pp: 1-14 (col.fig.: Nil)

PROD. TYPE: COM PAGN: Anuradha - SCAN:

A Class of Symmetric Graphs With 2-ARC Transitive Quotients

Bin Jia, Zai Ping Lu, and Gai Xia Wang

CENTER FOR COMBINATORICS LPMC NANKAI UNIVERSITY, TIANJIN 300071 PEOPLE'S REPUBLIC OF CHINA E-mail: jiabinqq@gmail.com; lu@nankai.edu.cn; wgx075@163.com

Received 10 October 2008; Revised 17 October 2009

Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jgt.20476

- 7 **Abstract:** Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} on $V(\Gamma)$ such that $\Gamma_{\mathcal{B}}$ is connected and (X, 2)-arc transitive. A charac-
- 9 terization of (Γ, X, \mathcal{B}) was given in [S. Zhou Eur J Comb 23 (2002), 741–760] for the case where $|B| > |\Gamma(C) \cap B| = 2$ for an arc (B, C) of $\Gamma_{\mathcal{B}}$. We consider
- in this article the case where $|B| > |\Gamma(C) \cap B| = 3$, and prove that Γ can be constructed from a 2-arc transitive graph of valency 4 or 7 unless its
- 13 connected components are isomorphic to $3\mathbf{K}_2$, \mathbf{C}_6 or $\mathbf{K}_{3,3}$. As a byproduct, we prove that each connected tetravalent (*X*, 2)-transitive graph is either
- 15 the complete graph \mathbf{K}_5 or a near *n*-gonal graph for some $n \ge 4$. © 2009 Wiley Periodicals, Inc. J Graph Theory 00: 1–14, 2009
- 17 MSC: 05C25

1

3

5

Keywords: symmetric graph; 3-arc graph; 2-path graph; quotient graph; double star graph; near 19 n-gonal graph

Contract grant sponsors: 973 Program; NSF.

Journal of Graph Theory © 2009 Wiley Periodicals, Inc. 2 JOURNAL OF GRAPH THEORY

1 1. INTRODUCTION

In this article, all graphs are assumed to be finite, nonempty, simple and undirected. 3 The reader is referred to [2, 3, 1], respectively, for notation and terminology on graphs, permutation groups and combinatorial designs.

- 5 Let Γ be a regular graph with vertex set $V(\Gamma)$, edge set $E(\Gamma)$ and valency $val(\Gamma)$. For an integer $s \ge 1$, an s-arc is an ordered (s+1)-tuple $(\alpha_0, \alpha_1, \dots, \alpha_s)$ of vertices in Γ
- 7 such that $\{\alpha_i, \alpha_{i+1}\} \in E(\Gamma)$ for $0 \le i \le s-1$, and $\alpha_{i-1} \ne \alpha_{i+1}$ for $1 \le i \le s-1$. By $Arc_s(\Gamma)$ we denote the set of s-arcs in Γ . A 1-arc is called an arc, and $Arc_1(\Gamma)$ is denoted by 9
 - $Arc(\Gamma)$.
- Let X be a group acting on $V(\Gamma)$. The induced action of X on $V(\Gamma) \times V(\Gamma)$ is given 11 by $(\alpha, \beta)^x = (\alpha^x, \beta^x)$ for $\alpha, \beta \in V(\Gamma)$ and $x \in X$. We say that X preserves the adjacency of Γ if $Arc(\Gamma)^x = Arc(\Gamma)$ for all $x \in X$. Note that X induces naturally an action on $Arc_s(\Gamma)$
- if X preserves the adjacency of Γ . The graph Γ is said to be (X,s)-arc transitive if Γ 13 has at least one s-arc, X preserves the adjacency of Γ and X acts transitively on both
- 15 $V(\Gamma)$ and $Arc_s(\Gamma)$; and Γ is said to be (X,s)-arc regular if in addition X acts regularly on $Arc_s(\Gamma)$. Further, Γ is said to be (X,s)-transitive if Γ is (X,s)-arc transitive but not
- 17 (X,s+1)-arc transitive. An (X,1)-arc transitive graph is usually called an X-symmetric graph.
- Let Γ be an X-symmetric graph admitting a nontrivial X-invariant partition $\mathcal B$ on 19 $V(\Gamma)$, that is, $1 < |B| < V(\Gamma)$ and $B^x := \{\alpha^x \mid \alpha \in B\} \in \mathcal{B}$ for $B \in \mathcal{B}$ and $x \in X$. Such a graph is
- 21 said to be an *imprimitive X*-symmetric graph. The quotient graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} is defined to be the graph with vertex set \mathcal{B} such that $B \in \mathcal{B}$ and $C \in \mathcal{B}$ are adjacent
- in $\Gamma_{\mathcal{B}}$ if and only if there exist $\alpha \in B$ and $\beta \in C$ adjacent in Γ . It is easy to see that $\Gamma_{\mathcal{B}}$ 23 is X-symmetric. We always assume that Γ_{β} has at least one edge, which implies that
- 25 each $B \in \mathcal{B}$ is an independent set of Γ . For $\alpha \in V(\Gamma)$ and $B \in \mathcal{B}$, set $\Gamma(\alpha) = \{\gamma \mid \{\alpha, \gamma\} \in E(\Gamma)\}, \Gamma(B) = \bigcup_{\beta \in B} \Gamma(\beta), \Gamma_{\mathcal{B}}(B) = \{C \in \mathcal{A}\}$
- 27 $\mathcal{B} | \{B, C\} \in E(\Gamma_{\mathcal{B}}) \}$ and $\Gamma_{\mathcal{B}}(\alpha) = \{C \in \mathcal{B} | \alpha \in \Gamma(C)\}$. Since Γ is X-symmetric, for $\alpha \in B \in \mathcal{B}$ \mathcal{B} and $C \in \Gamma_{\mathcal{B}}(B)$, it is easily shown that the parameters $v := |B|, k := |\Gamma(C) \cap B|$ and
- 29 $r := |\Gamma_{\mathcal{B}}(\alpha)|$ are independent of the choices of B, C and α . The graph Γ is said to be a multicover of $\Gamma_{\mathcal{B}}$ if k = v. Noting that $vr = val(\Gamma_{\mathcal{B}})k$ (see [10], for example), Γ is a
- 31 multicover of $\Gamma_{\mathcal{B}}$ if and only if $r = val(\Gamma_{\mathcal{B}})$. Let $\mathcal{D}(B)$ denote the incidence structure $(B, \Gamma_{\mathcal{B}}(B))$ such that $\beta \in B$ is incident with some $C \in \Gamma_{\mathcal{B}}(B)$ if and only if $C \in \Gamma_{\mathcal{B}}(\beta)$.
- 33 Then $\mathcal{D}(B)$ is a flag-transitive 1-(v, k, r) design with $val(\Gamma_{\mathcal{B}})$ blocks [12, Lemma 2.1], which is independent of the choice of B up to isomorphism. For $(B,C) \in Arc(\Gamma_B)$,
- 35 denote by $\Gamma[B, C]$ the bipartite subgraph of Γ induced by $(\Gamma(C) \cap B) \cup (\Gamma(B) \cap C)$. Then $\Gamma[B,C]$ is independent of the choice of $(B,C) \in Arc(\Gamma_{\mathcal{B}})$ up to isomorphism.
- 37 It has been observed in the literature that the quotient graphs of (X, 2)-arc transitive graphs are usually not (X,2)-arc transitive, and that an X-symmetric graph with an
- 39 (X,2)-arc transitive quotient itself is not necessarily (X,2)-arc transitive. (For example, several examples are given in [4, 5] for the first situation; and for the second situation,
- 41 it is shown in [12] that every connected (X,3)-arc transitive graph is a quotient graph of at least one X-symmetric graph which is not (X,2)-arc transitive.) This observation
- 43 gave rise to a series of intensive studies of the following questions [18, 9].
 - (Q1) When can $\Gamma_{\mathcal{B}}$ be (X,2)-arc transitive?
- 45 (Q2) What information of the structure of Γ can we obtain from an (X,2)-arc transitive quotient $\Gamma_{\mathcal{B}}$ of Γ ?

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 3

- 1 The triple $(\Gamma_{\mathcal{B}}, \Gamma[B, C], \mathcal{D}(B))$ mirrors "global" and "local" information of the structure of Γ , which allows us to reconstruct Γ in some cases. This approach to imprimitive
- 3 symmetric graphs has received considerable attention in the literature. Gardiner and Praeger [6] first suggested such an approach, and they discussed the case when the
- 5 stabilizer X_{α} of a vertex $\alpha \in V(\Gamma)$ in X acts primitively on $\Gamma(\alpha)$; and in [7, 8], they considered the case when $\Gamma_{\mathcal{B}}$ is a complete graph and $X_{\mathcal{B}}$ (the subgroup of X fixing
- 7 *B* set-wise) is 2-transitive on *B*. For the case where $k=v-1 \ge 2$, Li et al. [10] found an elegant construction (called the *3-arc graph* construction) for constructing certain
- 9 graphs. Iranmanesh et al. [9], and Lu and Zhou [12] studied the case where $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive and obtained a series of interesting results. In particular, Lu and
- 11 Zhou [12] found the second type 3-arc graph construction, which led to a classification [19] of a family of symmetric graphs. The reader is referred to [14–18, 11] for further
- 13 developments in this topic.

In answering the above two questions, a relatively explicit classification of (Γ, X, \mathcal{B})

- 15 has been given in [18], when $\Gamma_{\mathcal{B}}$ is connected and (X, 2)-arc transitive such that $2 = k \le v 1$. This motivated us to investigate the case where k = 3. The following is a summary
- 17 of the main result of this article, and more details will be given in Theorem 4.1.
- **Theorem 1.1.** Let Γ be an X-symmetric graph which admits an X-invariant partition 19 \mathcal{B} on $V(\Gamma)$ such that $val(\Gamma_{\mathcal{B}}) \ge 2$, $\Gamma_{\mathcal{B}}$ is connected and (X, 2)-arc transitive. If $|\mathcal{B}| > |\mathcal{B} \cap \Gamma(C)| = 3$ for $(\mathcal{B}, C) \in Arc(\Gamma_{\mathcal{B}})$, then one of the following four cases occurs: (a) $|\mathcal{B}| = 4$
- 21 and $val(\Gamma_{\mathcal{B}})=4$; (b) |B|=6 and $val(\Gamma_{\mathcal{B}})=4$; (c) |B|=7 and $val(\Gamma_{\mathcal{B}})=7$; (d) $|B|=3val(\Gamma_{\mathcal{B}})$.
- 23 Notation: For a group X acting on a set V and $B \subseteq V$, denote by X^V the induced permutation group on V, by X_B the set-wise stabilizer of B in X, and by $X_{(B)}$ the
- 25 point-wise stabilizer of B in X; for a positive integer m and a graph Γ , denote by $m\Gamma$ the vertex-disjoint union of m copies of Γ .

27 2. GRAPHS CONSTRUCTED FROM GIVEN GRAPHS

In this section, we restate several graphs constructed from a given graph, as well as some of their properties, which turn out to be useful in a further characterization of (Γ, X, \mathcal{B}) stated in Theorem 1.1.

