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Abstract. We find an involution as a combinatorial proof of Ramanujan’s partial theta
identity. Based on this involution, we obtain a Franklin type involution on the set of
partitions into distinct parts with the smallest part being odd. Compared with the in-
volution of Bessenrodt and Pak, our involution possesses a weight preserving property
that leads to a combinatorial proof of a weighted partition theorem derived by Alladi
from Ramanujan’s partial theta identity. This gives an indirect answer to a question of
Berndt, Kim and Yee. Moreover, we obtain a partition theorem based on Andrews’ iden-
tity and provide a combinatorial proof via certain weight assignment for our involution.
A specialization of this partition theorem is related to an identity of Andrews concern-
ing partitions into distinct nonnegative parts with the smallest part being even. Finally,
we give an extension of our partition theorem which corresponds to a generalization of
Andrews’ identity.
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1 Introduction

The main result of this paper is a Franklin type involution for squares which is related to
Ramanujan’s partial theta identity and an identity of Andrews. As applications of this
involution, we give an indirect solution to a problem proposed by Berndt, Kim and Yee
[8] by providing a combinatorial interpretation of a partition theorem derived by Alladi
[1] from Ramanujan’s partial theta identity. Furthermore, we obtain a partition theorem
based on Andrews’ identity. A specialization of this theorem is related to an identity of
Andrews on partitions into distinct nonnegative parts with the smallest part being even.
Finally, we find a more general form of our partition theorem which corresponds to a
generalization of Andrews’ identity.
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Recall that the celebrated involution of Franklin gives a combinatorial interpretation
of Euler’s pentagonal number theorem as stated below

(𝑞; 𝑞)∞ = 1 +
∞∑
𝑘=1

(−1)𝑘(𝑞𝑘(3𝑘−1)/2 + 𝑞𝑘(3𝑘+1)/2), (1.1)

where the 𝑞-shifted factorial is defined by

(𝑎; 𝑞)𝑛 := (1− 𝑎)(1− 𝑎𝑞) ⋅ ⋅ ⋅ (1− 𝑎𝑞𝑛−1), 𝑛 ≥ 1,

and
(𝑎; 𝑞)∞ = lim

𝑛→∞
(𝑎; 𝑞)𝑛, ∣𝑞∣ < 1.

Let 𝐷 denote the set of integer partitions into distinct parts, and let 𝐷(𝑛) denote the
set of partitions of 𝑛 into distinct parts. The relation (1.1) can be reinterpreted as the
following number-theoretic identity

∑
𝜆∈𝐷(𝑛)

(−1)ℓ(𝜆) =
{

(−1)𝑘, if 𝑛 = 𝑘(3𝑘 ± 1)/2,

0, otherwise,
(1.2)

where ℓ(𝜆) denotes the number of parts of 𝜆.

Our Franklin type involution for squares will be concerned with the set of partitions
of a non-negative integer into distinct parts with the smallest part being odd. Let us
use 𝑃𝑑𝑜 to denote the set of such partitions, and use 𝑃𝑑𝑜(𝑛) to denote the set of such
partitions of 𝑛. To be more specific, we obtain the following number-theoretic identity
which is analogous to (1.2),

∑
𝜆∈𝑃𝑑𝑜(𝑛)

(−1)ℓ(𝜆) =
{

(−1)𝑘, if 𝑛 = 𝑘2,

0, otherwise.
(1.3)

It is clear that (1.3) implies a theorem of Fine [9] concerning the parity of the number of
partitions in 𝑃𝑑𝑜(𝑛). Bessenrodt and Pak [7] constructed a involution for Fine’s theorem,
and Yee [14] gave an indirect bijective proof.

Moreover, for various weight assignments 𝜔(𝜆) to partitions 𝜆 ∈ 𝑃𝑑𝑜, our involution
turns out to be sign-reversing and weight-preserving. This property leads to several
number-theoretic identities of the following form:

∑
𝜆∈𝑃𝑑𝑜(𝑛)

𝜔(𝜆) =

{
(−𝑎)𝑘, if 𝑛 = 𝑘2,

0, otherwise.
(1.4)

The first case is related to a problem proposed by Berndt, Kim and Yee [8] concerning a
combinatorial interpretation of a number-theoretic identity derived by Alladi [1] from the
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following Ramanujan’s partial theta identity from Ramanujan’s lost notebook [12, p. 38],

1 +
∞∑
𝑘=1

(−𝑞; 𝑞)𝑘−1(−𝑎)𝑘𝑞𝑘(𝑘+1)/2

(𝑎𝑞2; 𝑞2)𝑘
=

∞∑
𝑘=0

(−𝑎)𝑘𝑞𝑘2 . (1.5)

Defining a weight function in terms of the gaps between the parts of partitions in 𝑃𝑑𝑜,
Alladi [1] derived a partition theorem in the above form, see, Section 4. Though Berndt,
Kim and Yee [8] have found a bijective proof Ramanujan’s identity (1.5), it is not clear
whether their involution can imply a combinatorial interpretation of Alladi’s weighted
partition theorem. As will be seen, our Franklin type involution gives a combinatorial
proof of Alladi’s weighted partition theorem, whereas the involution of Bessenrodt and
Pak [7] is not weight preserving as far as Alladi’s theorem is concerned.

