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1. INTRODUCTION1

In this article, all graphs are assumed to be finite, nonempty, simple and undirected.
The reader is referred to [2, 3, 1], respectively, for notation and terminology on graphs,3
permutation groups and combinatorial designs.

Let � be a regular graph with vertex set V(�), edge set E(�) and valency val(�).5
For an integer s≥1, an s-arc is an ordered (s+1)-tuple (�0,�1, . . . ,�s) of vertices in �
such that {�i,�i+1}∈E(�) for 0≤ i≤s−1, and �i−1 �=�i+1 for 1≤ i≤s−1. By Arcs(�)7
we denote the set of s-arcs in �. A 1-arc is called an arc, and Arc1(�) is denoted by
Arc(�).9

Let X be a group acting on V(�). The induced action of X on V(�)×V(�) is given
by (�,�)x= (�x,�x) for �, �∈V(�) and x∈X. We say that X preserves the adjacency of11
� if Arc(�)x=Arc(�) for all x∈X. Note that X induces naturally an action on Arcs(�)
if X preserves the adjacency of �. The graph � is said to be (X,s)-arc transitive if �13
has at least one s-arc, X preserves the adjacency of � and X acts transitively on both
V(�) and Arcs(�); and � is said to be (X,s)-arc regular if in addition X acts regularly15
on Arcs(�). Further, � is said to be (X,s)-transitive if � is (X,s)-arc transitive but not
(X,s+1)-arc transitive. An (X,1)-arc transitive graph is usually called an X-symmetric17
graph.

Let � be an X-symmetric graph admitting a nontrivial X-invariant partition B on19
V(�), that is, 1<|B|<V(�) and Bx :={�x |�∈B}∈B for B∈B and x∈X. Such a graph is
said to be an imprimitive X-symmetric graph. The quotient graph �B of � with respect21
to B is defined to be the graph with vertex set B such that B∈B and C∈B are adjacent
in �B if and only if there exist �∈B and �∈C adjacent in �. It is easy to see that �B23
is X-symmetric. We always assume that �B has at least one edge, which implies that
each B∈B is an independent set of �.25

For �∈V(�) and B∈B, set �(�)={� | {�,�}∈E(�)}, �(B)=⋃
�∈B�(�), �B(B)={C∈

B | {B,C}∈E(�B)} and �B(�)={C∈B |�∈�(C)}. Since � is X-symmetric, for �∈B∈27
B and C∈�B(B), it is easily shown that the parameters v :=|B|, k :=|�(C)∩B| and
r :=|�B(�)| are independent of the choices of B, C and �. The graph � is said to be29
a multicover of �B if k=v. Noting that vr=val(�B)k (see [10], for example), � is a
multicover of �B if and only if r=val(�B). Let D(B) denote the incidence structure31
(B,�B(B)) such that �∈B is incident with some C∈�B(B) if and only if C∈�B(�).
Then D(B) is a flag-transitive 1-(v,k,r) design with val(�B) blocks [12, Lemma 2.1],33
which is independent of the choice of B up to isomorphism. For (B,C)∈Arc(�B),
denote by �[B,C] the bipartite subgraph of � induced by (�(C)∩B)∪(�(B)∩C). Then35
�[B,C] is independent of the choice of (B,C)∈Arc(�B) up to isomorphism.

It has been observed in the literature that the quotient graphs of (X, 2)-arc transitive37
graphs are usually not (X,2)-arc transitive, and that an X-symmetric graph with an
(X,2)-arc transitive quotient itself is not necessarily (X,2)-arc transitive. (For example,39
several examples are given in [4, 5] for the first situation; and for the second situation,
it is shown in [12] that every connected (X,3)-arc transitive graph is a quotient graph41
of at least one X-symmetric graph which is not (X,2)-arc transitive.) This observation
gave rise to a series of intensive studies of the following questions [18, 9].43

(Q1) When can �B be (X, 2)-arc transitive?
(Q2) What information of the structure of � can we obtain from an (X,2)-arc45

transitive quotient �B of �?
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The triple (�B,�[B,C],D(B)) mirrors “global” and “local” information of the struc-1
ture of �, which allows us to reconstruct � in some cases. This approach to imprimitive
symmetric graphs has received considerable attention in the literature. Gardiner and3
Praeger [6] first suggested such an approach, and they discussed the case when the
stabilizer X� of a vertex �∈V(�) in X acts primitively on �(�); and in [7, 8], they5
considered the case when �B is a complete graph and XB (the subgroup of X fixing
B set-wise) is 2-transitive on B. For the case where k=v−1≥2, Li et al. [10] found7
an elegant construction (called the 3-arc graph construction) for constructing certain
graphs. Iranmanesh et al. [9], and Lu and Zhou [12] studied the case where �B is9
(X,2)-arc transitive and obtained a series of interesting results. In particular, Lu and
Zhou [12] found the second type 3-arc graph construction, which led to a classification11
[19] of a family of symmetric graphs. The reader is referred to [14–18, 11] for further
developments in this topic.13

In answering the above two questions, a relatively explicit classification of (�,X,B)
has been given in [18], when �B is connected and (X, 2)-arc transitive such that 2=k≤15
v−1. This motivated us to investigate the case where k=3. The following is a summary
of the main result of this article, and more details will be given in Theorem 4.1.17

Theorem 1.1. Let � be an X-symmetric graph which admits an X-invariant partition
B on V(�) such that val(�B)≥2, �B is connected and (X,2)-arc transitive. If |B|>|B∩19
�(C)|=3 for (B,C)∈Arc(�B), then one of the following four cases occurs: (a) |B|=4
and val(�B)=4; (b) |B|=6 and val(�B)=4; (c) |B|=7 and val(�B)=7; (d) |B|=21
3val(�B).

Notation: For a group X acting on a set V and B⊆V , denote by XV the induced23
permutation group on V , by XB the set-wise stabilizer of B in X, and by X(B) the
point-wise stabilizer of B in X; for a positive integer m and a graph �, denote by m�25
the vertex-disjoint union of m copies of �.

