A Class of Symmetric Graphs With 2-ARC Transitive Quotients

7 Abstract: Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} on $V(\Gamma)$ such that $\Gamma_{\mathcal{B}}$ is connected and $(X, 2)$-arc transitive. A charac-
9 terization of (Γ, X, \mathcal{B}) was given in [S. Zhou Eur J Comb 23 (2002), 741-760] for the case where $|B|>|\Gamma(C) \cap B|=2$ for an arc (B, C) of $\Gamma_{\mathcal{B}}$. We consider
11 in this article the case where $|B|>|\Gamma(C) \cap B|=3$, and prove that Γ can be constructed from a 2-arc transitive graph of valency 4 or 7 unless its 13 connected components are isomorphic to $3 \mathbf{K}_{2}, \mathbf{C}_{6}$ or $\mathbf{K}_{3,3}$. As a byproduct, we prove that each connected tetravalent ($X, 2$)-transitive graph is either the complete graph \mathbf{K}_{5} or a near n-gonal graph for some $n \geq 4$. © 2009 Wiley Periodicals, Inc. J Graph Theory 00: 1-14, 2009

17 MSC: 05C25
Keywords: symmetric graph; 3-arc graph; 2-path graph; quotient graph; double star graph; near

Bin Jia, Zai Ping Lu, and Gai Xia Wang

Received 10 October 2008; Revised 17 October 2009
Published online in Wiley InterScience (www.interscience.wiley.com).

CENTER FOR COMBINATORICS LPMC NANKAI UNIVERSITY, TIANJIN 300071 PEOPLE'S REPUBLIC OF CHINA E-mail: jiabinqq@gmail.com; lu@nankai.edu.cn; wgx075@163.com

$$
\text { DOI } 10.1002 / \mathrm{jgt} 20476
$$

JGT 20476

1 1. INTRODUCTION

In this article, all graphs are assumed to be finite, nonempty, simple and undirected. The reader is referred to $[2,3,1]$, respectively, for notation and terminology on graphs, permutation groups and combinatorial designs.

Let Γ be a regular graph with vertex set $V(\Gamma)$, edge set $E(\Gamma)$ and valency $\operatorname{val}(\Gamma)$. For an integer $s \geq 1$, an s-arc is an ordered ($s+1$)-tuple $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s}\right)$ of vertices in Γ such that $\left\{\alpha_{i}, \alpha_{i+1}\right\} \in E(\Gamma)$ for $0 \leq i \leq s-1$, and $\alpha_{i-1} \neq \alpha_{i+1}$ for $1 \leq i \leq s-1$. $\operatorname{By~}^{\operatorname{Arc}} c_{s}(\Gamma)$ we denote the set of s-arcs in Γ. A $1-\operatorname{arc}$ is called an arc, and $\operatorname{Arc}_{1}(\Gamma)$ is denoted by $9 \operatorname{Arc}(\Gamma)$.

Let X be a group acting on $V(\Gamma)$. The induced action of X on $V(\Gamma) \times V(\Gamma)$ is given by $(\alpha, \beta)^{x}=\left(\alpha^{x}, \beta^{x}\right)$ for $\alpha, \beta \in V(\Gamma)$ and $x \in X$. We say that X preserves the adjacency of Γ if $\operatorname{Arc}(\Gamma)^{x}=\operatorname{Arc}(\Gamma)$ for all $x \in X$. Note that X induces naturally an action on $\operatorname{Arc}_{s}(\Gamma)$ if X preserves the adjacency of Γ. The graph Γ is said to be (X, s)-arc transitive if Γ has at least one s-arc, X preserves the adjacency of Γ and X acts transitively on both $V(\Gamma)$ and $\operatorname{Arc}_{s}(\Gamma)$; and Γ is said to be (X, s)-arc regular if in addition X acts regularly on $\operatorname{Arc}_{s}(\Gamma)$. Further, Γ is said to be (X, s)-transitive if Γ is (X, s)-arc transitive but not $(X, s+1)$-arc transitive. An $(X, 1)$-arc transitive graph is usually called an X-symmetric graph.

Let Γ be an X-symmetric graph admitting a nontrivial X-invariant partition \mathcal{B} on $V(\Gamma)$, that is, $1<|B|<V(\Gamma)$ and $B^{x}:=\left\{\alpha^{x} \mid \alpha \in B\right\} \in \mathcal{B}$ for $B \in \mathcal{B}$ and $x \in X$. Such a graph is said to be an imprimitive X-symmetric graph. The quotient graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} is defined to be the graph with vertex set \mathcal{B} such that $B \in \mathcal{B}$ and $C \in \mathcal{B}$ are adjacent in $\Gamma_{\mathcal{B}}$ if and only if there exist $\alpha \in B$ and $\beta \in C$ adjacent in Γ. It is easy to see that $\Gamma_{\mathcal{B}}$ is X-symmetric. We always assume that $\Gamma_{\mathcal{B}}$ has at least one edge, which implies that each $B \in \mathcal{B}$ is an independent set of Γ.

For $\alpha \in V(\Gamma)$ and $B \in \mathcal{B}$, set $\bar{\Gamma}(\alpha)=\{\gamma \mid\{\alpha, \gamma\} \in E(\bar{\Gamma})\}, \Gamma(B)=\bigcup_{\beta \in B} \Gamma(\beta), \Gamma_{\mathcal{B}}(B)=\{C \in$ $\left.\mathcal{B} \mid\{B, C\} \in E\left(\Gamma_{\mathcal{B}}\right)\right\}$ and $\Gamma_{\mathcal{B}}(\alpha)=\{C \in \mathcal{B} \mid \alpha \in \Gamma(C)\}$. Since Γ is X-symmetric, for $\alpha \in B \in$ \mathcal{B} and $C \in \Gamma_{\mathcal{B}}(B)$, it is easily shown that the parameters $v:=|B|, k:=|\Gamma(C) \cap B|$ and $r:=\left|\Gamma_{\mathcal{B}}(\alpha)\right|$ are independent of the choices of B, C and α. The graph Γ is said to be a multicover of $\Gamma_{\mathcal{B}}$ if $k=v$. Noting that $\operatorname{vr}=\operatorname{val}\left(\Gamma_{\mathcal{B}}\right) k$ (see [10], for example), Γ is a multicover of $\Gamma_{\mathcal{B}}$ if and only if $r=\operatorname{val}\left(\Gamma_{\mathcal{B}}\right)$. Let $\mathcal{D}(B)$ denote the incidence structure $\left(B, \Gamma_{\mathcal{B}}(B)\right)$ such that $\beta \in B$ is incident with some $C \in \Gamma_{\mathcal{B}}(B)$ if and only if $C \in \Gamma_{\mathcal{B}}(\beta)$. Then $\mathcal{D}(B)$ is a flag-transitive 1- (v, k, r) design with $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right)$ blocks [12, Lemma 2.1], which is independent of the choice of B up to isomorphism. For $(B, C) \in \operatorname{Arc}\left(\Gamma_{\mathcal{B}}\right)$, denote by $\Gamma[B, C]$ the bipartite subgraph of Γ induced by $(\Gamma(C) \cap B) \cup(\Gamma(B) \cap C)$. Then $\Gamma[B, C]$ is independent of the choice of $(B, C) \in \operatorname{Arc}\left(\Gamma_{\mathcal{B}}\right)$ up to isomorphism.

It has been observed in the literature that the quotient graphs of $(X, 2)$-arc transitive graphs are usually not ($X, 2$)-arc transitive, and that an X-symmetric graph with an $(X, 2)$-arc transitive quotient itself is not necessarily ($X, 2$)-arc transitive. (For example, several examples are given in $[4,5]$ for the first situation; and for the second situation, gave rise to a series of intensive studies of the following questions [18, 9].
(Q1) When can $\Gamma_{\mathcal{B}}$ be $(X, 2)$-arc transitive?
(Q2) What information of the structure of Γ can we obtain from an $(X, 2)$-arc transitive quotient $\Gamma_{\mathcal{B}}$ of Γ ?

The triple $\left(\Gamma_{\mathcal{B}}, \Gamma[B, C], \mathcal{D}(B)\right)$ mirrors "global" and "local" information of the structure of Γ, which allows us to reconstruct Γ in some cases. This approach to imprimitive

$$
\text { and only if they give a pair in } \Lambda \text {. }
$$

1 Proposition 2.1 (Li et al. [10], Lu and Zhou [12]). $\mathcal{I}(\Sigma, \Delta), \mathcal{J}(\Sigma, \Delta)$ and $\mathcal{H}(\Sigma, \Lambda)$ are X-symmetric.

Let $A_{\tau}=\{(\tau, \sigma) \mid \sigma \in \Sigma(\tau)\}$ for $\tau \in V(\Sigma)$. Set $\mathcal{A}=\left\{A_{\tau} \mid \tau \in V(\Sigma)\right\}$. By [10, Theorem 10], it is easily shown that the following result holds.

5 Proposition 2.2. Let $\Gamma=\mathcal{I}(\Sigma, \Delta)$. Then $\Sigma \cong \Gamma_{\mathcal{A}}, \operatorname{val}(\Gamma)=(\operatorname{val}(\Sigma)-1) \operatorname{val}\left(\Gamma\left[A_{\tau}, A_{\sigma}\right]\right)$ for $(\tau, \sigma) \in \operatorname{Arc}(\Sigma)$, and each vertex of Γ is adjacent to exactly val $(\Sigma)-1$ blocks in \mathcal{A}.

