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Abstract

We prove the normality of the limiting distribution of the coefficients of the
𝑞-derangement numbers of type 𝐵 based on the formula of Foata and Han that
contains a parameter 𝑧. Setting the parameter 𝑧 to zero, we are led to the case
of ordinary 𝑞-derangement numbers. For 𝑧 = 1, we obtain the normality of the
distribution of the coefficients of the usual 𝑞-derangement numbers of type 𝐵.
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1 Introduction

In this paper, we study the limiting distribution of the major index over derangements.
Feller [13] proved that the major index is asymptotically normal over the symmetric
group. Fulman [15] studied the normal distribution of the major index on conjugacy
classes of the symmetric group with large cycles. For the major index over derange-
ments, we prove the normality of the limiting distribution by using Curtiss’ theorem.
In fact, based on a bivariate generating function of Foata and Han [14] on the 𝑞-
derangement numbers of type 𝐵 with a parameter 𝑧, we derive the normality of the
limiting distribution of the coefficients of these polynomials. Setting 𝑧 = 0 and substi-
tuting 𝑞2 by 𝑞, we get the normality of the limiting distribution of the major index over
derangements. For the case 𝑧 = 1, we get the normality of the limiting distribution of
the major index over derangements of type 𝐵.

Let 𝔖𝑛 (resp. D𝑛) denote the set of permutations (resp. derangements) of [𝑛] =
{1, 2, . . . , 𝑛}. The major index of a permutation 𝜋 = 𝜋1𝜋2 ⋅ ⋅ ⋅𝜋𝑛 is defined by

maj𝜋 =
∑

𝜋𝑖>𝜋𝑖+1

𝑖.

The notions of major index and derangements can be extended to signed permutations.
A signed permutation or a type 𝐵 permutation of [𝑛] is a word 𝜋1𝜋2 ⋅ ⋅ ⋅𝜋𝑛 such that
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∣𝜋1∣∣𝜋2∣ ⋅ ⋅ ⋅ ∣𝜋𝑛∣ is a permutation of [𝑛], and each 𝜋𝑖 belongs to the set {±1,±2, . . . ,±𝑛},
see Björner and Brenti [5]. Let 𝔖𝐵

𝑛 be the set of type 𝐵 permutations of [𝑛], and let
D𝐵

𝑛 denote the set of type 𝐵 derangements of [𝑛], namely,

D𝐵
𝑛 =

{
𝜋1𝜋2 ⋅ ⋅ ⋅𝜋𝑛 ∈ 𝔖𝐵

𝑛

∣∣ 𝜋𝑖 ∕= 𝑖, 𝑖 = 1, 2, . . . , 𝑛
}
.

Adin and Roichman [3] defined the flag major index of a signed permutation 𝜋 by

fmaj 𝜋 = 2maj𝜋 + neg 𝜋, (1.1)

where maj 𝜋 (resp. neg 𝜋) denotes the major index of 𝜋 (resp. the number of negative
elements in 𝜋), see also Adin, Brenti and Roichman [2].

Foata and Han [14] obtained the following formula∑
𝜋∈D𝐵

𝑛

𝑞fmaj𝜋𝑧neg 𝜋 =
𝑛∑

𝑘=0

(−1)𝑘𝑞𝑘(𝑘−1)(1 + 𝑧𝑞)𝑛−𝑘 [𝑛]𝑞2 !

[𝑘]𝑞2 !
, (1.2)

where [0]𝑞 = [0]𝑞! = 1, and for 𝑛 ≥ 1, [𝑛]𝑞 =
∑𝑛−1

𝑖=0 𝑞𝑖 and [𝑛]𝑞! =
∏𝑛

𝑖=1[𝑖]𝑞.

When 𝑧 = 1, (1.2) reduces to the generating function of the 𝑞-derangement num-
bers of type 𝐵, ∑

𝜋∈D𝐵
𝑛

𝑞fmaj𝜋 =
𝑛∑

𝑘=0

(−1)𝑘𝑞𝑘(𝑘−1) [2𝑛]𝑞!!

[2𝑘]𝑞!!
, (1.3)

where [2𝑛]𝑞!! = [2𝑛]𝑞[2𝑛 − 2]𝑞 ⋅ ⋅ ⋅ [2]𝑞. The formula (1.3) is due to Chow [10], see also
Chow and Gessel [11]. Setting 𝑧 = 0 and substituting 𝑞2 with 𝑞, (1.2) becomes the
formula for the 𝑞-derangement numbers,∑

𝜋∈D𝑛

𝑞maj𝜋 =
𝑛∑

𝑘=0

(−1)𝑘𝑞(
𝑘
2) [𝑛]𝑞!