2. GRAPHS CONSTRUCTED FROM GIVEN GRAPHS27

In this section, we restate several graphs constructed from a given graph, as well as
some of their properties, which turn out to be useful in a further characterization of29
(�,X,B) stated in Theorem 1.1.

Assume that � is an (X,2)-arc transitive graph with val(�)≥3. Let � be a self-31
paired X-orbit on Arc3(�), where self-parity means that (�3,�2,�1,�0)∈� whenever
(�0,�1,�2,�3)∈�. Define two kinds of 3-arc graphs [10, 12] as follows:

33
I(�,�), the graph with vertex set Arc(�) such that two arcs (�,�1) and (�,�1) of
� are adjacent if and only if (�1,�,�,�1)∈�; J (�,�), the graph with vertices the35
2-paths (paths of length 2) in � such that two distinct paths �1��2 and �1��2 are
adjacent if and only if one of �=�i, �=�j and (�i,�,�,�j)∈� for some i, j∈{1,2}.37

Let H(�) be the set of pairs (�1��2,�1��2) of 2-paths with �∈�(�)\{�1,�2}, �∈
�(�)\{�1,�2}. Let � be a self-paired X-orbit on H(�), where self-parity means that39
(�1��2,�1��2)∈� whenever (�1��2,�1��2)∈�. The 2-path graphH(�,�) with respect
to � is the graph with vertices the 2-paths in � such that two 2-paths are adjacent if41
and only if they give a pair in �.
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Proposition 2.1 (Li et al. [10], Lu and Zhou [12]). I(�,�), J (�,�) and H(�,�)1
are X-symmetric.

Let A� ={(�,�) |�∈�(�)} for �∈V(�). Set A={A� |�∈V(�)}. By [10, Theorem 10],3
it is easily shown that the following result holds.

Proposition 2.2. Let �=I(�,�). Then �∼=�A, val(�)= (val(�)−1)val(�[A�,A�])5
for (�,�)∈Arc(�), and each vertex of � is adjacent to exactly val(�)−1 blocks in A.

Let P� denote the set of 2-paths with a given mid vertex �∈V(�). Set P={P� |�∈7
V(�)}. Then, by [12], both J (�,�) and H(�,�) admit an X-invariant partition P with
quotient graphs isomorphic to �. The following lemma improves [12, Theorem 4.10].9

Lemma 2.3. Let � be an X-symmetric graph admitting an X-invariant partition B
with val(�B)≥3 and |�B(�)|=2 for �∈V(�). Set11

�=
{
(C,B(�),B(�),D)

∣∣∣∣∣
(�,�)∈Arc(�)

C∈�B(�),D∈�B(�),C �=B(�),D �=B(�)

}
,

where B(�) denotes the block in B containing �. Suppose that |�(D)∩B0∩�(C)| �=0 for13
any 2-path DB0C of �B with a given mid vertex B0∈B. Then �B is (X,2)-arc transitive,
� :=|�(D)∩B0∩�(C)| is independent of the choice of DB0C, � is a self-paired X-orbit15
on Arc3(�B), and either

(a) �=1 and �∼=J (�B,�); or17
(b) �≥2 and � admits a second nontrivial X-invariant partition

Q :={�(D)∩B∩�(C) |DBC is a 2-path of �B}19

on V(�), which is a proper refinement of B such that �Q∼=J (�B,�).

Proof. Note that val(�B)≥3. Take three distinct blocks C,D,D′ ∈�B(B0). Since21
|�(D)∩B0∩�(C)| �=0 and |�(D′)∩B0∩�(C)| �=0, there exist �,�∈�(C)∩B0 with
�∈�(D) and �∈�(D′). Let �′,�′ ∈C be such that (�,�′), (�,�′)∈Arc(�). Then (�,�′)x=23
(�,�′) for some x∈X as � is X-symmetric. So, �x=� and �′x=�′. Then Bx

0=B0
and Cx=C, hence x∈XB0 ∩XC. Further C,Dx,D′ ∈�B(�), it follows that Dx=D′25
as |�B(�)|=2. Thus XB0 ∩XC is transitive on �B(B0)\{C}, it follows that XB0 is
2-transitive on �B(B0). Therefore, �B is (X,2)-arc transitive. Then, by [12], �≥1 is a27
constant number; and if �=1, � is a self-paired X-orbit on Arc3(�B) and �∼=J (�B,�).
In the following we assume �≥2.29

We first show that Q is an X-invariant partition of V(�). Take two arbitrary
2-paths D1B1C1 and D2B2C2 of �B. Suppose that there exists some �∈V(�) such that31
�∈ (�(D1)∩B1∩�(C1))∩(�(D2)∩B2∩�(C2)). Then B1=B2 and Ci,Di∈�B(�) for
i=1,2. Since |�B(�)|=2, we have that {C1,D1}={C2,D2}, thus D1B1C1=D2B2C2.33
It follows that Q is a partition of V(�). For any 2-path DBC and x∈X, we have
(�(D)∩B∩�(C))x =�(Dx)∩Bx∩�(Cx)∈Q. Thus Q is X-invariant. Since � is not a35
multicover of �B, we know |B|>|�(D)∩B∩�(C)|=�≥2, so Q is a proper refinement
of B. Then (B,Q) gives an X-invariant partition B̄ :={B̄ |B∈B} of V(�Q), where37
B̄={�(D)∩B∩�(C) |C,D∈�B(B),C �=B}.
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We denote a vertex �(D)∩B∩�(C) of �Q by �̄ if �∈�(D)∩B∩�(C). Consider1
the quotient graph (�Q)B̄ of �Q with respect to B̄. For any 2-path D̄B̄C̄ of (�Q)B̄
and any �̄∈V(�Q), we have |(�Q)B̄(�̄)|=2 and |�Q(D̄)∩B̄∩�Q(C̄)|=1. It follows3
from (a) that �Q∼=J ((�Q)B̄ , �̄), where �̄={(C̄, B̄(�̄), B̄(�̄), D̄) | (C,B(�),B(�),D)∈�}.
Moreover, it is easily shown that B̄→B, B̄ �→B is an isomorphism from (�Q)B̄ to �B.5
Therefore, �Q∼=J ((�Q)B̄ , �̄)∼=J (�B,�). �

3. DOUBLE STAR GRAPHS7

Let � be an X-symmetric graph that admits an X-invariant partition B such that �B
is (X, 2)-arc transitive. If r=1, 2, b−2 or b−1 then, by [12], � or its a quotient9
is isomorphic to |E(�B)|K2, J (�B,�), H(�B,�) or I(�B,�). This motivates us to
consider the general case where 1≤r≤b−1, and introduce stars and generalized 2-path11
graphs, called double star graphs.