31 Assume that Σ is an (X, 2)-arc transitive graph with $val(\Sigma) \ge 3$. Let Δ be a selfpaired X-orbit on $Arc_3(\Sigma)$, where self-parity means that $(\sigma_3, \sigma_2, \sigma_1, \sigma_0) \in \Delta$ whenever $(\sigma_0, \sigma_1, \sigma_2, \sigma_3) \in \Delta$. Define two kinds of 3-arc graphs [10, 12] as follows:

- $\mathcal{I}(\Sigma, \Delta)$, the graph with vertex set $Arc(\Sigma)$ such that two arcs (τ, τ_1) and (σ, σ_1) of 25 Σ are adjacent if and only if $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$; $\mathcal{J}(\Sigma, \Delta)$, the graph with vertices the 2-paths (paths of length 2) in Σ such that two distinct paths $\sigma_1 \sigma \sigma_2$ and $\tau_1 \tau \tau_2$ are
- 37 adjacent if and only if one of $\sigma = \tau_i$, $\tau = \sigma_j$ and $(\sigma_i, \sigma, \tau, \tau_j) \in \Delta$ for some $i, j \in \{1, 2\}$.

Let $H(\Sigma)$ be the set of pairs $(\tau_1\tau\tau_2, \sigma_1\sigma\sigma_2)$ of 2-paths with $\sigma \in \Sigma(\tau) \setminus \{\tau_1, \tau_2\}, \tau \in \Sigma(\sigma) \setminus \{\sigma_1, \sigma_2\}$. Let Λ be a self-paired X-orbit on $H(\Sigma)$, where self-pairity means that $(\tau_1\tau\tau_2, \sigma_1\sigma\sigma_2) \in \Lambda$ whenever $(\sigma_1\sigma\sigma_2, \tau_1\tau\tau_2) \in \Lambda$. The 2-path graph $\mathcal{H}(\Sigma, \Lambda)$ with respect

41 to Λ is the graph with vertices the 2-paths in Σ such that two 2-paths are adjacent if and only if they give a pair in Λ .

- 4 JOURNAL OF GRAPH THEORY
- 1 **Proposition 2.1** (Li et al. [10], Lu and Zhou [12]). $\mathcal{I}(\Sigma, \Delta)$, $\mathcal{J}(\Sigma, \Delta)$ and $\mathcal{H}(\Sigma, \Lambda)$ are *X*-symmetric.
- 3 Let $A_{\tau} = \{(\tau, \sigma) | \sigma \in \Sigma(\tau)\}$ for $\tau \in V(\Sigma)$. Set $\mathcal{A} = \{A_{\tau} | \tau \in V(\Sigma)\}$. By [10, Theorem 10], it is easily shown that the following result holds.
- 5 **Proposition 2.2.** Let $\Gamma = \mathcal{I}(\Sigma, \Delta)$. Then $\Sigma \cong \Gamma_{\mathcal{A}}$, $val(\Gamma) = (val(\Sigma) 1)val(\Gamma[A_{\tau}, A_{\sigma}])$ for $(\tau, \sigma) \in Arc(\Sigma)$, and each vertex of Γ is adjacent to exactly $val(\Sigma) - 1$ blocks in \mathcal{A} .
- 7 Let P_{σ} denote the set of 2-paths with a given mid vertex $\sigma \in V(\Sigma)$. Set $\mathcal{P} = \{P_{\sigma} | \sigma \in V(\Sigma)\}$. Then, by [12], both $\mathcal{J}(\Sigma, \Delta)$ and $\mathcal{H}(\Sigma, \Lambda)$ admit an *X*-invariant partition \mathcal{P} with
- 9 quotient graphs isomorphic to Σ . The following lemma improves [12, Theorem 4.10].

Lemma 2.3. Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} 11 with $val(\Gamma_{\mathcal{B}}) \ge 3$ and $|\Gamma_{\mathcal{B}}(\alpha)| = 2$ for $\alpha \in V(\Gamma)$. Set

$$\Delta = \left\{ (C, B(\alpha), B(\beta), D) \middle| \begin{array}{c} (\alpha, \beta) \in Arc(\Gamma) \\ C \in \Gamma_{\mathcal{B}}(\alpha), D \in \Gamma_{\mathcal{B}}(\beta), C \neq B(\beta), D \neq B(\alpha) \end{array} \right\},\$$

- 13 where $B(\alpha)$ denotes the block in \mathcal{B} containing α . Suppose that $|\Gamma(D) \cap B_0 \cap \Gamma(C)| \neq 0$ for any 2-path DB_0C of $\Gamma_{\mathcal{B}}$ with a given mid vertex $B_0 \in \mathcal{B}$. Then $\Gamma_{\mathcal{B}}$ is (X, 2)-arc transitive,
- 15 $\lambda := |\Gamma(D) \cap B_0 \cap \Gamma(C)|$ is independent of the choice of DB_0C , Δ is a self-paired X-orbit on $Arc_3(\Gamma_{\mathcal{B}})$, and either
- 17 (a) $\lambda = 1$ and $\Gamma \cong \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$; or (b) $\lambda \ge 2$ and Γ admits a second nontrivial X-invariant partition

$$\mathcal{Q} := \{ \Gamma(D) \cap B \cap \Gamma(C) \mid DBC \text{ is a 2-path of } \Gamma_{\mathcal{B}} \}$$

on $V(\Gamma)$, which is a proper refinement of \mathcal{B} such that $\Gamma_{\mathcal{Q}} \cong \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$.

- 21 **Proof.** Note that $val(\Gamma_{\mathcal{B}}) \ge 3$. Take three distinct blocks $C, D, D' \in \Gamma_{\mathcal{B}}(B_0)$. Since $|\Gamma(D) \cap B_0 \cap \Gamma(C)| \ne 0$ and $|\Gamma(D') \cap B_0 \cap \Gamma(C)| \ne 0$, there exist $\alpha, \beta \in \Gamma(C) \cap B_0$ with
- 23 $\alpha \in \Gamma(D)$ and $\beta \in \Gamma(D')$. Let $\alpha', \beta' \in C$ be such that $(\alpha, \alpha'), (\beta, \beta') \in Arc(\Gamma)$. Then $(\alpha, \alpha')^x = (\beta, \beta')$ for some $x \in X$ as Γ is X-symmetric. So, $\alpha^x = \beta$ and $\alpha'^x = \beta'$. Then $B_0^x = B_0$
- 25 and $C^x = C$, hence $x \in X_{B_0} \cap X_C$. Further $C, D^x, D' \in \Gamma_{\mathcal{B}}(\beta)$, it follows that $D^x = D'$ as $|\Gamma_{\mathcal{B}}(\beta)| = 2$. Thus $X_{B_0} \cap X_C$ is transitive on $\Gamma_{\mathcal{B}}(B_0) \setminus \{C\}$, it follows that X_{B_0} is
- 27 2-transitive on $\Gamma_{\mathcal{B}}(B_0)$. Therefore, $\Gamma_{\mathcal{B}}$ is (X, 2)-arc transitive. Then, by [12], $\lambda \ge 1$ is a constant number; and if $\lambda = 1, \Delta$ is a self-paired X-orbit on $Arc_3(\Gamma_{\mathcal{B}})$ and $\Gamma \cong \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$.
- In the following we assume λ≥2.
 We first show that Q is an X-invariant partition of V(Γ). Take two arbitrary
 2-paths D₁B₁C₁ and D₂B₂C₂ of Γ_B. Suppose that there exists some α∈V(Γ) such that
- 2-paths $D_1 B_1 C_1$ and $D_2 B_2 C_2$ of Γ_B . Suppose that there exists some $\alpha \in V(\Gamma)$ such that $\alpha \in (\Gamma(D_1) \cap B_1 \cap \Gamma(C_1)) \cap (\Gamma(D_2) \cap B_2 \cap \Gamma(C_2))$. Then $B_1 = B_2$ and $C_i, D_i \in \Gamma_B(\alpha)$ for $i = 1, 2, 3, \dots = 1, 2, 3, \dots = 1, 2, \dots = 1, \dots =$
- 33 i=1,2. Since $|\Gamma_{\mathcal{B}}(\alpha)|=2$, we have that $\{C_1,D_1\}=\{C_2,D_2\}$, thus $D_1B_1C_1=D_2B_2C_2$. It follows that \mathcal{Q} is a partition of $V(\Gamma)$. For any 2-path *DBC* and $x \in X$, we have
- 35 $(\Gamma(D) \cap B \cap \Gamma(C))^x = \Gamma(D^x) \cap B^x \cap \Gamma(C^x) \in Q$. Thus Q is X-invariant. Since Γ is not a multicover of Γ_B , we know $|B| > |\Gamma(D) \cap B \cap \Gamma(C)| = \lambda \ge 2$, so Q is a proper refinement
- 37 of \mathcal{B} . Then $(\mathcal{B}, \mathcal{Q})$ gives an X-invariant partition $\overline{\mathcal{B}} := \{\overline{B} | B \in \mathcal{B}\}$ of $V(\Gamma_{\mathcal{Q}})$, where $\overline{B} = \{\Gamma(D) \cap B \cap \Gamma(C) | C, D \in \Gamma_{\mathcal{B}}(B), C \neq B\}.$

Journal of Graph Theory DOI 10.1002/jgt

19

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 5

- 1 We denote a vertex $\Gamma(D) \cap B \cap \Gamma(C)$ of $\Gamma_{\mathcal{Q}}$ by $\bar{\alpha}$ if $\alpha \in \Gamma(D) \cap B \cap \Gamma(C)$. Consider the quotient graph $(\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}$ of $\Gamma_{\mathcal{Q}}$ with respect to $\bar{\mathcal{B}}$. For any 2-path $\bar{D}\bar{B}\bar{C}$ of $(\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}$
- 3 and any $\bar{\alpha} \in V(\Gamma_{\mathcal{Q}})$, we have $|(\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}(\bar{\alpha})| = 2$ and $|\Gamma_{\mathcal{Q}}(\bar{D}) \cap \bar{B} \cap \Gamma_{\mathcal{Q}}(\bar{C})| = 1$. It follows from (a) that $\Gamma_{\mathcal{Q}} \cong \mathcal{J}((\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}, \bar{\Delta})$, where $\bar{\Delta} = \{(\bar{C}, \bar{B}(\bar{\alpha}), \bar{B}(\bar{\beta}), \bar{D}) | (C, B(\alpha), B(\beta), D) \in \Delta\}$.
- 5 Moreover, it is easily shown that $\bar{\mathcal{B}} \to \mathcal{B}, \bar{\mathcal{B}} \mapsto \mathcal{B}$ is an isomorphism from $(\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}$ to $\Gamma_{\mathcal{B}}$. Therefore, $\Gamma_{\mathcal{Q}} \cong \mathcal{J}((\Gamma_{\mathcal{Q}})_{\bar{\mathcal{B}}}, \bar{\Delta}) \cong \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$.

