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Abstract

We establish a reflection principle for three lattice walkers and use
this principle to reduce the enumeration of configurations of three vi-
cious walkers to that of configurations of two vicious walkers. Pre-
cisely, the reflection principle leads to a bijection between three walks
(L1, L2, L3) such that L2 intersects both L1 and L3 and three walks
(L1, L2, L3) such that L1 intersects L3. Hence we find a combinato-
rial interpretation of the formula for the generating function for the
number of configurations of three vicious walkers, originally derived
by Bousquet-Mélou by using the kernel method, and independently
by Gessel by using tableaux and symmetric functions. This answers
a question posed by Gessel and Bousquet-Mélou. We also find a re-
flection principle for four vicious walks that leads to a combinatorial
interpretation of a formula derived from Gessel’s theorem.

Keywords: vicious walkers, watermelon, Catalan numbers, Ballot numbers,
reflection principle.

AMS Classification Numbers: 05A15; 82B23

1 Introduction

The vicious walker model was introduced by Fisher [5] in 1984 and has drawn
much attention. A walker is said to be vicious if he does not like to meet
any other walker at any point. Formally speaking, a configuration of r vi-
cious walkers, called r vicious walks, of length n, is an r-tuple of pairwise
nonintersecting lattice walks of length n, consisting of up steps U (i.e., (1, 1))
and down steps D (i.e., (1,−1)), starting from (0, 2i1), (0, 2i2), . . . , (0, 2ir)
and ending at (n, e1), (n, e2), . . . , (n, er) where ir > · · · > i2 > i1 = 0 and
er > · · · > e2 > e1. Precisely, two lattice paths are said to be nonintersect-
ing if they do not share any common points. In particular, a watermelon
of length n is a configuration consisting of r chains, or paths, of length n
which start at the points (0, 0), (0, 2), . . . , (0, 2r − 2) and end at the points
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(n, k), (n, k + 2), . . . , (n, k + 2r− 2) for some k. In other words, a watermelon
is a vicious walker configuration starting at adjacent points and ending at
adjacent points. Note that two lattice points are said to be adjacent if they
are on the same vertical line and their y-coordinates differ by 2. It is known
that configurations of vicious walkers can be represented by tableaux. So the
theory of symmetric functions can be employed to study vicious walkers, see
[10, 11, 12, 13, 15, 16].

The main objective of this paper is to present a combinatorial approach
to the enumeration of configurations of three vicious walkers. Let us fix the
starting points (0, 0), (0, 2i) and (0, 2i + 2j). Let V (i, j, n) be the set of three
vicious walks (L1, L2, L3) of length n, where L1 is the path of the first walker
starting from (0, 0), L2 is the path of the second walker starting from (0, 2i),
and L3 is the path of the third walker starting from (0, 2i + 2j). Define the
generating function Vi,j(t) to be

Vi,j(t) =
∞∑

n=0

|V (i, j, n)|tn, (1.1)

where | · | denotes the cardinality of a set.

The enumeration of configurations of three vicious walkers has been solved
independently by Bousquet-Mélou [1] by using the obstinate kernel method,
and by Gessel [9] by using tableaux and symmetric functions. They obtained a
formula for Vi,j(t) in terms of the generating function of the Catalan numbers.

Let C(t) be the generating function of the Catalan numbers Cn = 1
n+1

(
2n
n

)
,

that is,

C(t) =
∞∑

n=0

Cnt
n.

Recall that C(t) satisfies the recurrence relation

C(t) = 1 + tC2(t). (1.2)

Let
D(t) = tC2(t) = C(t)− 1 =

∑
n=0

Cn+1t
n+1. (1.3)

The following elegant formula is due to Bousquet-Mélou [1] and Gessel [9].

Theorem 1.1 (Bousquet-Mélou [1] and Gessel [9]).

Vi,j(t) =
1

1− 8t
(1−Di(2t))(1−Dj(2t)). (1.4)
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In view of the relation (1.3) and the identity

(1 + D(t)

1−D(t)

)2

=
1

1− 4t
, (1.5)

Gessel derived the following form of the formula for Vi,j(t).