The second case is concerned with a weighted partition theorem obtained by Alladi
[2] from the following partial theta identity of Andrews [4, p. 157],

∞∑
𝑛=0

𝑞2𝑛(𝑞2𝑛+2; 𝑞2)∞(𝑎𝑞2𝑛+1; 𝑞2)∞ =
∞∑
𝑘=0

(−𝑎)𝑘𝑞𝑘2 . (1.6)

By giving a weight function in terms of the odd parts of partitions in 𝑃𝑑𝑜, Alladi [2] derived
a partition theorem in the form of (1.4), It turns out that our involution also applies to
this partition theorem in terms of a different weight assignment.

As the third application of our involution, we give a combinatorial proof of a number-
theoretic theorem on partitions into distinct parts with smallest part being even derived
from Andrews’ identity (1.6). Moreover, we note that a special case of this partition
theorem is related to an identity of Andrews, first proposed as a problem in [3]. A
generating function proof was given by Stenger [13].

To conclude this paper, we extend our involution to derive a more general identity

∞∑
𝑛=0

𝑞2𝑚𝑛(𝑞2𝑚𝑛+2𝑚; 𝑞2𝑚)∞(𝑎𝑞2𝑚𝑛+1; 𝑞2)∞

= 1 +
∞∑
𝑘=1

(−𝑎)𝑘𝑞𝑘2
𝑘∏

𝑗=1

(1 + 𝑞2𝑗 + 𝑞4𝑗 + ⋅ ⋅ ⋅+ 𝑞2(𝑚−1)𝑗),

(1.7)

which reduces to the following identity of Andrews [4, p. 157] when setting 𝑎 = −1,
∞∑
𝑛=0

𝑞2𝑚𝑛(𝑞2𝑚𝑛+2𝑚; 𝑞2𝑚)∞(−𝑞2𝑚𝑛+1; 𝑞2)∞

= 1 +
∞∑
𝑘=1

𝑞𝑘
2

𝑘∏
𝑗=1

(1 + 𝑞2𝑗 + 𝑞4𝑗 + ⋅ ⋅ ⋅+ 𝑞2(𝑚−1)𝑗).

(1.8)

Notice that (1.8) is a generalization of (1.6).

3



2 An involution for Ramanujan’s identity

In this section, we shall construct an involution which leads to a combinatorial proof of
Ramanujan’s partial theta identity as stated in the previous section:

1 +
∞∑
𝑘=1

(−𝑞; 𝑞)𝑘−1(−𝑎)𝑘𝑞𝑘(𝑘+1)/2

(𝑎𝑞2; 𝑞2)𝑘
=

∞∑
𝑘=0

(−𝑎)𝑘𝑞𝑘2 . (2.1)

This involution plays a key role in the Franklin type involution presented in the next
section which can be viewed as a bijective proof of Alladi’s partition theorem derived
from (2.1) with respect to certain weight assignment.

Berndt, Kim and Yee [8] provided a bijective proof of (2.1) based on the interpre-
tation of the numerator (−𝑞; 𝑞)𝑘−1𝑞

𝑘(𝑘+1)/2 in terms of parity sequences. Yee [15] made
an attempt to give another bijective proof of (2.1). However, the bijection presented in
the current version of [15] is not complete. It only deals with the Part B case of our
construction.

Let 𝐷𝑘 be the set of partitions 𝜋 into 𝑘 distinct parts with the smallest part being
1 such that 𝜋𝑖 − 𝜋𝑖+1 ≤ 2, and let 𝐸𝑘 denote the set of partitions 𝜎 with even parts
not exceeding 2𝑘, that is, each 𝜎𝑖 is even and 𝜎1 ≤ 2𝑘. We are going to establish an
involution on 𝐷𝑘 × 𝐸𝑘. Throughout this paper, 𝑇𝑘 standards for the triangular partition
(2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1).

Theorem 2.1 There exists an involution on the set 𝐷𝑘 × 𝐸𝑘 under which the pair of
partitions (𝑇𝑘, ∅) remains invariant.

To construct the desired involution on 𝐷𝑘 × 𝐸𝑘, we introduce a statistic called the
modular leg hook length of a partition in 𝐷𝑘. Adopting the notation in [11], we use [𝜆]2
to denote the 2-modular diagram of a partition 𝜆 defined to be a Young diagram filled
with 1 or 2 such that the last cell of row 𝑖 is filled with 1 if and only if 𝜆𝑖 is odd. Given
a partition 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑘) ∈ 𝐷𝑘, let us consider the 2-modular diagram. Suppose
that 𝜋𝑖 is an even part other than the largest part, we can associate it with a modular leg
hook 𝐻𝑖 which consists of the squares in the 𝑖-th row in the 2-modular diagram and the
squares in first column above the 𝑖-th row. For a modular leg hook 𝐻𝑖, the length of this
hook, denoted by ∣𝐻𝑖∣, is defined to be the sum of the numbers filled in the hook, and its
height is referred to the number of squares in the first column.

We are now ready to describe the construction of the involution on 𝐷𝑘 × 𝐸𝑘. Let us
denote this involution by 𝜑.

The involution 𝜑 on 𝐷𝑘 ×𝐸𝑘: Given a pair of partitions (𝜋, 𝜎) ∈ 𝐷𝑘 ×𝐸𝑘, represent 𝜋
and 𝜎 by their 2-modular diagrams, respectively. In fact, the desired involution consists
of two involutions.

