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Abstract. We propose and analyze a random graph model which explains a phenomena in the
economic company network in which company may not expand its business at some time due to the
limiting of money and capacity etc.. The random graph process is defined as follows: at any time-step
𝑡, (i) with probability 𝛼(𝑘) and independently of other time-step, each vertex 𝑣𝑖 (𝑖 ≤ 𝑡− 1) is inactive
which means it cannot being connected by more edges, where 𝑘 is the degree of 𝑣𝑖 at the time-step
𝑡; (ii) a new vertex 𝑣𝑡 is added along with 𝑚 edges incident with 𝑣𝑡 at one time and its neighbors
are chosen in the manner of preferential attachment. We prove that the degree distribution 𝑃 (𝑘) of

this random graph process satisfies 𝑃 (𝑘) ∝ 𝐶1𝑘
− 3−𝛼0

1−𝛼0 if 𝛼(⋅) is a constant 𝛼0; and 𝑃 (𝑘) ∝ 𝐶2𝑘
−3 if

𝛼(ℓ) ↓ 0 as ℓ ↑ ∞, where 𝐶1, 𝐶2 are two positive constants. The analytical result is found to be in good
agreement with that obtained by numerical simulations. Furthermore, we get the degree distributions
in this model with 𝑚-varying functions by simulation.

PACS: 02.50.Ey, 89.75.-k, 05.10.-a;

Keywords: Scale free; Random graph process, Inactive.

1 Introduction

In 1959, Erdös and Rényi [1] introduced a random graph model 𝐺(𝑛, 𝑝), whose vertices are [𝑛] and
every two vertices are connected independently with probability 𝑝. The degree sequence of 𝐺(𝑛, 𝑝) is
of Poisson distribution. However, people find that most networks are scale-free from the empirical
evidences in the Internet and WWW or other complex networks. So in order to model real-world
networks, Barabási and Albert [2] proposed the classical Barabási-Albert model at the end of last
century. Since then, there has been a flourish in modeling real-world networks. It is well-known that
many real-world networks such as economic companies, social networks, and the World Wide Web (in-
ternet) etc. can be modeled by different random evolving graphs. These networks have many similar
properties such as power law degree (which is one of basic properties of real-world networks), small
world phenomena and clustering. See [2-6] for the degree sequences in the Barabási-Albert model,
[7-8] for the degree distribution in models including the mechanisms of random deletion of vertices.
For other types of degree distributions on random graphs, see [9-11].

Our research is mainly motivated by the following observations. There are two mechanisms in
the classical Barabási-Albert model or some other random graph processes: successive additions of
new vertices and certain preference in linking to existing nodes during the evolving process. Note
that in these existing network models, the vertices being still in network can always be connected by
more edges at any time step. However, it may be considered more. In fact, we notice that there is
a phenomena in some real-world networks in which the vertices’ degrees cannot be increased at some
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time 𝑡 due to some reasons. Take company network for example. In this network, every company is
denoted as a vertex, if every two companies do business with each other, then the two vertices are
connected. At some time 𝑡, a company cannot expand the business (i.e., the corresponding vertex
cannot receive more edges) due to some reasons such as limiting of the money, capacity etc.; while at
next time, it can receive more edges again as people always try to make some effects to improve the
company. As far as we know, there is no random graph process to model such a phenomena. In this
paper, we introduce the following random graph processes 𝐺𝑡 to model this phenomena.

Assume graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡), 𝑒𝑡 = ∣𝐸𝑡∣. For simplification, we start the process at the time-step 3.
Take 𝐺1 consisting of vertices 𝑣1, 𝑣2 with 2𝑚 edges between them. At time-step 𝑡 ≥ 3 :

(i) Every vertex 𝑤 ∈ 𝐺𝑡−1 may be active or inactive. The inactive means its degree cannot be
increased. Suppose vertex 𝑤 is inactive with probability 𝛼(𝑑𝑤(𝑡− 1)) independently of its status and
other points’ statuses before time-step 𝑡. Here 𝑑𝑤(𝑡− 1) denotes the degree of 𝑤 in 𝐺𝑡−1, 𝛼(𝑑𝑤(𝑡− 1))
is a non-increasing function with respect to 𝑑𝑤(𝑡 − 1). The reason that we use the non-increasing
function is that in real-world network the vertex of higher degree is likely to be more active.

