Note on the Rainbow k-Connectivity of Regular Complete Bipartite Graphs*

Xueliang Li, Yuefang Sun
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
E-mail: lxl@nankai.edu.cn; syf@cfc.nankai.edu.cn

Abstract

A path in an edge-colored graph G, where adjacent edges may be colored the same, is called a rainbow path if no two edges of the path are colored the same. For a κ-connected graph G and an integer k with $1 \leq k \leq \kappa$, the rainbow k-connectivity $r c_{k}(G)$ of G is defined as the minimum integer j for which there exists a j-edge-coloring of G such that any two distinct vertices of G are connected by k internally disjoint rainbow paths. Denote by $K_{r, r}$ an r-regular complete bipartite graph. Chartrand et al. in "G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks $54(2009), 75-81$ " left an open question of determining an integer $g(k)$ for which the rainbow k-connectivity of $K_{r, r}$ is 3 for every integer $r \geq g(k)$. This short note is to solve this question by showing that $r c_{k}\left(K_{r, r}\right)=3$ for every integer $r \geq 2 k\left\lceil\frac{k}{2}\right\rceil$, where $k \geq 2$ is a positive integer.

Keywords: edge-colored graph, rainbow path, rainbow k-connectivity, regular complete bipartite graph

AMS Subject Classification 2000: 05C15, 05C40

[^0]All graphs considered in this paper are simple, finite and undirected. Let G be a nontrivial connected graph with an edge coloring $c: E(G) \rightarrow$ $\{1,2, \cdots, k\}, k \in \mathbb{N}$, where adjacent edges may be colored the same. A path of G is called rainbow if no two edges of it are colored the same. A wellknown result shows that in every κ-connected graph G with $\kappa \geq 1$, there are k internally disjoint $u-v$ paths connecting any two distinct vertices u and v for every integer k with $1 \leq k \leq \kappa$. Chartrand et al. [2] defined the rainbow k-connectivity $r c_{k}(G)$ of G, which is the minimum integer j for which there exists a j-edge-coloring of G such that for any two distinct vertices u and v of G, there exist at least k internally disjoint $u-v$ rainbow paths.

The concept of rainbow k-connectivity has applications in transferring information of high security in communication networks. For details we refer to [2] and [3].

In [2], Chartrand et al. studied the rainbow k-connectivity of the complete graph K_{n} for various pairs k, n of integers. It was shown in [2] that for every integer $k \geq 2$, there exists an integer $f(k)$ such that $r c_{k}\left(K_{n}\right)=2$ for every integer $n \geq f(k)$. In [4], we improved the upper bound of $f(k)$ from $(k+1)^{2}$ to $c k^{\frac{3}{2}}+C$ (here $0<c<1$ and $C=o\left(k^{\frac{3}{2}}\right)$), i.e., from $O\left(k^{2}\right)$ to $O\left(k^{\frac{3}{2}}\right)$. Chartrand et al. in [2] also investigated the rainbow k-connectivity of r-regular complete bipartite graphs for some pairs k, r of integers with $2 \leq k \leq r$, and they obtained the following results.

Proposition 1. For each integer $r \geq 2$,

$$
r c_{2}\left(K_{r, r}\right)= \begin{cases}4 & \text { if } r=2 \\ 3 & \text { if } r \geq 3\end{cases}
$$

Proposition 2. For each integer $r \geq 3, r c_{3}\left(K_{r, r}\right)=3$.
Theorem 3. For every integer $k \geq 2$, there exists an integer r such that $r c_{k}\left(K_{r, r}\right)=3$.

Moreover, they showed that $r=2 k\left\lceil\frac{k}{2}\right\rceil$ is a desired integer for Theorem 3. However, they could not show a similar result as for complete graphs, and therefore they left an open question: For every integer $k \geq 2$, determine an integer (function) $g(k)$, for which $r c_{k}\left(K_{r, r}\right)=3$ for every integer $r \geq g(k)$, that is, the rainbow k-connectivity of the complete bipartite graph $K_{r, r}$ is essentially 3. This short note is to solve this question by showing that $r c_{k}\left(K_{r, r}\right)=3$ for every integer $r \geq 2 k\left\lceil\frac{k}{2}\right\rceil$. We use a method similar to but more complicated than the proof of Theorem 3 in [2]. For notation and terminology not defined here, we refer to [1].

Theorem 4. For every integer $k \geq 2$, there exists an integer $g(k)$ such that $r c_{k}\left(K_{r, r}\right)=3$ for any $r \geq g(k)$.

Proof. Let $g(k)=2 k\left\lceil\frac{k}{2}\right\rceil$. We will show that $r c_{k}\left(K_{r, r}\right)=3$ for every $k \geq 2$, where $r \geq 2 k\left\lceil\frac{k}{2}\right\rceil$ is an integer. By Propositions 1 and 2, we know that the conclusion holds for $k=2,3$. So we assume $k \geq 4$.