Theorem 1.2 (Gessel [9]). For any i, j ≥ 1, we have

Vi,j(t) = C2(2t)
(
1+D(2t)+ · · ·+Di−1(2t)

)(
1+D(2t)+ · · ·+Dj−1(2t)

)
. (1.6)

Both Bousquet-Mélou [1] and Gessel [9] proposed the problem of find-
ing a combinatorial interpretation of the formula for Vi,j(t). The question of
Bousquet-Mélou is concerned with the formula (1.4), while the question of
Gessel is concerned with the formula in the form of (1.6). In this paper, we
will present a combinatorial interpretation of (1.4). As will be seen, the alge-
braic manipulations to transform the formula (1.4) to (1.6) can be explained
combinatorially. So we have obtained combinatorial interpretations of both
formulas (1.4) and (1.6).

In Section 3, we also take a different approach to the enumeration of con-
figurations of two vicious walkers. By reformulating the problem in terms of
pairs of intersecting walks, we give a decomposition of a pair of converging
walks, that is, two walks that do not intersect until they reach the same end-
ing point, into two-chain watermelons, or 2-watermelons. Then we can use
Pólya’s formula for the number of 2-watermelons of length n to derive the for-
mula for the number of two vicious walks of length n. In Section 4, we make a
connection between the Labelle merging algorithm, in the form presented by
Chen, Pang, Qu and Stanley [3], and the classical ballot numbers. In the last
section, we present a reflection principle for the enumeration of configurations
of four vicious walkers with prescribed starting points. More precisely, we
give a combinatorial proof of a formula on the number of four vicious walks
derived from Gessel’s theorem [9].

2 The Reflection Principle

In this section, we will establish a reflection principle so that we can reduce
the enumeration of three vicious walkers to that of two vicious walkers. This
reduction leads to a combinatorial interpretation of the formula for Vi,j(t), as
defined by (1.1).

Let us recall some basic definitions. Two walks L1 and L2 are said to be
intersecting, denoted L1 ∩ L2 6= ∅, if L1 and L2 share a common point. Let
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U(i, j, n) be the set of all 3-walks (L1, L2, L3) of length n, where L1, L2 and
L3 start from (0, 0), (0, 2i) and (0, 2i + 2j) respectively. Let

Ui,j(t) =
∞∑

n=0

|U(i, j, n)|tn.

It is obvious that

Ui,j(t) =
1

1− 8t
. (2.1)

We use W12(n), or W12 for short, to denote the set of 3-walks (L1, L2, L3) in
U(i, j, n) such that L1 and L2 are nonintersecting. Similarly, we use W23(n),
or W23 for short, to denote the set of 3-walks (L1, L2, L3) in U(i, j, n) such
that L2 and L3 are nonintersecting. Clearly, the set V (i, j, n) of three vicious
walks of length n can be expressed as W12∩W23. By the principle of inclusion
and exclusion, we see that

|V (i, j, n)| = |W12 ∩W23| = |W12|+ |W23| − |W12 ∪W23|. (2.2)

In order to compute |W12 ∪W23|, we let M12,23(n), or M12,23 for short, denote
the set of 3-walks (L1, L2, L3) in U(i, j, n) such that L2 intersects both L1 and
L3. Clearly, we have

|W12 ∪W23| = |U(i, j, n)| − |M12,23|. (2.3)

We are now in a position to establish a reflection principle to deal with
the enumeration of M12,23(n). Let M13(n), or M13 for short, denote the set of
3-walks (L1, L2, L3) in U(i, j, n) such that L1 intersects L3. Then we have the
following correspondence.

Theorem 2.1. For n ≥ 1, there exists a bijection between M12,23(n) and
M13(n).

Proof. We construct a map Φ from M12,23(n) to M13(n) as follows. Let
(L1, L2, L3) be a 3-walk in M12,23(n). We consider the following two cases. If
L1∩L3 6= ∅, then it is clear that (L1, L2, L3) ∈ M13(n). In this case, we define
Φ((L1, L2, L3)) = (L1, L2, L3).

We may now assume that L1 ∩ L3 = ∅. We first consider the case that L2

meets L1 before it meets L3. Suppose that P is the first intersection point
of L2 and L1. We now conduct the usual reflection operation on L1 and L2,
and denote the resulting paths by L′1 and L′2. Namely, L′1 consists of the first
segment of L1 up to the point P followed by the last segment of L2 starting
from the point P , and L′2 consists of the first segment of L2 up to the point
P followed by the last segment of L1 starting from the point P . Figure 2.1 is
an illustration of the reflection.
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Figure 2.1: The reflection principle.