[𝑘]𝑞!
. (1.4)

This formula was obtained by Gessel [17], see also Gessel and Reutenauer [18]. Com-
binatorial proofs of (1.4) have been found by Wachs [21], and Chen and Xu [9]. Brown
[7] showed that the 𝑞-derangement numbers are the multiplicities of the eigenvalues for
the 𝑞-analogue of the Tsetlin library.

In this paper, we consider the limiting distribution of the coefficients of the poly-
nomial (1.2) in 𝑞 while 𝑧 is considered as a parameter. Below is the main result of this
paper.

Theorem 1.1 The limiting distribution of the coefficients of the polynomial (1.2) in
𝑞 is normal for any real number 𝑧 ∕= −1.

To prove Theorem 1.1, we first compute the expectation 𝐸𝑛 and the variance 𝜎2
𝑛 of

the coefficients of (1.2). Based on the asymptotic expression of 𝐸𝑛 and 𝜎2
𝑛, we deduce

Theorem 1.1 by using Curtiss’ theorem [12]. For special values of 𝑧, we obtain the
normal limiting distributions of coefficients of the ordinary and type 𝐵 𝑞-derangement
numbers.
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Corollary 1.2 Let 𝐸𝐵
𝑛 (reps. 𝜎𝐵

𝑛 ) be the expectation (resp. standard deviation) of
the flag major index of derangements of type 𝐵𝑛. Then the distribution of the random

variable fmaj−𝐸𝐵
𝑛

𝜎𝐵
𝑛

converges to the standard normal distribution as 𝑛 → ∞.

Corollary 1.3 Let 𝐸𝐴
𝑛 (reps. 𝜎𝐴

𝑛 ) be the expectation (resp. standard deviation) of
the major index of derangements of [𝑛]. Then the distribution of the random variable
maj−𝐸𝐴

𝑛

𝜎𝐴
𝑛

converges to the standard normal distribution as 𝑛 → ∞.

2 The expectation and variance

In this section, we compute the expectation and the variance of the coefficients of the
polynomial (1.2). Throughout this paper, we assume that 𝑧 ∕= −1. Given a polynomial
𝑓(𝑞), the expectation 𝐸 and the variance 𝜎2 of the coefficients are given by

𝐸 =
𝑓 ′(1)
𝑓(1)

, 𝜎2 =
𝑓 ′′(1)
𝑓(1)

+ 𝐸 − 𝐸2.

See, for example, Harper [16], and Carlitz, Kurtz, Scoville and Stackelberg [8]. On the
other hand, the expectation and variance are determined by the moment generating
function 𝑀(𝑥) = 𝑓(𝑒𝑥)/𝑓(1). In this way, we have

𝐸 = [𝑥]𝑀(𝑥), 𝜎2 = 2[𝑥2]𝑀(𝑥)− 𝐸2, (2.1)

where [𝑥𝑖]𝑀(𝑥) denotes the coefficient of 𝑥𝑖 in 𝑀(𝑥).

Let 𝐷𝑛 be the sum of the coefficients of (1.2), that is,

𝐷𝑛 =
𝑛∑

𝑘=0

(−1)𝑘(1 + 𝑧)𝑛−𝑘𝑛!

𝑘!
. (2.2)

In particular, for 𝑧 = 0, 𝐷𝑛 becomes the number of derangements of [𝑛]. Meanwhile,
for 𝑧 = 1, 𝐷𝑛 reduces to the number of 𝐵𝑛-derangements. In view of (1.2), the moment
generating function equals

𝑀𝑛(𝑥) =
1

𝐷𝑛

𝑛∑
𝑘=0

(−1)𝑘𝑒𝑘(𝑘−1)𝑥(1 + 𝑧𝑒𝑥)𝑛−𝑘 [𝑛]𝑒2𝑥 !

[𝑘]𝑒2𝑥 !
. (2.3)

We may assume that

𝑀𝑛(𝑥) =
1

𝐷𝑛

𝑛∑
𝑘=0

(−1)𝑘(1 + 𝑧)𝑛−𝑘𝑛!