7 3. DOUBLE STAR GRAPHS

Let Γ be an X-symmetric graph that admits an X-invariant partition \mathcal{B} such that $\Gamma_{\mathcal{B}}$ 9 is (X,2)-arc transitive. If r=1, 2, b-2 or b-1 then, by [12], Γ or its a quotient is isomorphic to $|E(\Gamma_{\mathcal{B}})|\mathbf{K}_2, \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta), \mathcal{H}(\Gamma_{\mathcal{B}}, \Lambda)$ or $\mathcal{I}(\Gamma_{\mathcal{B}}, \Delta)$. This motivates us to

- 11 consider the general case where $1 \le r \le b-1$, and introduce stars and generalized 2-path graphs, called double star graphs.
- 13 In this section, we always assume that Σ is an X-symmetric graph of valency $v \ge 2$. For $\tau \in V(\Sigma)$ and a k-subset S of $\Sigma(\tau)$, the pair (τ, S) is called a k-star of Σ . Let
- 15 $St^{\Bbbk}(\Sigma)$ denote the set of \Bbbk -stars of Σ . An *X*-orbit S on $St^{\Bbbk}(\Sigma)$ is *symmetric* if $X_{\tau} \cap X_S$ acts transitively on *S* for some $(\tau, S) \in S$. Let *L* and *R* be \Bbbk -subsets of $\Sigma(\tau)$ and $\Sigma(\sigma)$,
- 17 respectively, an ordered pair $((\tau, L), (\sigma, R))$ of k-stars is called a *double* k-star of Σ if $\sigma \in L$ and $\tau \in R$. Denote by $DSt^{k}(\Sigma)$ the set of double k-stars of Σ . Let Θ be an
- 19 X-orbit on $DSt^{\Bbbk}(\Sigma)$ and set $St(\Theta) = \{(\tau, L), (\sigma, R) | ((\tau, L), (\sigma, R)) \in \Theta\}$. Then Θ is said to be *symmetric* if $St(\Theta)$ is a symmetric X-orbit on $St^{\Bbbk}(\Sigma)$ and Θ is self-paired, that
- 21 is, $((\sigma, R), (\tau, L)) \in \Theta$ whenever $((\tau, L), (\sigma, R)) \in \Theta$. Let S be a symmetric X-orbit on $St^{\Bbbk}(\Sigma)$. For $\tau \in V(\Sigma)$, set $S_{\tau} = \{(\tau, S) \mid (\tau, S) \in S\}$.
- 23 Define an incidence structure $\mathbb{D}(\tau) := (\Sigma(\tau), S_{\tau})$ in which $\sigma \in \Sigma(\tau)$ is incident with $(\tau, S) \in S_{\tau}$ if and only if $\sigma \in S$. Then it is easy to see that $\mathbb{D}(\tau)$ is an X_{τ} -flag-transitive
- 25 1-design, and $\mathbb{D}(\tau)$ is independent of the choice of $\tau \in V(\Sigma)$ up to isomorphism. Let $\tau \in V(\Sigma)$ and $\mathfrak{D}(\tau)$ be an X_{τ} -flag-transitive 1- $(\mathbb{V}, \mathbb{k}, \mathbb{r})$ design with vertex set $\Sigma(\tau)$.
- 27 It may happen that distinct blocks of $\mathfrak{D}(\tau)$ have the same trace. Since $\mathfrak{D}(\tau)$ is flagtransitive, the number of blocks with the same trace is a constant, say $m(\mathfrak{D}(\tau))$, called
- 29 the *multiplicity* of $\mathfrak{D}(\tau)$. Let $\mathfrak{D}'(\tau)$ be the design with vertex set $\Sigma(\tau)$ and blocks being the traces of blocks of $\mathfrak{D}(\tau)$. Then $\mathfrak{D}'(\tau)$ is an X_{τ} -flag-transitive 1- $(\mathbb{V}, \mathbb{K}, \mathbb{F}/m(\mathfrak{D}(\tau)))$
- 31 design.

Theorem 3.1. Let $\tau \in V(\Sigma)$. If there exists some X_{τ} -flag-transitive $1-(\mathbb{V}, \mathbb{K}, \mathbb{F})$ design 33 $\mathfrak{D}(\tau)$ on $\Sigma(\tau)$ for $1 \leq \mathbb{K} \leq \mathbb{V} - 1$ such that $\mathbb{F}/m(\mathfrak{D}(\tau))$ is odd, then there exists a symmetric X-orbit on $DSt^{\mathbb{K}}(\Sigma)$.

- 35 **Proof.** Set $S = \{(\tau^x, S^x) | x \in X, S \in \mathfrak{D}'(\tau)\}$. It is easily shown that $\mathfrak{D}'(\tau) \cong \mathbb{D}(\tau)$ and S is a symmetric X-orbit. Let $(\tau, \sigma) \in Arc(\Sigma)$. Since Σ is X-symmetric, $(\tau, \sigma)^y = (\sigma, \tau)$
- 37 for some $y \in X$. Set $S_{(\tau,\sigma)} = \{(\tau, S) \in S_{\tau} | \sigma \in S\}$. Then $\mathbb{P}/m(\mathfrak{D}(\tau)) = |S_{(\tau,\sigma)}|$ is odd, $S_{(\tau,\sigma)}^y = S_{(\sigma,\tau)}$ and $S_{(\tau,\sigma)}^{y^2} = S_{(\tau,\sigma)}$. Let \mathcal{O} be a $\langle y^2 \rangle$ -orbit on $S_{(\tau,\sigma)}$ with odd length
- 39 *l*. Then, for $(\tau, S) \in \mathcal{O}$, the stabilizer of (τ, S) in $\langle y^2 \rangle$ is $\langle y^{2l} \rangle$. Let $z = y^l$. Then $((\tau, S), (\sigma, S^z))^z = ((\sigma, S^z), (\tau, S))$, and hence $\Theta := \{((\tau, S)^x, (\sigma, S^z)^x) | x \in X\}$ is a symmetric *X*-orbit on $DSt^{\Bbbk}(\Sigma)$ with $St(\Theta) = S$.

6 JOURNAL OF GRAPH THEORY

Let 1 ≤ k ≤ v − 1 and Θ be a symmetric X-orbit on DSt^k(Σ). The *double star graph* Π(Σ, Θ) of Σ with respect to Θ is the graph with vertex set St(Θ) such that two k-stars
 (τ, L) and (σ, R) are adjacent if and only if they give a pair in Θ.

Theorem 3.2. Let $\Gamma := \Pi(\Sigma, \Theta)$ be as above. Set $S = St(\Theta)$ and $\mathcal{B} = \{S_{\tau} | \tau \in V(\Sigma)\}$. 5 Then Γ is X-symmetric, \mathcal{B} is a nontrivial X-invariant partition on $V(\Gamma)$ such that $\Gamma_{\mathcal{B}} \cong \Sigma$, Γ is not a multicover of $\Gamma_{\mathcal{B}}$, and $\mathcal{D}(\mathcal{S}_{\tau}) \cong \mathbb{D}^*(\tau)$ for $\tau \in V(\Sigma)$, where $\mathbb{D}^*(\tau)$ is 7 the dual design of $\mathbb{D}(\tau)$. **Proof.** It is easily shown that Γ is X-symmetric, \mathcal{B} is an X-invariant partition 9 of $V(\Gamma)$, and $V(\Sigma) \to V(\Gamma_{\beta}), \tau \mapsto S_{\tau}$ gives an isomorphism from Σ to Γ_{β} . For any $(\tau, S) \in S_{\tau} \in B$, as $1 \le |s| \le |v-1|$, take $\sigma \in S$ and $\delta \in \Sigma(\tau) \setminus S$. Since Σ is X-symmetric, 11 there exists $x \in X_{\tau}$ such that $\delta = \sigma^x$. Then $(\tau, S) \neq (\tau, S^x) \in S_{\tau}$, so $v := |S_{\tau}| \ge 2$ and \mathcal{B} is nontrivial. Since $(\tau, \delta) \in Arc(\Sigma)$ and Θ is a symmetric X-orbit, there exists $(\delta, R) \in S_{\delta}$ 13 with $((\tau, S^x), (\delta, R)) \in \Theta$, hence $S_{\delta} \in \Gamma_{\mathcal{B}}(S_{\tau})$. If $((\tau, S), (\delta, R')) \in \Theta$ for some $(\delta, R') \in S_{\delta}$, then $\delta \in S$, a contradiction. Thus $(\tau, S) \notin S_{\tau} \cap \Gamma(S_{\delta})$, so $|S_{\tau} \cap \Gamma(S_{\delta})| < v$ and Γ is not a 15 multicover of $\Gamma_{\mathcal{B}}$. Let $\tau \in V(\Sigma)$. Define $\pi: S_{\tau} \cup \Gamma_{\mathcal{B}}(S_{\tau}) \to S_{\tau} \cup \Sigma(\tau); (\tau, S) \mapsto (\tau, S), S_{\sigma} \mapsto \sigma$. If $S_{\sigma} \in \mathcal{S}_{\tau} \cup \Sigma(\tau)$ 17 $\Gamma_{\mathcal{B}}(B)$, then there exist $(\tau, L) \in S_{\tau}$ and $(\sigma, R) \in S_{\sigma}$ such that $((\tau, L), (\sigma, R)) \in \Theta$; in particular, $\sigma \in L \subseteq \Sigma(\tau)$, so π is well-defined. It is easily shown that π is a bijection. By 19 the definition of $\mathcal{D}(\mathcal{S}_{\tau})$, we know that $(\tau, S) \in B$ is incident with $\mathcal{S}_{\sigma} \in \Gamma_{\mathcal{B}}(B)$ if and only if there is some $(\sigma, T) \in C$ with $((\tau, S), (\sigma, T)) \in \Theta$, that is, $\tau \in T$ and $\sigma \in S$; it follows that 21 σ is incident with (τ, S) in $\mathbb{D}(\tau)$. Assume that $\sigma' \in \Sigma(\tau)$ is incident with (τ, S') in $\mathbb{D}(\tau)$. Then $\sigma' \in S'$. Take some 23 (τ', T') with $((\tau, S'), (\tau', T')) \in \Theta$. Then $\tau' \in S'$. Since S is a symmetric X-orbit, there is some $x \in X_{\tau} \cap X_{S'}$ with $\tau'^x = \sigma'$. Thus $(\tau, S')^x = (\tau, S'), (\tau', T')^x = (\sigma', T'^x) \in S_{\sigma'}$ and $((\tau, S'), (\tau', T')^x) = ((\tau, S'), (\tau', T'))^x \in \Theta$. Hence (τ, S') is incident with $\mathcal{S}_{\sigma'}$ in $\mathcal{D}(\mathcal{S}_{\tau})$. 25 The above argument says that π is an isomorphism from $\mathcal{D}(\mathcal{S}_{\tau})$ to $\mathbb{D}^*(\tau)$. So 27 $\mathcal{D}(\mathcal{S}_{\tau}) \cong \mathbb{D}^*(\tau).$ In the following, we assume that Γ is an X-symmetric graph admitting a nontrivial X-29 invariant partition \mathcal{B} such that $val(\Gamma_{\mathcal{B}}) \ge 2$ and Γ is not a multicover of $\Gamma_{\mathcal{B}}$. For $\alpha \in B \in \mathcal{B}$, define $B_{\alpha} = B \cap (\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C))$. Then $|B_{\alpha}|$, denoted by $m^*(\Gamma, \mathcal{B})$, is independent of the 31 choices of B and α . Since Γ is not a multicover of $\Gamma_{\mathcal{B}}$, we have $m^*(\Gamma, \mathcal{B}) \leq k := |B \cap \Gamma(C)|$ for $C \in \Gamma_{\mathcal{B}}(B)$. In fact, $m^*(\Gamma, \mathcal{B})$ is the multiplicity of the dual design $\mathcal{D}^*(B)$ of $\mathcal{D}(B)$. Set 33 $\mathcal{B} = \{B_{\alpha} | B \in \mathcal{B}, \alpha \in B\}$. Then \mathcal{B} is an X-invariant partition of $V(\Gamma)$. Let $\overline{B} = \{B_{\alpha} | \alpha \in B\}$. Then $\Gamma_{\underline{B}}$ is an X-symmetric graph with an X-invariant partition $\overline{B} := \{\overline{B} | B \in B\}$ such 35 that $(\Gamma_{\mathcal{B}})_{\bar{\mathcal{B}}} \cong \Gamma_{\mathcal{B}}$ and $m^*(\Gamma_{\mathcal{B}}, \mathcal{B}) = 1$. **Theorem 3.3.** Set $S = \{(B, \Gamma_B(\alpha)) | B \in \mathcal{B}, \alpha \in B\}$. Then S is a symmetric X-orbit on $St^r(\Gamma_{\mathcal{B}})$, where $r = |\Gamma_{\mathcal{B}}(\alpha)|$ is a constant. Let $\Theta = \{((B, \Gamma_{\mathcal{B}}(\alpha)), (C, \Gamma_{\mathcal{B}}(\beta))) | \alpha \in B \in \mathcal{B}, \beta \in \mathcal{B}\}$ 37