(ii) A new vertex 𝑣𝑡 is added to 𝐺𝑡−1 along with 𝑚 edges incident with 𝑣𝑡 at one time. The random
neighbors 𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑚 are chosen independently conditioned on 𝑤𝑖s are active with probability

𝑃 (𝑤𝑖𝑣𝑡 ∈ 𝐸𝑡) =
𝑑𝑤𝑖(𝑡− 1)

2𝑒𝑡−1
.

Otherwise the edges of 𝑣𝑡 are connected to itself. We take the denominator 2𝑒𝑡−1 =
∑

𝑣∈𝐺𝑡−1

𝑑𝑣(𝑡 − 1)

rather than
∑

𝑣 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒
𝑣∈𝐺𝑡−1

𝑑𝑣(𝑡 − 1) due to that in some economic society, the companies which cannot

expand their business at some time 𝑡 − 1 would also affect the decision of the new set-up company
(namely the vertex 𝑣𝑡). For example, in an investment network, although some companies cannot
expand its business at some time 𝑡 − 1, the capital or the market share of the companies cannot be
ignored by the new company that enters the investment market at the time 𝑡. Because the capital or
market share of just mentioned companies at time 𝑡−1 will affect the new company’s decision obviously.

Remark. (i) When 𝛼(⋅) ≡ 0, the above model is just the well-known Barabási-Albert model.
(ii) Fix 𝛼 ≡ 𝛼0. From the model, we have∑

𝑖

𝑃 (𝑤𝑖𝑣𝑡 ∈ 𝐸𝑡) =
∑
𝑖

(1− 𝛼0)𝑑𝑤𝑖(𝑡− 1)

2𝑒𝑡−1
= 1− 𝛼0.

Thus the new vertex connected to itself with probability 𝛼0, which can be understood as follows.
When the inactive probability 𝛼0 is large, it means that the market is bad. In this case, it is much
difficult to do business for the new company. So the new set-up company will not do business with
other companies. To connect to itself means to make itself stronger to fight in the market in future.
The larger 𝛼0 is, the worse the market is.

(iii) The authors [12-14] consider Barabási-Albert model with 𝑚-varying functions, which are of
interests as empirical evidences have shown that the number of edges grows faster than the number
of vertices in many networks. Note that our model is just Barabási-Albert model when 𝛼 = 0. So as
a contrast, we simulated our model with 𝑚-varying functions. For 𝑚 varying in time 𝑡 or following a
certain distribution, we simulate some special cases (see Figure 5-8).

2 Degree distribution

We use the master equation approach which was introduced by Dorogovtsev, Mendes and Samukhin
[15] to get the degree distributions. It is easy to see that at any time step 𝑡, the number of vertices
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and edges in the network are 𝑡 and 𝑚𝑡 respectively. Let 𝑝(𝑘; 𝑡𝑖, 𝑡) be the probability of vertex 𝑣 (which
is added at time 𝑡𝑖) is of degree 𝑘 at the time-step 𝑡.

2.1. The case 𝛼(⋅) ≡ 𝛼0.

For the case 𝛼 ≡ 𝛼0 < 1, from the definition of the model, when a new node with 𝑚 edges enters the
system, the degree of active node 𝑤𝑖 of degree 𝑘 at time step 𝑡− 1 increases with 1 with probability
𝑘
2𝑡 (1− 𝛼0), and stays the same with probability

(
1− 𝑘

2𝑡

)
(1− 𝛼0). Thus we have

𝑝(𝑘; 𝑡𝑖, 𝑡+ 1) =
𝑘 − 1

2𝑡
(1− 𝛼0)𝑝(𝑘 − 1; 𝑡𝑖, 𝑡) +

(
1− 𝑘

2𝑡

)
(1− 𝛼0)𝑝(𝑘; 𝑡𝑖, 𝑡) + 𝛼0𝑝(𝑘; 𝑡𝑖, 𝑡).