In this section, we always assume that � is an X-symmetric graph of valency v≥2.13
For �∈V(�) and a k-subset S of �(�), the pair (�,S) is called a k-star of �. Let
Stk(�) denote the set of k-stars of �. An X-orbit S on Stk(�) is symmetric if X�∩XS15
acts transitively on S for some (�,S)∈S. Let L and R be k-subsets of �(�) and �(�),
respectively, an ordered pair ((�,L), (�,R)) of k-stars is called a double k-star of �17
if �∈L and �∈R. Denote by DStk(�) the set of double k-stars of �. Let � be an
X-orbit on DStk(�) and set St(�)={(�,L), (�,R) | ((�,L), (�,R))∈�}. Then � is said19
to be symmetric if St(�) is a symmetric X-orbit on Stk(�) and � is self-paired, that
is, ((�,R), (�,L))∈� whenever ((�,L), (�,R))∈�.21

Let S be a symmetric X-orbit on Stk(�). For �∈V(�), set S� ={(�,S) | (�,S)∈S}.
Define an incidence structure D(�) := (�(�),S�) in which �∈�(�) is incident with23
(�,S)∈S� if and only if �∈S. Then it is easy to see that D(�) is an X�-flag-transitive
1-design, and D(�) is independent of the choice of �∈V(�) up to isomorphism.25

Let �∈V(�) and D(�) be an X�-flag-transitive 1-(v,k,r) design with vertex set �(�).
It may happen that distinct blocks of D(�) have the same trace. Since D(�) is flag-27
transitive, the number of blocks with the same trace is a constant, say m(D(�)), called
the multiplicity of D(�). Let D′(�) be the design with vertex set �(�) and blocks being29
the traces of blocks of D(�). Then D′(�) is an X�-flag-transitive 1-(v,k,r /m(D(�)))
design.31

Theorem 3.1. Let �∈V(�). If there exists some X�-flag-transitive 1-(v,k,r) design
D(�) on �(�) for 1≤k≤v−1 such that r /m(D(�)) is odd, then there exists a symmetric33
X-orbit on DStk(�).

Proof. Set S={(�x,Sx) |x∈X,S∈D′(�)}. It is easily shown that D′(�)∼=D(�) and35
S is a symmetric X-orbit. Let (�,�)∈Arc(�). Since � is X-symmetric, (�,�)y= (�,�)
for some y∈X. Set S(�,�)={(�,S)∈S� |�∈S}. Then r /m(D(�))=|S(�,�)| is odd,37

Sy
(�,�)=S(�,�) and Sy2

(�,�)=S(�,�). Let O be a 〈y2〉-orbit on S(�,�) with odd length

l. Then, for (�,S)∈O, the stabilizer of (�,S) in 〈y2〉 is 〈y2l〉. Let z=yl. Then39
((�,S), (�,Sz))z= ((�,Sz), (�,S)), and hence � :={((�,S)x, (�,Sz)x) |x∈X} is a symmetric
X-orbit on DStk(�) with St(�)=S. �

Journal of Graph Theory DOI 10.1002/jgt
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Let 1≤k≤v−1 and � be a symmetric X-orbit on DStk(�). The double star graph1
�(�,�) of � with respect to � is the graph with vertex set St(�) such that two k-stars
(�,L) and (�,R) are adjacent if and only if they give a pair in �.3

Theorem 3.2. Let � :=�(�,�) be as above. Set S=St(�) and B={S� |�∈V(�)}.
Then � is X-symmetric, B is a nontrivial X-invariant partition on V(�) such that5
�B ∼=�, � is not a multicover of �B, and D(S�)∼=D∗(�) for �∈V(�), where D∗(�) is
the dual design of D(�).7

Proof. It is easily shown that � is X-symmetric, B is an X-invariant partition
of V(�), and V(�)→V(�B), � �→S� gives an isomorphism from � to �B. For any9
(�,S)∈S� ∈B, as 1≤k=|S|≤v−1, take �∈S and �∈�(�)\S. Since � is X-symmetric,
there exists x∈X� such that �=�x. Then (�,S) �= (�,Sx)∈S�, so v :=|S�|≥2 and B is11
nontrivial. Since (�,�)∈Arc(�) and � is a symmetric X-orbit, there exists (�,R)∈S�
with ((�,Sx), (�,R))∈�, hence S� ∈�B(S�). If ((�,S), (�,R′))∈� for some (�,R′)∈S�,13
then �∈S, a contradiction. Thus (�,S) �∈S�∩�(S�), so |S�∩�(S�)|<v and � is not a
multicover of �B.15

Let �∈V(�). Define 	 :S�∪�B(S�)→S�∪�(�); (�,S) �→ (�,S), S� �→�. If S� ∈
�B(B), then there exist (�,L)∈S� and (�,R)∈S� such that ((�,L), (�,R))∈�; in17
particular, �∈L⊆�(�), so 	 is well-defined. It is easily shown that 	 is a bijection. By
the definition of D(S�), we know that (�,S)∈B is incident with S� ∈�B(B) if and only19
if there is some (�,T)∈C with ((�,S), (�,T))∈�, that is, �∈T and �∈S; it follows that
� is incident with (�,S) in D(�).21