Part A: We have the following two cases.
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(1) Suppose that there exists a modular leg hook in 𝜋 such that after the deletion of this
hook the resulting partition is in 𝐷𝑘−1, then we choose such a hook with maximum
height and denote it by 𝐻𝑟(𝜋). If ∣𝐻𝑟(𝜋)∣ ≥ 𝜎1. Then delete 𝐻𝑟(𝜋) from 𝜋 and add
it to 𝜎 as a new part. We denote the resulting partitions by 𝜋∗ and 𝜎∗, respectively.
Since ∣𝐻𝑟(𝜋)∣ ≤ 2𝑘 − 2, we have (𝜋∗, 𝜎∗) ∈ 𝐷𝑘−1 × 𝐸𝑘−1.

(2) Suppose that either there is the modular leg hook 𝐻𝑟(𝜋) in 𝜋 and ∣𝐻𝑟(𝜋)∣ < 𝜎1 or
there does not exist the modular leg hook 𝐻𝑟(𝜋) in 𝜋 and 𝜋1 + 2 < 𝜎1. Then insert
𝜎1 into 𝜋 as a modular leg hook in the 2-modular diagram of 𝜋. To be precise, this
operation can be described as follows. Let 𝑖 be the largest positive integer such that
𝜎1 − 2𝑖 > 𝜋𝑖+1, that is, for 𝑗 > 𝑖 we have 𝜎1 − 2𝑗 < 𝜋𝑗+1. Then we add 2 to each
of the first 𝑖 parts 𝜋1, 𝜋2, . . . , 𝜋𝑖, and insert 𝜎1 − 2𝑖 as a new part before the part
𝜋𝑖+1. Since 𝜎1 ≤ 2𝑘 − 2 and any two consecutive parts of 𝜋 differ by at most 2, the
resulting pair of partitions, denoted by (𝜋∗, 𝜎∗), belongs to 𝐷𝑘+1×𝐸𝑘. Furthermore,
there exists the modular leg hook 𝐻𝑟(𝜋

∗) in 𝜋∗ and ∣𝐻𝑟(𝜋
∗)∣ ≥ 𝜎∗

1.

Below is an example.

2 2 2

2 2

2

2

2

2

2

2

2

1

1

2 2 2 2 2
-Case A(1)

�
Case A(2)

2 2 2

2 2

2 1

2

1

2 2 2 2 2

2 2 2 2 2

𝜋 𝜎 𝜋∗ 𝜎∗

For the case when there does not exist a modular leg hook, we have the following
example.

2 2

2 2

2

2

2

2

2

2

2

1

1

1

∅ -Case A(1)

�
Case A(2)

2 2 1

2 2

2 1

2

1

2 2 2 2 2

𝜋 𝜎 𝜋∗ 𝜎∗
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Part B: Suppose that there does not exist the modular leg hook𝐻𝑟(𝜋) in 𝜋 and 𝜎1 ≤ 𝜋1+2.
If 𝜋 has even parts, then we choose the largest even part of 𝜋, and denote it by 𝜋𝑟. We
consider the following two cases.

(1) If 𝜋𝑟 ≥ 𝜎1, then remove the part 𝜋𝑟 in 𝜋 and add it to 𝜎. We denote the resulting
partitions by 𝜋∗ and 𝜎∗, respectively. Since 𝜋𝑟 ≤ 2𝑘 − 2, we see that (𝜋∗, 𝜎∗) ∈
𝐷𝑘−1 × 𝐸𝑘−1.

(2) If 𝜋𝑟 < 𝜎1, then remove the part 𝜎1 in 𝜎 and add it to 𝜋. Denote the resulting
partitions by 𝜋∗ and 𝜎∗, respectively. Since 𝜋𝑖−𝜋𝑖+1 ≤ 2 for each 𝑖, 𝜎1 can be inserted
either between two odd parts of 𝜋 or at the top of 𝜋. Therefore, (𝜋∗, 𝜎∗) ∈ 𝐷𝑘+1×𝐸𝑘.

Here is an example.

2 2 1

2 2 2

2 1

2

1

2 2
-Case B(1)

�
Case B(2)

2 2 1

2 1

2

1

2 2 2

2 2

𝜋 𝜎 𝜋∗ 𝜎∗

In an extreme case, for 𝜋 = (7, 6, 5, 4, 3, 2, 1) and 𝜎 = ∅, we have 𝜋∗ = (7, 5, 4, 3, 2, 1)
and 𝜎∗ = (6) under the involution 𝜑.

Finally, we are left with the case when 𝜋 has no even parts and 𝜎 is the empty partition.
In this situation, there is only one pair of partitions (𝑇𝑘, ∅), which is defined as the fixed
point of the involution.

It is straightforward to check that the above correspondence is an involution. Except
for the fixed point, the mapping changes the number of even parts of 𝜋 by 1 and preserves
the number of odd parts at the same time. Indeed, the above involution serves as a
combinatorial proof of Ramanujan’s partial theta identity (2.1).

Proof of (2.1): Note that the generating function for partitions 𝜋 ∈ 𝐷𝑘 equals

(−𝑞; 𝑞)𝑘−1𝑞
𝑘(𝑘+1)/2,

and the generating function for partitions 𝜎 ∈ 𝐸𝑘 equals

1

(𝑞2; 𝑞2)𝑘
.

Thus the left hand side of (2.1) corresponds to partitions (𝜋, 𝜎) ∈
∞∪
𝑘=0

𝐷𝑘×𝐸𝑘 with weight

(−1)ℓ(𝜋)𝑎ℓ(𝜋)+ℓ(𝜎). Notice that the involution 𝜑 changes the parity of ℓ(𝜋) and preserves
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the quantity ℓ(𝜋) + ℓ(𝜎). The fixed point (𝑇𝑘, ∅) corresponds to the right hand side of
(2.1). In view of the involution 𝜑, we obtain the identity (2.1).