 $C \in \mathcal{B}, (\alpha, \beta) \in Arc(\Gamma)$. Then Θ is a symmetric X-orbit on $DSt^r(\Gamma_{\mathcal{B}})$ with $St(\Theta) = S$ and 39 $\Gamma_{\mathcal{B}} \cong \Pi(\Gamma_{\mathcal{B}}, \Theta)$, and X acts faithfully on \mathcal{B} if and only X acts faithfully on $\underline{\mathcal{B}}$.

Proof. It is easily shown that Θ is a symmetric X-orbit on $DSt^r(\Gamma_B)$ with $St(\Theta) =$ 41 S. Assume $m^*(\Gamma, B) = 1$. Then $B_\alpha = \{\alpha\}$ and $C_\beta = \{\beta\}$ for two distinct vertices $\alpha \in B \in$ B and $\beta \in C \in B$, it implies that $E_{\alpha}(\alpha) = (D \cap C_{\alpha}(\alpha)) / (C \cap C_{\alpha}(\alpha))$. Thus

 \mathcal{B} and $\beta \in C \in \mathcal{B}$, it implies that $\Gamma_{\mathcal{B}}(\alpha) \neq \Gamma_{\mathcal{B}}(\beta)$, hence $(B, \Gamma_{\mathcal{B}}(\alpha)) \neq (C, \Gamma_{\mathcal{B}}(\beta))$. Thus 43 $V(\Gamma) \rightarrow V(\Pi(\Gamma_{\mathcal{B}})), \alpha \mapsto (B, \Gamma_{\mathcal{B}}(\alpha))$ is a bijection, which gives an isomorphism between Γ and $\Pi(\Gamma_{\mathcal{B}}, \Theta)$.

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 7

- Now assume $m^*(\Gamma, \mathcal{B}) > 1$. Recall that $m^*(\Gamma, \mathcal{B}) \le k := |B \cap \Gamma(C)|$ for $C \in \Gamma_{\mathcal{B}}(B)$. 1 Then $\underline{\mathcal{B}}$ is a proper refinement of \mathcal{B} . Consider the pair $(\Gamma_{\mathcal{B}}, \overline{\mathcal{B}})$. Then $m^*(\Gamma_{\mathcal{B}}, \overline{\mathcal{B}})=1$.
- A similar argument as above leads to $\Gamma_{\underline{B}} \cong \Pi(\Sigma, \bar{\Theta})$, where $\Sigma = (\Gamma_{\underline{B}})_{\bar{B}}$ and $\bar{\Theta} =$ 3 $\{((\bar{B}, \Sigma(B_{\alpha})), (\bar{C}, \Sigma(C_{\beta}))) | B_{\alpha} \in \bar{B} \in \bar{B}, C_{\beta} \in \bar{C} \in \bar{B}, (B_{\alpha}, C_{\beta}) \in Arc(\Gamma_{B})\}$. Noting that $B_{\alpha} =$
- 5 $B_{\alpha'}$ for any $\alpha' \in B_{\alpha}$, it follows that $(\bar{B}, \Sigma(B_{\alpha})) \mapsto (B, \Gamma_{\beta}(\alpha))$ gives a bijection between $V(\Pi(\Sigma, \overline{\Theta}))$ and $V(\Pi(\Gamma_{\mathcal{B}}, \Theta))$, which is in fact an isomorphism between $\Pi(\Sigma, \Theta)$ and
- 7 $\Pi(\Gamma_{\mathcal{B}}, \Theta)$. Hence $\Gamma_{\underline{\mathcal{B}}} \cong \Pi(\Gamma_{\mathcal{B}}, \Theta)$.
- Let K and H be the kernels of X acting on \mathcal{B} and on $\underline{\mathcal{B}}$, respectively. Noting that $\underline{\mathcal{B}}$ is a refinement of \mathcal{B} , we have $H \leq K$. Let $x \in K$ and $B_{\alpha} \in \overline{B} \in \underline{\mathcal{B}}$. Since $m^*(\Gamma_{\mathcal{B}}, \overline{\mathcal{B}}) = 1$, we 9 have $\{B_{\alpha}\} = \bar{B} \cap (\bigcap_{\bar{C} \in (\Gamma_{\mathcal{B}})_{\bar{\mathcal{B}}}(B_{\alpha})} \Gamma_{\underline{\mathcal{B}}}(\bar{C})) = \bar{B} \cap (\bigcap_{\bar{C} \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma_{\underline{\mathcal{B}}}(\bar{C}))$, yielding $B_{\alpha}^{x} = B_{\alpha}$. The
- above argument gives $x \in H$. Hence $K \leq H$, and so H = K. Therefore, X acts faithfully 11 on \mathcal{B} (that is, K=1) if and only if X acts faithfully on \mathcal{B} (that is, H=1).
- 13 Finally, we list a simple fact which will be used in the following sections.

Theorem 3.4. If $m^*(\Gamma, \mathcal{B}) = 1 = m(\mathcal{D}(B))$, then $X_B^B \cong X_B^{\Gamma_{\mathcal{B}}(B)}$ for $B \in \mathcal{B}$.

- 15 **Proof.** If $x \in X$ fixes B set-wise, then it also fixes the neighborhood $\Gamma_{\mathcal{B}}(B)$ of B in $\Gamma_{\mathcal{B}}$. Now consider the action of X_B on $\Gamma_{\mathcal{B}}(B)$, and let K be the kernel of this
- action. For any $\alpha \in B$, since $m^*(\Gamma, \mathcal{B}) = 1$, we have $\{\alpha\} = B \cap (\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C))$. It follows 17 that K fixes α . Thus $K \leq X_{(B)}$. On the other hand, x fixes $B \cap \Gamma(C)$ point-wise for any
- 19 $x \in X_{(B)}$ and any $C \in \Gamma_{\mathcal{B}}(B)$; in particular, $B \cap \Gamma(C^x) = (B \cap \Gamma(C))^x = B \cap \Gamma(C)$. It follows from $m(\mathcal{D}(B)) = 1$ that $C = C^x$. Therefore, $x \in K$. Thus $X_{(B)} \leq K$, and so $X_{(B)} = K$. Then

21
$$X_B^B \cong X_B / X_{(B)} = X_B / K \cong X_B^{\Gamma_{\mathcal{B}}(B)}$$

THE MAIN RESULT 4.

23 A near n-gonal graph [13] is a connected graph Σ of girth at least 4 together with a set \mathcal{E} of *n*-cycles of Σ such that each 2-arc of Σ is contained in a unique member

WILE

- of \mathcal{E} . Let $Arc_3(\mathcal{E})$ be the set of 3-arcs appearing on cycles in \mathcal{E} . For a cycle C in an 25 X-symmetric graph, denote by $X_{\mathbf{C}}$ the subgroup of X which preserves the adjacency of
- C, and set $X_{C}^{C} = X_{C}/X_{(V(C))}$. 27

Theorem 4.1. Let Γ be an X-symmetric graph admitting a nontrivial X-invariant 29 partition \mathcal{B} such that $val(\Gamma_{\mathcal{B}}) \geq 2$, $\Gamma_{\mathcal{B}}$ is connected and X is faithful on $V(\Gamma)$. Assume that $|B| > |\Gamma(C) \cap B| = 3$ for $(B, C) \in Arc(\Gamma_{\mathcal{B}})$. Set $e = |E(\Gamma_{\mathcal{B}})|$. If further $\Gamma_{\mathcal{B}}$ is (X, 2)-arc

transitive, then 31

33

(a) |B|=4, $val(\Gamma_{\mathcal{B}})=4$ and $X_{B}^{B}\cong A_{4}$ or S_{4} ; or (b) |B|=6, $val(\Gamma_{\mathcal{B}})=4$ and $X_{B}^{B}\cong A_{4}$ or S_{4} ; or (c) |B|=7, $val(\Gamma_{\mathcal{B}})=7$ and $X_{B}^{B}\cong PSL(3,2)$; or

- 35 (d) $|B| = 3val(\Gamma_{\mathcal{B}})$ and $\Gamma \cong 3e\mathbf{K}_2$, $e\mathbf{C}_6$ or $e\mathbf{K}_{3,3}$.