Assume that �′ ∈�(�) is incident with (�,S′) in D(�). Then �′ ∈S′. Take some
(�′,T ′) with ((�,S′), (�′,T ′))∈�. Then �′ ∈S′. Since S is a symmetric X-orbit, there23
is some x∈X�∩XS′ with �′x=�′. Thus (�,S′)x= (�,S′), (�′,T ′)x= (�′,T ′x)∈S�′ and
((�,S′), (�′,T ′)x)= ((�,S′), (�′,T ′))x∈�. Hence (�,S′) is incident with S�′ in D(S�).25
The above argument says that 	 is an isomorphism from D(S�) to D∗(�). So
D(S�)∼=D∗(�). �27

In the following, we assume that � is an X-symmetric graph admitting a nontrivial X-
invariant partition B such that val(�B)≥2 and � is not a multicover of �B. For �∈B∈B,29
define B� =B∩(

⋂
C∈�B(�)�(C)). Then |B�|, denoted by m∗(�,B), is independent of the

choices of B and �. Since� is not a multicover of�B, we havem∗(�,B)≤k :=|B∩�(C)|31
for C∈�B(B). In fact, m∗(�,B) is the multiplicity of the dual design D∗(B) of D(B). Set
B={B� |B∈B,�∈B}. Then B is an X-invariant partition of V(�). Let B̄={B� |�∈B}.33
Then �B is an X-symmetric graph with an X-invariant partition B̄ :={B̄ |B∈B} such
that (�B)B̄ ∼=�B and m∗(�B, B̄)=1.35

Theorem 3.3. Set S={(B,�B(�)) |B∈B,�∈B}. Then S is a symmetric X-orbit on
Str(�B),where r=|�B(�)| is a constant. Let�={((B,�B(�)), (C,�B(�))) |�∈B∈B,�∈37
C∈B, (�,�)∈Arc(�)}. Then � is a symmetric X-orbit on DStr(�B) with St(�)=S and
�B ∼=�(�B,�), and X acts faithfully on B if and only X acts faithfully on B.39

Proof. It is easily shown that � is a symmetric X-orbit on DStr(�B) with St(�)=
S. Assume m∗(�,B)=1. Then B� ={�} and C� ={�} for two distinct vertices �∈B∈41
B and �∈C∈B, it implies that �B(�) �=�B(�), hence (B,�B(�)) �= (C,�B(�)). Thus
V(�)→V(�(�B)), � �→ (B,�B(�)) is a bijection, which gives an isomorphism between43
� and �(�B,�).
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Now assume m∗(�,B)>1. Recall that m∗(�,B)≤k :=|B∩�(C)| for C∈�B(B).1
Then B is a proper refinement of B. Consider the pair (�B, B̄). Then m∗(�B, B̄)=1.
A similar argument as above leads to �B∼=�(�,�̄), where �= (�B)B̄ and �̄=3
{((B̄,�(B�)), (C̄,�(C�))) |B� ∈ B̄∈ B̄,C� ∈ C̄∈ B̄, (B�,C�)∈Arc(�B)}. Noting that B� =
B�′ for any �′ ∈B�, it follows that (B̄,�(B�)) �→ (B,�B(�)) gives a bijection between5
V(�(�,�̄)) and V(�(�B,�)), which is in fact an isomorphism between �(�,�̄) and
�(�B,�). Hence �B ∼=�(�B,�).7

Let K and H be the kernels of X acting on B and on B, respectively. Noting that B
is a refinement of B, we have H≤K. Let x∈K and B� ∈ B̄∈B. Since m∗(�B, B̄)=1, we9
have {B�}= B̄∩(

⋂
C̄∈(�B)B̄(B�)�B(C̄))= B̄∩(

⋂
C∈�B(�)�B(C̄)), yielding Bx

� =B�. The
above argument gives x∈H. Hence K≤H, and so H=K. Therefore, X acts faithfully11
on B (that is, K=1) if and only if X acts faithfully on B (that is, H=1). �

Finally, we list a simple fact which will be used in the following sections.13

Theorem 3.4. If m∗(�,B)=1=m(D(B)), then XB
B

∼=X�B(B)
B for B∈B.

Proof. If x∈X fixes B set-wise, then it also fixes the neighborhood �B(B) of B15
in �B. Now consider the action of XB on �B(B), and let K be the kernel of this
action. For any �∈B, since m∗(�,B)=1, we have {�}=B∩(

⋂
C∈�B(�)�(C)). It follows17

that K fixes �. Thus K≤X(B). On the other hand, x fixes B∩�(C) point-wise for any
x∈X(B) and any C∈�B(B); in particular, B∩�(Cx)= (B∩�(C))x=B∩�(C). It follows19
from m(D(B))=1 that C=Cx. Therefore, x∈K. Thus X(B)≤K, and so X(B)=K. Then

XB
B

∼=XB /X(B)=XB /K∼=X�B(B)
B . �21

4. THE MAIN RESULT

A near n-gonal graph [13] is a connected graph � of girth at least 4 together with23
a set E of n-cycles of � such that each 2-arc of � is contained in a unique member
of E . Let Arc3(E) be the set of 3-arcs appearing on cycles in E . For a cycle C in an25
X-symmetric graph, denote by XC the subgroup of X which preserves the adjacency of
C, and set XC

C =XC /X(V(C)).27

Theorem 4.1. Let � be an X-symmetric graph admitting a nontrivial X-invariant
partition B such that val(�B)≥2, �B is connected and X is faithful on V(�). Assume29
that |B|>|�(C)∩B|=3 for (B,C)∈Arc(�B). Set e=|E(�B)|. If further �B is (X,2)-arc
transitive, then31

(a) |B|=4, val(�B)=4 and XB
B

∼=A4 or S4; or
(b) |B|=6, val(�B)=4 and XB

B
∼=A4 or S4; or33

(c) |B|=7, val(�B)=7 and XB
B

∼=PSL(3,2); or
(d) |B|=3val(�B) and �∼=3eK2, eC6 or eK3,3.35

Further, each of (a), (b) and (c) implies that �B is (X,2)-arc transitive with X faithful
on B, � is connected provided �[B,C] �∼=3K2, and � is isomorphic to one of I(�B,�),37
J (�B ,�) and �(�B,�), respectively, where � is a self-paired X-orbit on Arc3(�B)
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and � is a symmetric X-orbit on DSt3(�B); moreover, one of (a) and (b) yields (1) or1
(2), and (c) yields (3).

