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Abstract

A path in an edge-colored graph G, where adjacent edges may be
colored the same, is called a rainbow path if no two edges of the path
are colored the same. For a k-connected graph G and an integer k
with 1 < k < &, the rainbow k-connectivity rc, (G) of G is defined as
the minimum integer j for which there exists a j-edge-coloring of G
such that any two distinct vertices of G are connected by k internally
disjoint rainbow paths. Denote by K., an r-regular complete bipar-
tite graph. Chartrand et al. in “G. Chartrand, G.L. Johns, K.A.
McKeon, P. Zhang, The rainbow connectivity of a graph, Networks
54(2009), 75-81” left an open question of determining an integer g(k)
for which the rainbow k-connectivity of K, , is 3 for every integer
r > g(k). This short note is to solve this question by showing that
rex(Ky,) = 3 for every integer r > 2k[%£7, where k > 2 is a positive
integer.
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All graphs considered in this paper are simple, finite and undirected.
Let G be a nontrivial connected graph with an edge coloring ¢ : E(G) —
{1,2,--- ,k}, k € N, where adjacent edges may be colored the same. A path
of G is called rainbow if no two edges of it are colored the same. A well-
known result shows that in every k-connected graph G with x > 1, there
are k internally disjoint u — v paths connecting any two distinct vertices
u and v for every integer k with 1 < k < k. Chartrand et al. [2] defined
the rainbow k-connectivity rcg(G) of G, which is the minimum integer j
for which there exists a j-edge-coloring of G such that for any two distinct
vertices u and v of G, there exist at least k internally disjoint u — v rainbow
paths.

The concept of rainbow k-connectivity has applications in transferring
information of high security in communication networks. For details we
refer to [2] and [3].

In [2], Chartrand et al. studied the rainbow k-connectivity of the com-
plete graph K, for various pairs k, n of integers. It was shown in [2] that for
every integer k > 2, there exists an integer f(k) such that rcg(K,,) = 2 for
every integer n > f(k). In [4], we improved the upper bound of f(k) from
(k+1)2 to ck? + C (here 0 < ¢ < 1 and C = o(k?)), i.e., from O(k?) to
O(k?). Chartrand et al. in [2] also investigated the rainbow k-connectivity
of r-regular complete bipartite graphs for some pairs k, 7 of integers with
2 < k <r, and they obtained the following results.

Proposition 1. For each integer r > 2,

4 ifr=2
TCQ(K”):{ 3 ifr>3.

Proposition 2. For each integer r > 3, rcg (K, ) = 3.

Theorem 3. For every integer k > 2, there exists an integer r such that
reg(Krr) = 3.

Moreover, they showed that r = 2k[§1 is a desired integer for Theorem 3.
However, they could not show a similar result as for complete graphs, and
therefore they left an open question: For every integer k > 2, determine an
integer (function) g(k), for which rc (K, ) = 3 for every integer r > g(k),
that is, the rainbow k-connectivity of the complete bipartite graph K.,
is essentially 3. This short note is to solve this question by showing that
rew(Ky,,) = 3 for every integer r > 2k[%]. We use a method similar to but
more complicated than the proof of Theorem 3 in [2]. For notation and
terminology not defined here, we refer to [1].



Theorem 4. For every integer k > 2, there exists an integer g(k) such
that rcg(K.») = 3 for any r > g(k).

Proof. Let g(k) = 2k[£]. We will show that rcy,(K,,,) = 3 for every k > 2,
where r > 2k[§1 is an integer. By Propositions 1 and 2, we know that the
conclusion holds for £ = 2,3. So we assume k > 4.

We first assume that k is even. Then, g(k) = 2k - £. Since r > g(k),
then r = ky - (2k) 4+ r1, where kq > %,1 < r; <2k —1. Let the bipartite
sets of G = K., = Kp,.(2k)4r1 k1-(2k)+r, Pe U and W. Let U’, W’ be the
set of first ky - (2k) vertices of U, W, respectively. U\ U’ = {u,...,ur, }
and W\ W' = {wi,...,wy, }. Suppose that

U'=U{U...JUy, W =W/U...UW4,,

where U/ = {ui1,...,uik } and W/ = {wjq1,...,wjg, } for 1 <i,5 < 2k.
Let G’ be an induced subgraph of G with bipartite sets U’ and W’. Suppose
that

U=U,U...UUg, W =W U...UWs,
where U; = U U{u;}, W; = WU {w;} for 1 < 4,5 <7 and U; = Uj,
W; =W/ forri +1<4,j < 2k.

We now give G a 3-edge coloring as follows: Let G} be the spanning
subgraph of G’ such that E(G}) = {u;pw;p 1 < 1,5 <2k, 1 <p < ki
and j are of the same parity}. Let G be the spanning subgraph of G such
that E(G1) = E(G})U{u;w; : 1 <4,j <rq,iand j are of the same parity}.
Let G5 be the spanning of subgraph of G such that

Go = Hy U...U Hay,

where H; has bipartite sets U; and Way, H; (2 < i < 2k) has bipartite sets
U; and W;_;1. So, H; = Ky n({m,n} = {k1,k1 + 1}). See Figure 0.1 for
the case r = 18, k = 4, r1 = 2. Finally, let

G3 =G — (E(G1) U E(G2)).
Assign each edge of G;(1 < ¢ < 3) the color .