Namely,

𝑝(𝑘; 𝑡𝑖, 𝑡+ 1) =
𝑘 − 1

2𝑡
(1− 𝛼0)𝑝(𝑘 − 1; 𝑡𝑖, 𝑡) +

(
1− 𝑘

2𝑡
(1− 𝛼0)

)
𝑝(𝑘; 𝑡𝑖, 𝑡). (2.1)

Let

𝑃 (𝑘) = lim
𝑡→∞

∑
𝑡𝑖
𝑝(𝑘; 𝑡𝑖, 𝑡)

𝑡
.

Then (2.1) implies that 𝑃 (𝑘) is the solution to the following recursive equation:

𝑃 (𝑘) =

{
(𝑘−1)(1−𝛼0)
𝑘(1−𝛼0)+2 𝑃 (𝑘 − 1), 𝑘 ≥ 𝑚+ 1;

2
𝑚(1−𝛼0)+2 , 𝑘 = 𝑚.

(2.2)

Therefore,

𝑃 (𝑘) =
𝑘 − 1

𝑘 + 2/(1− 𝛼0)
𝑃 (𝑘 − 1)

=

𝑘∏
𝑖=𝑚+1

𝑖− 1

𝑖+ 2/(1− 𝛼0)
𝑃 (𝑚)

=
Γ(𝑘)Γ(𝑚+ 2/(1− 𝛼0))

Γ(𝑘 + 1 + 2/(1− 𝛼0)))Γ(𝑚− 1)
𝑃 (𝑚),

where Γ(𝑡) denotes the Gamma function, i.e.,

Γ(𝑡) =

∫ ∞

0

𝑥𝑡−1𝑒−𝑥𝑑𝑥, 𝑡 ∈ [0,+∞);

and we have used the recursion of formula

Γ(𝑡+ 1) = 𝑡Γ(𝑡), 𝑡 ∈ [0,+∞).

Notice that
Γ(𝑡+ 𝑎)

Γ(𝑡)
= 𝑡𝑎(1 +𝑂(1/𝑡)).

It is easy to obtain that for some positive constant 𝐶,

𝑃 (𝑘) ∝ 𝐶𝑘−1−2/(1−𝛼0) ∝ 𝐶𝑘−
3−𝛼0
1−𝛼0 . (2.3)
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2.2. The case 𝛼(ℓ) ↓ 0 as ℓ ↑ ∞.

As vertices of higher degree are likely to be less inactive in real-world networks, we consider the case
𝛼(ℓ) ↓ 0 as ℓ ↑ ∞ in this subsection.

Similarly to (2.1),

𝑝(𝑘; 𝑡𝑖, 𝑡+ 1) =
𝑘 − 1

2𝑡
(1− 𝛼(𝑘 − 1))𝑝(𝑘 − 1; 𝑡𝑖, 𝑡) +

(
1− 𝑘

2𝑡

)
(1− 𝛼(𝑘))𝑝(𝑘; 𝑡𝑖, 𝑡) + 𝛼(𝑘)𝑝(𝑘; 𝑡𝑖, 𝑡).

Thus we have that

𝑃 (𝑘) =

{
(𝑘−1)(1−𝛼(𝑘−1))

𝑘(1−𝛼(𝑘))+2 𝑃 (𝑘 − 1), 𝑘 ≥ 𝑚+ 1;
2

𝑚(1−𝛼(𝑚))+2 , 𝑘 = 𝑚.
(2.4)

Let 𝑓(𝑘) = 𝑘 − 𝑘𝛼(𝑘), and 𝐶(𝑚) =
𝑚−1∏
𝑖=1

2+𝑓(𝑖)
𝑓(𝑖) . Then by (2.4), we have

𝑃 (𝑘) =
𝑘∏

𝑖=𝑚

𝑓(𝑖− 1)

2 + 𝑓(𝑖)
=

𝐶(𝑚)

𝑓(𝑘)

𝑘∏
𝑖=1

𝑓(𝑖)

2 + 𝑓(𝑖)
=

𝐶(𝑚)

𝑓(𝑘)

𝑘∏
𝑖=1

(
1 +

2

𝑓(𝑖)

)−1

.