7
Let P_{σ} denote the set of 2-paths with a given mid vertex $\sigma \in V(\Sigma)$. Set $\mathcal{P}=\left\{P_{\sigma} \mid \sigma \in\right.$ $V(\Sigma)\}$. Then, by [12], both $\mathcal{J}(\Sigma, \Delta)$ and $\mathcal{H}(\Sigma, \Lambda)$ admit an X-invariant partition \mathcal{P} with

Lemma 2.3. Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} with $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right) \geq 3$ and $\left|\Gamma_{\mathcal{B}}(\alpha)\right|=2$ for $\alpha \in V(\Gamma)$. Set

$$
\Delta=\left\{\begin{array}{l|l}
(C, B(\alpha), B(\beta), D) & \begin{array}{l}
(\alpha, \beta) \in \operatorname{Arc}(\Gamma) \\
C \in \Gamma_{\mathcal{B}}(\alpha), D \in \Gamma_{\mathcal{B}}(\beta), C \neq B(\beta), D \neq B(\alpha)
\end{array}
\end{array}\right\},
$$

where $B(\alpha)$ denotes the block in \mathcal{B} containing α. Suppose that $\left|\Gamma(D) \cap B_{0} \cap \Gamma(C)\right| \neq 0$ for any 2-path $D B_{0} C$ of $\Gamma_{\mathcal{B}}$ with a given mid vertex $B_{0} \in \mathcal{B}$. Then $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive, $\lambda:=\left|\Gamma(D) \cap B_{0} \cap \Gamma(C)\right|$ is independent of the choice of $D B_{0} C, \Delta$ is a self-paired X-orbit on $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right)$, and either
(a) $\lambda=1$ and $\Gamma \cong \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$; or
(b) $\lambda \geq 2$ and Γ admits a second nontrivial X-invariant partition

$$
\mathcal{Q}:=\left\{\Gamma(D) \cap B \cap \Gamma(C) \mid D B C \text { is a 2-path of } \Gamma_{\mathcal{B}}\right\}
$$

on $V(\Gamma)$, which is a proper refinement of \mathcal{B} such that $\Gamma_{\mathcal{Q}} \cong \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$.
Proof. Note that $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right) \geq 3$. Take three distinct blocks $C, D, D^{\prime} \in \Gamma_{\mathcal{B}}\left(B_{0}\right)$. Since $\left|\Gamma(D) \cap B_{0} \cap \Gamma(C)\right| \neq 0$ and $\left|\Gamma\left(D^{\prime}\right) \cap B_{0} \cap \Gamma(C)\right| \neq 0$, there exist $\alpha, \beta \in \Gamma(C) \cap B_{0}$ with $\alpha \in \Gamma(D)$ and $\beta \in \Gamma\left(D^{\prime}\right)$. Let $\alpha^{\prime}, \beta^{\prime} \in C$ be such that $\left(\alpha, \alpha^{\prime}\right),\left(\beta, \beta^{\prime}\right) \in \operatorname{Arc}(\Gamma)$. Then $\left(\alpha, \alpha^{\prime}\right)^{x}=$ $\left(\beta, \beta^{\prime}\right)$ for some $x \in X$ as Γ is X-symmetric. So, $\alpha^{x}=\beta$ and $\alpha^{\prime x}=\beta^{\prime}$. Then $B_{0}^{x}=B_{0}$ and $C^{x}=C$, hence $x \in X_{B_{0}} \cap X_{C}$. Further $C, D^{x}, D^{\prime} \in \Gamma_{\mathcal{B}}(\beta)$, it follows that $D^{x}=D^{\prime}$ as $\left|\Gamma_{\mathcal{B}}(\beta)\right|=2$. Thus $X_{B_{0}} \cap X_{C}$ is transitive on $\Gamma_{\mathcal{B}}\left(B_{0}\right) \backslash\{C\}$, it follows that $X_{B_{0}}$ is 2-transitive on $\Gamma_{\mathcal{B}}\left(B_{0}\right)$. Therefore, $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive. Then, by [12], $\lambda \geq 1$ is a constant number, and if $\lambda=1, \Delta$ is a self-paired X-orbit on $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right)$ and $\Gamma \cong \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$. In the following we assume $\lambda \geq 2$.

We first show that \mathcal{Q} is an X-invariant partition of $V(\Gamma)$. Take two arbitrary $\alpha \in\left(\Gamma\left(D_{1}\right) \cap B_{1} \cap \Gamma\left(C_{1}\right)\right) \cap\left(\Gamma\left(D_{2}\right) \cap B_{2} \cap \Gamma\left(C_{2}\right)\right)$. Then $B_{1}=B_{2}$ and $C_{i}, D_{i} \in \Gamma_{\mathcal{B}}(\alpha)$ for $i=1,2$. Since $\left|\Gamma_{\mathcal{B}}(\alpha)\right|=2$, we have that $\left\{C_{1}, D_{1}\right\}=\left\{C_{2}, D_{2}\right\}$, thus $D_{1} B_{1} C_{1}=D_{2} B_{2} C_{2}$. It follows that \mathcal{Q} is a partition of $V(\Gamma)$. For any 2-path $D B C$ and $x \in X$, we have $(\Gamma(D) \cap B \cap \Gamma(C))^{x}=\Gamma\left(D^{x}\right) \cap B^{x} \cap \Gamma\left(C^{x}\right) \in \mathcal{Q}$. Thus \mathcal{Q} is X-invariant. Since Γ is not a multicover of $\Gamma_{\mathcal{B}}$, we know $|B|>|\Gamma(D) \cap B \cap \Gamma(C)|=\lambda \geq 2$, so \mathcal{Q} is a proper refinement of \mathcal{B}. Then $(\mathcal{B}, \mathcal{Q})$ gives an X-invariant partition $\overline{\mathcal{B}}:=\{\bar{B} \mid B \in \mathcal{B}\}$ of $V\left(\Gamma_{\mathcal{Q}}\right)$, where $\bar{B}=\left\{\Gamma(D) \cap B \cap \Gamma(C) \mid C, D \in \Gamma_{\mathcal{B}}(B), C \neq B\right\}$.

We denote a vertex $\Gamma(D) \cap B \cap \Gamma(C)$ of $\Gamma_{\mathcal{Q}}$ by $\bar{\alpha}$ if $\alpha \in \Gamma(D) \cap B \cap \Gamma(C)$. Consider the quotient graph $\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}$ of $\Gamma_{\mathcal{Q}}$ with respect to $\overline{\mathcal{B}}$. For any 2-path $\bar{D} \bar{B} \bar{C}$ of $\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}$ and any $\bar{\alpha} \in V\left(\Gamma_{\mathcal{Q}}\right)$, we have $\left|\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}(\bar{\alpha})\right|=2$ and $\left|\Gamma_{\mathcal{Q}}(\bar{D}) \cap \bar{B} \cap \Gamma_{\mathcal{Q}}(\bar{C})\right|=1$. It follows from (a) that $\Gamma_{\mathcal{Q}} \cong \mathcal{J}\left(\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}, \bar{\Delta}\right)$, where $\bar{\Delta}=\{(\bar{C}, \bar{B}(\bar{\alpha}), \bar{B}(\bar{\beta}), \bar{D}) \mid(C, B(\alpha), B(\beta), D) \in \Delta\}$. 5 Moreover, it is easily shown that $\overline{\mathcal{B}} \rightarrow \mathcal{B}, \bar{B} \mapsto B$ is an isomorphism from $\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}$ to $\Gamma_{\mathcal{B}}$. Therefore, $\Gamma_{\mathcal{Q}} \cong \mathcal{J}\left(\left(\Gamma_{\mathcal{Q}}\right)_{\overline{\mathcal{B}}}, \bar{\Delta}\right) \cong \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$.

3. DOUBLE STAR GRAPHS

Let Γ be an X-symmetric graph that admits an X-invariant partition \mathcal{B} such that $\Gamma_{\mathcal{B}}$ 9 is ($X, 2$)-arc transitive. If $r=1,2, b-2$ or $b-1$ then, by [12], Γ or its a quotient is isomorphic to $\left|E\left(\Gamma_{\mathcal{B}}\right)\right| \mathbf{K}_{2}, \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right), \mathcal{H}\left(\Gamma_{\mathcal{B}}, \Lambda\right)$ or $\mathcal{I}\left(\Gamma_{\mathcal{B}}, \Delta\right)$. This motivates us to consider the general case where $1 \leq r \leq b-1$, and introduce stars and generalized 2-path graphs, called double star graphs.

In this section, we always assume that Σ is an X-symmetric graph of valency $\mathbb{v} \geq 2$. For $\tau \in V(\Sigma)$ and a \mathbb{k}_{k}-subset S of $\Sigma(\tau)$, the pair (τ, S) is called a \mathbb{k}_{k}-star of Σ. Let $\mathcal{S} t^{\mathbb{k}}(\Sigma)$ denote the set of \mathbb{k}-stars of Σ. An X-orbit \mathcal{S} on $\mathcal{S} t^{\mathbb{k}}(\Sigma)$ is symmetric if $X_{\tau} \cap X_{S}$ acts transitively on S for some $(\tau, S) \in \mathcal{S}$. Let L and R be \mathbb{k}_{k}-subsets of $\Sigma(\tau)$ and $\Sigma(\sigma)$, respectively, an ordered pair $((\tau, L),(\sigma, R))$ of \mathbb{k}_{k}-stars is called a double \mathbb{k}_{k}-star of Σ if $\sigma \in L$ and $\tau \in R$. Denote by $D S t^{k}(\Sigma)$ the set of double \mathbb{k}_{k}-stars of Σ. Let Θ be an
$9 X$-orbit on $D \mathcal{S} t^{k}(\Sigma)$ and set $\mathcal{S t}(\Theta)=\{(\tau, L),(\sigma, R) \mid((\tau, L),(\sigma, R)) \in \Theta\}$. Then Θ is said to be symmetric if $\mathcal{S t}(\Theta)$ is a symmetric X-orbit on $\mathcal{S t} t^{\mathfrak{k}}(\Sigma)$ and Θ is self-paired, that is, $((\sigma, R),(\tau, L)) \in \Theta$ whenever $((\tau, L),(\sigma, R)) \in \Theta$.