3 A Franklin type involution for squares

In this section, we shall construct a Franklin type involution on 𝑃𝑑𝑜(𝑛), namely, the set of
partitions of 𝑛 into distinct parts with the smallest part being odd, where the involution
𝜑 on 𝐷𝑘×𝐸𝑘 given in the previous section serves as the main ingredient. This involution
will be used to give a combinatorial proof of a partition theorem derived by Alladi from
Ramanujan’s partial theta identity.

It should be noted that Bessenrodt and Pak [7] have established a different involution
on 𝑃𝑑𝑜(𝑛) by using Vahlen’s involution and Sylvester’s transformation, which leads to the
following theorem in the spirit of Euler’s pentagonal number theorem.

Theorem 3.1 For any positive integer 𝑛, we have

∑
𝜆∈𝑃𝑑𝑜(𝑛)

(−1)ℓ(𝜆) =
{

(−1)𝑘, if 𝑛 = 𝑘2,

0, otherwise.

Theorem 3.1 implies the following theorem of Fine [9], see also [7, 10].

Theorem 3.2 The number of partitions of 𝑛 into distinct parts with the smallest being
odd is odd if and only if 𝑛 is a square.

An indirect bijective proof of Fine’s theorem has been given by Yee [14]. Compared
with the involution of Bessenrodt and Pak, our involution also leads to the above the-
orem, and it further possesses a weight preserving property for the purpose of giving a
combinatorial proof of Alladi’s theorem. Meanwhile, both the involution of Bessenrodt
and Pak and our involution have weighted versions for the another partition theorem of
Alladi and for the partition theorems derived from identities of Andrews that will be
considered later. Our involution, denoted by Ψ, can be described as follows.

Step 1. Extraction of parts from 𝜆: For a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘) ∈ 𝑃𝑑𝑜(𝑛), represent
it by the 2-modular diagram [𝜆]2, from which we can construct a pair of partitions (𝜋, 𝜎) ∈
𝐷𝑘×𝐸𝑘. Initially, set 𝜋 = 𝜆, 𝜎 = ∅ and 𝑡 = 𝑘. Then iterate the following procedure until
𝑡 = 1:

∙ Suppose that there exists 𝑖 such that 𝜋𝑡−𝜋𝑡+1 = 2𝑖+ 𝑟𝑡, where 1 ≤ 𝑟𝑡 ≤ 2 and 𝜋𝑘+1

is defined to be 0.

∙ Subtract 2𝑖 from each of the parts 𝜋1, 𝜋2, . . . , 𝜋𝑡;
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∙ Rearrange the parts to form a new partition 𝜋 and add 𝑖 parts of size 2𝑡 to 𝜎.
Replace 𝑡 by 𝑡− 1.

When 𝑡 = 1, we get a pair of partitions (𝜋, 𝜎) ∈ 𝐷𝑘 × 𝐸𝑘. It is clear that

ℓ(𝜆) = ℓ(𝜋), ℓ𝑒(𝜆) = ℓ𝑒(𝜋), ℓ𝑜(𝜆) = ℓ𝑜(𝜋),

where ℓ𝑒(𝜆) (resp. ℓ𝑜(𝜆)) denotes the number of even (resp. odd) parts of 𝜆.

Here is an example.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2 2

1

1

1

←→

2

2

2

2

2

2

2

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

𝜆 𝜋 𝜎

Step 2. Apply the involution 𝜑 on 𝐷𝑘×𝐸𝑘: For a pair of partitions (𝜋, 𝜎) ∈ 𝐷𝑘×𝐸𝑘, use
the involution 𝜑 to generate a pair of partitions (𝜋∗, 𝜎∗) ∈ 𝐷𝑘+1 × 𝐸𝑘 or 𝐷𝑘−1 × 𝐸𝑘−1.

Step 3. Insertion of parts of 𝜎∗ to 𝜋∗: For a pair of partitions (𝜋∗, 𝜎∗) ∈ 𝐷𝑘+1 × 𝐸𝑘 or
𝐷𝑘−1 × 𝐸𝑘−1, consider their 2-modular diagrams. Let 𝜆∗ = 𝜋∗ + 𝑐2(𝜎

∗), where 𝑐2(𝜎∗)
denotes the 2-modular conjugate partition obtained from [𝜎∗]2, and for partitions 𝜆 =
(𝜆1, 𝜆2, . . .) and 𝜇 = (𝜇1, 𝜇2, . . .), 𝜆+𝜇 is defined to be the partition (𝜆1+𝜇1, 𝜆2+𝜇2, . . .).
Clearly, we have 𝜆∗ ∈ 𝑃𝑑𝑜(𝑛). It is obvious that

ℓ(𝜆∗) = ℓ(𝜋∗), ℓ𝑒(𝜆
∗) = ℓ𝑒(𝜋

∗), ℓ𝑜(𝜆
∗) = ℓ𝑜(𝜋

∗).

Based on the above procedure, we can see that the mapping Ψ is a bijection. Moreover,
it is easily seen that

ℓ(𝜆∗) = ℓ(𝜆)± 1, ℓ𝑒(𝜆
∗) = ℓ𝑒(𝜆)± 1, ℓ𝑜(𝜆

∗) = ℓ𝑜(𝜆), (3.1)

where the ± sign means either plus or minus. In other words, Ψ changes the parity of
the number of parts. It is easy to check that only when 𝑛 is a square, say, 𝑛 = 𝑘2, there
is exactly one partition which is undefined for Ψ, that is, 𝜆 = (2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1).
Therefore, the involution Ψ gives a combinatorial proof of theorem 3.1.