(1) Either �B ∼=K5 or �B is near n-gonal with respect to an X-orbit E of n-cycles3
of �B such that |E|≥6, n≥4, n|E|=3e=6|B| and XC

C
∼=D2n (the dihedral group

of order 2n) for C∈E ; and either5
(1.1) �[B,C]∼=3K2, XB

∼=A4 or S4, �=Arc3(E), val(�)=3 if (a) holds or �∼=
|E|Cn if (b) holds; or7

(1.2) �[B,C]∼=C6, XB
∼=S4, � is (X,1)-arc regular, val(�)=6 if (a) holds or

val(�)=4 if (b) holds, and Arc3(�B)\�=Arc3(E) is a self-paired X-orbit9
on Arc3(�B).

(2) �[B,C]∼=K3,3, �B is (X,3)-arc transitive, and val(�)=9 or 6 for (a) or (b)11
respectively.

(3) val(�)=3,6 or 9 depending on �[B,C]∼=3K2, C6 or K3,3, respectively; and if13
val(�)=3 then � is (X,2)-arc transitive.

5. SELF-PAIRED ORBITS OF 3-ARCS15

The following lemma is formulated from [10, Remark 4(c)(ii)] by noting that it is
available to symmetric graphs.17

Lemma 5.1. Every X-symmetric graph � with even valency contains a self-paired
X-orbit on Arc3(�).19

Let � be an X-symmetric graph with valency v≥2 and � be a self-paired X-orbit
on Arc3(�). For (�1,�,�,�1)∈�, consider the action of X(�1,�,�) on �(�)\{�}, and use21
�(�) to denote the length of the orbit containing �1. Then �(�) is independent of the
choice of (�1,�,�,�1)∈�.23

Theorem 5.2. Let � be a connected (X, 2)-arc transitive graph with valency v≥3 and
� be a self-paired X-orbit on Arc3(�) such that �(�)=1. If X is faithful on V(�), then25
X� is faithful on �(�) for �∈V(�). Set f =|V(�)| and e=|E(�)|. Then J (�,�)∼=mCn
such that27

(1) m≥v(v−1) /2, n≥girth(�) and mn= fv(v−1) /2=e(v−1);
(2) �=Arc3(E) for an X-orbit E of n-cycles of � with |E|=m and XC

C
∼=D2n for29

C∈E , where D2n is the dihedral group of order 2n;
(3) each 2-path of � is contained in a unique member of E , and either �∼=Kv+1 or31

n≥4 and � is a near n-gonal graph with respect to E .

Proof. Since � is (X,2)-arc transitive, each 2-arc of � lies in a member of �.33
Let (�,�) be an arbitrary arc of �. Since �(�)=1 and � is a self-paired X-orbit,
we conclude that, for any �1∈�(�)\{�}, there is a unique �1∈�(�)\{�} such35
that (�1,�,�,�1)∈�, X(�1,�,�)=X(�,�,�1) and (�′

1,�,�,�1)∈� yielding �′
1=�1. Then

(X�)(�(�))=
⋂

�1∈�(�)\{�}X(�1,�,�)=
⋂

�1∈�(�)\{�}X(�,�,�1)= (X�)(�(�)). It follows from the37
connectedness of � that (X�)(�(�)) fixes every vertex of �. Thus, if X is faithful on
V(�), then (X�)(�(�))=1 and X� is faithful on �(�).39
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Let �=J (�,�). By [12, Theorem 4.4], � is X-symmetric and admits an X-invariant1
partition P :={P� |�∈V(�)} such that �∼=�P , where P� is the set of 2-paths of � with
mid vertex �. It follows from [12] that r :=|�P (�)|=2 and � :=|P�∩�(P�)∩�(P�)|=13
for any vertex � (a 2-path of �) in V(�) and P� with �∈P� and �P (�)={P�,P�}.
Since �(�)=1 and � is self-paired, for any 2-path �1�� of �, there exist exactly two5
2-paths ���1 and �2�1� such that (�1,�,�,�1)∈� and (�2,�1,�,�)∈�. It follows that
val(�)=2, so �∼=mCn for some m and n. Then mn is the number of 2-paths of �, hence7
mn= fv(v−1) /2=e(v−1). Noting that val(�)=2 and each P� is an independent set
of �, it follows that different vertices in P� appear in different n-cycles of �. Thus9
m≥|P�|=v(v−1) /2.

Let C̄=�1�2 . . .�n�1 be an arbitrary n-cycle of �, where �i=�i�i�i are n distinct11
2-paths of � with mid vertices �i, respectively. Without loss of generality, we assume
�i=�i+1=�i+2 for 1≤ i≤n, where the subscripts are reduced modulo n. Since �i is13
a 2-path of �, �i �=�i, hence �i �=�i+1. Then (�i,�i+1)∈Arc(�). Since {�i,�i+1} is an
edge of �, we have (�i−1,�i,�i+1,�i+2)= (�i,�i,�i,�i+1)∈�.15

Now we show that C :=�1�2 . . .�n�1 is an n-cycle of �; in particular, n≥girth(�).
Note that C̄ is a component of �. Then C̄ is XC̄-symmetric; in particular, XC̄

C̄
∼=D2n.17

Thus there exist x,y∈XC̄ such that �xi =�i+1 and �yi =�n−i+1, hence �xi =�i+1 and
�y
i =�n−i+1 for 1≤ i≤n with the subscripts modulo n. Assume that �i=�j for some19

i and j. Then �i+1=�xi =�xj =�j+1 and �i+2=�xi+1=�xj+1=�j+2. Thus P�i =P�j ,
P�i+1 =P�j+1 and P�i+2 =P�j+2 . It yields (�i,�i+1), (�j,�j+1)∈Arc(�[P�i ,P�i+1 ]) and21
(�i+1,�i+2), (�j+1,�j+2)∈Arc(�[P�i+1 ,P�i+2 ]). It follows that �i+1, �j+1∈P�i+1 ∩
�(P�i)∩�(P�i+2 ). Since 1=�=|P�i+1 ∩�(P�i )∩�(P�i+2 )|, we have �i+1=�j+1. Thus23
i= j. Then all �i are distinct, and so C is an 〈x,y〉-symmetric n-cycle. Hence XC

C
∼=D2n.