Let \mathcal{S} be a symmetric X-orbit on $\mathcal{S} t^{k}(\Sigma)$. For $\tau \in V(\Sigma)$, set $\mathcal{S}_{\tau}=\{(\tau, S) \mid(\tau, S) \in \mathcal{S}\}$. Define an incidence structure $\mathbb{D}(\tau):=\left(\Sigma(\tau), \mathcal{S}_{\tau}\right)$ in which $\sigma \in \Sigma(\tau)$ is incident with $(\tau, S) \in \mathcal{S}_{\tau}$ if and only if $\sigma \in S$. Then it is easy to see that $\mathbb{D}(\tau)$ is an X_{τ}-flag-transitive 1 -design, and $\mathbb{D}(\tau)$ is independent of the choice of $\tau \in V(\Sigma)$ up to isomorphism.

Let $\tau \in V(\Sigma)$ and $\mathfrak{D}(\tau)$ be an X_{τ}-flag-transitive 1- $(\mathbb{V}, \mathbb{k}, \mathbb{r})$ design with vertex set $\Sigma(\tau)$. It may happen that distinct blocks of $\mathfrak{D}(\tau)$ have the same trace. Since $\mathfrak{D}(\tau)$ is flagtransitive, the number of blocks with the same trace is a constant, say $m(\mathcal{D}(\tau))$, called the multiplicity of $\mathfrak{D}(\tau)$. Let $\mathfrak{D}^{\prime}(\tau)$ be the design with vertex set $\Sigma(\tau)$ and blocks being the traces of blocks of $\mathfrak{D}(\tau)$. Then $\mathfrak{D}^{\prime}(\tau)$ is an X_{τ}-flag-transitive 1-($\mathbb{v}, \mathbb{k}, \mathbb{v} / m(\mathfrak{D}(\tau))$) design.

Theorem 3.1. Let $\tau \in V(\Sigma)$. If there exists some X_{τ}-flag-transitive $1-(\mathbb{v}, \mathbb{k}, \mathbb{r})$ design
$33 \mathfrak{D}(\tau)$ on $\Sigma(\tau)$ for $1 \leq \mathbb{k} \leq \boxtimes-1$ such that $\mathbb{R} / m(\mathfrak{D}(\tau))$ is odd, then there exists a symmetric X-orbit on $D \mathcal{S t}^{\mathfrak{k}}(\Sigma)$.

Proof. Set $\mathcal{S}=\left\{\left(\tau^{x}, S^{x}\right) \mid x \in X, S \in \mathfrak{D}^{\prime}(\tau)\right\}$. It is easily shown that $\mathfrak{D}^{\prime}(\tau) \cong \mathbb{D}(\tau)$ and \mathcal{S} is a symmetric X-orbit. Let $(\tau, \sigma) \in \operatorname{Arc}(\Sigma)$. Since Σ is X-symmetric, $(\tau, \sigma)^{y}=(\sigma, \tau)$ for some $y \in X$. Set $\mathcal{S}_{(\tau, \sigma)}=\left\{(\tau, S) \in \mathcal{S}_{\tau} \mid \sigma \in S\right\}$. Then $\mathbb{} / m(\mathcal{D}(\tau))=\left|\mathcal{S}_{(\tau, \sigma)}\right|$ is odd, $\mathcal{S}_{(\tau, \sigma)}^{y}=\mathcal{S}_{(\sigma, \tau)}$ and $\mathcal{S}_{(\tau, \sigma)}^{y^{2}}=\mathcal{S}_{(\tau, \sigma)}$. Let \mathcal{O} be a $\left\langle y^{2}\right\rangle$-orbit on $\mathcal{S}_{(\tau, \sigma)}$ with odd length l. Then, for $(\tau, S) \in \mathcal{O}$, the stabilizer of (τ, S) in $\left\langle y^{2}\right\rangle$ is $\left\langle y^{2 l}\right\rangle$. Let $z=y^{l}$. Then $\left((\tau, S),\left(\sigma, S^{z}\right)\right)^{z}=\left(\left(\sigma, S^{z}\right),(\tau, S)\right)$, and hence $\Theta:=\left\{\left((\tau, S)^{x},\left(\sigma, S^{z}\right)^{x}\right) \mid x \in X\right\}$ is a symmetric X-orbit on $D \mathcal{S} t^{\mathfrak{k}}(\Sigma)$ with $\mathcal{S} t(\Theta)=\mathcal{S}$.

JGT 20476

Let $1 \leq \mathbb{k}_{\mathbb{K}} \leq \mathbb{\boxtimes}-1$ and Θ be a symmetric X-orbit on $D \mathcal{S} t^{\mathbb{k}}(\Sigma)$. The double star graph $\Pi(\Sigma, \Theta)$ of Σ with respect to Θ is the graph with vertex set $\mathcal{S t}(\Theta)$ such that two \mathbb{k}-stars (τ, L) and (σ, R) are adjacent if and only if they give a pair in Θ.

Theorem 3.2. Let $\Gamma:=\Pi(\Sigma, \Theta)$ be as above. Set $\mathcal{S}=\mathcal{S t}(\Theta)$ and $\mathcal{B}=\left\{\mathcal{S}_{\tau} \mid \tau \in V(\Sigma)\right\}$.
5 Then Γ is X-symmetric, \mathcal{B} is a nontrivial X-invariant partition on $V(\Gamma)$ such that $\Gamma_{\mathcal{B}} \cong \Sigma, \Gamma$ is not a multicover of $\Gamma_{\mathcal{B}}$, and $\mathcal{D}\left(\mathcal{S}_{\tau}\right) \cong \mathbb{D}^{*}(\tau)$ for $\tau \in V(\Sigma)$, where $\mathbb{D}^{*}(\tau)$ is 7 the dual design of $\mathbb{D}(\tau)$.

Proof. It is easily shown that Γ is X-symmetric, \mathcal{B} is an X-invariant partition 9 of $V(\Gamma)$, and $V(\Sigma) \rightarrow V\left(\Gamma_{\mathcal{B}}\right), \tau \mapsto \mathcal{S}_{\tau}$ gives an isomorphism from Σ to $\Gamma_{\mathcal{B}}$. For any $(\tau, S) \in \mathcal{S}_{\tau} \in \mathcal{B}$, as $1 \leq \mathbb{k}=|S| \leq \mathbb{V}-1$, take $\sigma \in S$ and $\delta \in \Sigma(\tau) \backslash S$. Since Σ is X-symmetric, nontrivial. Since $(\tau, \delta) \in \operatorname{Arc}(\Sigma)$ and Θ is a symmetric X-orbit, there exists $(\delta, R) \in \mathcal{S}_{\delta}$ with $\left(\left(\tau, S^{x}\right),(\delta, R)\right) \in \Theta$, hence $\mathcal{S}_{\delta} \in \Gamma_{\mathcal{B}}\left(\mathcal{S}_{\tau}\right)$. If $\left((\tau, S),\left(\delta, R^{\prime}\right)\right) \in \Theta$ for some $\left(\delta, R^{\prime}\right) \in \mathcal{S}_{\delta}$, then $\delta \in S$, a contradiction. Thus $(\tau, S) \notin \mathcal{S}_{\tau} \cap \Gamma\left(\mathcal{S}_{\delta}\right)$, so $\left|\mathcal{S}_{\tau} \cap \Gamma\left(\mathcal{S}_{\delta}\right)\right|<v$ and Γ is not a multicover of $\Gamma_{\mathcal{B}}$.

Let $\quad \tau \in V(\Sigma)$. Define $\pi: \mathcal{S}_{\tau} \cup \Gamma_{\mathcal{B}}\left(\mathcal{S}_{\tau}\right) \rightarrow \mathcal{S}_{\tau} \cup \Sigma(\tau) ;(\tau, S) \mapsto(\tau, S), \mathcal{S}_{\sigma} \mapsto \sigma$. If $\mathcal{S}_{\sigma} \in$
$17 \quad \Gamma_{\mathcal{B}}(B)$, then there exist $(\tau, L) \in \mathcal{S}_{\tau}$ and $(\sigma, R) \in \mathcal{S}_{\sigma}$ such that $((\tau, L),(\sigma, R)) \in \Theta$; in particular, $\sigma \in L \subseteq \Sigma(\tau)$, so π is well-defined. It is easily shown that π is a bijection. By $\left(\left(\tau, S^{\prime}\right),\left(\tau^{\prime}, T^{\prime}\right)^{x}\right)=\left(\left(\tau, S^{\prime}\right),\left(\tau^{\prime}, T^{\prime}\right)\right)^{x} \in \Theta$. Hence $\left(\tau, S^{\prime}\right)$ is incident with $\mathcal{S}_{\sigma^{\prime}}$ in $\mathcal{D}\left(\mathcal{S}_{\tau}\right)$. The above argument says that π is an isomorphism from $\mathcal{D}\left(\mathcal{S}_{\tau}\right)$ to $\mathbb{D}^{*}(\tau)$. So $\mathcal{D}\left(\mathcal{S}_{\tau}\right) \cong \mathbb{D}^{*}(\tau)$.