We first assume that k is even. Then, $g(k)=2 k \cdot \frac{k}{2}$. Since $r \geq g(k)$, then $r=k_{1} \cdot(2 k)+r_{1}$, where $k_{1} \geq \frac{k}{2}, 1 \leq r_{1} \leq 2 k-1$. Let the bipartite sets of $G=K_{r, r}=K_{k_{1} \cdot(2 k)+r_{1}, k_{1} \cdot(2 k)+r_{1}}$ be U and W. Let U^{\prime}, W^{\prime} be the set of first $k_{1} \cdot(2 k)$ vertices of U, W, respectively. $U \backslash U^{\prime}=\left\{u_{1}, \ldots, u_{r_{1}}\right\}$ and $W \backslash W^{\prime}=\left\{w_{1}, \ldots, w_{r_{1}}\right\}$. Suppose that

$$
U^{\prime}=U_{1}^{\prime} \cup \ldots \cup U_{2 k}^{\prime}, W^{\prime}=W_{1}^{\prime} \cup \ldots \cup W_{2 k}^{\prime}
$$

where $U_{i}^{\prime}=\left\{u_{i, 1}, \ldots, u_{i, k_{1}}\right\}$ and $W_{i}^{\prime}=\left\{w_{j, 1}, \ldots, w_{j, k_{1}}\right\}$ for $1 \leq i, j \leq 2 k$. Let G^{\prime} be an induced subgraph of G with bipartite sets U^{\prime} and W^{\prime}. Suppose that

$$
U=U_{1} \cup \ldots \cup U_{2 k}, W=W_{1} \cup \ldots \cup W_{2 k}
$$

where $U_{i}=U_{i}^{\prime} \cup\left\{u_{i}\right\}, W_{j}=W_{j}^{\prime} \cup\left\{w_{j}\right\}$ for $1 \leq i, j \leq r_{1}$ and $U_{i}=U_{i}^{\prime}$, $W_{j}=W_{j}^{\prime}$ for $r_{1}+1 \leq i, j \leq 2 k$.

We now give G a 3-edge coloring as follows: Let G_{1}^{\prime} be the spanning subgraph of G^{\prime} such that $E\left(G_{1}^{\prime}\right)=\left\{u_{i, p} w_{j, p}: 1 \leq i, j \leq 2 k, 1 \leq p \leq k_{1}, i\right.$ and j are of the same parity $\}$. Let G_{1} be the spanning subgraph of G such that $E\left(G_{1}\right)=E\left(G_{1}^{\prime}\right) \cup\left\{u_{i} w_{j}: 1 \leq i, j \leq r_{1}, i\right.$ and j are of the same parity $\}$. Let G_{2} be the spanning of subgraph of G such that

$$
G_{2}=H_{1} \cup \ldots \cup H_{2 k}
$$

where H_{1} has bipartite sets U_{1} and $W_{2 k}, H_{i}(2 \leq i \leq 2 k)$ has bipartite sets U_{i} and W_{i-1}. So, $H_{i}=K_{m, n}\left(\{m, n\}=\left\{k_{1}, k_{1}+1\right\}\right)$. See Figure 0.1 for the case $r=18, k=4, r_{1}=2$. Finally, let

$$
G_{3}=G-\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)
$$

Assign each edge of $G_{i}(1 \leq i \leq 3)$ the color i.
Next we will show that the above edge-coloring is a k-rainbow coloring, that is, there are at least k internally disjoint rainbow paths connecting any two distinct vertices u, v of G. We will consider the following two cases:

Case 1. $u \in V\left(G^{\prime}\right)$. Without loss of generality, let $u=u_{1,1}$.
Subcase 1.1. u and v belong to the same bipartite set of G.
Subsubcase 1.1.1. $v \in U_{1}$. Then G contains the k internally disjoint $u_{1,1}-v$ rainbow paths $u_{1,1}, w_{i, 1}, v$ where $1 \leq i \leq 2 k-1$ and i is odd.

Figure 0.1 The figure for the case $r=18, k=4, r_{1}=2$.

Subsubcase 1.1.2. $v \in U_{i}, 3 \leq i \leq 2 k-1$, and i is odd, say $v \in$ U_{3}. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1,1}, w_{2, j}, v$ and $u_{1,1}, w_{2 k, j}, v$, where $1 \leq j \leq k_{1}$.

Subsubcase 1.1.3. $v \in U_{i}, 2 \leq i \leq 2 k$, and i is even, say $v \in U_{2}$. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1,1}, w_{1, j}, v$ and $u_{1,1}, w_{2 k, j}, v$, where $1 \leq j \leq k_{1}$.