Since as 𝑘 → ∞, 𝛼(𝑘) → 0 and

log

𝑘∏
𝑖=1

(
1 +

2

𝑓(𝑖)

)−1

∼ −
𝑘∑

𝑖=1

2

𝑓(𝑖)
= −

𝑘∑
𝑖=1

2

𝑖− 𝑖𝛼(𝑖)
∼ −2 log 𝑘,

we obtain
𝑘∏

𝑖=1

(
1 +

2

𝑓(𝑖)

)−1

∼ 𝑘−2.

Therefore

𝑃 (𝑘) ∝ 𝐶(𝑚)

𝑓(𝑘)
𝑘−2 ∝ 𝐶(𝑚)𝑘−3. (2.5)

3 Numerical Analysis

In order to check the analytical results, numerical simulations were performed. In all figures, that
𝑃 (𝑘) vs 𝑘 is in log-log plot.

In Figure 1, we simulate the case 𝑚 = 1 and 𝛼 = 0.3 for 𝑡 = 50000, 100000, 150000 and 200000 to
see whether the number of vertices (when it is large) affects the degree distribution or not. We can
see that when 𝑡 is large enough, the degree distribution is independent of 𝑡.

In Figure 2, we simulate the cases 𝛼 = 0.3 and 𝑡 = 200000 to see whether the concrete 𝑚 (constant)
affects the degree distribution or not. From the simulation, we come to a conclusion that the concrete
𝑚 (constant) does not affect the degree distribution. Thus we fix 𝑚 = 1 in the following Figures 3-4.

In Figure 3, we simulate the cases of constants 𝛼0 = 0.01, 0.1, 0.3, 0.9. For the case of 𝛼 = 0.9, by
noting the dots around the black line in the right figure, we can see that it is scale-free. The figure
for the case of 𝛼 = 0.9 is different from those of 𝛼 = 0.01, 0.1, 0.3. We think it is due to the fact that
the number of vertices is relatively too small (note the exponent is 21).

In Figure 4, we do the cases with 𝛼(𝑘) ↓ 0 as 𝑘 ↑ ∞, in which we choose 𝛼(𝑘) = 1
𝑘2 ,

1
𝑘0.5 ,

1
𝑒𝑘
, 1

1+log2 𝑘

respectively.
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Figure 1: The 𝑃 (𝑘) vs 𝑘 in log-log plot for different 𝑡 with 𝑚 = 1 and 𝛼 = 0.3.
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Figure 2: The 𝑃 (𝑘) vs 𝑘 in log-log plot for different constant 𝑚. Numerical simulations by choosing

𝛼 = 0.3 and 𝑡 = 200000. The slope of the dashed line is −27
7 from (2.3). Data are averaged over 10

independent runs.

We see that the numerical simulations are well consistent with analytical results (see (2.3), (2.5)).

The authors [12-14] consider Barabási-Albert model with 𝑚-varying functions, which are of in-
terests as empirical evidences have shown that the number of edges grows faster than the number of
vertices in many networks. And as far as we know, in 𝑚-vary Barabási-Albert model, when 𝑚 varies
with respect to 𝑡 or follows a certain distribution, there have been no analysis results for the degree
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Figure 3: We simulate the cases 𝑚 = 1, 𝑡 = 200000 for different 𝛼. We take 𝛼 = 0.01, 0.1, 0.3, 0.9.
The 𝑃 (𝑘) vs 𝑘 in log-log plot. The case of 𝛼 = 0.9 is due to that the number of vertices is not enough
for the exponent 21.
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Figure 4: We simulate the cases 𝑚 = 1, 𝑡 = 200000 for different functions 𝛼(𝑘). We take 𝛼(𝑘) =
1
𝑘2 ,