In the following, we assume that Γ is an X-symmetric graph admitting a nontrivial X invariant partition \mathcal{B} such that $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right) \geq 2$ and Γ is not a multicover of $\Gamma_{\mathcal{B}}$. For $\alpha \in B \in \mathcal{B}$, define $B_{\alpha}=B \cap\left(\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C)\right)$. Then $\left|B_{\alpha}\right|$, denoted by $m^{*}(\Gamma, \mathcal{B})$, is independent of the choices of B and α. Since Γ is not a multicover of $\Gamma_{\mathcal{B}}$, we have $m^{*}(\Gamma, \mathcal{B}) \leq k:=|B \cap \Gamma(C)|$ for $C \in \Gamma_{\mathcal{B}}(B)$. In fact, $m^{*}(\Gamma, \mathcal{B})$ is the multiplicity of the dual design $\mathcal{D}^{*}(\underline{B})$ of $\mathcal{D}(B)$. Set $\underline{\mathcal{B}}=\left\{B_{\alpha} \mid B \in \mathcal{B}, \alpha \in B\right\}$. Then $\underline{\mathcal{B}}$ is an X-invariant partition of $V(\Gamma)$. Let $\bar{B}=\left\{B_{\alpha} \mid \alpha \in B\right\}$. Then $\Gamma_{\underline{\mathcal{B}}}$ is an X-symmetric graph with an X-invariant partition $\overline{\mathcal{B}}:=\{\bar{B} \mid B \in \mathcal{B}\}$ such that $\left(\Gamma_{\underline{\mathcal{B}}}\right)_{\overline{\mathcal{B}}} \cong \Gamma_{\mathcal{B}}$ and $m^{*}\left(\Gamma_{\underline{\mathcal{B}}}, \overline{\mathcal{B}}\right)=1$.

Theorem 3.3. Set $\mathcal{S}=\left\{\left(B, \Gamma_{\mathcal{B}}(\alpha)\right) \mid B \in \mathcal{B}, \alpha \in B\right\}$. Then \mathcal{S} is a symmetric X-orbit on
$\mathcal{S} t^{r}\left(\Gamma_{\mathcal{B}}\right)$, where $r=\left|\Gamma_{\mathcal{B}}(\alpha)\right|$ is a constant. Let $\Theta=\left\{\left(\left(B, \Gamma_{\mathcal{B}}(\alpha)\right),\left(C, \Gamma_{\mathcal{B}}(\beta)\right)\right) \mid \alpha \in B \in \mathcal{B}, \beta \in\right.$ $C \in \mathcal{B},(\alpha, \beta) \in \operatorname{Arc}(\Gamma)\}$. Then Θ is a symmetric X-orbit on $D \mathcal{S t} t^{r}\left(\Gamma_{\mathcal{B}}\right)$ with $\mathcal{S} t(\Theta)=\mathcal{S}$ and
$39 \Gamma_{\underline{\mathcal{B}}} \cong \Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)$, and X acts faithfully on \mathcal{B} if and only X acts faithfully on $\underline{\mathcal{B}}$.
Proof. It is easily shown that Θ is a symmetric X-orbit on $D \mathcal{S} t^{r}\left(\Gamma_{\mathcal{B}}\right)$ with $\operatorname{St}(\Theta)=$
$41 \mathcal{S}$. Assume $m^{*}(\Gamma, \mathcal{B})=1$. Then $B_{\alpha}=\{\alpha\}$ and $C_{\beta}=\{\beta\}$ for two distinct vertices $\alpha \in B \in$ \mathcal{B} and $\beta \in C \in \mathcal{B}$, it implies that $\Gamma_{\mathcal{B}}(\alpha) \neq \Gamma_{\mathcal{B}}(\beta)$, hence $\left(B, \Gamma_{\mathcal{B}}(\alpha)\right) \neq\left(C, \Gamma_{\mathcal{B}}(\beta)\right)$. Thus
$43 \quad V(\Gamma) \rightarrow V\left(\Pi\left(\Gamma_{\mathcal{B}}\right)\right), \alpha \mapsto\left(B, \Gamma_{\mathcal{B}}(\alpha)\right)$ is a bijection, which gives an isomorphism between Γ and $\Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)$.

1 Now assume $m^{*}(\Gamma, \mathcal{B})>1$. Recall that $m^{*}(\Gamma, \mathcal{B}) \leq k:=|B \cap \Gamma(C)|$ for $C \in \Gamma_{\mathcal{B}}(B)$. Then $\underline{\mathcal{B}}$ is a proper refinement of \mathcal{B}. Consider the pair $\left(\Gamma_{\underline{\mathcal{B}}}, \overline{\mathcal{B}}\right)$. Then $m^{*}\left(\Gamma_{\underline{\mathcal{B}}}, \overline{\mathcal{B}}\right)=1$.
3 A similar argument as above leads to $\Gamma_{\underline{\mathcal{B}}} \cong \Pi(\Sigma, \bar{\Theta})$, where $\Sigma=\left(\Gamma_{\underline{\mathcal{B}}}\right)_{\overline{\mathcal{B}}}$ and $\bar{\Theta}=$ $\left\{\left(\left(\bar{B}, \Sigma\left(B_{\alpha}\right)\right),\left(\bar{C}, \Sigma\left(C_{\beta}\right)\right)\right) \mid B_{\alpha} \in \bar{B} \in \overline{\mathcal{B}}, C_{\beta} \in \bar{C} \in \overline{\mathcal{B}},\left(B_{\alpha}, C_{\beta}\right) \in \operatorname{Arc}\left(\Gamma_{\underline{\mathcal{B}}}\right)\right\}$. Noting that $B_{\alpha}=$ $B_{\alpha^{\prime}}$ for any $\alpha^{\prime} \in B_{\alpha}$, it follows that $\left(\bar{B}, \Sigma\left(B_{\alpha}\right)\right) \mapsto\left(B, \Gamma_{\mathcal{B}}(\alpha)\right)$ gives a bijection between $V(\Pi(\Sigma, \bar{\Theta}))$ and $V\left(\Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)\right)$, which is in fact an isomorphism between $\Pi(\Sigma, \bar{\Theta})$ and $7 \Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)$. Hence $\Gamma_{\underline{\mathcal{B}}} \cong \Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)$.

Let K and H be the kernels of X acting on \mathcal{B} and on $\underline{\mathcal{B}}$, respectively. Noting that $\underline{\mathcal{B}}$ is a refinement of \mathcal{B}, we have $H \leq K$. Let $x \in K$ and $B_{\alpha} \in \bar{B} \in \underline{\mathcal{B}}$. Since $m^{*}\left(\Gamma_{\underline{\mathcal{B}}}, \overline{\mathcal{B}}\right)=1$, we have $\left\{B_{\alpha}\right\}=\bar{B} \cap\left(\bigcap_{\bar{C} \in\left(\Gamma_{\underline{\mathcal{B}}}\right)_{\overline{\mathcal{B}}}\left(B_{\alpha}\right)} \Gamma_{\underline{\mathcal{B}}}(\bar{C})\right)=\bar{B} \cap\left(\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma_{\underline{\mathcal{B}}}(\bar{C})\right)$, yielding $B_{\alpha}^{x}=B_{\alpha}$. The above argument gives $x \in H$. Hence $K \leq H$, and so $H=K$. Therefore, X acts faithfully on \mathcal{B} (that is, $K=1$) if and only if X acts faithfully on $\underline{\mathcal{B}}$ (that is, $H=1$).

Finally, we list a simple fact which will be used in the following sections.
Theorem 3.4. If $m^{*}(\Gamma, \mathcal{B})=1=m(\mathcal{D}(B))$, then $X_{B}^{B} \cong X_{B}^{\Gamma_{\mathcal{B}}(B)}$ for $B \in \mathcal{B}$.
Proof. If $x \in X$ fixes B set-wise, then it also fixes the neighborhood $\Gamma_{\mathcal{B}}(B)$ of B in $\Gamma_{\mathcal{B}}$. Now consider the action of X_{B} on $\Gamma_{\mathcal{B}}(B)$, and let K be the kernel of this action. For any $\alpha \in B$, since $m^{*}(\Gamma, \mathcal{B})=1$, we have $\{\alpha\}=B \cap\left(\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C)\right)$. It follows that K fixes α. Thus $K \leq X_{(B)}$. On the other hand, x fixes $B \cap \Gamma(C)$ point-wise for any $x \in X_{(B)}$ and any $C \in \Gamma_{\mathcal{B}}(B)$; in particular, $B \cap \Gamma\left(C^{x}\right)=(B \cap \Gamma(C))^{x}=B \cap \Gamma(C)$. It follows from $m(\mathcal{D}(B))=1$ that $C=C^{x}$. Therefore, $x \in K$. Thus $X_{(B)} \leq K$, and so $X_{(B)}=K$. Then $X_{B}^{B} \cong X_{B} / X_{(B)}=X_{B} / K \cong X_{B}^{\Gamma_{\mathcal{B}}(B)}$.

4. THE MAIN RESULT

A near n-gonal graph [13] is a connected graph Σ of girth at least 4 together with a set \mathcal{E} of n-cycles of Σ such that each $2-\operatorname{arc}$ of Σ is contained in a unique member of \mathcal{E}. Let $\operatorname{Arc}_{3}(\mathcal{E})$ be the set of 3 -arcs appearing on cycles in \mathcal{E}. For a cycle \mathbf{C} in an X-symmetric graph, denote by $X_{\mathbf{C}}$ the subgroup of X which preserves the adjacency of \mathbf{C}, and set $X_{\mathbf{C}}^{\mathbf{C}}=X_{\mathbf{C}} / X_{(V(\mathbf{C}))}$.