Further, each of (a), (b) and (c) implies that $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive with X faithful on \mathcal{B} , Γ is connected provided $\Gamma[B, C] \not\cong 3\mathbf{K}_2$, and Γ is isomorphic to one of $\mathcal{I}(\Gamma_{\mathcal{B}}, \Delta)$, 37 $\mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$ and $\Pi(\Gamma_{\mathcal{B}}, \Theta)$, respectively, where Δ is a self-paired X-orbit on $Arc_3(\Gamma_{\mathcal{B}})$

- 8 JOURNAL OF GRAPH THEORY
- 1 and Θ is a symmetric X-orbit on $DSt^3(\Gamma_B)$; moreover, one of (a) and (b) yields (1) or (2), and (c) yields (3).
- 3 (1) Either $\Gamma_{\mathcal{B}} \cong \mathbf{K}_5$ or $\Gamma_{\mathcal{B}}$ is near n-gonal with respect to an X-orbit \mathcal{E} of n-cycles of $\Gamma_{\mathcal{B}}$ such that $|\mathcal{E}| \ge 6$, $n \ge 4$, $n|\mathcal{E}| = 3e = 6|\mathcal{B}|$ and $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathbf{D}_{2n}$ (the dihedral group 5 of order 2n) for $\mathbf{C} \in \mathcal{E}$; and either
- (1.1) $\Gamma[B,C] \cong 3\mathbf{K}_2, X_B \cong A_4 \text{ or } S_4, \Delta = Arc_3(\mathcal{E}), val(\Gamma) = 3 \text{ if (a) holds or } \Gamma \cong \mathcal{E}[\mathbf{C}_n \text{ if (b) holds; or }]$
- 9
- (1.2) $\Gamma[B,C] \cong \mathbb{C}_6$, $X_B \cong \mathbb{S}_4$, Γ is (X,1)-arc regular, $val(\Gamma) = 6$ if (a) holds or $val(\Gamma) = 4$ if (b) holds, and $Arc_3(\Gamma_B) \setminus \Delta = Arc_3(\mathcal{E})$ is a self-paired X-orbit on $Arc_3(\Gamma_B)$.
- 11 (2) $\Gamma[B,C] \cong \mathbf{K}_{3,3}$, $\Gamma_{\mathcal{B}}$ is (X,3)-arc transitive, and $val(\Gamma) = 9$ or 6 for (a) or (b) respectively.
- 13 (3) $val(\Gamma)=3,6 \text{ or } 9 \text{ depending on } \Gamma[B,C]\cong 3\mathbf{K}_2, \mathbf{C}_6 \text{ or } \mathbf{K}_{3,3}, \text{ respectively; and if } val(\Gamma)=3 \text{ then } \Gamma \text{ is } (X,2)\text{-arc transitive.}$

15 5. SELF-PAIRED ORBITS OF 3-ARCS

The following lemma is formulated from [10, Remark 4(c)(ii)] by noting that it is available to symmetric graphs.

Lemma 5.1. Every X-symmetric graph Σ with even valency contains a self-paired *X*-orbit on Arc₃(Σ).

Let Σ be an X-symmetric graph with valency $\vee \geq 2$ and Δ be a self-paired X-orbit 21 on $Arc_3(\Sigma)$. For $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$, consider the action of $X_{(\tau_1, \tau, \sigma)}$ on $\Sigma(\sigma) \setminus \{\tau\}$, and use $\ell(\Delta)$ to denote the length of the orbit containing σ_1 . Then $\ell(\Delta)$ is independent of the

23 choice of $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$.

Theorem 5.2. Let Σ be a connected (X, 2)-arc transitive graph with valency $v \ge 3$ and 25 Δ be a self-paired X-orbit on $\operatorname{Arc}_3(\Sigma)$ such that $\ell(\Delta) = 1$. If X is faithful on $V(\Sigma)$, then X_{τ} is faithful on $\Sigma(\tau)$ for $\tau \in V(\Sigma)$. Set $f = |V(\Sigma)|$ and $e = |E(\Sigma)|$. Then $\mathcal{J}(\Sigma, \Delta) \cong mC_n$ 27 such that

- (1) $m \ge v(v-1)/2$, $n \ge girth(\Sigma)$ and mn = fv(v-1)/2 = e(v-1);
- 29 (2) $\Delta = Arc_3(\mathcal{E})$ for an X-orbit \mathcal{E} of n-cycles of Σ with $|\mathcal{E}| = m$ and $X_{\mathbb{C}}^{\mathbb{C}} \cong D_{2n}$ for $\mathbb{C} \in \mathcal{E}$, where D_{2n} is the dihedral group of order 2n;
- 31 (3) each 2-path of Σ is contained in a unique member of \mathcal{E} , and either $\Sigma \cong \mathbf{K}_{\nu+1}$ or $n \ge 4$ and Σ is a near n-gonal graph with respect to \mathcal{E} .
- 33 **Proof.** Since Σ is (X, 2)-arc transitive, each 2-arc of Σ lies in a member of Δ . Let (τ, σ) be an arbitrary arc of Σ . Since $\ell(\Delta) = 1$ and Δ is a self-paired X-orbit,
- 35 we conclude that, for any $\tau_1 \in \Sigma(\tau) \setminus \{\sigma\}$, there is a unique $\sigma_1 \in \Sigma(\sigma) \setminus \{\tau\}$ such that $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$, $X_{(\tau_1, \tau, \sigma)} = X_{(\tau, \sigma, \sigma_1)}$ and $(\tau'_1, \tau, \sigma, \sigma_1) \in \Delta$ yielding $\tau'_1 = \tau_1$. Then
- 37 $(X_{\tau})_{(\Sigma(\tau))} = \bigcap_{\tau_1 \in \Sigma(\tau) \setminus \{\sigma\}} X_{(\tau_1,\tau,\sigma)} = \bigcap_{\sigma_1 \in \Sigma(\sigma) \setminus \{\tau\}} X_{(\tau,\sigma,\sigma_1)} = (X_{\sigma})_{(\Sigma(\sigma))}$. It follows from the connectedness of Σ that $(X_{\tau})_{(\Sigma(\tau))}$ fixes every vertex of Σ . Thus, if X is faithful on
- 39 $V(\Sigma)$, then $(X_{\tau})_{(\Sigma(\tau))} = 1$ and X_{τ} is faithful on $\Sigma(\tau)$.

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 9

- 1 Let $\Gamma = \mathcal{J}(\Sigma, \Delta)$. By [12, Theorem 4.4], Γ is *X*-symmetric and admits an *X*-invariant partition $\mathcal{P} := \{P_{\sigma} | \sigma \in V(\Sigma)\}$ such that $\Sigma \cong \Gamma_{\mathcal{P}}$, where P_{σ} is the set of 2-paths of Σ with
- 3 mid vertex σ . It follows from [12] that $r := |\Gamma_{\mathcal{P}}(\alpha)| = 2$ and $\lambda := |P_{\delta} \cap \Gamma(P_{\tau}) \cap \Gamma(P_{\sigma})| = 1$ for any vertex α (a 2-path of Σ) in $V(\Gamma)$ and P_{δ} with $\alpha \in P_{\delta}$ and $\Gamma_{\mathcal{P}}(\alpha) = \{P_{\tau}, P_{\sigma}\}$.
- 5 Since $\ell(\Delta) = 1$ and Δ is self-paired, for any 2-path $\tau_1 \tau \sigma$ of Σ , there exist exactly two 2-paths $\tau \sigma \sigma_1$ and $\tau_2 \tau_1 \tau$ such that $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$ and $(\tau_2, \tau_1, \tau, \sigma) \in \Delta$. It follows that
- 7 $val(\Gamma) = 2$, so $\Gamma \cong mC_n$ for some *m* and *n*. Then *mn* is the number of 2-paths of Σ , hence $mn = f \vee (\vee -1)/2 = e(\vee -1)$. Noting that $val(\Gamma) = 2$ and each P_{σ} is an independent set
- 9 of Γ , it follows that different vertices in P_{σ} appear in different *n*-cycles of Γ . Thus $m \ge |P_{\sigma}| = \mathbb{V}(\mathbb{V}-1)/2$.
- 11 Let $\overline{C} = \alpha_1 \alpha_2 \dots \alpha_n \alpha_1$ be an arbitrary *n*-cycle of Γ , where $\alpha_i = \tau_i \sigma_i \delta_i$ are *n* distinct 2-paths of Γ with mid vertices σ_i , respectively. Without loss of generality, we assume
- 13 $\delta_i = \sigma_{i+1} = \tau_{i+2}$ for $1 \le i \le n$, where the subscripts are reduced modulo *n*. Since α_i is a 2-path of Σ , $\sigma_i \ne \delta_i$, hence $\sigma_i \ne \sigma_{i+1}$. Then $(\sigma_i, \sigma_{i+1}) \in Arc(\Sigma)$. Since $\{\alpha_i, \alpha_{i+1}\}$ is an
- 15 edge of Γ , we have $(\sigma_{i-1}, \sigma_i, \sigma_{i+1}, \sigma_{i+2}) = (\tau_i, \sigma_i, \delta_i, \delta_{i+1}) \in \Delta$. Now we show that $\mathbf{C} := \sigma_1 \sigma_2 \dots \sigma_n \sigma_1$ is an *n*-cycle of Σ ; in particular, $n \ge girth(\Sigma)$.
- 17 Note that \overline{C} is a component of Γ . Then \overline{C} is $X_{\overline{C}}$ -symmetric; in particular, $X_{\overline{C}}^{C} \cong D_{2n}$. Thus there exist $x, y \in X_{\overline{C}}$ such that $\alpha_i^x = \alpha_{i+1}$ and $\alpha_i^y = \alpha_{n-i+1}$, hence $\sigma_i^x = \sigma_{i+1}$ and
- 19 $\sigma_i^y = \sigma_{n-i+1}$ for $1 \le i \le n$ with the subscripts modulo *n*. Assume that $\sigma_i = \sigma_j$ for some *i* and *j*. Then $\sigma_{i+1} = \sigma_i^x = \sigma_j^x = \sigma_{j+1}$ and $\sigma_{i+2} = \sigma_{i+1}^x = \sigma_{j+2}^x$. Thus $P_{\sigma_i} = P_{\sigma_j}$,
- 21 $P_{\sigma_{i+1}} = P_{\sigma_{j+1}}$ and $P_{\sigma_{i+2}} = P_{\sigma_{j+2}}$. It yields $(\alpha_i, \alpha_{i+1}), (\alpha_j, \alpha_{j+1}) \in Arc(\Gamma[P_{\sigma_i}, P_{\sigma_{i+1}}])$ and $(\alpha_{i+1}, \alpha_{i+2}), (\alpha_{j+1}, \alpha_{j+2}) \in Arc(\Gamma[P_{\sigma_{i+1}}, P_{\sigma_{i+2}}])$. It follows that $\alpha_{i+1}, \alpha_{j+1} \in P_{\sigma_{i+1}} \cap$
- 23 $\Gamma(P_{\sigma_i}) \cap \Gamma(P_{\sigma_{i+2}})$. Since $1 = \lambda = |P_{\sigma_{i+1}} \cap \Gamma(P_{\sigma_i}) \cap \Gamma(P_{\sigma_{i+2}})|$, we have $\alpha_{i+1} = \alpha_{j+1}$. Thus i = j. Then all σ_i are distinct, and so **C** is an $\langle x, y \rangle$ -symmetric *n*-cycle. Hence $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathbf{D}_{2n}$.
- 25 Set $\mathcal{E} = \{ \mathbf{C}^x | x \in X \}$. Then \mathcal{E} is an X-orbit of *n*-cycles of Σ . Since **C** is $X_{\mathbf{C}}$ -symmetric, **C** is $(X_{\mathbf{C}}, 3)$ -arc transitive. Recall that the 3-arc $(\sigma_{i-1}, \sigma_i, \sigma_{i+1}, \sigma_{i+2})$ of **C** is contained
- 27 in Δ . It follows that $\Delta = Arc_3(\mathcal{E})$.
- It is easily shown that $X_{\bar{C}}$ is a subgroup of $X_{\bar{C}}$. Suppose that $X_{\bar{C}}$ is a proper subgroup 29 of $X_{\bar{C}}$. Then there is some $z \in X_{\bar{C}}$ with $C^z = C$ but $\bar{C}^z \neq \bar{C}$, so $V(\bar{C}) \cap V(\bar{C}^z) = \emptyset$ as \bar{C}
- and $\bar{\mathbf{C}}^z$ are distinct connected components of Γ . Since $\mathbf{C}^z = \mathbf{C}$, there exist *i*, *j* and *l* 31 with $\sigma_1 = \sigma_i^z$, $\sigma_2 = \sigma_j^z$ and $\sigma_3 = \sigma_l^z$. Then $\alpha_i^z = \tau_i^z \sigma_1 \delta_i^z \in P_{\sigma_1}$, $\alpha_j^z = \tau_j^z \sigma_2 \delta_j^z \in P_{\sigma_2}$ and $\alpha_l^z = \tau_i^z \sigma_3 \delta_i^z \in P_{\sigma_3}$. Since $(\sigma_1, \sigma_2, \sigma_3)$ is a 2-arc of \mathbf{C} , we know that $(\sigma_i, \sigma_j, \sigma_l)$ is also a 2-
- 33 arc of **C**. It follows that $i-j\equiv j-l\equiv \pm 1 \pmod{n}$. Then $\alpha_i \alpha_j \alpha_l$ is a 2-path of \bar{C} , and so $\alpha_i^z \alpha_i^z \alpha_i^z \alpha_l^z$ is a 2-path of \bar{C}^z . Thus $\alpha_2, \alpha_i^z \in P_{\sigma_2} \cap \Gamma(P_{\sigma_1}) \cap \Gamma(P_{\sigma_3})$. Since $V(\bar{C}) \cap V(\bar{C}^z) =$
- 35 Ø, we have $\alpha_2 \neq \alpha_j^z$, which contradicts $\lambda = 1$. Then $X_{\bar{C}} = X_{\bar{C}}$ and so $|\mathcal{E}| = |X:X_{\bar{C}}| = |X:X_{\bar{C}}| = m$.
- 37 Recall that the number of 2-paths of Σ is equal to *mn*. Since Σ is (*X*,2)-arc transitive, every 2-path is contained in some *n*-cycle in \mathcal{E} . Noting each of the *m* cycles in \mathcal{E} has
- 39 exactly *n* paths of length 2, it follows that each 2-path of Σ is contained in a unique member of \mathcal{E} . Thus either $\Sigma \cong K_{\nu+1}$, or $n \ge girth(\Sigma) \ge 4$ and Σ is a near *n*-gonal graph
- 41 with respect to \mathcal{E} .