Let L′3 = L3 and Φ((L1, L2, L3)) = (L′1, L
′
2, L

′
3). It is clear that L′1 must

meet L′3. Thus we have (L′1, L
′
2, L

′
3) ∈ M13(n).

It is not difficult to see that the above procedure is reversible. We are
still left with the case when L2 intersects L3 before meeting L1. This case
is analogous to the case that we have considered. Thus we have reached the
conclusion that Φ is a bijection.

Combining (2.2), (2.3) and Theorem 2.1, we obtain the following relation

|V (i, j, n)| = |W12|+ |W23|+ |M13| − |U(i, j, n)|. (2.4)

Let W13 be the set of three walks (L1, L2, L3) in U(i, j, n) such that L1

never meets L3, and define the generating functions for |W12|, |W23| and |W13|
by W12(t), W23(t) and W13(t) respectively. From (2.4) it follows that

|V (i, j, n)| = |W12|+ |W23| − |W13|. (2.5)

Proposition 2.2.

Vi,j(t) = W12(t) + W23(t)−W13(t). (2.6)

The above formula can be viewed as a reduction of the three vicious walkers
problem to that of two vicious walkers. Let N(i, n) be the set of two vicious
walks (L1, L2) of length n starting at (0, 0) and (0, 2i) respectively, and denote
the corresponding generating function by

Ni(t) =
∞∑

n=0

|N(i, n)|tn.

Bousquet-Mélou [1] and Gessel [9] obtained the following formula

Ni(t) =
1

1− 4t
(1−Di(t)). (2.7)

As pointed out by Gessel [9], the above formula for Ni(2t) can be deduced
from the formula (1.6) for Vi,j(t) by taking the limit j →∞, and by using the
identity (1.5).

5



Using the above formula for Ni(t), one can derive the following formulas
for the generating functions W12(t), W23(t) and W13(t):

W12(t) =
1−Di(2t)

1− 8t
, W23(t) =

1−Dj(2t)

1− 8t
, W13(t) =

1−Di+j(2t)

1− 8t
. (2.8)

Clearly, formula (1.4) in Theorem 1.1 follows from the above formulas and the
relation (2.6).

We note that Gessel [9] obtained the following identity

Vi,j(t) = Ni(2t) + Nj(2t)−Ni+j(2t), (2.9)

in accordance with the combinatorial statement (2.6) derived from the reflec-
tion principle.

As to the question of finding a combinatorial interpretation of the gen-
erating function formula (1.4), the reflection principle (Theorem 2.1) along
with the combinatorial interpretations of the formulas for W12(t), W23(t) and
W13(t) can be considered as an answer because the principle of inclusion and
exclusion for two sets can be easily justified combinatorially. In the next
section, we will present a combinatorial treatment of the formula (2.7) for
two vicious walkers. Moreover, we note that one can give a combinatorial
reasoning of the transformation from the formula (1.4) to the formula (1.6).

It is to deduce (1.6) from (1.4) by utilizing the identity (1.5), which can
be explained combinatorially in two steps. The first step is to show that

4n =
2n∑

k=0

(
2k

k

)(
2n− 2k

n− k

)
, (2.10)

which is equivalent to the identity

∞∑
n=0

(
2n

n

)
tn =

1√
1− 4t

. (2.11)

There are several combinatorial proofs of (2.10), see, for example, Kleitman
[14] and Sved [22]. The second step is to show that

1 + D(t)

1−D(t)
=

∞∑
n=0

(
2n

n

)
tn. (2.12)

Note that 1+D(t)
1−D(t)

can be written as C(t)
1−tC2(t)

. A combinatorial interpretation of
the identity

C(t)

1− tC2(t)
=

∞∑
n=0

(
2n

n

)
tn

is given by Chen, Li and Shapiro [2] in terms of doubly rooted plane trees and
the butterfly decomposition.
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3 Converging Walks and 2-Watermelons

In this section, we present a different approach to the two vicious walkers
problem by counting pairs of converging walks. A pair of walks is said to
be converging if they never meet until they reach a common ending point.
We will show that pairs of converging walks can be enumerated by applying
Pólya’s formula for two-chain watermelons, or 2-watermelons [19]. Precisely,
we will give a decomposition of a pair of converging walks into 2-watermelons.