Theorem 4.1. Let Γ be an X-symmetric graph admitting a nontrivial X-invariant partition \mathcal{B} such that $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right) \geq 2, \Gamma_{\mathcal{B}}$ is connected and X is faithful on $V(\Gamma)$. Assume that $|B|>|\Gamma(C) \cap B|=3$ for $(B, C) \in \operatorname{Arc}\left(\Gamma_{\mathcal{B}}\right)$. Set $e=\left|E\left(\Gamma_{\mathcal{B}}\right)\right|$. If further $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive, then
(a) $|B|=4, \operatorname{val}\left(\Gamma_{\mathcal{B}}\right)=4$ and $X_{B}^{B} \cong \mathrm{~A}_{4}$ or S_{4}; or
(b) $|B|=6, \operatorname{val}\left(\Gamma_{\mathcal{B}}\right)=4$ and $X_{B}^{B} \cong \mathrm{~A}_{4}$ or S_{4}; or
(c) $|B|=7, \operatorname{val}\left(\Gamma_{\mathcal{B}}\right)=7$ and $X_{B}^{B} \cong \operatorname{PSL}(3,2)$; or
(d) $|B|=3 \operatorname{val}\left(\Gamma_{\mathcal{B}}\right)$ and $\Gamma \cong 3 e \mathbf{K}_{2}, e \mathbf{C}_{6}$ or $e \mathbf{K}_{3,3}$.

Further, each of (a), (b) and (c) implies that $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive with X faithful on \mathcal{B}, Γ is connected provided $\Gamma[B, C] \neq 3 \mathbf{K}_{2}$, and Γ is isomorphic to one of $\mathcal{I}\left(\Gamma_{\mathcal{B}}, \Delta\right)$, $\mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$ and $\Pi\left(\Gamma_{\mathcal{B}}, \Theta\right)$, respectively, where Δ is a self-paired X-orbit on $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right)$

JGT 20476

1 and Θ is a symmetric X-orbit on $\operatorname{DSt}^{3}\left(\Gamma_{\mathcal{B}}\right)$; moreover, one of (a) and (b) yields (1) or (2), and (c) yields (3).
(1) Either $\Gamma_{\mathcal{B}} \cong \mathbf{K}_{5}$ or $\Gamma_{\mathcal{B}}$ is near n-gonal with respect to an X-orbit \mathcal{E} of n-cycles of $\Gamma_{\mathcal{B}}$ such that $|\mathcal{E}| \geq 6, n \geq 4, n|\mathcal{E}|=3 e=6|\mathcal{B}|$ and $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathrm{D}_{2 n}$ (the dihedral group of order $2 n$) for $\mathbf{C} \in \mathcal{E}$; and either
(1.1) $\Gamma[B, C] \cong 3 \mathbf{K}_{2}, X_{B} \cong \mathrm{~A}_{4}$ or $\mathrm{S}_{4}, \Delta=\operatorname{Arc}_{3}(\mathcal{E})$, $\operatorname{val}(\Gamma)=3$ if (a) holds or $\Gamma \cong$ $|\mathcal{E}| \mathbf{C}_{n}$ if (b) holds; or
(1.2) $\Gamma[B, C] \cong \mathbf{C}_{6}, X_{B} \cong \mathrm{~S}_{4}, \Gamma$ is $(X, 1)$-arc regular, $\operatorname{val}(\Gamma)=6$ if (a) holds or $\operatorname{val}(\Gamma)=4$ if (b) holds, and $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right) \backslash \Delta=\operatorname{Arc}_{3}(\mathcal{E})$ is a self-paired X-orbit on $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right)$.
(2) $\Gamma[B, C] \cong \mathbf{K}_{3,3}, \Gamma_{\mathcal{B}}$ is $(X, 3)$-arc transitive, and $\operatorname{val}(\Gamma)=9$ or 6 for (a) or (b) respectively.
(3) $\operatorname{val}(\Gamma)=3,6$ or 9 depending on $\Gamma[B, C] \cong 3 \mathbf{K}_{2}, \mathbf{C}_{6}$ or $\mathbf{K}_{3,3}$, respectively; and if $\operatorname{val}(\Gamma)=3$ then Γ is $(X, 2)$-arc transitive.

5. SELF-PAIRED ORBITS OF 3-ARCS

The following lemma is formulated from [10, Remark 4(c)(ii)] by noting that it is available to symmetric graphs.

Lemma 5.1. Every X-symmetric graph Σ with even valency contains a self-paired X-orbit on $\operatorname{Arc}_{3}(\Sigma)$.

Let Σ be an X-symmetric graph with valency $v \geq 2$ and Δ be a self-paired X-orbit on $\operatorname{Arc}_{3}(\Sigma)$. For $\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right) \in \Delta$, consider the action of $X_{\left(\tau_{1}, \tau, \sigma\right)}$ on $\Sigma(\sigma) \backslash\{\tau\}$, and use $\ell(\Delta)$ to denote the length of the orbit containing σ_{1}. Then $\ell(\Delta)$ is independent of the choice of $\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right) \in \Delta$.

Theorem 5.2. Let Σ be a connected ($X, 2$)-arc transitive graph with valency $\mathbb{v} \geq 3$ and Δ be a self-paired X-orbit on $\operatorname{Arc}_{3}(\Sigma)$ such that $\ell(\Delta)=1$. If X is faithful on $V(\Sigma)$, then X_{τ} is faithful on $\Sigma(\tau)$ for $\tau \in V(\Sigma)$. Set $f=|V(\Sigma)|$ and $e=|E(\Sigma)|$. Then $\mathcal{J}(\Sigma, \Delta) \cong m \mathbf{C}_{n}$ such that
(1) $m \geq \mathbb{V}(\mathbb{v}-1) / 2, n \geq \operatorname{girth}(\Sigma)$ and $m n=f \vee(\mathbb{v}-1) / 2=e(\mathbb{v}-1)$;
(2) $\Delta=\operatorname{Arc}_{3}(\mathcal{E})$ for an X-orbit \mathcal{E} of n-cycles of Σ with $|\mathcal{E}|=m$ and $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathrm{D}_{2 n}$ for $\mathbf{C} \in \mathcal{E}$, where $\mathrm{D}_{2 n}$ is the dihedral group of order $2 n$;
(3) each 2-path of Σ is contained in a unique member of \mathcal{E}, and either $\Sigma \cong \mathbf{K}_{v+1}$ or $n \geq 4$ and Σ is a near n-gonal graph with respect to \mathcal{E}.

Proof. Since Σ is ($X, 2$)-arc transitive, each 2 -arc of Σ lies in a member of Δ. Let (τ, σ) be an arbitrary arc of Σ. Since $\ell(\Delta)=1$ and Δ is a self-paired X-orbit, we conclude that, for any $\tau_{1} \in \Sigma(\tau) \backslash\{\sigma\}$, there is a unique $\sigma_{1} \in \Sigma(\sigma) \backslash\{\tau\}$ such that $\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right) \in \Delta, X_{\left(\tau_{1}, \tau, \sigma\right)}=X_{\left(\tau, \sigma, \sigma_{1}\right)}$ and $\left(\tau_{1}^{\prime}, \tau, \sigma, \sigma_{1}\right) \in \Delta$ yielding $\tau_{1}^{\prime}=\tau_{1}$. Then connectedness of Σ that $\left(X_{\tau}\right)_{(\Sigma(\tau))}$ fixes every vertex of Σ. Thus, if X is faithful on $V(\Sigma)$, then $\left(X_{\tau}\right)_{(\Sigma(\tau))}=1$ and X_{τ} is faithful on $\Sigma(\tau)$.

43 Corollary 5.3. Every connected ($X, 2$)-arc regular graph with even valency and girth no less than 4 is a near n-gonal graph for some integer $n \geq 4$.

JGT 20476

1 Remark. We would like to mention a recent result on near polygonal graphs of odd valency. Zhou [20] gave a necessary and sufficient condition for a trivalent 2 -arc transitive to be near polygonal.

6. TETRAVALENT 2-ARC TRANSITIVE GRAPHS

5 The main aim of this section is to give a characterization of tetravalent 2-arc transitive graphs. The following simple lemma is useful.

7 Lemma 6.1. Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} with connected $(X, 2)$-arc transitive quotient $\Gamma_{\mathcal{B}}$. Assume that $\left|\Gamma_{\mathcal{B}}(\gamma)\right|>1$ and $\Gamma[B, C]$ are connected for $\gamma \in V(\Gamma)$ and $(B, C) \in \operatorname{Arc}\left(\Gamma_{\mathcal{B}}(B)\right)$. Then Γ is connected.

Proof. It suffices to show that any two distinct vertices α and β are joined by a path in Γ. Since $\left|\Gamma_{\mathcal{B}}(\gamma)\right|>1$ and $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive, $\lambda:=|\Gamma(C) \cap B \cap \Gamma(D)| \neq 0$ is a constant for $B \in \mathcal{B}$ and distinct $C, D \in \Gamma_{\mathcal{B}}(B)$.