For example, when 𝑛 = 10, there are six partitions in 𝑃𝑑𝑜(10), namely,

9 + 1, 7 + 3, 4 + 3 + 2 + 1,
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7 + 2 + 1, 6 + 3 + 1, 5 + 4 + 1.

The involution Ψ gives the following correspondence

9 + 1↔ 7 + 2 + 1, 7 + 3↔ 6 + 3 + 1, 4 + 3 + 2 + 1↔ 5 + 4 + 1.

While under the involution of Bessenrodt and Pak [7], the corresponding relations between
them are given by:

9 + 1↔ 6 + 3 + 1, 7 + 3↔ 7 + 2 + 1, 4 + 3 + 2 + 1↔ 5 + 4 + 1.

4 Alladi’s partition theorems

In this section, we apply the involution Ψ presented in the previous section to give a
combinatorial interpretation of a weighted partition theorem derived by Alladi [1] from
Ramanujan’s partial theta identity (1.5). While Berndt, Kim and Yee [8] constructed
an involution for the identity (1.5), they raised the question of how to translate their
involution into a combinatorial proof of Alladi’s weighted partition theorem. Even though
our involution is not a direct answer to their question, it is likely that there is no easy
way to make the translation. If so, our combinatorial interpretation can be considered
as an indirect answer to the question of Berndt, Kim and Yee. The theorem of Alladi is
stated as follows.

Theorem 4.1 For 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ 𝑃𝑑𝑜, define 𝛿𝑖 to be the least integer ≥ (𝜆𝑖 −
𝜆𝑖+1)/2, where 𝜆𝑙+1 is defined to be 0. Define the weight of 𝜆 by

𝜔𝑔(𝜆) = (−1)𝑙
𝑙∏

𝑖=1

𝑎𝛿𝑖 . (4.1)

Then we have ∑
𝜆∈𝑃𝑑𝑜(𝑛)

𝜔𝑔(𝜆) =

{
(−𝑎)𝑘, if 𝑛 = 𝑘2,

0, otherwise.
(4.2)

Proof. For 𝜆 ∈ 𝑃𝑑𝑜(𝑛), let (𝜋, 𝜎) be the pair of partitions obtained from 𝜆 in Step 1 of
the Franklin type involution Ψ. It can be seen that the exponent of 𝑎 in 𝜔𝑔(𝜆) equals
ℓ(𝜋) + ℓ(𝜆). It is also clear that the quantity ℓ(𝜋) + ℓ(𝜆) remains unchanged in Step 2,
that is

ℓ(𝜋) + ℓ(𝜆) = ℓ(𝜋∗) + ℓ(𝜆∗).

Let 𝜆∗ = 𝜋∗ + 𝑐2(𝜎
∗) in Step 3, then the exponent of 𝑎 in 𝜔𝑔(𝜆

∗) equals ℓ(𝜋∗) + ℓ(𝜆∗).
Thus the involution Ψ preserves the exponent of 𝑎 in 𝜔𝑔(𝜆). In view of the property (3.1),
we see that 𝜔𝑔(𝜆) and 𝜔𝑔(𝜆

∗) have opposite signs. Therefore, the partitions 𝜆 in 𝑃𝑑𝑜(𝑛)
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cancel each except for the the partition 𝜆 = (2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1) which has weight
(−𝑎)𝑘 for 𝑛 = 𝑘2. This completes the proof.

For example, when 𝑛 = 9, there are five partitions in 𝑃𝑑𝑜(9), that is,

8 + 1, 6 + 3,

9, 6 + 2 + 1, 5 + 3 + 1.

Under the involution Ψ, the partitions are paired as follows

8 + 1↔ 9, 6 + 3↔ 6 + 2 + 1,

while the triangular partition 5 + 3 + 1 remains fixed. Meanwhile, the weights of the
partitions are given by

𝜔𝑔(8 + 1) = 𝑎5, 𝜔𝑔(6 + 3) = 𝑎4,

and
𝜔𝑔(9) = −𝑎5, 𝜔𝑔(6 + 2 + 1) = −𝑎4, 𝜔𝑔(5 + 3 + 1) = −𝑎3.

From (3.1), it can be seen that the Franklin type involution Ψ preserves the number
of odd parts of 𝜆 ∈ 𝑃𝑑𝑜(𝑛). Thus, the involution Ψ can be used to give a combinatorial
interpretation of another weight partition theorem derived by Alladi [2] from Andrews’
identity (1.6).

Theorem 4.2 For 𝜆 ∈ 𝑃𝑑𝑜, define the weight of 𝜆 by

𝜔𝑜(𝜆) = (−1)𝑙𝑎ℓ𝑜(𝜆). (4.3)

Then we have ∑
𝜆∈𝑃𝑑𝑜(𝑛)

𝜔𝑜(𝜆) =

{
(−𝑎)𝑘, if 𝑛 = 𝑘2,

0, otherwise.
(4.4)

Proof. Let 𝜆 ∈ 𝑃𝑑𝑜(𝑛). From (3.1), it is easily seen that the involution Ψ changes the
number of even parts of 𝜆 by 1 and preserves the number of odd parts. Consequently,
the involution Ψ preserves the exponent of 𝑎 given in the weight 𝜔𝑜(𝜆) and reverses the
sign of 𝜔𝑜(𝜆). When 𝑛 is a square, say, 𝑛 = 𝑘2, there exists exactly one partition which
is undefined for Ψ, that is 𝜆 = (2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1) whose weight equals (−𝑎)𝑘. This
completes the proof.