Subcase 1.2. u and v belong to different bipartite sets, and so $v \in W$.
Subsubcase 1.2.1. $v \in W_{i}$, where $1 \leq i \leq 2 k-1$ and i is odd, say $v \in W_{1}$. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1,1}, w_{2, j}, u_{2, j}, v$ and $u_{1,1}, w_{2 k, j}, u_{2 k, j}, v$, where $1 \leq j \leq k_{1}$.

Subsubcase 1.2.2. $v \in W_{i}$, where $2 \leq i \leq 2 k$ and i is even, say $v \in W_{2}$. If $v \in W_{2}^{\prime}$, without loss of generality, let $v=w_{2,1}$, then G contains the $u_{1,1}-v$ path $u_{1,1}, v$ together with the $u_{1,1}-v$ rainbow paths $u_{1,1}, w_{3, j}, u_{3, j}, v ; u_{1,1}, w_{3,1}, u_{4, j}, v$ and $u_{1,1}, w_{2 k, j}, u_{2 k, j}, v$, where $2 \leq j \leq k_{1}$. The cases for $v=w_{2}$ and $v \in W_{2 k}$ are similar.

Case 2. $u \in V(G) \backslash V\left(G^{\prime}\right)$, that is, $u \in\left\{u_{1}, \ldots, u_{r_{1}} ; w_{1}, \ldots, w_{r_{1}}\right\}$. Without loss of generality, let $u=u_{1}$. By Case 1 , we only need to show that there are at least k internally disjoint rainbow paths connecting u and v for every $v \in V(G) \backslash V\left(G^{\prime}\right)$.

Subcase 2.1. u and v belong to the same bipartite set of G.
Subsubcase 2.1.1. $v=u_{i}, 3 \leq i \leq 2 k-1$ and i is odd, say $v=$ u_{3}. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1}, w_{2, j}, u_{3}$ and $u_{1}, w_{2 k, j}, u_{3}$, where $1 \leq j \leq k_{1}$.

Subsubcase 2.1.2. $v=u_{i}, 2 \leq i \leq 2 k$ and i is even, say $v=u_{2}$. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1}, w_{1, j}, u_{2}$ and $u_{1}, w_{2 k, j}, u_{2}$, where $1 \leq j \leq k_{1}$.

Subcase 2.2. u and v belong to different bipartite sets of G.
Subsubcase 2.2.1. $v=w_{i}, 1 \leq i \leq 2 k-1$ and i is odd, say $v=$ w_{1}. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1}, w_{2, j}, u_{2, j}, w_{1}$ and $u_{1}, w_{2 k, j}, u_{2 k, j}, w_{1}$ where $1 \leq j \leq k_{1}$.

Subsubcase 2.2.2. $v=w_{i}, 2 \leq i \leq 2 k$ and i is even, say $v=$ w_{2}. Then G contains the $2 k_{1} \geq k$ internally disjoint $u-v$ rainbow paths $u_{1}, w_{1, j}, u_{3, j}, w_{2}$ and $u_{1}, w_{2 k, j}, u_{2 k, j}, w_{2}$ where $1 \leq j \leq k_{1}$.

So the conclusion holds for the case that k is even.
Next we assume that k is odd. Then $g(k)=2 k \cdot \frac{k+1}{2}$. Since $r \geq g(k)$, then $r=k_{2} \cdot(2 k)+r_{2}$, where $k_{2} \geq \frac{k+1}{2}, 1 \leq r_{2} \leq 2 k-1$. Then with a similar argument to the case that k is even, we can show that the conclusion also holds when k is odd.

Remark 2.5. In [4] we showed that for every pair of integers $k \geq 2$ and $r \geq 1$, there is an integer $f(k, r)$ such that if $\ell \geq f(k, r)$, then the rainbow k-connectivity of an r-regular complete ℓ-partite graph is 2 , where r-regular means that every partite set has the same number r of elements. That is, for sufficiently many number ℓ of partite sets, the rainbow k-connectivity of an r-regular complete ℓ-partite graph is 2 . Theorem 4 of this note implies that for sufficiently large size r of every partite set, the rainbow k-connectivity of an r-regular complete ℓ-partite graph is at most 3 . So, an interesting question is to think about the question of determining some bounds on k, r, ℓ that tell us the rainbow k-connectivity of an r-regular complete ℓ partite graph is 2 or 3 .

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks, 54(2009), 75-81.
[3] A. B. Ericksen, A matter of security, Graduating Engineer \& Computer Careers (2007), 24-28.
[4] X. Li, Y. Sun, The rainbow k-connectivity of two classes of graphs, arXiv:0906.3946 [math.CO].

[^0]: *Supported by NSFC, PCSIRT and the " 973 " program.