𝑘!
(1 + 𝑐1𝑥+ 𝑐2𝑥

2) + higher terms. (2.4)
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We find

𝑐1 =

(
𝑛

2

)
+

(
𝑘

2

)
+

𝑧(𝑛− 𝑘)

1 + 𝑧
,

𝑐2 = 2

(
𝑛

2

)(
𝑘

2

)
+

𝑧(𝑛− 𝑘)

1 + 𝑧

((
𝑛

2

)
+

(
𝑘

2

)
+

1 + 𝑧(𝑛− 𝑘)

2(1 + 𝑧)

)
+ 𝑐0,

where

𝑐0 =
𝑛− 𝑘

72

(
9𝑛3 − 14𝑛2 + 9𝑘𝑛2 + 15𝑛+ 4𝑘𝑛− 9𝑘2𝑛− 10− 3𝑘 + 22𝑘2 − 9𝑘3

)
.

By (2.1), we obtain the expectation 𝐸𝑛 and the variance 𝜎2
𝑛 of the coefficients of (1.2).

Theorem 2.1 We have

𝐸𝑛 =
𝑛2

2
+

(𝑧 − 1)𝑛

2(1 + 𝑧)
+

1 + 2𝑧

2(1 + 𝑧)2
+

(−1)𝑛(𝑛+ 𝑧𝑛− 2𝑧 − 1)

2(1 + 𝑧)2𝐷𝑛

, (2.5)

𝜎2
𝑛 =

𝑛3

9
+

𝑛2

6
− (5− 8𝑧 + 5𝑧2)𝑛

18(1 + 𝑧)2
− 8 + 9𝑧 + 9𝑧2

9(1 + 𝑧)3
+

(−1)𝑛

𝐷𝑛

𝑐3 +
1

𝐷2
𝑛

𝑐4, (2.6)

where

𝑐3 =
𝑛3

4(1 + 𝑧)
− (4 + 31𝑧)𝑛2

36(1 + 𝑧)2
− (46 + 87𝑧 + 14𝑧2)𝑛

36(1 + 𝑧)3
+

41 + 104𝑧 + 108𝑧2 + 36𝑧3

36(1 + 𝑧)4
,

𝑐4 = −(𝑛+ 𝑧𝑛− 2𝑧 − 1)2

4(1 + 𝑧)4
.

In fact, in order to deduce (2.5) and (2.6), we need recurrence relations concerning
the numbers 𝐷𝑛. These relations can be derived from the formulas (6.9) and (6.10) of
Foata and Han [14] by setting 𝑞 = 1, that is,

𝐷𝑛 = (1 + 𝑧)𝑛𝐷𝑛−1 + (−1)𝑛,

𝐷𝑛 = (𝑧𝑛+ 𝑛− 1)𝐷𝑛−1 + (1 + 𝑧)(𝑛− 1)𝐷𝑛−2,
(2.7)

with 𝐷0 = 1 and 𝐷1 = 𝑧. As far as the expectation is concerned, we may rewrite 𝑐1 as

𝑐1 =
1

2
𝑘(𝑘 − 1)− 𝑧

1 + 𝑧
𝑘 +

(
𝑧𝑛

1 + 𝑧
+

𝑛(𝑛− 1)

2

)
.

Moreover, we can express [𝑥]𝑀𝑛(𝑥) in terms of 𝐷𝑛, 𝐷𝑛−1 and 𝐷𝑛−2. With the aid of
(2.7), we arrive at (2.5). The expression (2.6) can be derived in the same manner.

We further consider the asymptotic behaviors of 𝐸𝑛 and 𝜎2
𝑛. From (2.2) we see

that

𝐷𝑛 = 𝑛!(1 + 𝑧)𝑛

(
𝑒−

1
1+𝑧 −

∞∑
𝑘=𝑛+1

(−1)𝑘

𝑘! (1 + 𝑧)𝑘

)
,
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where 𝑧 ∕= −1. By the estimate∣∣∣∣∣
∞∑

𝑘=𝑛+1

(−1)𝑘

𝑘! (1 + 𝑧)𝑘

∣∣∣∣∣ ≤ 1

(𝑛+ 1)! (1 + 𝑧)𝑛+1

of the remainder, we deduce the asymptotic formula

𝐷𝑛 ∼ 𝑛! (1 + 𝑧)𝑛𝑒−
1

1+𝑧 . (2.8)

This yields the asymptotic expansions of 𝐸𝑛 and 𝜎2
𝑛.