Recall that M13(n) is defined in the previous section. Let M12(n), or M12

for short, be the set of 3-walks (L1, L2, L3) in U(i, j, n) such that L1 intersects
L2. Similarly, we can define M23(n), or M23 for short. Clearly, we have

|M12| = |U(i, j, n)| − |W12|, |M23| = |U(i, j, n)| − |W23|.

From (2.4) it follows that

|V (i, j, n)| = |U(i, j, n)|+ |M13| − |M12| − |M23|.

Let M12(t), M23(t) and M13(t) denote the generating functions for |M12(n)|,
|M23(n)| and |M13(n)|, respectively.

Proposition 3.1. We have

Vi,j(t) = Ui,j(t)−M12(t)−M23(t) + M13(t). (3.1)

We will show that M12(t), M13(t) and M23(t) can be computed by using the
following formula for the number of 2-watermelons as derived by Levine [18]
and Pólya [19], see also, Fürlinger and Hofbauer [6], Gessel [7], and Shapiro
[21].

Proposition 3.2. The number of 2-watermelons with each walk having n steps
is Cn+1.

Using the above formula, one sees that the generating function of the
number of 2-watermelons equals C2(t). Note that 2-watermelons of length n
correspond to pairs of converging walks of length n+1 with adjacent starting
points. In general, let T (i, n) be the set of pairs of converging walks (L1, L2)
of length n, where L1 starts from (0, 0) and L2 starts from (0, 2i). Define

Ti(t) =
∑
n≥0

|T (i, n)|tn.

Proposition 3.3. For any i ≥ 1, Ti(t) = Di(t).
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Proof. Let L1 = A0A1 . . . An and L2 = B0B1 . . . Bn, where a walk is rep-
resented by a sequence of points. For 0 ≤ k ≤ i, let jk be the minimum
index such that the difference of the y-coordinates of (Ajk

, Bjk
) equals to

2i − 2k. It is clear that j0 = 0 and ji = n. We now decompose (L1, L2) into

i 2-walks: (L
(1)
1 , L

(1)
2 ), . . . , (L

(i)
1 , L

(i)
2 ), where L

(k)
1 = Ajk−1

Ajk−1+1 . . . Ajk
and

L
(k)
2 = Bjk−1

Bjk−1+1 . . . Bjk
. Figure 3.1 is an illustration of the decomposition.

q q q q q q q q q
q q q q q q q q q
q q q q q q q q q

q q q q q q q q q
q q q q q q q q q
q q q q q q q q q
q q q q q q q q q
q q q q q q q q q
q q q q q q q q q
q q q q q q q q q
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@
@

L1

L2Bj0

Aj0

Bj1

Aj1

Bj2

Aj2
Aj3(Bj3)

Figure 3.1: The decomposition of a pair of converging walks.

Observe that by the choice of jk, the rightmost pair of steps in (L
(k)
1 , L

(k)
2 )

must be (U,D). Moreover, if we delete this pair of steps, the resulting upper
walk can be lowered 2i− 2k units without intersecting the lower walk to form
a 2-watermelon. See Figure 3.2 for an example.

q q q q
q q q q
q q q q
q q q q
q q q q
q q q q
q q q q
q q q q
q q q q

@@¡¡

¡¡@@
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(1)
1

L
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2
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q q q
q q q
q q q
q q q
q q q
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q q q
q q q
q q q

@@¡¡

¡¡@@

q q
q q
q q
q q
q q
q q

L
(2)
1

L
(2)
2
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q q q q q
q q q q q
q q q q q
q q q q q

@@¡¡@@

@@¡¡@@

L
(3)
1

L
(3)
2

→
q q q q
q q q q
q q q q
q q q q

@@¡¡@@

@@¡¡@@

Figure 3.2: From 2-walks to 2-watermelons.

By Proposition 3.2, The generating function for the number of 2-walks
(L

(k)
1 , L

(k)
2 ) equals D(t) = t · C2(t). This completes the proof.