Set E={Cx |x∈X}. Then E is an X-orbit of n-cycles of �. Since C is XC-symmetric,25
C is (XC, 3)-arc transitive. Recall that the 3-arc (�i−1,�i,�i+1,�i+2) of C is contained
in �. It follows that �=Arc3(E).27

It is easily shown that XC̄ is a subgroup of XC. Suppose that XC̄ is a proper subgroup
of XC. Then there is some z∈XC with Cz=C but C̄z �= C̄, so V(C̄)∩V(C̄z)=∅ as C̄29
and C̄z are distinct connected components of �. Since Cz=C, there exist i, j and l
with �1=�zi , �2=�zj and �3=�zl . Then �zi =�zi�1�

z
i ∈P�1 , �zj =�zj�2�

z
j ∈P�2 and �zl =31

�zl�3�
z
l ∈P�3 . Since (�1,�2,�3) is a 2-arc of C, we know that (�i,�j,�l) is also a 2-

arc of C. It follows that i− j≡ j− l≡±1(mod n). Then �i�j�l is a 2-path of C̄, and33
so �zi�

z
j�

z
l is a 2-path of C̄z. Thus �2, �

z
j ∈P�2 ∩�(P�1 )∩�(P�3 ). Since V(C̄)∩V(C̄z)=

∅, we have �2 �=�zj , which contradicts �=1. Then XC̄=XC and so |E|=|X :XC|=35
|X :XC̄|=m.

Recall that the number of 2-paths of � is equal to mn. Since � is (X, 2)-arc transitive,37
every 2-path is contained in some n-cycle in E . Noting each of the m cycles in E has
exactly n paths of length 2, it follows that each 2-path of � is contained in a unique39
member of E . Thus either �∼=Kv+1, or n≥girth(�)≥4 and � is a near n-gonal graph
with respect to E . �41

The following result follows from Lemmas 5.1 and 5.2.

Corollary 5.3. Every connected (X,2)-arc regular graph with even valency and girth43
no less than 4 is a near n-gonal graph for some integer n≥4.
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Remark. We would like to mention a recent result on near polygonal graphs of odd1
valency. Zhou [20] gave a necessary and sufficient condition for a trivalent 2-arc
transitive to be near polygonal.3

6. TETRAVALENT 2-ARC TRANSITIVE GRAPHS

The main aim of this section is to give a characterization of tetravalent 2-arc transitive5
graphs. The following simple lemma is useful.

Lemma 6.1. Let � be an X-symmetric graph admitting an X-invariant partition B7
with connected (X,2)-arc transitive quotient �B. Assume that |�B(�)|>1 and �[B,C]
are connected for �∈V(�) and (B,C)∈Arc(�B(B)). Then � is connected.9

Proof. It suffices to show that any two distinct vertices � and � are joined by a
path in �. Since |�B(�)|>1 and �B is (X, 2)-arc transitive, � :=|�(C)∩B∩�(D)| �=0 is11
a constant for B∈B and distinct C, D∈�B(B).

Assume that �,�∈B. Without loss of generality, we assume �∈�(C)∩B∩�(D). If13
�∈�(C)∩B, then there is a path between � and � as �[B,C] is connected. Assume
� �∈�(C)∩B. Take D′ ∈�B(�). Then D′ ∈�B(B), �∈B∩�(D′) and |�(C)∩B∩�(D′)|=15
�>0. Let �∈�(C)∩B∩�(D′). Then either �=� or there is a path between � and �, and
there is a path between � and �. Thus there is a path between � and �.17

Now let �∈B and �∈B′ with B �=B′. Since �B is connected, there is a path B=
B1B2 . . .Bl=B′. Let �′

l∈Bl and �l−1∈Bl−1 such that {�l−1,�
′
l}∈E(�). Thus there is a19

path between �l−1 and �. Then induction on l implies that there is a path between �
and �. �21

Let � be an (X,2)-arc transitive graph with val(�)=4. Recall that H(�) is the set
of pairs (�′��′′,�′��′′) of 2-paths in � such that �∈�(�)\{�′,�′′}, �∈�(�)\{�′,�′′}.23
For �⊆Arc3(�), define H(�)={(�2��3,�2��3) | (�1,�,�,�1)∈Arc3(�), {�,�1,�2,�3}=
�(�), {�,�1,�2,�3}=�(�)}. Then H(�)⊆H(�). It is easily shown that � is a self-paired25
X-orbit on Arc3(�) if and only if H(�) is a symmetric X-orbit on H(�).

Lemma 6.2. Let � be a connected (X,2)-arc transitive graph of valency 4. If � is a27
self-paired X-orbit on Arc3(�), then J (�,�)∼=H(�,H(�)).

Proof. Define 
 : [�1,�,�2] �→ [�3,�,�4], where {�3,�4}=�(�)\{�1,�2}. It is easy to29
check that 
 is an isomorphism from J (�,�) to H(�,H(�)). �

Theorem 6.3. Let � be a connected (X,2)-arc transitive graph with valency 4 and31
X acting faithfully on V(�). Then � has a self-paired X-orbit � of 3-arcs. Let �=
J (�,�) and �′ =I(�,�). Then �[P�,P�]∼=�′[A�,A�] for (�,�)∈Arc(�), and one of33
the following cases occurs.