The following result follows from Lemmas 5.1 and 5.2.

43 **Corollary 5.3.** Every connected (X, 2)-arc regular graph with even valency and girth no less than 4 is a near n-gonal graph for some integer $n \ge 4$.

10 JOURNAL OF GRAPH THEORY

- 1 **Remark.** We would like to mention a recent result on near polygonal graphs of odd valency. Zhou [20] gave a necessary and sufficient condition for a trivalent 2-arc transitive to be near polygonal
- 3 transitive to be near polygonal.

6. TETRAVALENT 2-ARC TRANSITIVE GRAPHS

- 5 The main aim of this section is to give a characterization of tetravalent 2-arc transitive graphs. The following simple lemma is useful.
- 7 **Lemma 6.1.** Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} with connected (X,2)-arc transitive quotient $\Gamma_{\mathcal{B}}$. Assume that $|\Gamma_{\mathcal{B}}(\gamma)| > 1$ and $\Gamma[B,C]$ 9 are connected for $\gamma \in V(\Gamma)$ and $(B,C) \in Arc(\Gamma_{\mathcal{B}}(B))$. Then Γ is connected.
- **Proof.** It suffices to show that any two distinct vertices α and β are joined by a path in Γ . Since $|\Gamma_{\mathcal{B}}(\gamma)| > 1$ and $\Gamma_{\mathcal{B}}$ is (X, 2)-arc transitive, $\lambda := |\Gamma(C) \cap B \cap \Gamma(D)| \neq 0$ is a constant for $B \in \mathcal{B}$ and distinct $C, D \in \Gamma_{\mathcal{B}}(B)$.
- 13 Assume that $\alpha, \beta \in B$. Without loss of generality, we assume $\alpha \in \Gamma(C) \cap B \cap \Gamma(D)$. If $\beta \in \Gamma(C) \cap B$, then there is a path between α and β as $\Gamma[B, C]$ is connected. Assume
- 15 $\beta \notin \Gamma(C) \cap B$. Take $D' \in \Gamma_{\mathcal{B}}(\beta)$. Then $D' \in \Gamma_{\mathcal{B}}(B)$, $\beta \in B \cap \Gamma(D')$ and $|\Gamma(C) \cap B \cap \Gamma(D')| = \lambda > 0$. Let $\gamma \in \Gamma(C) \cap B \cap \Gamma(D')$. Then either $\alpha = \gamma$ or there is a path between α and γ , and
- 17 there is a path between γ and β . Thus there is a path between α and β . Now let $\alpha \in B$ and $\beta \in B'$ with $B \neq B'$. Since Γ_B is connected, there is a path B =
- 19 $B_1B_2...B_l = B'$. Let $\beta'_l \in B_l$ and $\beta_{l-1} \in B_{l-1}$ such that $\{\beta_{l-1}, \beta'_l\} \in E(\Gamma)$. Thus there is a path between β_{l-1} and β . Then induction on l implies that there is a path between α
- 21 and β . Let Σ be an (X, 2)-arc transitive graph with $val(\Sigma) = 4$. Recall that $H(\Sigma)$ is the set

of pairs $(\tau'\tau\tau'', \sigma'\sigma\sigma'')$ of 2-paths in Σ such that $\sigma \in \Sigma(\tau) \setminus \{\tau', \tau''\}, \tau \in \Sigma(\sigma) \setminus \{\sigma', \sigma''\}$. For $\Delta \subseteq Arc_3(\Sigma)$, define $H(\Delta) = \{(\tau_2\tau\tau_3, \sigma_2\sigma\sigma_3) \mid (\tau_1, \tau, \sigma, \sigma_1) \in Arc_3(\Sigma), \{\sigma, \tau_1, \tau_2, \tau_3\} =$

- 25 $\Sigma(\tau), \{\tau, \sigma_1, \sigma_2, \sigma_3\} = \Sigma(\sigma)\}$. Then $H(\Delta) \subseteq H(\Sigma)$. It is easily shown that Δ is a self-paired X-orbit on $Arc_3(\Sigma)$ if and only if $H(\Delta)$ is a symmetric X-orbit on $H(\Sigma)$.
- 27 **Lemma 6.2.** Let Σ be a connected (X, 2)-arc transitive graph of valency 4. If Δ is a self-paired X-orbit on $Arc_3(\Sigma)$, then $\mathcal{J}(\Sigma, \Delta) \cong \mathcal{H}(\Sigma, \mathcal{H}(\Delta))$.
- 29 **Proof.** Define $\phi:[\tau_1, \tau, \tau_2] \mapsto [\tau_3, \tau, \tau_4]$, where $\{\tau_3, \tau_4\} = \Sigma(\tau) \setminus \{\tau_1, \tau_2\}$. It is easy to check that ϕ is an isomorphism from $\mathcal{J}(\Sigma, \Delta)$ to $\mathcal{H}(\Sigma, \mathcal{H}(\Delta))$.
- 31 **Theorem 6.3.** Let Σ be a connected (X,2)-arc transitive graph with valency 4 and X acting faithfully on $V(\Sigma)$. Then Σ has a self-paired X-orbit Δ of 3-arcs. Let $\Gamma = \Omega$
- 33 $\mathcal{J}(\Sigma, \Delta)$ and $\Gamma' = \mathcal{I}(\Sigma, \Delta)$. Then $\Gamma[P_{\tau}, P_{\sigma}] \cong \Gamma'[A_{\tau}, A_{\sigma}]$ for $(\tau, \sigma) \in Arc(\Sigma)$, and one of the following cases occurs.
- 35 (1) Either $\Sigma \cong K_5$ or Σ is a near n-gonal graph with respect to an X-orbit \mathcal{E} of n-cycles of Σ with $|\mathcal{E}| \ge 6$, $n \ge girth(\Sigma)$, $n|\mathcal{E}| = 3|E(\Sigma)| = 6|V(\Sigma)|$ and $X_{\mathbf{C}}^{\mathbf{C}} \cong \mathbf{D}_{2n}$

37 for
$$\mathbf{C} \in \mathcal{E}$$
; and either

(1.1)
$$\Gamma[P_{\tau}, P_{\sigma}] \cong 3\mathbf{K}_2, \ \Gamma \cong m\mathbf{C}_n, \ val(\Gamma') = 3, \ \Delta = Arc_3(\mathcal{E}), \ X_{P_{\tau}} = X_{A_{\tau}} = X_{\tau} \cong \mathbf{A}_4$$

39 or S₄; or

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 11

1

(1.2) $\Gamma[P_{\tau}, P_{\sigma}] \cong \mathbb{C}_{6}$, $val(\Gamma) = 4$, $val(\Gamma') = 6$, $X_{P_{\tau}} = X_{A_{\tau}} = X_{\tau} \cong \mathbb{S}_{4}$, both Γ and Γ' are connected and (X, 1)-arc regular, and $Arc_{3}(\mathcal{E}) = Arc_{3}(\Sigma) \setminus \Delta$ is a self-paired X-orbit on $Arc_{3}(\Sigma)$.

3 5

37

(2) $\Gamma[P_{\tau}, P_{\sigma}] \cong \mathbf{K}_{3,3}$, $val(\Gamma) = 6$, $val(\Gamma') = 9$, both Γ and Γ' are connected, and Σ is (X, 3)-arc transitive.

Proof. By Lemma 5.1, Σ has a self-paired X-orbit Δ on $Arc_3(\Sigma)$. Let $\ell(\Delta)$ be defined as in Section 5. Then $\ell(\Delta) \le 3$ as $val(\Sigma) = 4$. By [12, Theorem 4.4], $\Gamma = \mathcal{J}(\Sigma, \Delta)$ is Xsymmetric and admits an X-invariant partition $\mathcal{P} = \{P_{\sigma} | \sigma \in V(\Sigma)\}$. By Proposition 2.2, $\Gamma' = \mathcal{I}(\Sigma, \Delta)$ is X-symmetric and admits an X-invariant partition $\mathcal{A} = \{A_{\sigma} | \sigma \in V(\Sigma)\}$.