Let M(i, n) be the set of intersecting 2-walks (L1, L2) of length n, where
L1 and L2 start from (0, 0), (0, 2i) respectively. Define

Mi(t) =
∑
n≥0

|M(i, n)|tn.
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Observe that every pair of intersecting paths (L1, L2) can be decomposed
into a pair of converging paths and a pair of arbitrary paths starting from the
same point. Thus we have the following formula.

Corollary 3.4. For any i ≥ 1,

Mi(t) =
Di(t)

1− 4t
.

It is obvious that

Mi(t) + Ni(t) =
1

1− 4t
. (3.2)

So the formula (2.7) for Ni(t) can be deduced from the above formula. It
is easy to see that M12(t), M23(t) and M13(t) can be computed by using the
above formula for Mi(t). So we get

M12(t) =
Di(2t)

1− 8t
, M23(t) =

Dj(2t)

1− 8t
, M13(t) =

Di+j(2t)

1− 8t
, (3.3)

in agreement with (2.8). Substituting (3.3) into (3.1), we obtain Theorem 1.1.

4 Connection to the Ballot Numbers

In this section, we put the Labelle merging algorithm in a more general setting,
and show that the direct correspondence formulated by Chen, Pang, Qu and
Stanley [3] leads to a connection between pairs of converging walks and the
classical ballot numbers.

Let us recall the direct correspondence given in [3]. We will represent a
walk as a sequence of steps rather than points. Let (L1, L2) be a 2-watermelon
of length n, and let L1 = p1p2 · · · pn and L2 = q1q2 · · · qn, where pi, qi = U or
D. Set U ′ = D and D′ = U . Using the direct correspondence in [3], the
watermelon (L1, L2) can be represented by a Dyck path of length 2n + 2:

Uq1p
′
1q2p

′
2 · · · qnp

′
nD.

It is not difficult to see that the above correspondence is a bijection. Figure
4.1 gives an illustration.

Using the same idea, we may encode a pair of converging walks (L1, L2) in
T (i, n) by a partial Dyck path P in the sense that the starting point of P is
not necessarily the point (0, 0). We should note that the common definition
of a partial Dyck path is a lattice path starting from the origin (0, 0) with up
and down steps not going below the x-axis. Define P (i, n) to be the set of all
partial Dyck paths of length 2n which start from (0, 2i) and never return to the
x-axis except for the final destination. The following proposition establishes
the connection between converging walks and partial Dyck paths.
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Figure 4.1: From a 2-watermelon to a Dyck path.

Proposition 4.1. For n ≥ 1, there exists a bijection between T (i, n) and
P (i, n).

Proof. Given a pair of converging walks (L1, L2) in T (i, n), let L1 = p1p2 · · · pn

and L2 = q1q2 · · · qn, where pi, qi = U or D. Then (L1, L2) can be represented
by a partial Dyck path P of length 2n starting from (0, 2i):

P = q1p
′
1q2p

′
2 · · · qnp

′
n.

Clearly, P returns to the x-axis at the ending point and never touches the
x-axis before the ending point, that is, P ∈ P (i, n). It is easy to verify that
the above correspondence is a bijection. Figure 4.2 is an illustration.
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↔
P

Figure 4.2: From a pair of converging walks to a partial Dyck path.

It is well known that the number of partial Dyck paths in P (i, n) is given
by the classical ballot number. Here we give a decomposition of a partial Dyck
path into Dyck paths in accordance with the generating function of |T (i, n)|
as given in Proposition 3.3.

Given a partial Dyck path P in P (i, n), we can decompose P into i
nonempty Dyck paths P1, . . . , Pi via the following procedure. Let P = A0A1 · · ·A2n,
where P is represented by the sequence of points rather than steps. Let j0 = 0,

10



and for 1 ≤ k ≤ i, let jk be the minimum index such that the y-coordinate of
Ajk

is two less than that of Ajk−1
. Then we can decompose P into i segments

Q1, Q2, . . . , Qi, where Qk is the segment of P starting at Ajk−1
and ending at

Ajk
. Observe that by the choice of jk, the rightmost two steps of Qk must

be DD. Let Pk denote the Dyck path obtained from Qk by deleting the last
down step and adding an up step before the first step of Qk. Evidently, Pk is
a nonempty Dyck path. This completes the proof.