Assume that $\alpha, \beta \in B$. Without loss of generality, we assume $\alpha \in \Gamma(C) \cap B \cap \Gamma(D)$. If $\beta \in \Gamma(C) \cap B$, then there is a path between α and β as $\Gamma[B, C]$ is connected. Assume $\beta \notin \Gamma(C) \cap B$. Take $D^{\prime} \in \Gamma_{\mathcal{B}}(\beta)$. Then $D^{\prime} \in \Gamma_{\mathcal{B}}(B), \beta \in B \cap \Gamma\left(D^{\prime}\right)$ and $\left|\Gamma(C) \cap B \cap \Gamma\left(D^{\prime}\right)\right|=$ $\lambda>0$. Let $\gamma \in \Gamma(C) \cap B \cap \Gamma\left(D^{\prime}\right)$. Then either $\alpha=\gamma$ or there is a path between α and γ, and there is a path between γ and β. Thus there is a path between α and β.

Now let $\alpha \in B$ and $\beta \in B^{\prime}$ with $B \neq B^{\prime}$. Since $\Gamma_{\mathcal{B}}$ is connected, there is a path $B=$ $B_{1} B_{2} \ldots B_{l}=B^{\prime}$. Let $\beta_{l}^{\prime} \in B_{l}$ and $\beta_{l-1} \in B_{l-1}$ such that $\left\{\beta_{l-1}, \beta_{l}^{\prime}\right\} \in E(\Gamma)$. Thus there is a path between β_{l-1} and β. Then induction on l implies that there is a path between α and β.

Let Σ be an $(X, 2)$-arc transitive graph with $\operatorname{val}(\Sigma)=4$. Recall that $H(\Sigma)$ is the set of pairs ($\tau^{\prime} \tau \tau^{\prime \prime}, \sigma^{\prime} \sigma \sigma^{\prime \prime}$) of 2-paths in Σ such that $\sigma \in \Sigma(\tau) \backslash\left\{\tau^{\prime}, \tau^{\prime \prime}\right\}, \tau \in \Sigma(\sigma) \backslash\left\{\sigma^{\prime}, \sigma^{\prime \prime}\right\}$. For $\Delta \subseteq \operatorname{Arc}_{3}(\Sigma)$, define $H(\Delta)=\left\{\left(\tau_{2} \tau \tau_{3}, \sigma_{2} \sigma \sigma_{3}\right) \mid\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right) \in \operatorname{Arc} 3(\Sigma),\left\{\sigma, \tau_{1}, \tau_{2}, \tau_{3}\right\}=\right.$ $\left.\Sigma(\tau),\left\{\tau, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}=\Sigma(\sigma)\right\}$. Then $H(\Delta) \subseteq H(\Sigma)$. It is easily shown that Δ is a self-paired X-orbit on $\operatorname{Arc}_{3}(\Sigma)$ if and only if $H(\Delta)$ is a symmetric X-orbit on $H(\Sigma)$.

Lemma 6.2. Let Σ be a connected (X,2)-arc transitive graph of valency 4. If Δ is a self-paired X-orbit on $\operatorname{Arc}_{3}(\Sigma)$, then $\mathcal{J}(\Sigma, \Delta) \cong \mathcal{H}(\Sigma, H(\Delta))$.

Proof. Define $\phi:\left[\tau_{1}, \tau, \tau_{2}\right] \mapsto\left[\tau_{3}, \tau, \tau_{4}\right]$, where $\left\{\tau_{3}, \tau_{4}\right\}=\Sigma(\tau) \backslash\left\{\tau_{1}, \tau_{2}\right\}$. It is easy to check that ϕ is an isomorphism from $\mathcal{J}(\Sigma, \Delta)$ to $\mathcal{H}(\Sigma, H(\Delta))$.

Theorem 6.3. Let Σ be a connected (X,2)-arc transitive graph with valency 4 and X acting faithfully on $V(\Sigma)$. Then Σ has a self-paired X-orbit Δ of 3-arcs. Let $\Gamma=$ $\mathcal{J}(\Sigma, \Delta)$ and $\Gamma^{\prime}=\mathcal{I}(\Sigma, \Delta)$. Then $\Gamma\left[P_{\tau}, P_{\sigma}\right] \cong \Gamma^{\prime}\left[A_{\tau}, A_{\sigma}\right]$ for $(\tau, \sigma) \in \operatorname{Arc}(\Sigma)$, and one of the following cases occurs.
(1) Either $\Sigma \cong \mathrm{K}_{5}$ or Σ is a near n-gonal graph with respect to an X-orbit \mathcal{E} of n-cycles of Σ with $|\mathcal{E}| \geq 6, n \geq \operatorname{girth}(\Sigma), n|\mathcal{E}|=3|E(\Sigma)|=6|V(\Sigma)|$ and $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathrm{D}_{2 n}$ for $\mathbf{C} \in \mathcal{E}$; and either.
(1.1) $\Gamma\left[P_{\tau}, P_{\sigma}\right] \cong 3 \mathbf{K}_{2}, \Gamma \cong m \mathbf{C}_{n}, \operatorname{val}\left(\Gamma^{\prime}\right)=3, \Delta=\operatorname{Arc}_{3}(\mathcal{E}), X_{P_{\tau}}=X_{A_{\tau}}=X_{\tau} \cong \mathrm{A}_{4}$ or S_{4}; or

(1.2) $\Gamma\left[P_{\tau}, P_{\sigma}\right] \cong \mathbf{C}_{6}, \operatorname{val}(\Gamma)=4, \operatorname{val}\left(\Gamma^{\prime}\right)=6, X_{P_{\tau}}=X_{A_{\tau}}=X_{\tau} \cong \mathrm{S}_{4}$, both Γ and Γ^{\prime} are connected and $(X, 1)$-arc regular, and $\operatorname{Arc}_{3}(\mathcal{E})=\operatorname{Arc}_{3}(\Sigma) \backslash \Delta$ is a
(2) $\Gamma\left[P_{\tau}, P_{\sigma}\right] \cong \mathbf{K}_{3,3}, \operatorname{val}(\Gamma)=6$, $\operatorname{val}\left(\Gamma^{\prime}\right)=9$, both Γ and Γ^{\prime} are connected, and Σ is ($X, 3$)-arc transitive.

Proof. By Lemma 5.1, Σ has a self-paired X-orbit Δ on $\operatorname{Arc}_{3}(\Sigma)$. Let $\ell(\Delta)$ be defined 7 as in Section 5. Then $\ell(\Delta) \leq 3$ as $\operatorname{val}(\Sigma)=4$. By [12, Theorem 4.4], $\Gamma=\mathcal{J}(\Sigma, \Delta)$ is X symmetric and admits an X-invariant partition $\mathcal{P}=\left\{P_{\sigma} \mid \sigma \in V(\Sigma)\right\}$. By Proposition 2.2,
$9 \quad \Gamma^{\prime}=\mathcal{I}(\Sigma, \Delta)$ is X-symmetric and admits an X-invariant partition $\mathcal{A}=\left\{A_{\sigma} \mid \sigma \in V(\Sigma)\right\}$.
Let $(\tau, \sigma) \in \operatorname{Arc}(\Sigma)$. Then there is a 3 -arc $\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right) \in \Delta$ as Σ is X-symmetric. It follows that $\left\{\tau_{1} \tau \sigma, \tau \sigma \sigma_{1}\right\}$ is an edge of $\Gamma\left[P_{\tau}, P_{\sigma}\right]$, and that $\left\{\left(\tau, \tau_{1}\right),\left(\sigma, \sigma_{1}\right)\right\}$ is an edge of $\Gamma^{\prime}\left[A_{\tau}, A_{\sigma}\right]$. It is easily shown that $X_{(\tau, \sigma)}=X_{\tau} \cap X_{\sigma}=X_{P_{\tau}} \cap X_{P_{\sigma}}$ acts transitively on the edges of $\Gamma\left[P_{\tau}, P_{\sigma}\right]$. It implies that $X_{\left(\tau_{1}, \tau, \sigma\right)}$ acts transitively on the neighborhood of $\tau_{1} \tau \sigma$ in $\Gamma\left[P_{\tau}, P_{\sigma}\right]$. Then $\operatorname{val}\left(\Gamma\left[P_{\tau}, P_{\sigma}\right]\right)=\left|X_{\left(\tau_{1}, \tau, \sigma\right)}: X_{\left(\tau_{1}, \tau, \sigma, \sigma_{1}\right)}\right|=\ell(\Delta)$. Since Σ is $(X, 2)$-arc transitive, $X_{(\tau, \sigma)}$ is transitive on both $\Sigma(\tau) \backslash\{\sigma\}:=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ and $\Sigma(\sigma) \backslash\{\tau\}:=$ $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Thus $V\left(\Gamma\left[P_{\tau}, P_{\sigma}\right]\right)=\left\{\tau_{i} \tau \sigma \mid i=1,2,3\right\} \cup\left\{\tau \sigma \sigma_{i} \mid i=1,2,3\right\}$. A similar argument leads to $V\left(\Gamma^{\prime}\left[A_{\tau}, A_{\sigma}\right]\right)=\left\{\left(\tau, \tau_{i}\right) \mid i=1,2,3\right\} \cup\left\{\left(\sigma, \sigma_{i}\right) \mid i=1,2,3\right\}$. It is easy to check that $\tau_{i} \tau \sigma \mapsto\left(\tau, \tau_{i}\right), \tau \sigma \sigma_{i} \mapsto\left(\sigma, \sigma_{i}\right)$ gives an isomorphism from $\Gamma\left[P_{\tau}, P_{\sigma}\right]$ to $\Gamma^{\prime}\left[A_{\tau}, A_{\sigma}\right]$. 9 Further, $\Gamma\left[P_{\tau}, P_{\sigma}\right] \cong 3 \mathbf{K}_{2}, \mathbf{C}_{6}$ or $\mathbf{K}_{3,3}$ according to $\ell(\Delta)=1,2$ or 3, respectively. By [12, Theorem 4.3], $2=\left|\Gamma_{\mathcal{P}}\left(\tau_{1} \tau \sigma\right)\right|$ for $\tau_{1} \tau \sigma \in V(\Gamma)$. Then $\operatorname{val}(\Gamma)=\ell(\Delta)\left|\Gamma_{\mathcal{P}}\left(\tau_{1} \tau \sigma\right)\right|=2 \ell(\Delta)$.
1 By Lemma 2.2, $\operatorname{val}\left(\Gamma^{\prime}\right)=3 \ell(\Delta)$. Further, by Lemma 6.1, both Γ and Γ^{\prime} are connected provided $\Gamma\left[P_{\tau}, P_{\sigma}\right] \neq 3 \mathbf{K}_{2}$.