- Let $(\tau, \sigma) \in Arc(\Sigma)$. Then there is a 3-arc $(\tau_1, \tau, \sigma, \sigma_1) \in \Delta$ as Σ is X-symmetric. It follows that $\{\tau_1 \tau \sigma, \tau \sigma \sigma_1\}$ is an edge of $\Gamma[P_{\tau}, P_{\sigma}]$, and that $\{(\tau, \tau_1), (\sigma, \sigma_1)\}$ is an edge
- of $\Gamma'[A_{\tau}, A_{\sigma}]$. It is easily shown that $X_{(\tau, \sigma)} = X_{\tau} \cap X_{\sigma} = X_{P_{\tau}} \cap X_{P_{\sigma}}$ acts transitively on 13 the edges of $\Gamma[P_{\tau}, P_{\sigma}]$. It implies that $X_{(\tau_1, \tau, \sigma)}$ acts transitively on the neighborhood
- of $\tau_1 \tau \sigma$ in $\Gamma[P_{\tau}, P_{\sigma}]$. Then $val(\Gamma[P_{\tau}, P_{\sigma}]) = |X_{(\tau_1, \tau, \sigma)} : X_{(\tau_1, \tau, \sigma, \sigma_1)}| = \ell(\Delta)$. Since Σ is 15 (X,2)-arc transitive, $X_{(\tau, \sigma)}$ is transitive on both $\Sigma(\tau) \setminus \{\sigma\} := \{\tau_1, \tau_2, \tau_3\}$ and $\Sigma(\sigma) \setminus \{\tau\} :=$
- { $\sigma_1, \sigma_2, \sigma_3$ }. Thus $V(\Gamma[P_\tau, P_\sigma]) = \{\tau_i \tau \sigma | i=1, 2, 3\} \cup \{\tau \sigma \sigma_i | i=1, 2, 3\}$. A similar argument leads to $V(\Gamma'[A_\tau, A_\sigma]) = \{(\tau, \tau_i) | i=1, 2, 3\} \cup \{(\sigma, \sigma_i) | i=1, 2, 3\}$. It is easy to check
- that $\tau_i \tau \sigma \mapsto (\tau, \tau_i), \tau \sigma \sigma_i \mapsto (\sigma, \sigma_i)$ gives an isomorphism from $\Gamma[P_\tau, P_\sigma]$ to $\Gamma'[A_\tau, A_\sigma]$.
- 19 Further, $\Gamma[P_{\tau}, P_{\sigma}] \cong 3\mathbf{K}_2$, \mathbf{C}_6 or $\mathbf{K}_{3,3}$ according to $\ell(\Delta) = 1, 2$ or 3, respectively. By [12, Theorem 4.3], $2 = |\Gamma_{\mathcal{P}}(\tau_1 \tau \sigma)|$ for $\tau_1 \tau \sigma \in V(\Gamma)$. Then $val(\Gamma) = \ell(\Delta)|\Gamma_{\mathcal{P}}(\tau_1 \tau \sigma)| = 2\ell(\Delta)$.
- 21 By Lemma 2.2, $val(\Gamma') = 3\ell(\Delta)$. Further, by Lemma 6.1, both Γ and Γ' are connected provided $\Gamma[P_{\tau}, P_{\sigma}] \not\cong 3\mathbf{K}_2$.
- 23 If $\ell(\Delta)=3$, then $val(\Gamma)=2\ell(\Delta)=6$, $val(\Gamma')=3\ell(\Delta)=9$, $\Gamma[P_{\tau},P_{\sigma}]\cong \mathbf{K}_{3,3}$, and (2) follows from [10, Theorem 2]. Thus we assume that $\ell(\Delta) \le 2$ in the following.
- It is easy to see $X_{\tau} = X_{P_{\tau}} = X_{A_{\tau}}, (X_{\tau})_{(\Sigma(\tau))} = X_{(P_{\tau})} = X_{(A_{\tau})}$ and hence $X_{\tau}^{\Sigma(\tau)} \cong X_{P_{\tau}}^{P_{\tau}} = X_{A_{\tau}}^{A_{\tau}}$. Since Σ is (X, 2)-arc transitive, $X_{\tau}^{\Sigma(\tau)} \cong A_4$ or S_4 . Further, if $\ell(\Delta) = 2$ then $|X_{\tau}^{\Sigma(\tau)}| > 12$ as
- 27 Σ is not (X, 2)-arc regular in this case. Let $\Delta' = \Delta$ or $Arc_3(\Sigma) \setminus \Delta$ depending on $\ell(\Delta) = 1$ or 2, respectively. It is easily shown that $\ell(\Delta') = 1$ and Δ' is a self-paired X-orbit on
- 29 $Arc_3(\Sigma)$. Then (1) follows from Theorem 5.2 and the above argument.

Corollary 6.4. Let Σ be a connected tetravalent (X, 2)-transitive graph. Then either 31 $\Sigma \cong \mathbf{K}_5$, or Σ is a near n-gonal graph for some integer $n \ge 4$.

7. HEPTAVALENT GRAPHS WITH $X_{\tau}^{\Sigma(\tau)} \cong PSL(3,2)$

- 33 **Theorem 7.1.** Let Σ be an (X,2)-arc transitive graph of valency 7 with $X_{\tau}^{\Sigma(\tau)} \cong PSL(3,2)$ for $\tau \in V(\Sigma)$. Then there exists a symmetric X-orbit Θ on $DSt^3(\Sigma)$. Let 35 $\Gamma = \Pi(\Sigma, \Theta)$ and $S = St(\Theta)$. Then, for $\sigma \in \Sigma(\tau)$, one of the following cases occurs.
 - (1) $\Gamma[S_{\tau}, S_{\sigma}] \cong 3\mathbf{K}_2$, and Γ is a trivalent (X,2)-arc transitive graph;
 - (2) $\Gamma[S_{\tau}, S_{\sigma}] \cong C_6$, val $(\Gamma) = 6$ and Γ is connected;
 - (3) $\Gamma[S_{\tau}, S_{\sigma}] \cong \mathbf{K}_{3,3}$, $val(\Gamma) = 9$ and Γ is connected.
- 39 **Proof.** Let $\tau \in V(\Sigma)$. Since $X_{\tau}^{\Sigma(\tau)} \cong PSL(3,2)$, we may identify $\Sigma(\tau)$ with the point set of the seven-point plane PG(2,2), which is an X_{τ} -flag-transitive 1-(7,3,3) design with

12 JOURNAL OF GRAPH THEORY

- 1 multiplicity 1. By Theorem 3.1, there exists a symmetric X-orbit Θ on $DSt^3(\Sigma)$. Let $S = St(\Theta)$ and $\Gamma = \Pi(\Sigma, \Theta)$. Then, by Theorem 3.2, Γ is X-symmetric and $\Gamma_B \cong \Sigma$, where
- 3 $\mathcal{B} = \{S_{\tau} | \tau \in V(\Sigma)\}$ and $S_{\tau} = \{(\tau, S) | (\tau, S) \in S\}$. Further, for $S_{\tau} \in \mathcal{B}$, we have $X_{\tau} = X_{S_{\tau}}$ and $\mathcal{D}(S_{\tau}) \cong \mathbb{D}^{*}(\tau) \cong PG(2, 2)$. In particular, $|S_{\tau} \cap \Gamma(S_{\sigma})| = 3$ for $\sigma \in \Sigma(\tau)$; thus $\Gamma[S_{\tau}, S_{\sigma}] \cong$
- 5 3**K**₂, **C**₆ or **K**_{3,3}. Noting that two distinct lines of PG(2, 2) intersect a unique point and two distinct points determine a unique line, it follows that $\lambda := |\Gamma(S_{\sigma}) \cap S_{\tau} \cap \Gamma(S_{\delta})| = 1$
- 7 for $\sigma, \delta \in \Sigma(\tau)$ with $\sigma \neq \delta$. By Lemma 6.1, Γ is connected if $\Gamma[S_{\tau}, S_{\sigma}] \not\cong 3K_2$. Note that each point of $\mathcal{D}(S_{\tau})$ is incident with three blocks. Then $val(\Gamma) = 3val(\Gamma[S_{\tau}, S_{\sigma}])$. Thus
- 9 (2) or (3) holds if $\Gamma[S_{\tau}, S_{\sigma}] \not\cong 3\mathbf{K}_2$.
- Assume that $\Gamma[S_{\tau}, S_{\sigma}] \cong 3\mathbf{K}_2$. Then $val(\Gamma) = 3$. Let $\alpha \in S_{\tau}$, and $\Gamma(\alpha) = \{\alpha_1, \alpha_2, \alpha_3\}$ with $\alpha_i \in S_{\tau_i}$ for i = 1, 2, 3. Then τ_1, τ_2 and τ_3 are distinct vertices of Σ . Recall $\mathcal{D}(S_{\tau}) \cong$

 $\mathbb{D}^*(\tau) \cong PG(2,2)$. Then we may identify α with a line of PG(2,2), and \mathcal{S}_{τ_i} with the

- 13 points on this line. Then $(X_{\tau}^{\Sigma(\tau)})_{\alpha} \cong S_4$ acts 2-transitively on $\{S_{\tau_i} | i = 1, 2, 3\}$. It implies that $(X_{\tau})_{\alpha} = X_{\alpha}$ acts 2-transitively (and unfaithfully) on $\{\alpha_1, \alpha_2, \alpha_3\}$. Thus Γ is (X, 2)-arc
- 15 transitive, and (1) holds.