To conclude this section, we note that |T (i, n)| can be computed by using
the Lagrange inversion formula, or by using the formula for the number of
Dyck paths of length 2n + 2i with 2i returns to the x-axis, see Deutsch [4].
The explicit formula is as follows:

|T (i, n)| = i

n

(
2n

n− i

)
.

From formula (2.7), we obtain the explicit formula for |N(i, n)|:

|N(i, n)| = 4n −
n∑

k=i

i

k

(
2k

k − i

)
4n−k. (4.1)

We also note that |T (i, n)| can be expressed as the classical ballot number
b(n + i− 1, n− i), where

b(n, i) =

(
n + i

i

)
−

(
n + i

i− 1

)
=

n + 1− i

n + 1 + i

(
n + i + 1

i

)
,

see, for example, Riordan [20].

5 Four Vicious Walkers

In this section, we present a reflection principle for four vicious walkers that
leads to a reduction from four vicious walks to two vicious walks. We first
introduce some defintions. Let U(i, j, k, n) be the set of 4-walks (L1, L2, L3, L4)
of length n, where L1, L2, L3 and L4 start from (0, 0), (0, 2i), (0, 2i + 2j) and
(0, 2i + 2j + 2k) respectively. Let V (i, j, k, n) be the set of four vicious walks
(L1, L2, L3, L4) in U(i, j, k, n). Define the generating function Vi,j,k(t) by

Vi,j,k(t) =
∑
n≥0

|V (i, j, k, n)|tn.

The following formula for |V (i, j, k, n)| is a consequence of Gessel’s theorem
[9]. Let v(i, n) denote the number of two vicious walks in N(i, n) as given by
the generating function (2.7). Recall that an explicit formula for v(i, n) is
given by (4.1).
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Theorem 5.1. For any i, j, k ≥ 1, we have

|V (i, j, k, n)| = v(i, n)v(k, n)−v(i+j, n)v(j+k, n)+v(i+j+k, n)v(j, n). (5.1)

In order to give a combinatorial interpretation of the above formula (5.1),
we will establish a reflection principle for certain classes of four vicious walks.
For 1 ≤ r < s ≤ 4, we use Wrs(n), or Wrs for short, to denote the set of 4-
walks (L1, L2, L3, L4) in U(i, j, k, n) such that Lr and Ls are nonintersecting.
Similarly, for 1 ≤ r < s ≤ 4, we use Mrs(n), or Mrs for short, to denote the set
of 4-walks (L1, L2, L3, L4) in U(i, j, k, n) such that Lr and Ls are intersecting.
Clearly, the set V (i, j, k, n) of four vicious walks of length n can be expressed
as W12 ∩W23 ∩W34. Clearly, we have

|W12 ∩W23 ∩W34| = |W12 ∩W34| − |W12 ∩M23 ∩W34|. (5.2)

Note that it is easy to compute |W12 ∩W34| by using the formula for two
vicious walks. To compute |W12 ∩M23 ∩W34|, we may rely on the following
reflection principle.

Theorem 5.2. There exists a bijection between the set W13 ∩W24 and the set
(W14 ∩W23) ∪ (W12 ∩M23 ∩W34).

Proof. We proceed to construct a map ψ from W13 ∩W24 to (W14 ∩W23) ∪
(W12 ∩M23 ∩W34). Let (L1, L2, L3, L4) be a 4-walk in W13 ∩W24. We have
the following nine cases.

(1) L1 ∩ L2 = ∅, L2 ∩ L3 6= ∅ and L3 ∩ L4 = ∅, then it is clear that
(L1, L2, L3, L4) ∈ W12∩M23∩W34. In this case, we define ψ((L1, L2, L3, L4)) =
(L1, L2, L3, L4).

(2) L1 ∩ L4 = ∅ and L2 ∩ L3 = ∅, then it is clear that (L1, L2, L3, L4) ∈
W14 ∩W23. In this case, we define ψ((L1, L2, L3, L4)) = (L1, L2, L3, L4).