Next we will show that the above edge-coloring is a k-rainbow coloring,
that is, there are at least k internally disjoint rainbow paths connecting any
two distinct vertices u, v of G. We will consider the following two cases:

Case 1. u € V(G’). Without loss of generality, let u = u 1.
Subcase 1.1. u and v belong to the same bipartite set of G.

Subsubcase 1.1.1. v € U;. Then G contains the k internally disjoint
u1,1 — v rainbow paths wu; 1, w; 1,v where 1 <7 <2k —1 and ¢ is odd.



Figure 0.1 The figure for the case r =18, k =4, r, = 2.

Subsubcase 1.1.2. v € U;, 3 < i < 2k — 1, and ¢ is odd, say v €
Us. Then G contains the 2k; > k internally disjoint v — v rainbow paths
uy,1,w2,5,v and U1,1, W2k,j5, U, where 1 Sj S kl.

Subsubcase 1.1.3. v € U;, 2 < i < 2k, and ¢ is even, say v € Us. Then
G contains the 2k; > k internally disjoint u — v rainbow paths uq 1, w1 j,v
and uq,1, Wag,j,v, where 1 < j < ky.

Subcase 1.2. u and v belong to different bipartite sets, and so v € W.

Subsubcase 1.2.1. v € W,;, where 1 < ¢ < 2k — 1 and ¢ is odd, say
v € Wy. Then G contains the 2k; > k internally disjoint © — v rainbow
paths uy,1,W2,5,U2,5,0 and U1,1, W2k, 5, U2k,5, U, where 1 S j S kl.

Subsubcase 1.2.2. v € W;, where 2 < i < 2k and i is even, say
v € Wy, If v € W), without loss of generality, let v = wa 1, then G
contains the w11 — v path w1, v together with the uy,; — v rainbow paths
U1,1,W3,5,U3,5,V; U1,1, W3,1, U4,5,V and U1,1, Wak,j, W2k, 5, v, where 2 S j S kl.
The cases for v = wy and v € Wy, are similar.

Case 2. u € V(G)\ V(G), that is, v € {ug,...,up;w1,..., W }.
Without loss of generality, let v = u;. By Case 1, we only need to show
that there are at least k internally disjoint rainbow paths connecting v and
v for every v € V(G) \ V(G').



Subcase 2.1. v and v belong to the same bipartite set of G.

Subsubcase 2.1.1. v = u;, 3 <7 < 2k — 1 and ¢ is odd, say v =
uz. Then G contains the 2k; > k internally disjoint © — v rainbow paths
U1, Wa,j, ug and uq, wok, j, ug, where 1 < j < ky.

Subsubcase 2.1.2. v = u;, 2 <14 < 2k and 7 is even, say v = us. Then
G contains the 2k; > k internally disjoint u — v rainbow paths w1, w1 j, uz
and uy, wag, j,u2, where 1 < j < k.

Subcase 2.2. v and v belong to different bipartite sets of G.

Subsubcase 2.2.1. v = w;, 1 < < 2k —1 and ¢ is odd, say v =
wi. Then G contains the 2k; > k internally disjoint u — v rainbow paths
Uy, w2, 5, Uu2,5, W1 and Uy, W2k,j, U2k,j, W1 where 1 S ] S kl.

Subsubcase 2.2.2. v = w;, 2 < ¢ < 2k and ¢ is even, say v =
we. Then G contains the 2k; > k internally disjoint w — v rainbow paths
ul,wlﬁj,u&j,wg and Ul,'(UQkJ,UQkJ,'LUQ Where 1 S j S kl.

So the conclusion holds for the case that k is even.

Next we assume that k is odd. Then g(k) = 2k - &L, Since r > g(k),
then r = ko-(2k)+ro, where ko > %, 1 < ry < 2k—1. Then with a similar

argument to the case that k is even, we can show that the conclusion also
holds when k is odd. |

Remark 2.5. In [4] we showed that for every pair of integers k£ > 2 and
r > 1, there is an integer f(k,r) such that if £ > f(k,r), then the rainbow
k-connectivity of an r-regular complete ¢-partite graph is 2, where r-regular
means that every partite set has the same number r of elements. That is, for
sufficiently many number /¢ of partite sets, the rainbow k-connectivity of an
r-regular complete ¢-partite graph is 2. Theorem 4 of this note implies that
for sufficiently large size r of every partite set, the rainbow k-connectivity
of an r-regular complete /-partite graph is at most 3. So, an interesting
question is to think about the question of determining some bounds on
k,r, ¢ that tell us the rainbow k-connectivity of an r-regular complete /-
partite graph is 2 or 3.
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