If $\ell(\Delta)=3$, then $\operatorname{val}(\Gamma)=2 \ell(\Delta)=6, \operatorname{val}\left(\Gamma^{\prime}\right)=3 \ell(\Delta)=9, \Gamma\left[P_{\tau}, P_{\sigma}\right] \cong \mathbf{K}_{3,3}$, and (2) follows from [10, Theorem 2]. Thus we assume that $\ell(\Delta) \leq 2$ in the following.

It is easy to see $X_{\tau}=X_{P_{\tau}}=X_{A_{\tau}},\left(X_{\tau}\right)_{(\Sigma(\tau))}=X_{\left(P_{\tau}\right)}=X_{\left(A_{\tau}\right)}$ and hence $X_{\tau}^{\Sigma(\tau)} \cong X_{P_{\tau}}^{P_{\tau}}=X_{A_{\tau}}^{A_{\tau}}$. Since Σ is $(X, 2)$-arc transitive, $X_{\tau}^{\Sigma(\tau)} \cong \mathrm{A}_{4}$ or S_{4}. Further, if $\ell(\Delta)=2$ then $\left|X_{\tau}^{\Sigma(\tau)}\right|>12$ as Σ is not $(X, 2)$-arc regular in this case. Let $\Delta^{\prime}=\Delta$ or $\operatorname{Arc}_{3}(\Sigma) \backslash \Delta$ depending on $\ell(\Delta)=1$ or 2 , respectively. It is easily shown that $\ell\left(\Delta^{\prime}\right)=1$ and Δ^{\prime} is a self-paired X-orbit on $\mathrm{Arc}_{3}(\Sigma)$. Then (1) follows from Theorem 5.2 and the above argument.

Corollary 6.4. Let Σ be a connected tetravalent $(X, 2)$-transitive graph. Then either $\Sigma \cong \mathbf{K}_{5}$, or Σ is a near n-gonal graph for some integer $n \geq 4$.

7. HEPTAVALENT GRAPHS WITH $X_{\tau}^{\Sigma(\tau)} \cong \operatorname{PSL}(3,2)$

33 Theorem 7.1. Let Σ be an (X,2)-arc transitive graph of valency 7 with $X_{\tau}^{\Sigma(\tau)} \cong$ $\operatorname{PSL}(3,2)$ for $\tau \in V(\Sigma)$. Then there exists a symmetric X-orbit Θ on $D \mathcal{S} t^{3}(\Sigma)$. Let $\Gamma=\Pi(\Sigma, \Theta)$ and $\mathcal{S}=\mathcal{S} t(\Theta)$. Then, for $\sigma \in \Sigma(\tau)$, one of the following cases occurs.
(1) $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \cong 3 \mathbf{K}_{2}$, and Γ is a trivalent (X,2)-arc transitive graph;
(2) $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \cong \mathbf{C}_{6}, v a l(\Gamma)=6$ and Γ is connected;
(3) $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \cong \mathbf{K}_{3,3}, \operatorname{val}(\Gamma)=9$ and Γ is connected.

Proof. Let $\tau \in V(\Sigma)$. Since $X_{\tau}^{\Sigma(\tau)} \cong \operatorname{PSL}(3,2)$, we may identify $\Sigma(\tau)$ with the point set of the seven-point plane $\operatorname{PG}(2,2)$, which is an X_{τ}-flag-transitive 1-(7,3,3) design with

JGT 20476

1 multiplicity 1. By Theorem 3.1, there exists a symmetric X-orbit Θ on $D \mathcal{S} t^{3}(\Sigma)$. Let $\mathcal{S}=$ $\mathcal{S t}(\Theta)$ and $\Gamma=\Pi(\Sigma, \Theta)$. Then, by Theorem 3.2, Γ is X-symmetric and $\Gamma_{\mathcal{B}} \cong \Sigma$, where $\mathcal{B}=\left\{\mathcal{S}_{\tau} \mid \tau \in V(\Sigma)\right\}$ and $\mathcal{S}_{\tau}=\{(\tau, S) \mid(\tau, S) \in \mathcal{S}\}$. Further, for $\mathcal{S}_{\tau} \in \mathcal{B}$, we have $X_{\tau}=X_{\mathcal{S}_{\tau}}$ and $\mathcal{D}\left(\mathcal{S}_{\tau}\right) \cong \mathbb{D}^{*}(\tau) \cong \mathrm{PG}(2,2)$. In particular, $\left|\mathcal{S}_{\tau} \cap \Gamma\left(\mathcal{S}_{\sigma}\right)\right|=3$ for $\sigma \in \Sigma(\tau)$; thus $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \cong$ $3 \mathbf{K}_{2}, \mathbf{C}_{6}$ or $\mathbf{K}_{3,3}$. Noting that two distinct lines of $\operatorname{PG}(2,2)$ intersect a unique point and two distinct points determine a unique line, it follows that $\lambda:=\left|\Gamma\left(\mathcal{S}_{\sigma}\right) \cap \mathcal{S}_{\tau} \cap \Gamma\left(\mathcal{S}_{\delta}\right)\right|=1$
7 for $\sigma, \delta \in \Sigma(\tau)$ with $\sigma \neq \delta$. By Lemma 6.1, Γ is connected if $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \neq 3 \mathrm{~K}_{2}$. Note that each point of $\mathcal{D}\left(\mathcal{S}_{\tau}\right)$ is incident with three blocks. Then $\operatorname{val}(\Gamma)=3 \operatorname{val}\left(\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right]\right)$. Thus
9 (2) or (3) holds if $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \neq 3 \mathbf{K}_{2}$.
Assume that $\Gamma\left[\mathcal{S}_{\tau}, \mathcal{S}_{\sigma}\right] \cong 3 \mathbf{K}_{2}$. Then $\operatorname{val}(\Gamma)=3$. Let $\alpha \in \mathcal{S}_{\tau}$, and $\Gamma(\alpha)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$

8. PROOF OF THEOREM 4.1

17 Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} such that $\Gamma_{\mathcal{B}}$ is connected and X is faithful on $V(\Gamma)$. Set $b=\operatorname{val}\left(\Gamma_{\mathcal{B}}\right), v=|B|, r=\left|\Gamma_{\mathcal{B}}(\alpha)\right|$ and $k=$ $|B \cap \Gamma(C)|$ for $\alpha \in V(\Gamma)$ and $(B, C) \in \operatorname{Arc}\left(\Gamma_{\mathcal{B}}\right)$. Assume that $b \geq 2$ and $v>k=3$. Recall that $\mathcal{D}(B)$ is a $1-(v, b, r)$-design.

We first show that each of Theorem 4.1(a)-(c) implies that $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive. Assume that one of (a), (b) and (c) occurs. Since $v r=b k$, we have (v, b, r) is one of $(4,4,3),(6,4,2)$ and $(7,7,3)$.

Consider the multiplicity $m(\mathcal{D}(B))$ of $\mathcal{D}(B)$. Suppose that $m(\mathcal{D}(B)) \neq 1$. Then $\Gamma_{\mathcal{B}}(B)$ admits an X_{B}-invariant partition $\mathcal{M}:=\left\{\mathcal{M}_{C} \mid C \in \Gamma_{\mathcal{B}}(B)\right\}$, where \mathcal{M}_{C} is a set of blocks of $\mathcal{D}(B)$ with the same trace $B \cap \Gamma(C)$ of C. Thus $m(\mathcal{D}(B))=\left|\mathcal{M}_{C}\right|$ is a divisor of b. observation says that $m(\mathcal{D}(B))$ is also a divisor of r. It follows that $(v, b, r)=(6,4,2)$, $m(\mathcal{D}(B))=2=r$ and $|\mathcal{M}|=2$. Set $\mathcal{M}=\left\{\mathcal{M}_{C}, \mathcal{M}_{D}\right\}$. Then $\mathcal{T}:=\{B \cap \Gamma(C), B \cap \Gamma(D)\}$ is an X_{B}-invariant partition of B. Let K be the kernel of X_{B} acting on \mathcal{T}. Then $\left|X_{B}: K\right|=2$ and $X_{(B)} \leq K$. It follows that $X_{B}^{B} \cong \mathrm{~S}_{4}$ and $K / X_{(B)} \cong \mathrm{A}_{4}$. Note that K is in fact the setwise stabilizer of $B \cap \Gamma(C)$, and also of $B \cap \Gamma(D)$, in X_{B}. Then K is transitive on both $B \cap \Gamma(C)$ and $B \cap \Gamma(D)$. Let H and H_{1} be the kernels of K acting on $B \cap \Gamma(C)$ and on $B \cap \Gamma(D)$, respectively. Then K / H and K / H_{1} are permutation groups of degree 3 .
35 Noting that $X_{(B)} \leq H$ and $X_{(B)} \leq H_{1}$, it follows that $H / X_{(B)}$ and $H_{1} / X_{(B)}$ are normal subgroups of $K / X_{(B)}$ with index 3 in $K / X_{(B)}$. Hence $H_{1} / X_{(B)}=H / X_{(B)}$ as A_{4} has only one normal subgroup of order 4. Thus $H_{1}=H$ fixes B point-wise, and so $H \leq X_{(B)}$, which contradicts $\left|H / X_{(B)}\right|=4$. Thus $m(\mathcal{D}(B))=1$.