(3) L2 ∩L3 6= ∅, either L1 ∩L2 6= ∅ or L3 ∩L4 6= ∅, and L2 meets L3 before it
meets L1 (when L1 ∩ L2 = ∅, we naturally assume that L2 meets L3 before it
meets L1), L3 meets L2 before it meets L4 (when L3 ∩ L4 = ∅, we naturally
assume that L3 meets L2 before it meets L4). In this case, we apply the usual
reflection operation on L2 and L3, and denote the resulting paths by L′2 and
L′3. Let L′1 = L1, L′4 = L4 and ψ((L1, L2, L3, L4)) = (L′1, L

′
2, L

′
3, L

′
4). It is easy

to verify that (L′1, L
′
2, L

′
3, L

′
4) ∈ W12 ∩M23 ∩W34.

(4) L1 ∩ L4 = ∅, L2 ∩ L3 6= ∅, L1 ∩ L2 6= ∅, and L2 meets L1 before it meets
L3.

(5) L1 ∩ L4 6= ∅, L2 ∩ L3 6= ∅, L2 meets L1 before it meets L3, and L3 meets
L2 before it meets L4.
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(6) L1 ∩ L4 6= ∅, L2 ∩ L3 = ∅.
In Cases (4), (5), (6), we apply the usual reflection operation on L1 and

L2, and denote the resulting paths by L′1 and L′2. Let L′3 = L3, L′4 = L4 and
ψ((L1, L2, L3, L4)) = (L′1, L

′
2, L

′
3, L

′
4). It is easy to verify that (L′1, L

′
2, L

′
3, L

′
4) ∈

W14∩W23. Figure 5.1 is an illustration of the reflection operation on (L1, L2, L3, L4)
in Case (4).

L1

L2

L3

L4

1
12

2
2

2

3

3
3

4
4 4

ψ−→

L′1

L′2

L′3

L′4

qq PP

1
22

1
1

1

3

3
3

4
4 4

Figure 5.1: The action of the map ψ on a 4-walk (L1, L2, L3, L4) in Case (4).

(7) L1 ∩L2 = ∅, L1 ∩L4 = ∅, L2 ∩L3 6= ∅, L3 ∩L4 6= ∅, L3 meets L4 before it
meets L2.

(8) L1 ∩L2 6= ∅, L1 ∩L4 = ∅, L2 ∩L3 6= ∅, L3 ∩L4 6= ∅, L3 meets L4 before it
meets L2 and L2 meets L3 before it meets L1.

(9) L1 ∩ L4 6= ∅, L2 ∩ L3 6= ∅, L3 meets L4 before it meets L2.

In Cases (7), (8), (9), we use the usual reflection operation on L3 and
L4, and denote the resulting paths by L′3 and L′4. Let L′1 = L1, L′2 = L2 and
ψ((L1, L2, L3, L4)) = (L′1, L

′
2, L

′
3, L

′
4). It is easy to verify that (L′1, L

′
2, L

′
3, L

′
4) ∈

W14 ∩W23.

It is not difficult to see that the above procedure is reversible. Thus we
have reached the conclusion that ψ is a bijection.

Using the above reflection principle, we can give a combinatorial proof of
Theorem 5.1. In view of the bijection in Theorem 5.2, we see that

|W12 ∩M23 ∩W34| = |W13 ∩W24| − |W14 ∩W23|. (5.3)

Substituting (5.3) into (5.2), we deduce that

|W12 ∩W23 ∩W34| = |W12 ∩W34| − |W13 ∩W24|+ W14 ∩W23|. (5.4)

It is clear that a 4-walk in W12 ∩ W34 corresponds to a pair of two vicious
walks (V1, V2), where V1 is a two vicious walk (L1, L2) of length n, with L1

and L2 starting from (0, 0) and (0, 2i) respectively, and V2 is a two vicious walk
(L3, L4) of length n, with L3 and L4 starting from (0, 2i+2j) and (0, 2i+2j +
2k) respectively. So we get

|W12 ∩W34| = v(i, n) · v(k, n).
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Similarly, we have

|W13 ∩W24| = v(i + j, n) · v(j + k, n),

and
|W14 ∩W23| = v(i + j + k, n) · v(j, n).

Hence we obtain (5.1). This complete the proof of Theorem 5.1.

The above reflection principle for four vicious walks depends on several
cases. It would be interesting to find a simpler reflection principle for 4-vicious
walks. It would be also interesting to extend this approach to r-vicious walks
for r ≥ 2 in general.
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