1 − v rainbow paths u1,1, wi,1, v where 1 ≤ i ≤ 2k − 1 and i is odd.
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Figure 0.1 The figure for the case r = 18, k = 4, r1 = 2.

Subsubcase 1.1.2. v ∈ Ui, 3 ≤ i ≤ 2k − 1, and i is odd, say v ∈
U3. Then G contains the 2k1 ≥ k internally disjoint u − v rainbow paths
u1,1, w2,j , v and u1,1, w2k,j , v, where 1 ≤ j ≤ k1.

Subsubcase 1.1.3. v ∈ Ui, 2 ≤ i ≤ 2k, and i is even, say v ∈ U2. Then
G contains the 2k1 ≥ k internally disjoint u − v rainbow paths u1,1, w1,j , v

and u1,1, w2k,j , v, where 1 ≤ j ≤ k1.

Subcase 1.2. u and v belong to different bipartite sets, and so v ∈ W .

Subsubcase 1.2.1. v ∈ Wi, where 1 ≤ i ≤ 2k − 1 and i is odd, say
v ∈ W1. Then G contains the 2k1 ≥ k internally disjoint u − v rainbow
paths u1,1, w2,j , u2,j, v and u1,1, w2k,j , u2k,j , v, where 1 ≤ j ≤ k1.

Subsubcase 1.2.2. v ∈ Wi, where 2 ≤ i ≤ 2k and i is even, say
v ∈ W2. If v ∈ W ′

2, without loss of generality, let v = w2,1, then G

contains the u1,1 − v path u1,1, v together with the u1,1 − v rainbow paths
u1,1, w3,j , u3,j , v; u1,1, w3,1, u4,j , v and u1,1, w2k,j , u2k,j , v, where 2 ≤ j ≤ k1.
The cases for v = w2 and v ∈ W2k are similar.

Case 2. u ∈ V (G) \ V (G′), that is, u ∈ {u1, . . . , ur1
; w1, . . . , wr1

}.
Without loss of generality, let u = u1. By Case 1, we only need to show
that there are at least k internally disjoint rainbow paths connecting u and
v for every v ∈ V (G) \ V (G′).
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Subcase 2.1. u and v belong to the same bipartite set of G.

Subsubcase 2.1.1. v = ui, 3 ≤ i ≤ 2k − 1 and i is odd, say v =
u3. Then G contains the 2k1 ≥ k internally disjoint u − v rainbow paths
u1, w2,j , u3 and u1, w2k,j , u3, where 1 ≤ j ≤ k1.

Subsubcase 2.1.2. v = ui, 2 ≤ i ≤ 2k and i is even, say v = u2. Then
G contains the 2k1 ≥ k internally disjoint u − v rainbow paths u1, w1,j , u2

and u1, w2k,j , u2, where 1 ≤ j ≤ k1.

Subcase 2.2. u and v belong to different bipartite sets of G.

Subsubcase 2.2.1. v = wi, 1 ≤ i ≤ 2k − 1 and i is odd, say v =
w1. Then G contains the 2k1 ≥ k internally disjoint u − v rainbow paths
u1, w2,j , u2,j, w1 and u1, w2k,j , u2k,j , w1 where 1 ≤ j ≤ k1.

Subsubcase 2.2.2. v = wi, 2 ≤ i ≤ 2k and i is even, say v =
w2. Then G contains the 2k1 ≥ k internally disjoint u − v rainbow paths
u1, w1,j , u3,j, w2 and u1, w2k,j , u2k,j , w2 where 1 ≤ j ≤ k1.

So the conclusion holds for the case that k is even.

Next we assume that k is odd. Then g(k) = 2k · k+1
2 . Since r ≥ g(k),

then r = k2 ·(2k)+r2, where k2 ≥ k+1
2 , 1 ≤ r2 ≤ 2k−1. Then with a similar

argument to the case that k is even, we can show that the conclusion also
holds when k is odd.

Remark 2.5. In [4] we showed that for every pair of integers k ≥ 2 and
r ≥ 1, there is an integer f(k, r) such that if ℓ ≥ f(k, r), then the rainbow
k-connectivity of an r-regular complete ℓ-partite graph is 2, where r-regular
means that every partite set has the same number r of elements. That is, for
sufficiently many number ℓ of partite sets, the rainbow k-connectivity of an
r-regular complete ℓ-partite graph is 2. Theorem 4 of this note implies that
for sufficiently large size r of every partite set, the rainbow k-connectivity
of an r-regular complete ℓ-partite graph is at most 3. So, an interesting
question is to think about the question of determining some bounds on
k, r, ℓ that tell us the rainbow k-connectivity of an r-regular complete ℓ-
partite graph is 2 or 3.
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