(1) Either �∼=K5 or � is a near n-gonal graph with respect to an X-orbit E of35
n-cycles of � with |E|≥6, n≥girth(�), n|E|=3|E(�)|=6|V(�)| and XC

C
∼=D2n

for C∈E ; and either.37
(1.1) �[P�,P�]∼=3K2, �∼=mCn, val(�

′)=3, �=Arc3(E), XP� =XA� =X� ∼=A4
or S4; or39
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(1.2) �[P�,P�]∼=C6, val(�)=4, val(�′)=6, XP� =XA� =X� ∼=S4, both � and1
�′ are connected and (X,1)-arc regular, and Arc3(E)=Arc3(�)\� is a
self-paired X-orbit on Arc3(�).3

(2) �[P�,P�]∼=K3,3, val(�)=6, val(�′)=9, both � and �′ are connected, and � is
(X,3)-arc transitive.5

Proof. By Lemma 5.1, � has a self-paired X-orbit � on Arc3(�). Let �(�) be defined
as in Section 5. Then �(�)≤3 as val(�)=4. By [12, Theorem 4.4], �=J (�,�) is X-7
symmetric and admits an X-invariant partition P={P� |�∈V(�)}. By Proposition 2.2,
�′ =I(�,�) is X-symmetric and admits an X-invariant partition A={A� |�∈V(�)}.9

Let (�,�)∈Arc(�). Then there is a 3-arc (�1,�,�,�1)∈� as � is X-symmetric. It
follows that {�1��,���1} is an edge of �[P�,P�], and that {(�,�1), (�,�1)} is an edge11
of �′[A�,A�]. It is easily shown that X(�,�)=X�∩X� =XP� ∩XP� acts transitively on
the edges of �[P�,P�]. It implies that X(�1,�,�) acts transitively on the neighborhood13
of �1�� in �[P�,P�]. Then val(�[P�,P�])=|X(�1,�,�) :X(�1,�,�,�1)|=�(�). Since � is
(X, 2)-arc transitive, X(�,�) is transitive on both �(�)\{�} :={�1,�2,�3} and �(�)\{�} :=15
{�1,�2,�3}. Thus V(�[P�,P�])={�i�� | i=1,2,3}∪{���i | i=1,2,3}. A similar argu-
ment leads to V(�′[A�,A�])={(�,�i) | i=1,2,3}∪{(�,�i) | i=1,2,3}. It is easy to check17
that �i�� �→ (�,�i), ���i �→ (�,�i) gives an isomorphism from �[P�,P�] to �′[A�,A�].
Further, �[P�,P�]∼=3K2, C6 or K3,3 according to �(�)=1, 2 or 3, respectively. By [12,19
Theorem 4.3], 2=|�P (�1��)| for �1��∈V(�). Then val(�)=�(�)|�P (�1��)|=2�(�).
By Lemma 2.2, val(�′)=3�(�). Further, by Lemma 6.1, both � and �′ are connected21
provided �[P�,P�] �∼=3K2.

If �(�)=3, then val(�)=2�(�)=6, val(�′)=3�(�)=9, �[P�,P�]∼=K3,3, and (2)23
follows from [10, Theorem 2]. Thus we assume that �(�)≤2 in the following.

It is easy to see X� =XP� =XA� , (X�)(�(�))=X(P�)=X(A�) and hence X
�(�)
� ∼=XP�

P�
=XA�

A�
.25

Since � is (X, 2)-arc transitive, X�(�)
� ∼=A4 or S4. Further, if �(�)=2 then |X�(�)

� |>12 as
� is not (X,2)-arc regular in this case. Let �′ =� or Arc3(�)\� depending on �(�)=127
or 2, respectively. It is easily shown that �(�′)=1 and �′ is a self-paired X-orbit on
Arc3(�). Then (1) follows from Theorem 5.2 and the above argument. �29

Corollary 6.4. Let � be a connected tetravalent (X,2)-transitive graph. Then either
�∼=K5, or � is a near n-gonal graph for some integer n≥4.31

7. HEPTAVALENT GRAPHS WITH X
R(s)
s

∼=PSL(3,2)

Theorem 7.1. Let � be an (X,2)-arc transitive graph of valency 7 with X�(�)
� ∼=33

PSL(3,2) for �∈V(�). Then there exists a symmetric X-orbit � on DSt3(�). Let
�=�(�,�) and S=St(�). Then, for �∈�(�), one of the following cases occurs.35

(1) �[S�,S�]∼=3K2, and � is a trivalent (X,2)-arc transitive graph;
(2) �[S�,S�]∼=C6, val(�)=6 and � is connected;37
(3) �[S�,S�]∼=K3,3, val(�)=9 and � is connected.

Proof. Let �∈V(�). Since X�(�)
� ∼=PSL(3,2), we may identify �(�) with the point set39

of the seven-point plane PG(2,2), which is an X�-flag-transitive 1-(7,3,3) design with
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multiplicity 1. By Theorem 3.1, there exists a symmetric X-orbit � onDSt3(�). Let S=1
St(�) and �=�(�,�). Then, by Theorem 3.2, � is X-symmetric and �B ∼=�, where
B={S� |�∈V(�)} and S� ={(�,S) | (�,S)∈S}. Further, for S� ∈B, we have X� =XS� and3
D(S�)∼=D∗(�)∼=PG(2,2). In particular, |S�∩�(S�)|=3 for �∈�(�); thus �[S�,S�]∼=
3K2, C6 or K3,3. Noting that two distinct lines of PG(2,2) intersect a unique point and5
two distinct points determine a unique line, it follows that � :=|�(S�)∩S�∩�(S�)|=1
for �,�∈�(�) with � �=�. By Lemma 6.1, � is connected if �[S�,S�] �∼=3K2. Note that7
each point of D(S�) is incident with three blocks. Then val(�)=3val(�[S�,S�]). Thus
(2) or (3) holds if �[S�,S�] �∼=3K2.9

Assume that �[S�,S�]∼=3K2. Then val(�)=3. Let �∈S�, and �(�)={�1,�2,�3}
with �i∈S�i for i=1,2,3. Then �1, �2 and �3 are distinct vertices of �. Recall D(S�)∼=11
D∗(�)∼=PG(2,2). Then we may identify � with a line of PG(2,2), and S�i with the

points on this line. Then (X�(�)
� )� ∼=S4 acts 2-transitively on {S�i | i=1,2,3}. It implies13

that (X�)� =X� acts 2-transitively (and unfaithfully) on {�1,�2,�3}. Thus � is (X,2)-arc
transitive, and (1) holds. �15

8. PROOF OF THEOREM 4.1

Let � be an X-symmetric graph admitting an X-invariant partition B such that �B17
is connected and X is faithful on V(�). Set b=val(�B), v=|B|, r=|�B(�)| and k=
|B∩�(C)| for �∈V(�) and (B,C)∈Arc(�B). Assume that b≥2 and v>k=3. Recall19
that D(B) is a 1-(v,b,r)-design.