We should note that the involution of Bessenrodt and Pak [7] also preserves the number
of odd parts of 𝜆 ∈ 𝑃𝑑𝑜(𝑛). Thus it implies a combinatorial proof of Theorem 4.2 as well.

We note that Theorem 4.2 can be translated back to the following identity:
∞∑
𝑛=1

−𝑎𝑞2𝑛−1(𝑞2𝑛; 𝑞2)∞(𝑎𝑞2𝑛+1; 𝑞2)∞ =
∞∑
𝑛=1

(−𝑎)𝑛𝑞𝑛2

, (4.5)

which takes a different form compared with the identity (1.6). Nevertheless, as shown
by Alladi [2], (4.5) can be deduced from (1.6). In the next section, we shall give a
combinatorial proof of (1.6).
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5 A partition theorem derived from Andrews’ iden-

tity

As we have seen in the previous section, Theorem 4.2 is a direct translation of the identity
(4.5) rather than Andrews’ identity (1.6). We first derive a partition theorem from (1.6).
Then we give a combinatorial proof by applying the involution Ψ. Recall that 𝑄 denotes
the set of partitions into distinct non-negative parts with the smallest part being even.
Let 𝑄(𝑛) denote such partitions of 𝑛 in 𝑄. For a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ 𝑄, define
the weight of 𝜆 by

𝜔𝑒(𝜆) = (−1)𝑙−1𝑎ℓ𝑜(𝜆). (5.1)

Then we have the following partition identity.

Theorem 5.1 We have

∑
𝜆∈𝑄(𝑛)

𝜔𝑒(𝜆) =

{
(−𝑎)𝑘, if 𝑛 = 𝑘2,

0, otherwise.
(5.2)

Proof. Let 𝜆 be a partition in 𝑄(𝑛). Let 𝑠(𝜆) denote the smallest part of the partition 𝜆,
and let 𝑠𝑠(𝜆) denote the second small part of 𝜆. Define an involution 𝜓 by the following
procedure. Three cases are considered.

(i) Assume that 𝑠(𝜆) = 0 and 𝑠𝑠(𝜆) is even. Delete the part 𝑠(𝜆) in 𝜆 and denote the
resulting partition by 𝜆∗. It can be seen that 𝜆∗ ∈ 𝑄(𝑛).

(ii) Assume that 𝑠(𝜆) ∕= 0. Add 0 to 𝜆 as a new part. Denote the resulting partition by
𝜆∗. Then we have 𝜆∗ ∈ 𝑄(𝑛).

(iii) Assume that 𝑠(𝜆) = 0 and 𝑠𝑠(𝜆) is odd. In this case, 𝜆 can be considered as a
partition in 𝑃𝑑𝑜(𝑛) by disregarding the zero part 𝑠(𝜆) so that we can apply Ψ to 𝜆.

According to the above construction, 𝜓 is a sign-reversing and weight-preserving in-
volution for which the partition 𝜆 = (2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1, 0) ∈ 𝑄(𝑛) is defined as the
fixed point for 𝑛 = 𝑘2. This completes the proof.

For example, 𝑛 = 10, there are fourteen partitions in 𝑄(10):

10, 8 + 2, 6 + 4, 5 + 3 + 2

10 + 0, 8 + 2 + 0, 6 + 4 + 0, 5 + 3 + 2 + 0

9 + 1 + 0, 7 + 3 + 0, 4 + 3 + 2 + 1 + 0,

7 + 2 + 1 + 0, 6 + 3 + 1 + 0, 5 + 4 + 1 + 0.
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In this example, the involution 𝜓 gives the following correspondence

10↔ 10 + 0, 8 + 2↔ 8 + 2 + 0, 6 + 4↔ 6 + 4 + 0, 5 + 3 + 2↔ 5 + 3 + 2 + 0

9 + 1 + 0↔ 7 + 2 + 1 + 0, 7 + 3 + 0↔ 6 + 3 + 1 + 0, 4 + 3 + 2 + 1 + 0↔ 5 + 4 + 1 + 0.

The weights of partitions in 𝑄(10) are listed below, and it can be seen that 𝜓 is indeed
weight-preserving and sign-reversing,

𝜔𝑒(10) = 1, 𝜔𝑒(8 + 2) = −1, 𝜔𝑒(6 + 4) = −1, 𝜔𝑒(5 + 3 + 2) = 𝑎

𝜔𝑒(9 + 1 + 0) = 𝑎2, 𝜔𝑒(7 + 3 + 0) = 𝑎2, 𝜔𝑒(4 + 3 + 2 + 1 + 0) = 𝑎2,

𝜔𝑒(10 + 0) = −1, 𝜔𝑒(8 + 2 + 0) = 1, 𝜔𝑒(6 + 4 + 0) = 1, 𝜔𝑒(5 + 3 + 2 + 0) = −𝑎
𝜔𝑒(7 + 2 + 1 + 0) = −𝑎2, 𝜔𝑒(6 + 3 + 1 + 0) = −𝑎2, 𝜔𝑒(5 + 4 + 1 + 0) = −𝑎2.
We remark that the involution of Bessenrodt and Pak can be modified to prove The-

orem (5.1).