Recall that $m^{*}(\Gamma, \mathcal{B})$ is the multiplicity of the dual design $\mathcal{D}^{*}(B)$ of $\mathcal{D}(B)$ and $m^{*}(\Gamma, \mathcal{B})=\left|B_{\alpha}\right|$ for $\alpha \in B \in \mathcal{B}$ and $B_{\alpha}=B \cap\left(\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C)\right)$. It is easily shown that $\left\{B_{\alpha} \mid\right.$ $\alpha \in B\}$ is an X_{B}-invariant partition of B; in particular, $m^{*}(\Gamma, \mathcal{B})=\left|B_{\alpha}\right|$ is a divisor of $|B|=v$. Noting that $B_{\alpha} \subseteq B \cap \Gamma(C)$ for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(\alpha)$, it follows that $m^{*}(\Gamma, \mathcal{B})$ is also a divisor of $k=|B \cap \Gamma(C)|$. If $m^{*}(\Gamma, \mathcal{B}) \neq 1$, then $(v, k, r)=(6,3,2)$ and $m^{*}(\Gamma, \mathcal{B})=k$, so $m(\mathcal{D}(B)) \geq\left|\Gamma_{\mathcal{B}}(\alpha)\right|=2$, a contradiction. Thus $m^{*}(\Gamma, \mathcal{B})=1$.

Therefore, $m(\mathcal{D}(B))=1=m^{*}(\Gamma, \mathcal{B})$, and $X_{B}^{\Gamma_{\mathcal{B}}(B)} \cong X_{B}^{B}$ by Theorem 3.4. Thus, if one of cases (a), (b) and (c) occurs then $X_{B}^{\Gamma_{\mathcal{B}}(B)}$ is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence $\Gamma_{\mathcal{B}}$ is ($X, 2$)-arc transitive.

Now assume that $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive. Then $\lambda:=|\Gamma(C) \cap B \cap \Gamma(D)|$ is independent of the choice of 2-path $C B D$ of $\Gamma_{\mathcal{B}}$, and $m(\mathcal{D}(B))=1$ by [12, Lemma 2.4]. By [12, Corollary 3.3], $v r=3 b$ and $\lambda(b-1)=3(r-1)$, thus $(9-\lambda v) r=3(3-\lambda)$. Since $v>k=3$, we have $\lambda \leq k-1=2$. If $\lambda=0$, then $r=1$ and $v=3 b$. Let $\lambda \geq 1$. Then, by [12, Theorem 3.2], the dual design $\mathcal{D}^{*}(B)$ of $\mathcal{D}(B)$ is a $2-(b, r, \lambda)$ design with v blocks. The well-known Fisher's Inequality applied to $\mathcal{D}^{*}(B)$ gives $b \leq v$, and so $r \leq k=3$. If $\lambda=2$, then $\lambda(b-1)=3(r-1),(9-2 v) r=3$ yields $(v, b, r)=(4,4,3)$. If $\lambda=1$, then $r \leq k$, $v r=3 b$ and $(9-v) r=6$ yield $(v, b, r)=(6,4,2)$ or $(7,7,3)$.

Note that $m^{*}(\Gamma, \mathcal{B}) \leq \lambda$ if $\lambda \neq 0$. Suppose that $m^{*}(\Gamma, \mathcal{B}) \neq 1$ for some $\lambda \neq 0$. Then $\lambda=$ $2=m^{*}(\Gamma, \mathcal{B})$. Since $r=3$, there are $C, D \in \Gamma_{\mathcal{B}}(\alpha)$ with $C \neq D$ and $B \cap \Gamma(C)=B \cap \Gamma(D)$. Thus C and D has the same trace, so $m(\mathcal{D}(B)) \geq 2$, a contradiction. Therefore, if $\lambda \neq 0$ then $m^{*}(\Gamma, \mathcal{B})=1$ and, by Theorem 3.3 and $3.4, X_{B}^{\Gamma_{\mathcal{B}}(B)} \cong X_{B}^{B}$ and X is faithful on \mathcal{B}.

Assume that $(v, b, r, \lambda)=(4,4,3,2)$ or $(6,4,2,1)$. Then $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right)=4$, and $X_{B}^{B} \cong \mathrm{~A}_{4}$ or S_{4} as X_{B} acts 2-transitively on $\Gamma_{\mathcal{B}}(B)$. Thus (a) or (b) holds, so either $\Gamma \cong \mathcal{I}\left(\Gamma_{\mathcal{B}}, \Delta\right)$ by [10, Theorem 2] or $\Gamma \cong \mathcal{J}\left(\Gamma_{\mathcal{B}}, \Delta\right)$ by Lemma 2.3, where Δ is a self-paired X-orbit on $\operatorname{Arc}_{3}\left(\Gamma_{\mathcal{B}}\right)$. Then, by Theorem 6.3, one of Theorem 4.1 (1) and (2) occurs.

Assume that $(v, b, r, \lambda)=(7,7,3,1)$. Then $\mathcal{D}(B) \cong \mathrm{PG}(2,2)$ is X_{B}-flag-transitive, and so $X_{B}^{\Gamma_{\mathcal{B}}(B)}$ is isomorphic to a subgroup of $\operatorname{PSL}(3,2)$, the automorphism group of $\operatorname{PG}(2,2)$. Since $\Gamma_{\mathcal{B}}$ is $(X, 2)$-arc transitive, $X_{B}^{\Gamma_{\mathcal{B}}(B)}$ is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence $\left|X_{B}^{\Gamma_{\mathcal{B}}(B)}\right| \geq$ 42. It follows that $X_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{PSL}(3,2)$. Thus $X_{B}^{B} \cong X_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{PSL}(3,2)$ by Theorem 3.4. Hence (c) holds. Since $m^{*}(\Gamma, \mathcal{B})=1$, by Theorem 3.3, $\left.\Gamma \cong \Pi_{(} \Gamma_{\mathcal{B}}, \Theta\right)$ for a symmetric X-orbit Θ on $D S t^{3}\left(\Gamma_{\mathcal{B}}\right)$. Then, by Theorem 7.1, Theorem 4.1(3) holds.

Assume that $\lambda=0, r=1$ and $v=3 b$. Then $\Gamma \cong e \Gamma[B, C]$ for $\{B, C\} \in E\left(\Gamma_{\mathcal{B}}\right)$. Since $|B \cap \Gamma(C)|=3$, we have $\Gamma[B, C] \cong 3 \mathbf{K}_{2}, \mathbf{C}_{6}$ or $\mathbf{K}_{3,3}$. Thus (d) occurs.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for helpful suggestions that have improved the presentation of the article.

REFERENCES

[1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, 1999.
[2] N. L. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, 2nd edition, Cambridge University Press, Cambridge, 1993.
[3] J. D. Dixon and B. Mortimer, Permutation Groups, Springer, New York, 1996.
[4] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm Algebra 27 (1999), 3755-3769.

JGT 20476

1 [5] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm Algebra 27 (1999), 3727-3754.
[6] A. Gardiner and C. E. Praeger, A geometrical approach to imprimitive graphs, Proc London Math Soc 71 (3) (1995), 524-546.
[7] A. Gardiner and C. E. Praeger, Topological covers of complete graphs, Math Proc Cambridge Philos Soc 123 (1998), 549-559.
[8] A. Gardiner and C. E. Praeger, Symmetric graphs with complete quotients, preprint.
[9] M. A. Iranmanesh, C. E. Praeger, and S. Zhou, Finite symmetric graphs with two-arc-transitive quotients, J Comb Theory B 94 (2004), 79-99.
[10] C. H. Li, C. E. Praeger, and S. Zhou, A class of finite symmetric graphs with 2-arc-transitive quotients, Math Proc Cambridge Phil Soc 129 (2000), 19-34.
[11] C. H. Li, C. E. Praeger, and S. Zhou, Imprimitive symmetric graphs with cyclic blocks, Eur J Comb, DOI: 10.1016/j.ejc.2009.02.006.
[12] Z. P. Lu and S. Zhou, Finite symmetric graphs with two-arc transitive quotients II, J Graph Theory 56 (2002), 167-193.
[13] M. Perkel, Near-polygonal graphs, Ars Comb 26(A) (1988), 149-170.
[14] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math 244 (2002), 521-537.
[15] S. Zhou, Constructing a class of symmetric graphs, Eur J Comb 23 (2002), 741-760.
[16] S. Zhou, Almost covers of 2-arc-transitive graphs, Comb 24 (2004), 731-745.
[17] S. Zhou, A local analysis of imprimitive symmetric graphs, J Algebraic Comb 22 (2005), 435-449.
[18] S. Zhou, On a class of finite symmetric graphs, Eur J Comb 29 (2008), 630-640.
[19] S. Zhou, Classification of a family of symmetric graphs with complete quotients, Discrete Math 309 (2009), 5404-5410.
[20] S. Zhou, Trivalent 2-arc transitive graphs of type G_{2}^{1} are near polygonal. Ann Comb, to appear.

Author Query Form
Journal Name: JGT Article Number: 20476

Query No	Proof Pagelineno	Details required	Authors response
Q1		Please update Reference [20].	