1
𝑘0.5 ,

1
𝑒𝑘
, 1

1+log2 𝑘
. The slope of the line is −3 from (2.5). Data are averaged over 5 independent

runs. The 𝑃 (𝑘) vs 𝑘 in log-log plot.

distribution except the special 𝑚-varying functions 𝑚 = ⌈𝐴 ⋅ 𝑡𝑎⌉ and 𝑚 = ⌈𝐵 ⋅ ln 𝑡⌉, where 𝐴, 𝐵 and
𝑎 are three positive numbers and ⌈𝑥⌉ denote the smallest natural number larger than 𝑥. It seems very
difficult to analyze these cases, as we can see that it is even not easy to get the number of edges
𝐺𝑡 when 𝑚 is a function with respect to 𝑡 or follows a certain distribution. Note that our model is
just Barabási-Albert model when 𝛼 = 0. So as a contrast, we simulated our model with 𝑚-varying
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functions. i.e. we simulate the following process: at first there are two vertices and two edges between
them, then the process evolving just like step (𝑖) and (𝑖𝑖), where 𝑚 is a function.

For the Figures 5-8, we fix 𝛼 = 0.3, 𝑡 = 200000 and take 𝑚 =
[
𝑡0.1

]
,
[
𝑡0.2

]
, [log 𝑡] or follows normal

distribution 𝑁
(
𝜇, 𝜎2

)
, Poisson distribution 𝑃𝑜𝑖(𝜆) respectively. It seems that, in these cases, the

corresponding networks are also scale-free (It may be non-stationary [13, 14]). Let us talk something
more about the simulation results.

In Figure 5, we think about whether the increasing rate of 𝑚 with respect to 𝑡 can affect the degree
distribution or not. It seems that it does from the simulation. This can be understood intuitively
from [13, 14], noting that in our model the case when 𝛼 = 0 is just the 𝑚-vary model in [13, 14].

In Figure 7, we consider the cases when 𝑚 follows normal distribution 𝑁(𝜇, 𝜎2). First, we fixed 𝜇
to see whether 𝜎2 can affect the degree distribution or not. Secondly, we checked 𝜇. From the results,
it seems 𝜇 and 𝜎2 cannot affect the degree distribution.

In Figure 8, it seems that the exponent 𝜆 in Poisson distribution 𝑃𝑜𝑠𝑖(𝜆) cannot affect the degree
distribution.
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Figure 5: The cases 𝑚 =
[
𝑡0.1

]
,
[
𝑡0.2

]
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Figure 6: The case 𝑚 = [log 𝑡]

4 Conclusion

In order to model the limiting on vertices in the network during the evolving process, we treat the
limiting as being inactive and introduced a random graph process model. By the master equation, we
prove the corresponding network is scale-free.

Our model is simple as we only consider that the vertices are always added in the evolving process.
In fact, in real-world networks, vertices can also be preferentially deleted. Our next step is to study
evolving networks including the mechanisms that at any time vertices not only have limiting but also
may disappear; see [16].
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Figure 7: We simulate the case 𝑚 follows normal distribution 𝑁(𝜇, 𝜎2). In the left Figure we fixed 𝜇
to see whether 𝜎 can effect the degree distribution or not. And in the right Figure we fixed 𝜎 to see
whether 𝜇 can effect the degree distribution or not. The slopes of the lines are both − 27

7 . The 𝑃 (𝑘)
vs 𝑘 in log-log plot.
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Figure 8: We simulate the case 𝑚 follows Poisson distribution 𝑃𝑜𝑖(𝜆). We take 𝜆 = 3, 10, 20 respec-

tively. The slopes of all the lines are − 27
7 . The 𝑃 (𝑘) vs 𝑘 in log-log plot.
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