6 Connection to another identity of Andrews

In this section, we consider the special case of Theorem 5.1 when setting 𝑎 = −1, that is,
∞∑
𝑛=0

𝑞2𝑛(𝑞2𝑛+2; 𝑞2)∞(−𝑞2𝑛+1; 𝑞2)∞ =
∞∑
𝑘=0

𝑞𝑘
2

, (6.1)

which turns out to be related to a problem proposed by Andrews [3] in 1972, see also,
Andrews [4, pp. 156-157]. The original problem of Andrews is stated below.

A Problem of Andrews. Let 𝑞𝑒(𝑛) (resp. 𝑞𝑜(𝑛)) denote the number of partitions in
𝑄(𝑛) that have an even number (resp. odd number) of even parts. Prove that

𝑞𝑜(𝑛)− 𝑞𝑒(𝑛) =
{

1, if 𝑛 = 𝑘2,

0, otherwise.
(6.2)

Clearly, the left hand side of (6.1) counts the number of partitions 𝜆 in 𝑄 with the sign
(−1)ℓ𝑒(𝜆)−1 attached to 𝜆. The sign (−1)ℓ𝑒(𝜆)−1 equals the weight of 𝜆 by setting 𝑎 = −1
in (5.1), namely,

𝜔𝑒(𝜆) = (−1)𝑙−1𝑎ℓ𝑜(𝜆).

Thus we can apply the above involution 𝜓 defined in the previous section give a combi-
natorial interpretation of the identity (6.2).
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When 𝑎 = −1, the identity (5.2) can be rewritten as∑
𝜆∈𝑄(𝑛)

𝜔𝑒(𝜆) =
∑

𝜆∈𝑄(𝑛)

(−1)𝑙−1(−1)ℓ𝑜(𝜆) =
∑

𝜆∈𝑄(𝑛)

(−1)ℓ𝑒(𝜆)−1

= 𝑞𝑜(𝑛)− 𝑞𝑒(𝑛) =
{

1, if 𝑛 = 𝑘2,

0, otherwise.

(6.3)

It is clear from (3.1) that the involution 𝜓 only changes the number of even parts of
𝜆 ∈ 𝑄(𝑛) by 1. Thus the identity (6.2) follows from the involution 𝜓.

For example, when 𝑛 = 9, the five partitions enumerated by 𝑞𝑒(9) are

8 + 1 + 0, 7 + 2 + 0, 6 + 3 + 0, 5 + 4 + 0, 4 + 3 + 2,

and the six partitions enumerated by 𝑞𝑜(9) are

9 + 0, 7 + 2, 6 + 2 + 1 + 0, 5 + 4, 5 + 3 + 1 + 0, 4 + 3 + 2 + 0.

Under the involution 𝜓, the partitions are paired as follows

8 + 1 + 0↔ 9 + 0, 7 + 2 + 0↔ 7 + 2, 6 + 3 + 0↔ 6 + 2 + 1 + 0,

5 + 4 + 0↔ 5 + 4, 4 + 3 + 2↔ 4 + 3 + 2 + 0.

The partition 5 + 3 + 1 + 0 is the fixed point.

7 A more general partition theorem

In this section, we present the following weighted form of Andrews’ identity (1.8):

∞∑
𝑛=0

𝑞2𝑚𝑛(𝑞2𝑚𝑛+2𝑚; 𝑞2𝑚)∞(𝑎𝑞2𝑚𝑛+1; 𝑞2)∞

= 1 +
∞∑
𝑘=1

(−𝑎)𝑘𝑞𝑘2
𝑘∏

𝑗=1

(1 + 𝑞2𝑗 + 𝑞4𝑗 + ⋅ ⋅ ⋅+ 𝑞2(𝑚−1)𝑗),

(7.1)

which reduces to (1.8) by setting 𝑎 = −1 and reduces to (1.6) by setting 𝑚 = 1. By
extending the involution Ψ, we obtain a combinatorial interpretation of the above gener-
alization. Notice that one can also extend the involution of Bessenrodt and Pak to give a
combinatorial proof of (7.1).

Let us introduce some notation. For a positive integer 𝑚, let 𝐴𝑘,𝑚 denote the set
of partitions into 𝑘 distinct nonnegative parts such that all the even parts are multiples

of 2𝑚 and the smallest part is even. Let 𝐴𝑚 =
∞∪
𝑘=0

𝐴𝑘,𝑚 and let 𝐴𝑚(𝑛) be the set of
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partitions of 𝑛 in 𝐴𝑚. In this notation, the generating function for partitions 𝜆 ∈ 𝐴𝑚

equals
∞∑
𝑛=0

𝑞2𝑚𝑛(−𝑞2𝑚𝑛+2𝑚; 𝑞2𝑚)∞(−𝑞2𝑚𝑛+1; 𝑞2)∞. (7.2)

To give a combinatorial interpretation of the right hand side of (7.1), let 𝐻𝑘,𝑚 denote
the set of partitions 𝜆𝑘,𝑚 such that each part of 𝜆𝑘,𝑚 is less than or equal to 𝑘 and the
multiplicity of each part is an even number less than 2𝑚. Then the generating function
for partitions 𝜆𝑘,𝑚 in 𝐻𝑘,𝑚 equals

𝑘∏
𝑗=1

(1 + 𝑞2𝑗 + 𝑞4𝑗 + ⋅ ⋅ ⋅+ 𝑞2(𝑚−1)𝑗).