Corollary 2.2 As 𝑛 → ∞, we have

𝐸𝑛 ∼ 𝑛2

2
+

(𝑧 − 1)𝑛

2(1 + 𝑧)
+

1 + 2𝑧

2(1 + 𝑧)2
,

𝜎2
𝑛 ∼ 𝑛3

9
+

𝑛2

6
− (5− 8𝑧 + 5𝑧2)𝑛

18(1 + 𝑧)2
− 8 + 9𝑧 + 9𝑧2

9(1 + 𝑧)3
.

3 The limiting distribution

It is well-known that the moment generating function of a random variable determines
its distribution, see Curtiss [12] or Sachkov [20]. In particular, if the moment generating
function 𝑀𝑛(𝑥) of a random variable 𝜉𝑛 has the limit

lim
𝑛→∞

𝑀𝑛(𝑥) = 𝑒
𝑥2

2 ,

then 𝜉𝑛 has as a standard normal distribution as 𝑛 → ∞.

The moment generating function of the normalized random variable fmaj−𝐸𝑛

𝜎𝑛
is

𝑒
−𝑡𝐸𝑛
𝜎𝑛 𝑀𝑛

(
𝑡

𝜎𝑛

)
.

So Theorem 1.1 is valid if we can show that

lim
𝑛→∞

𝑒
−𝑡𝐸𝑛
𝜎𝑛 𝑀𝑛

(
𝑡

𝜎𝑛

)
= 𝑒

𝑡2

2 . (3.1)

To prove the above relation (3.1), we use an alternative expression for 𝑀𝑛(𝑥) in
terms of the Bernoulli numbers. The 𝑛-th Bernoulli number, denoted 𝐵𝑛, is defined by

𝑥

𝑒𝑥 − 1
=

∞∑
𝑘=0

𝐵𝑘
𝑥𝑘

𝑘!
. (3.2)

Let us recall the following relation, see Mcintosh [19],

1− 𝑒−𝑥 = 𝑥⋅ exp
( ∞∑

𝑘=1

𝐵𝑛 𝑥
𝑘

𝑘⋅ 𝑘!

)
. (3.3)
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Lemma 3.1 We have

𝑀𝑛(𝑥) =
𝑛!

𝐷𝑛

exp

((
𝑛

2

)
𝑥+

∞∑
𝑖=1

𝐵2𝑖 (2𝑥)
2𝑖

(2𝑖) (2𝑖)!

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)) 𝑛∑
𝑘=0

(−1)𝑘(1 + 𝑧𝑒𝑥)𝑛−𝑘

[𝑘]𝑒−2𝑥 !
.

Proof. In view of (3.3), we have for any 𝑗 ≥ 1,

1− 𝑒𝑥𝑗 = −𝑥𝑗⋅ exp
(
𝑥𝑗

2
+

∞∑
𝑖=1

𝐵2𝑖(𝑥𝑗)
2𝑖

(2𝑖) (2𝑖)!

)
.

It follows that

[𝑛]𝑒2𝑥 ! = 𝑛!⋅ exp
((

𝑛

2

)
𝑥+

∞∑
𝑖=1

𝐵2𝑖 (2𝑥)
2𝑖

(2𝑖) (2𝑖)!

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

))
. (3.4)

Note that
𝑒𝑘(𝑘−1)𝑥

[𝑘]𝑒2𝑥 !
=

1

[𝑘]𝑒−2𝑥 !
. (3.5)

Hence the proof is complete by substituting (3.4) and (3.5) into (2.3).

Because of (3.1), it suffices to show that the limit of

𝑛!

𝐷𝑛

exp

((
𝑛

2

)
𝑡

𝜎𝑛

− 𝑡𝐸𝑛

𝜎𝑛

+
∞∑
𝑖=1

𝐵2𝑖 (2𝑡)
2𝑖

(2𝑖) (2𝑖)!𝜎2𝑖
𝑛

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)) 𝑛∑
𝑘=0

(−1)𝑘(1 + 𝑧𝑒
𝑡

𝜎𝑛 )𝑛−𝑘

[𝑘]
𝑒
− 2𝑡

𝜎𝑛
!

(3.6)

as 𝑛 → ∞, equals 𝑒
𝑡2

2 . We shall deal with the limits of the factors in the above
expression. To compute the factor containing the Bernoulli numbers, we need the
following asymptotic formula

∣𝐵2𝑛∣ ∼ 4
√
𝜋𝑛
( 𝑛

𝜋𝑒

)2𝑛
, (3.7)

see, for example, Abramowitz and Stegun [1, p. 805] and Alzer [4].