We first show that each of Theorem 4.1(a)–(c) implies that �B is (X, 2)-arc transitive.21
Assume that one of (a), (b) and (c) occurs. Since vr=bk, we have (v,b,r) is one of
(4,4,3), (6,4,2) and (7,7,3).23

Consider the multiplicity m(D(B)) of D(B). Suppose that m(D(B)) �=1. Then �B(B)
admits an XB-invariant partition M :={MC |C∈�B(B)}, where MC is a set of blocks25
of D(B) with the same trace B∩�(C) of C. Thus m(D(B))=|MC| is a divisor of b.
For �∈B, it is easy to see that C∈�B(�) yields D∈�B(�) for any D∈MC. This27
observation says that m(D(B)) is also a divisor of r. It follows that (v,b,r)= (6,4,2),
m(D(B))=2= r and |M|=2. Set M={MC,MD}. Then T :={B∩�(C),B∩�(D)} is29
an XB-invariant partition of B. Let K be the kernel of XB acting on T . Then |XB :K|=2
and X(B)≤K. It follows that XB

B
∼=S4 and K /X(B)∼=A4. Note that K is in fact the set-31

wise stabilizer of B∩�(C), and also of B∩�(D), in XB. Then K is transitive on both
B∩�(C) and B∩�(D). Let H and H1 be the kernels of K acting on B∩�(C) and33
on B∩�(D), respectively. Then K /H and K /H1 are permutation groups of degree 3.
Noting that X(B)≤H and X(B)≤H1, it follows that H /X(B) and H1 /X(B) are normal35
subgroups of K /X(B) with index 3 in K /X(B). Hence H1 /X(B)=H /X(B) as A4 has only
one normal subgroup of order 4. Thus H1=H fixes B point-wise, and so H≤X(B),37
which contradicts |H /X(B)|=4. Thus m(D(B))=1.

Recall that m∗(�,B) is the multiplicity of the dual design D∗(B) of D(B) and39
m∗(�,B)=|B�| for �∈B∈B and B� =B∩(

⋂
C∈�B(�)�(C)). It is easily shown that {B� |

�∈B} is an XB-invariant partition of B; in particular, m∗(�,B)=|B�| is a divisor of41
|B|=v. Noting that B� ⊆B∩�(C) for �∈B and C∈�B(�), it follows that m∗(�,B) is
also a divisor of k=|B∩�(C)|. If m∗(�,B) �=1, then (v,k,r)= (6,3,2) and m∗(�,B)=k,43
so m(D(B))≥|�B(�)|=2, a contradiction. Thus m∗(�,B)=1.
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Therefore, m(D(B))=1=m∗(�,B), and X�B(B)
B

∼=XB
B by Theorem 3.4. Thus, if one1

of cases (a), (b) and (c) occurs then X�B(B)
B is 2-transitive on �B(B), and hence �B is

(X, 2)-arc transitive.3
Now assume that �B is (X, 2)-arc transitive. Then � :=|�(C)∩B∩�(D)| is inde-

pendent of the choice of 2-path CBD of �B, and m(D(B))=1 by [12, Lemma 2.4].5
By [12, Corollary 3.3], vr=3b and �(b−1)=3(r−1), thus (9−�v)r=3(3−�). Since
v>k=3, we have �≤k−1=2. If �=0, then r=1 and v=3b. Let �≥1. Then, by [12,7
Theorem 3.2], the dual design D∗(B) of D(B) is a 2-(b,r,�) design with v blocks.
The well-known Fisher’s Inequality applied to D∗(B) gives b≤v, and so r≤k=3. If9
�=2, then �(b−1)=3(r−1), (9−2v)r=3 yields (v,b,r)= (4,4,3). If �=1, then r≤k,
vr=3b and (9−v)r=6 yield (v,b,r)= (6,4,2) or (7,7,3).11

Note that m∗(�,B)≤� if � �=0. Suppose that m∗(�,B) �=1 for some � �=0. Then �=
2=m∗(�,B). Since r=3, there are C,D∈�B(�) with C �=D and B∩�(C)=B∩�(D).13
Thus C and D has the same trace, so m(D(B))≥2, a contradiction. Therefore, if � �=0
then m∗(�,B)=1 and, by Theorem 3.3 and 3.4, X�B(B)

B
∼=XB

B and X is faithful on B.15
Assume that (v,b,r,�)= (4,4,3,2) or (6,4,2,1). Then val(�B)=4, and XB

B
∼=A4 or

S4 as XB acts 2-transitively on �B(B). Thus (a) or (b) holds, so either �∼=I(�B,�) by17
[10, Theorem 2] or �∼=J (�B,�) by Lemma 2.3, where � is a self-paired X-orbit on
Arc3(�B). Then, by Theorem 6.3, one of Theorem 4.1 (1) and (2) occurs.19

Assume that (v,b,r,�)= (7,7,3,1). Then D(B)∼=PG(2,2) is XB-flag-transitive, and so
X�B(B)
B is isomorphic to a subgroup of PSL(3,2), the automorphism group of PG(2,2).21

Since �B is (X, 2)-arc transitive, X�B(B)
B is 2-transitive on �B(B), and hence |X�B(B)

B |≥
42. It follows that X�B(B)

B
∼=PSL(3,2). Thus XB

B
∼=X�B(B)

B
∼=PSL(3,2) by Theorem 3.4.23

Hence (c) holds. Since m∗(�,B)=1, by Theorem 3.3, �∼=�(�B,�) for a symmetric
X-orbit � on DSt3(�B). Then, by Theorem 7.1, Theorem 4.1(3) holds.25

Assume that �=0, r=1 and v=3b. Then �∼=e�[B,C] for {B,C}∈E(�B). Since
|B∩�(C)|=3, we have �[B,C]∼=3K2,C6 or K3,3. Thus (d) occurs.27
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