The factor 𝑞𝑘
2
equals the generating function of the triangular partition

𝑇𝑘 = (2𝑘 − 1, 2𝑘 − 3, . . . , 3, 1).

In order to give a combinatorial explanation of the identity (7.1), we shall give an-
other interpretation of the right hand side of (7.1). To this end, let 𝐵𝑘,𝑚 denote the
set of partitions 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑘) into distinct odd parts such that the difference of
consecutive parts is less than or equal to 2𝑚, namely, 𝜋𝑖 − 𝜋𝑖+1 ≤ 2𝑚 for 1 ≤ 𝑖 ≤ 𝑘 with
the convention that 𝜋𝑘+1 = 0. Set

𝐵𝑚 =
∞∪
𝑘=0

𝐵𝑘,𝑚,

and let 𝐵𝑚(𝑛) be the set of partitions of 𝑛 in 𝐵𝑚. Then we have the following correspon-
dence.

Theorem 7.1 There exists a bijection between the set 𝐵𝑘,𝑚 and the set {𝑇𝑘} ×𝐻𝑘,𝑚.

Proof. We proceed to construct a bijection from 𝐵𝑘,𝑚 to {𝑇𝑘} × 𝐻𝑘,𝑚. For a partition
𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘) ∈ 𝐵𝑘,𝑚, using the Ferrers diagram, we can generate the triangular
partition 𝑇𝑘 and a partition 𝜆𝑘,𝑚 ∈ 𝐻𝑘,𝑚 by the following procedure. Let 𝑖 be the largest
integer such that 𝜆𝑖− 𝜆𝑖+1 = 2𝑗 > 2 and 𝑗 ≤ 𝑚 with the convention that 𝜆𝑘+1 = 0. Then
we remove 2(𝑗 − 1) columns of length 𝑖 from 𝜆 and add them to 𝜆𝑘,𝑚 as rows. Repeating
this procedure until there does not exist such 𝑖. Finally, the remaining partition is the
triangular partition 𝑇𝑘. It can be seen that 𝜆𝑘,𝑚 ∈ 𝐻𝑘,𝑚.

The above construction is reversible. Given the triangular 𝑇𝑘 and a partition 𝜆𝑘,𝑚 ∈
𝐻𝑘,𝑚, let 𝜆 = 𝑇𝑘 + 𝜆

′
𝑘,𝑚. Then, we have 𝜆 ∈ 𝐵𝑘,𝑚. This completes the proof.

Below is an example when 𝜆 = (19, 15, 9, 5, 3) ∈ 𝐵5, 3.
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𝜆5, 3

From Theorem 7.1, we conclude that the generating function for partitions 𝜆 ∈ 𝐵𝑚

equals

1 +
∞∑
𝑘=1

𝑞𝑘
2

𝑘∏
𝑗=1

(1 + 𝑞2𝑗 + 𝑞4𝑗 + ⋅ ⋅ ⋅+ 𝑞2(𝑚−1)𝑗). (7.3)

Using the identities (7.2) and (7.3), we obtain the the following number-theoretic inter-
pretation of the identity (7.1) in terms of weighted partitions.

Theorem 7.2 Assume that 𝑚 ≥ 1. For 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ 𝐴𝑚, define the weight of
𝜆 by

𝜔1(𝜆) = (−1)𝑙−1𝑎ℓ𝑜(𝜆). (7.4)

On the other hand, for 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑙) ∈ 𝐵𝑚, define the weight of 𝜇 by

𝜔2(𝜇) = (−𝑎)𝑙. (7.5)

Then the following relation holds∑
𝜆∈𝐴𝑚(𝑛)

𝜔1(𝜆) =
∑

𝜇∈𝐵𝑚(𝑛)

𝜔2(𝜇). (7.6)

Since 𝐴1 = 𝑄 and𝐵1 consists of only triangular partitions 𝑇𝑘 = (2𝑘−1, 2𝑘−3, . . . , 3, 1),
Theorem 7.2 reduces to Theorem 5.1 when setting 𝑚 = 1.

The proof of Theorem 7.2 relies on the notion of 2𝑚-modular diagrams, see [11]. Recall
that the 2𝑚-modular diagram of a partition 𝜆 is defined to be Young diagram by placing
the integer 2𝑚 in the squares of each row possibly except for the last square, and the last
square of each row may be filled with an integer not exceeding 2𝑚.

Let 𝑃𝑚
𝑑𝑜(𝑛) denote the set of partitions of 𝑛 into distinct parts such that all the even

parts are multiples of 2𝑚 and the smallest part is odd. Using the 2𝑚-modular diagrams
of partitions, we can extend the Franklin type involution Ψ on 𝑃𝑑𝑜(𝑛) to 𝑃𝑚

𝑑𝑜(𝑛), and
we denote it by Ψ𝑚. The explicit construction of Ψ𝑚 is analogous to the three steps of
the involution Ψ in Section 3, and hence it is omitted. Furthermore, we can extend the
involution 𝜓 on𝑄(𝑛) to𝐴𝑚(𝑛) with the aid of Ψ𝑚 to give a combinatorial proof of Theorem
7.2. Since the proof of Theorem 7.2 is similar to that of Theorem 5.1, it is also omitted.
Here is an example of the involution 𝜓𝑚 for 𝑚 = 2. For 𝜆 = (20, 16, 11, 5, 3, 0) ∈ 𝐴2(55),
we have 𝜓2(𝜆) = (20, 19, 13, 3, 0) ∈ 𝐴2(55). The following figure is an illustration of the
procedure to construct 𝜓2(𝜆).
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