Lemma 3.2 For any real number 𝑡 that is bounded, we have

lim
𝑛→∞

∞∑
𝑖=2

𝐵2𝑖 𝑡
2𝑖

(2𝑖) (2𝑖)!𝜎2𝑖
𝑛

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)
= 0, (3.8)

where 𝐵2𝑖 are the Bernoulli numbers.

Proof. Suppose that 𝑡 is bounded by ∣𝑡∣ < 𝑀 . Let 𝛼, 𝛽 and 𝛾 be three constants such
that 𝛼 > 1, 𝛽 > 9, and 0 < 𝛾 < 1/2. Let 𝑁 be a fixed integer satisfying the following
three conditions:
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(i) 𝑛+ 1 < 𝛼𝑛 for any 𝑛 > 𝑁 ;

(ii) 𝛽 𝜎2
𝑛 > 𝑛3 for any 𝑛 > 𝑁 ;

(iii) 2𝜋𝑁𝛾/2 > 𝑀𝛼
√
𝛽.

By Corollary 2.2, the existence of such 𝑁 is obvious. Let 𝑖 ≥ 2 and 𝑛 > 𝑁 . By (i), we
have

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)
<

∫ 𝑛+1

1

(
𝑡2𝑖 − 1

)
𝑑𝑡 =

(𝑛+ 1)2𝑖+1 − 1

2𝑖+ 1
− 𝑛 <

(𝛼𝑛)2𝑖+1

5
.

Using the above inequality and the condition (ii), we find that

1

𝜎2𝑖
𝑛

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)
<

𝛼

5

(
𝛼
√
𝛽
)2𝑖

𝑛𝑖−1
.

Moreover, since
1

𝑛𝑖−1
=

𝑛1−𝑖(1−𝛾)

𝑛𝛾𝑖
<

𝑛2𝛾−1

𝑁𝛾𝑖
,

we see that∣∣∣∣∣ lim𝑛→∞

∞∑
𝑖=2

𝐵2𝑖 𝑡
2𝑖

(2𝑖) (2𝑖)!𝜎2𝑖
𝑛

𝑛∑
𝑗=1

(
𝑗2𝑖 − 1

)∣∣∣∣∣ ≤ 𝛼

5

∞∑
𝑖=2

∣𝐵2𝑖∣𝑡2𝑖
(2𝑖) (2𝑖)!

(𝛼
√
𝛽)2𝑖

𝑁𝛾𝑖
lim
𝑛→∞

𝑛2𝛾−1. (3.9)

The radius of convergence of the series in 𝑡 on the right hand side of (3.9) equals

lim
𝑖→∞

(
∣𝐵2𝑖∣

(2𝑖) (2𝑖)!

(
𝛼
√
𝛽
)2𝑖

𝑁𝛾𝑖

)− 1
2𝑖

.

Using (3.7), we deduce that the above radius equals

2𝜋𝑁𝛾/2

𝛼
√
𝛽

,

which is larger than the bound 𝑀 of 𝑡 because of the condition (iii). This proves the
convergence of the series in 𝑡 on the right hand side of (3.9). Since 2𝛾 − 1 < 0,

lim
𝑛→∞

𝑛2𝛾−1 = 0.

Thus (3.8) follows from (3.9). This completes the proof.

In order to evaluate the factor of (3.6) that contains 𝑧, that is,

𝑛∑
𝑘=0

(−1)𝑘(1 + 𝑧𝑒
𝑡

𝜎𝑛 )𝑛−𝑘

[𝑘]
𝑒
− 2𝑡

𝜎𝑛
!

,

we need Tannery’s theorem, see, for example, Bromwich [6].
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Theorem 3.3 (Tannery) Let {𝑣𝑘(𝑛)}𝑘≥0 be an infinite series satisfying the following
two conditions:

(i) For any fixed 𝑘, there holds lim𝑛→∞ 𝑣𝑘(𝑛) = 𝑤𝑘;

(ii) For any non-negative integer 𝑘, ∣𝑣𝑘(𝑛)∣ ≤ 𝑀𝑘, where 𝑀𝑘 is independent of 𝑛 and
the series

∑
𝑘≥0𝑀𝑘 is convergent.