8. PROOF OF THEOREM 4.1

- 17 Let Γ be an X-symmetric graph admitting an X-invariant partition \mathcal{B} such that $\Gamma_{\mathcal{B}}$ is connected and X is faithful on $V(\Gamma)$. Set $b = val(\Gamma_{\mathcal{B}}), v = |B|, r = |\Gamma_{\mathcal{B}}(\alpha)|$ and $k = val(\Gamma_{\mathcal{B}})$
- 19 $|B \cap \Gamma(C)|$ for $\alpha \in V(\Gamma)$ and $(B, C) \in Arc(\Gamma_{\mathcal{B}})$. Assume that $b \ge 2$ and v > k = 3. Recall that $\mathcal{D}(B)$ is a 1-(v, b, r)-design.
- 21 We first show that each of Theorem 4.1(a)–(c) implies that $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive. Assume that one of (a), (b) and (c) occurs. Since vr=bk, we have (v,b,r) is one of
- 23 (4,4,3), (6,4,2) and (7,7,3). Consider the multiplicity $m(\mathcal{D}(B))$ of $\mathcal{D}(B)$. Suppose that $m(\mathcal{D}(B)) \neq 1$. Then $\Gamma_{\mathcal{B}}(B)$
- 25 admits an X_B -invariant partition $\mathcal{M} := \{\mathcal{M}_C | C \in \Gamma_B(B)\}$, where \mathcal{M}_C is a set of blocks of $\mathcal{D}(B)$ with the same trace $B \cap \Gamma(C)$ of C. Thus $m(\mathcal{D}(B)) = |\mathcal{M}_C|$ is a divisor of b.
- 27 For $\alpha \in B$, it is easy to see that $C \in \Gamma_{\mathcal{B}}(\alpha)$ yields $D \in \Gamma_{\mathcal{B}}(\alpha)$ for any $D \in \mathcal{M}_C$. This observation says that $m(\mathcal{D}(B))$ is also a divisor of r. It follows that (v, b, r) = (6, 4, 2),
- 29 $m(\mathcal{D}(B)) = 2 = r$ and $|\mathcal{M}| = 2$. Set $\mathcal{M} = \{\mathcal{M}_C, \mathcal{M}_D\}$. Then $\mathcal{T} := \{B \cap \Gamma(C), B \cap \Gamma(D)\}$ is an X_B -invariant partition of B. Let K be the kernel of X_B acting on \mathcal{T} . Then $|X_B:K| = 2$
- 31 and $X_{(B)} \leq K$. It follows that $X_B^B \cong S_4$ and $K/X_{(B)} \cong A_4$. Note that K is in fact the setwise stabilizer of $B \cap \Gamma(C)$, and also of $B \cap \Gamma(D)$, in X_B . Then K is transitive on both
- 33 $B \cap \Gamma(C)$ and $B \cap \Gamma(D)$. Let H and H_1 be the kernels of K acting on $B \cap \Gamma(C)$ and on $B \cap \Gamma(D)$, respectively. Then K/H and K/H_1 are permutation groups of degree 3.
- 35 Noting that $X_{(B)} \le H$ and $X_{(B)} \le H_1$, it follows that $H/X_{(B)}$ and $H_1/X_{(B)}$ are normal subgroups of $K/X_{(B)}$ with index 3 in $K/X_{(B)}$. Hence $H_1/X_{(B)} = H/X_{(B)}$ as A₄ has only
- 37 one normal subgroup of order 4. Thus $H_1 = H$ fixes B point-wise, and so $H \le X_{(B)}$, which contradicts $|H/X_{(B)}| = 4$. Thus $m(\mathcal{D}(B)) = 1$.
- 39 Recall that $m^*(\Gamma, \mathcal{B})$ is the multiplicity of the dual design $\mathcal{D}^*(B)$ of $\mathcal{D}(B)$ and $m^*(\Gamma, \mathcal{B}) = |B_{\alpha}|$ for $\alpha \in B \in \mathcal{B}$ and $B_{\alpha} = B \cap (\bigcap_{C \in \Gamma_{\mathcal{B}}(\alpha)} \Gamma(C))$. It is easily shown that $\{B_{\alpha} \mid B_{\alpha} \in B \in \mathcal{B}\}$
- 41 $\alpha \in B$ is an X_B -invariant partition of B; in particular, $m^*(\Gamma, \mathcal{B}) = |B_{\alpha}|$ is a divisor of |B| = v. Noting that $B_{\alpha} \subseteq B \cap \Gamma(C)$ for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(\alpha)$, it follows that $m^*(\Gamma, \mathcal{B})$ is
- 43 also a divisor of $k = |B \cap \Gamma(C)|$. If $m^*(\Gamma, \mathcal{B}) \neq 1$, then (v, k, r) = (6, 3, 2) and $m^*(\Gamma, \mathcal{B}) = k$, so $m(\mathcal{D}(B)) \ge |\Gamma_{\mathcal{B}}(\alpha)| = 2$, a contradiction. Thus $m^*(\Gamma, \mathcal{B}) = 1$.

20476

A CLASS OF SYMMETRIC GRAPHS WITH 2-ARC TRANSITIVE QUOTIENTS 13

- Therefore, $m(\mathcal{D}(B)) = 1 = m^*(\Gamma, \mathcal{B})$, and $X_B^{\Gamma_{\mathcal{B}}(B)} \cong X_B^B$ by Theorem 3.4. Thus, if one of cases (a), (b) and (c) occurs then $X_B^{\Gamma_{\mathcal{B}}(B)}$ is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence $\Gamma_{\mathcal{B}}$ is 1 3 (X, 2)-arc transitive.
- Now assume that $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive. Then $\lambda := |\Gamma(C) \cap B \cap \Gamma(D)|$ is inde-5 pendent of the choice of 2-path CBD of $\Gamma_{\mathcal{B}}$, and $m(\mathcal{D}(B)) = 1$ by [12, Lemma 2.4].
- By [12, Corollary 3.3], vr = 3b and $\lambda(b-1) = 3(r-1)$, thus $(9 \lambda v)r = 3(3 \lambda)$. Since 7 v > k = 3, we have $\lambda \le k - 1 = 2$. If $\lambda = 0$, then r = 1 and v = 3b. Let $\lambda \ge 1$. Then, by [12,
- Theorem 3.2], the dual design $\mathcal{D}^*(B)$ of $\mathcal{D}(B)$ is a 2- (b, r, λ) design with v blocks. The well-known Fisher's Inequality applied to $\mathcal{D}^*(B)$ gives $b \leq v$, and so $r \leq k=3$. If 9 $\lambda = 2$, then $\lambda(b-1) = 3(r-1)$, (9-2v)r = 3 yields (v, b, r) = (4, 4, 3). If $\lambda = 1$, then $r \le k$,
- vr = 3b and (9-v)r = 6 yield (v, b, r) = (6, 4, 2) or (7, 7, 3). 11 Note that $m^*(\Gamma, \mathcal{B}) \leq \lambda$ if $\lambda \neq 0$. Suppose that $m^*(\Gamma, \mathcal{B}) \neq 1$ for some $\lambda \neq 0$. Then $\lambda =$
- $2 = m^*(\Gamma, \mathcal{B})$. Since r = 3, there are $C, D \in \Gamma_{\mathcal{B}}(\alpha)$ with $C \neq D$ and $B \cap \Gamma(C) = B \cap \Gamma(D)$. 13 Thus C and D has the same trace, so $m(\mathcal{D}(B)) \ge 2$, a contradiction. Therefore, if $\lambda \ne 0$
- then $m^*(\Gamma, \mathcal{B}) = 1$ and, by Theorem 3.3 and 3.4, $X_B^{\Gamma_{\mathcal{B}}(B)} \cong X_B^B$ and X is faithful on \mathcal{B} . 15
- Assume that $(v, b, r, \lambda) = (4, 4, 3, 2)$ or (6, 4, 2, 1). Then $val(\Gamma_{\mathcal{B}}) = 4$, and $X_{\mathcal{B}}^{\mathcal{B}} \cong A_4$ or S_4 as $X_{\mathcal{B}}$ acts 2-transitively on $\Gamma_{\mathcal{B}}(\mathcal{B})$. Thus (a) or (b) holds, so either $\Gamma \cong \mathcal{I}(\Gamma_{\mathcal{B}}, \Delta)$ by 17 [10, Theorem 2] or $\Gamma \cong \mathcal{J}(\Gamma_{\mathcal{B}}, \Delta)$ by Lemma 2.3, where Δ is a self-paired X-orbit on
- $Arc_3(\Gamma_{\mathcal{B}})$. Then, by Theorem 6.3, one of Theorem 4.1 (1) and (2) occurs. 19 Assume that $(v, b, r, \lambda) = (7, 7, 3, 1)$. Then $\mathcal{D}(B) \cong PG(2, 2)$ is X_B -flag-transitive, and so
- $X_{R}^{\Gamma_{\mathcal{B}}(B)}$ is isomorphic to a subgroup of PSL(3,2), the automorphism group of PG(2,2). 21
- Since $\Gamma_{\mathcal{B}}$ is (X,2)-arc transitive, $X_B^{\Gamma_{\mathcal{B}}(B)}$ is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence $|X_B^{\Gamma_{\mathcal{B}}(B)}| \ge 42$. It follows that $X_B^{\Gamma_{\mathcal{B}}(B)} \cong PSL(3,2)$. Thus $X_B^B \cong X_B^{\Gamma_{\mathcal{B}}(B)} \cong PSL(3,2)$ by Theorem 3.4. Hence (c) holds. Since $m^*(\Gamma, \mathcal{B}) = 1$, by Theorem 3.3, $\Gamma \cong \Pi(\Gamma_{\mathcal{B}}, \Theta)$ for a symmetric 23
- 25 *X*-orbit Θ on $DSt^3(\Gamma_{\mathcal{B}})$. Then, by Theorem 7.1, Theorem 4.1(3) holds. Assume that $\lambda = 0$, r = 1 and v = 3b. Then $\Gamma \cong e\Gamma[B, C]$ for $\{B, C\} \in E(\Gamma_{\mathcal{B}})$. Since
- $|B \cap \Gamma(C)| = 3$, we have $\Gamma[B, C] \cong 3\mathbf{K}_2$, \mathbf{C}_6 or $\mathbf{K}_{3,3}$. Thus (d) occurs. 27

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for helpful suggestions that have improved the presentation of the article.

29 REFERENCES

- [1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, 1999. 31
- [2] N. L. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, 2nd edition, Cambridge University Press, Cambridge, 1993. 33
- [3] J. D. Dixon and B. Mortimer, Permutation Groups, Springer, New York, 35 1996.
- [4] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm Algebra 27 (1999), 3755-3769. 37

14 JOURNAL OF GRAPH THEORY

- 1 [5] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm Algebra 27 (1999), 3727–3754.
- 3 [6] A. Gardiner and C. E. Praeger, A geometrical approach to imprimitive graphs, Proc London Math Soc 71 (3) (1995), 524–546.
- 5 [7] A. Gardiner and C. E. Praeger, Topological covers of complete graphs, Math Proc Cambridge Philos Soc 123 (1998), 549–559.
- 7 [8] A. Gardiner and C. E. Praeger, Symmetric graphs with complete quotients, preprint.
- 9 [9] M. A. Iranmanesh, C. E. Praeger, and S. Zhou, Finite symmetric graphs with two-arc-transitive quotients, J Comb Theory B 94 (2004), 79–99.
- [10] C. H. Li, C. E. Praeger, and S. Zhou, A class of finite symmetric graphs with 2-arc-transitive quotients, Math Proc Cambridge Phil Soc 129 (2000), 13 19–34.
- [11] C. H. Li, C. E. Praeger, and S. Zhou, Imprimitive symmetric graphs with cyclic blocks, Eur J Comb, DOI: 10.1016/j.ejc.2009.02.006.
- [12] Z. P. Lu and S. Zhou, Finite symmetric graphs with two-arc transitivequotients II, J Graph Theory 56 (2002), 167–193.
- [13] M. Perkel, Near-polygonal graphs, Ars Comb 26(A) (1988), 149–170.
- 19 [14] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math 244 (2002), 521–537.
- 21 [15] S. Zhou, Constructing a class of symmetric graphs, Eur J Comb 23 (2002), 741–760.
- 23 [16] S. Zhou, Almost covers of 2-arc-transitive graphs, Comb 24 (2004), 731–745.
- 25 [17] S. Zhou, A local analysis of imprimitive symmetric graphs, J Algebraic Comb 22 (2005), 435–449.
- 27 [18] S. Zhou, On a class of finite symmetric graphs, Eur J Comb 29 (2008), 630–640.
- 29 [19] S. Zhou, Classification of a family of symmetric graphs with complete quotients, Discrete Math 309 (2009), 5404–5410.
- 31 [20] S. Zhou, Trivalent 2-arc transitive graphs of type G_2^1 are near polygonal. Ann Comb, to appear.

Q1

Author Query Form

Article Number: 20476

Journal Name : JGT

Query No	Proof Page/lineno	Details required	Authors response
Q1		Please update Reference [20].	