Then

lim
𝑛→∞

𝑚(𝑛)∑
𝑘=0

𝑣𝑘(𝑛) =
∞∑
𝑘=0

𝑤𝑘,

where 𝑚(𝑛) is an increasing integer-valued function which trends steadily to infinity as
𝑛 does.

The limit of the factor containing 𝑧 can be determined by the following lemma.

Lemma 3.4 For any real number 𝑡 that is bounded by ∣𝑡∣ ≤ 𝑀 , we have

lim
𝑛→∞

𝑛∑
𝑘=0

(−1)𝑘

[𝑘]𝑒−2𝑡/𝜎𝑛 ! (1 + 𝑧𝑒
𝑡

𝜎𝑛 )𝑘
= 𝑒−

1
1+𝑧 . (3.10)

Proof. We apply Tannery’s theorem. Set 𝑚(𝑛) = 𝑛 and

𝑣𝑘(𝑛) =
(−1)𝑘

[𝑘]𝑒−2𝑡/𝜎𝑛 ! (1 + 𝑧𝑒
𝑡

𝜎𝑛 )𝑘
.

It is clear from Corollary 2.2 that

𝑤𝑘 = lim
𝑛→∞

𝑣𝑘(𝑛) =
(−1)𝑘

𝑘! (1 + 𝑧)𝑘
,

and therefore the right hand side of (3.10) coincides with
∑∞

𝑘=0 𝑤𝑘. By virtue of
Tannery’s theorem, it suffices to find an upper bound 𝑀𝑘 for

∣𝑣𝑘(𝑛)∣ =
∣∣∣∣∣ 1

[𝑘]𝑒−2𝑡/𝜎𝑛 ! (1 + 𝑧𝑒
𝑡

𝜎𝑛 )𝑘

∣∣∣∣∣ ,
such that 𝑀𝑘 is independent of 𝑛 and

∑∞
𝑘=0 𝑀𝑘 converges. Note that we can always

assume that 𝑛 is sufficiently large. Since 1+𝑧𝑒
𝑡

𝜎𝑛 → 1+𝑧 as 𝑛 → ∞, we see that there
exists a constant 𝑐 ∕= 0, say, 𝑐 = ∣1+𝑧∣

2
, satisfying

∣1 + 𝑧𝑒
𝑡

𝜎𝑛 ∣ ≥ 𝑐. (3.11)
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For 𝑡 ≤ 0, we have 𝑒−
𝑡

𝜎𝑛 ≥ 1 and thus [𝑘]𝑒−2𝑡/𝜎𝑛 ! ≥ 𝑘!. Using (3.11), we get the
following upper bound for ∣𝑣𝑘(𝑛)∣

𝑀𝑘 =
1

𝑘! 𝑐𝑘
,

which is independent of 𝑛. Clearly, 𝑀𝑘 satisfies the convergence condition.

For 𝑡 ≥ 0, Corollary 2.2 implies that 𝜎𝑛 has a positive lower bound as 𝑛 runs over

all positive integers and so does 𝑒−
2𝑡
𝜎𝑛 . Suppose that 𝑒−

2𝑡
𝜎𝑛 ≥ 𝑐𝑡 ∈ (0, 1]. Since the

function 𝑒−
2𝑡
𝜎𝑛 is continuous in 𝑡 and 𝑡 is bounded, there exists a constant 𝑐′ ∈ (0, 1]

independent of 𝑡 such that 𝑒−
2𝑡
𝜎𝑛 ≥ 𝑐′ for all ∣𝑡∣ ≤ 𝑀 . Hence for any 𝑘 ≥ 1,

[𝑘]𝑒−2𝑡/𝜎𝑛 ! =
𝑘∏

𝑗=2

(1 + 𝑒−2𝑡/𝜎𝑛 + ⋅ ⋅ ⋅+ 𝑒−2(𝑗−1)𝑡/𝜎𝑛) ≥ (1 + 𝑐′)𝑘−1.

Again, it follows from (3.11) that ∣𝑣𝑘(𝑛)∣ has an upper bound

𝑀 ′
𝑘 =

1

𝑐𝑘(1 + 𝑐′)𝑘−1
.

It is easy to check that 𝑀 ′
𝑘 satisfies the convergence condition. This completes the

proof.

Combining (2.8), Corollary 2.2, Lemma 3.2, and Lemma 3.4, we deduce that the

limit of the sum (3.6) equals 𝑒
𝑡2

2 as 𝑛 → ∞. So the proof of Theorem 1.1 is complete.
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